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Abstract 8 

 Objectives: We examined canopy gap structure and regeneration patterns at the landscape scale 9 

using a combination of remote sensing and field based surveys. 10 

 Methods: The study was carried out in the forest reserve of Lom, an old-growth Fagus-Abies-11 

Picea forest located within the Dinaric Alps in the north-western part of Bosnia and 12 

Herzegovina. A high resolution (1-m Panchromatic and 4-m Multispectral) Kompsat-2 satellite 13 

image was orthorectified  and classified through an unsupervised pixel based classification using 14 

an artificial neural network method.  15 

 Results: This approach allowed the identification of 650 canopy gaps, ranging in size from 32 to 16 

1776 m
2
. Only 20 intermediate to large gaps (> 250 m

2
) were identified, and they were mainly 17 

present near the perimeter of the reserve. The origin of these large openings was associated with 18 

past human-caused disturbances or topographic conditions. The species composition of 19 

regeneration within large, human-caused gaps differed markedly from small gaps and non-gap 20 

sites in the core area of the reserve. Shade-intolerant species dominated the seedling and sapling 21 

layers in large openings. The landscape approach employed in this study confirmed the 22 

hypothesis that small gaps predominate at Lom, especially within the core area of the reserve. 23 
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Forest disturbance and recovery strongly influence ecosystem processes and carbon balance both 29 

at regional and global scales. Disturbances influence successional pattern and process due to their 30 

extreme variability in size, frequency, and intensity (Turner et al. 1998). In temperate forests 31 

where large-scale, catastrophic disturbances are absent or very rare, dynamics are driven by the 32 

formation of small to intermediate scale openings in the forest canopy following mortality of 33 

canopy trees, often referred to as gap dynamics (Spies et al. 1990). Canopy gaps have a strong 34 

influence on forest dynamics because they increased light into the understory and drive tree 35 

recruitment to the canopy layer. They also contribute to the spatial heterogeneity of a forest 36 

landscape and are influenced by several climatic and physiographic factors that mainly act at the 37 

landscape level (Rich et al. 2010). However, little is known about canopy gap patterns and 38 

processes at the landscape scale, and only a few studies have addressed gap patterns at this scale 39 

(Battles et al. 1995; Hessburg et al. 1999; Smith and Urban 1988). 40 

The spatial distribution of forest canopy gaps has important implications for understory light 41 

regimes and tree regeneration. Gap size and spatial distribution influence forest regeneration, and 42 

in turn, tree species diversity (Lawton and Putz 1988). Another important effect of the spatial 43 

distribution of canopy gaps is the creation of a mosaic of structural types within a forested 44 

landscape (Frelich and Lorimer 1991). Although spatial distribution is an important descriptor for 45 

forest disturbances such as canopy gaps, relatively few studies have investigated the spatial pattern 46 

of gap formation (e.g. Frelich and Lorimer 1991; Hessburg et al. 1999; Lawton and Putz 1988; 47 

Nuske et al. 2009).  48 

A traditional approach to the study of gaps is based on field survey methods (for a complete 49 

review, see Schliemann and Bockheim 2011), which are limited in their ability to capture spatial 50 

and temporal patterns, and cannot be used extensively because of their financial cost (Vepakomma 51 

et al. 2008). An alternative approach is to employ remote sensing together with multiple scale 52 

ground surveys (Rich et al. 2010). Multispectral imagery can be a useful tool, but has rarely been 53 

used for canopy gap identification (Jackson et al. 2000).  High resolution (e.g. < 5 m) spaceborne 54 

remote sensing data (e.g. Ikonos, QuickBird, Kompsat-2) provide a detailed view of forest 55 

canopies and are potentially useful tools to study canopy gaps at a variety of spatial scales 56 
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(Jackson et al. 2000; Rich et al. 2010). These aerial and satellite sensors permit automatic data 57 

collection enabling the sampling of broader areas and scales in the same period. Moreover, remote 58 

sensing analysis can be used to better structure the sampling design at a landscape scale.  59 

In this study, we coupled high-spatial resolution Kompsat-2 satellite imagery from a single date 60 

with field observations in an old-growth mixed Fagus-Abies-Picea forest in Bosnia and 61 

Herzegovina.  Such old-growth remnants in eastern and southeastern Europe provide valuable 62 

opportunities to evaluate small-scale tree mortality processes. Kompsat-2 digital imagery was 63 

chosen for the study because its geometric resolution approaches the scale of individual forest 64 

components, such as tree crowns and forest canopy gaps. Our specific objectives were: 1. to 65 

propose a classification method to detect complex gaps from satellite images and compare this 66 

approach with data collected in the field; 2. to quantify characteristics of canopy gaps, particularly 67 

gap spatial pattern,  at the landscape scale; and 3. to understand the role of geometric attributes of 68 

gaps on forest regeneration. 69 

 70 

2. Methods 71 

2.1. Study area 72 

The study was conducted in the Lom forest reserve. The reserve is a 297.8 ha area of old-growth 73 

forest (between 44°27’ - 44°28’ N, and 16°27’ - 16°30’ E, DATUM WGS84) located in the 74 

Dinaric Alps, within the Klecovača region in the north-western part of Bosnia and Herzegovina. 75 

The reserve has relatively gentle topography (1223-1503 m a.s.l.), but sinkholes are scattered 76 

throughout the area, which are typical features of the karst geology in the region. The climate is 77 

transitional continental with a mean annual temperature of 3.5°C and mean annual precipitation of 78 

1600 mm, with maximum in December and minimum in July (Drinic climate station, 730 m a.s.l.). 79 

The forest reserve of Lom is divided in two zones, a core area of 55.8 ha that consists of well 80 

preserved old-growth (Motta et al. 2008; Motta et al. 2011) and a buffer zone that has some 81 

evidence of past human activities. Since 1956 all management activities are strictly forbidden in 82 

the entire reserve. The forest is dominated by silver fir (Abies alba Mill.), Norway spruce (Picea 83 

abies (L.) Karsten), and European beech (Fagus sylvatica L.), while sycamore maple (Acer 84 
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pseudoplatanus L.) and Scots elm (Ulmus glabra Hudson) occur less frequently (Bucalo et al. 85 

2007; Motta et al. 2008). 86 

2.2. Image pre-processing and classification 87 

A high resolution Kompsat-2 (Korea Multi-Purpose SATellite-2) satellite image was acquired on 88 

June 11, 2009. The acquired image is a Bundle type, comprising a 1-m GSD (Ground Sample 89 

Distance) panchromatic band (0.50-0.90 μm ) and four 4-m GSD multispectral bands  (Blue, 90 

Green, Red, Near Infrared). The sensor acquired the image with a 248.23° azimuth and an 91 

incidence angle of 6.44° and clouds were completely absent from the scene. The Kompsat-2 92 

multispectral data were initially calibrated into reflectance at-the-ground values using the nominal 93 

values of Gain and Offset (Table 1) and applying the Dark Subtraction algorithm for a simplified 94 

atmospheric correction. These operations were performed using the ENVI software (ITT 2009). 95 

The satellite image was orthoprojected with the Toutin rigorous model for Kompsat-2 data 96 

implemented within the Orthoengine module of PCI software (PCIGeomatics 2009). 11 three 97 

dimensional Ground Control Points (GCPs), previously surveyed in the field with a Trimble 98 

GEOXM GPS, were used in this process. GPS pseudo-range code measurements were post-99 

processed using the nearest permanent station (Sarajevo) belonging to the EUREF network. The 100 

resulting planimetric accuracy was about 1.5 m, sufficient enough for a 1:10,000 scale map. The 101 

digital elevation model used during the orthoprojection was the NASA/METI ASTER Global 102 

Terrain Model, with a geometric resolution of 30 m and vertical Root Mean Square Error (RMSE) 103 

of about 9 m. Both the panchromatic and the multispectral bands were orthoprojected obtaining a 104 

RMSE for the GCPs of 1.35 m. 105 

The 1-m panchromatic band was used as an up to date map of the site to support surveys in the 106 

field. The 4-m multispectral image was used to test its suitability for canopy gap detection. A sub-107 

sample of the area surrounding the forest reserve of 12612 ha was selected for this purpose. To 108 

obtain a high degree of automation we adopted an unsupervised pixel-based classification method 109 

in place of an object-oriented one. In optical remote sensing, especially when using a pixel-based 110 

classification approach, dark shadows cast by larger crowns adjacent to smaller trees or edge 111 

canopies into a canopy gap can be a significant problem and hence can make it difficult to reliably 112 
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quantify gap characteristics (Asner et al. 2003; Leboeuf et al. 2007). Bands ratios such as NDVI 113 

(Normalized Difference Vegetation Index) can be used to limit the effect of shadows and 114 

illumination differences without losing the physical meaning of the investigated object (canopy). 115 

In fact the NDVI is considered relatively insensitive to changes in shadow fraction (Asner et al. 116 

2003). Thus, an NDVI image was generated from the Red and NIR bands and stacked together 117 

with the four original bands. Five bands were then used during the classification.  118 

The proposed approach tests the ability of an unsupervised pixel-based classification to separate 119 

the class ‘canopy gap’ from the remaining vegetation. The classifier used for this task is based on 120 

the Artificial Neural Networks (ANN) philosophy. In particular, we used the Neural Gas algorithm 121 

which was specifically developed with IDL (Interactive Data Language) routine. The unsupervised 122 

classifier was applied twice successively. First, the image was classified into 16 classes that were 123 

subsequently aggregated into 7 classes following the Jeffries-Matusita separability test. Second, 124 

two textural occurrence measures (i.e. data range and standard deviation) were generated with a 125 

7x7 kernel for each of the original bands. The new 10 band image was first masked to address the 126 

operation to the ‘gap’ class pixels, then clustered through the NG algorithm into 2 clusters. This 127 

permitted the separation of the large and homogeneous openings (meadows in our case) from 128 

forest canopy gaps. A polygon vector canopy gap map (Fig. 1) was derived from the final 129 

classification image in a GIS environment adopting a minimum mapping unit (MMU) of two 130 

pixels (32 m
2
). The class ‘canopy gap’ comprised those openings in the forest canopy dominated 131 

by soil, grasses, and coarse woody debris where the gap-filling process by tree regeneration was in 132 

its early phase. From an image processing point of view a “gap” can be considered as a local 133 

spectral and textural anomaly within the forest class. The accuracy of the canopy gap map was 134 

assessed through two different approaches: field observations of 40 sample gaps were used to 135 

evaluate the underestimation of canopy gaps and a visual check of all classified gaps (n = 360) on 136 

a false color RGB composite was done to assess the potential overestimation of gaps. One hundred  137 

percent of the visited gaps were correctly classified. The visual check revealed that 82 % of gaps 138 

were correctly classified, and 8 % were uncertainly classified. Moreover, the spectral signature of 139 

the whole ‘canopy gap’ class was compared to the spectral characteristics of 18 photointerpreted 140 
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gaps in order to test the ability of the classification to detect real canopy gaps. The spectral 141 

statistics for the class ‘canopy gap’ were very similar to the spectral statistics of the 142 

photointerpreted gaps (Fig. 2). 143 

2.3. Spatial pattern of canopy gaps 144 

Because canopy gaps are objects with finite size and irregular shape and they can be large in 145 

comparison to the investigated spatial scales we treated the gaps as patches or polygons avoiding 146 

point approximation (Wiegand et al. 2006). Three different categorical raster maps (i.e. the whole 147 

reserve, buffer zone, and core area) of 4-m spatial resolution were derived from the canopy gap 148 

vector map obtained from the satellite image. The categorical maps were transformed to a matrix 149 

with 2 categories (canopy gaps, and forest) and a mask was used to take into account the irregular 150 

shape of the study area (space restriction effect). In order to analyse  the spatial pattern of gaps we 151 

used both Ripley’s L-function (Ripley 1976) and the O-ring statistic (Wiegand et al. 1999). This 152 

latter was computed as complementary analysis to avoid the misinterpretation of results due to the 153 

cumulative effect of Ripley’s index that can confound effects at larger distances with effects at 154 

shorter distances (Perry et al. 2006). Complete spatial randomness (CSR) was chosen as a null 155 

model built by rotating and moving the objects within the raster map. All the spatial analyses were 156 

performed using the Programita software (Wiegand and Moloney 2004). 157 

2.4. Gap geometry and forest regeneration  158 

The influence of gap geometry (size, shape, and direction) on regeneration structure and 159 

composition was assessed through field surveys. The orthorectified Kompsat-2 image was used to 160 

locate larger gaps (> 200 m2) in order to include additional samples to an existing dataset (Bottero 161 

et al. 2011) of 56 canopy gaps (ranging from 11 to 708 m2). Data on regeneration structure and 162 

composition were collected and georeferenced with a GPS. The density of seedlings (trees < 1 m 163 

height), saplings (trees > 1 m tall and with diameter at the breast height < 7.5 cm), and gap fillers 164 

(trees > 7.5 dbh and less than 20 m tall) was measured within a 6 m radius circular plot located in 165 

the centroid of each canopy gap. Gap size was calculated in a GIS environment using the triangles 166 

method based on the mapped position on the ground of the trees bordering the gap.  The shape was 167 
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measured as direction expressed as north-eastness index and elongation of polygons by using the 168 

Longest Straight Line extension for ArcView 3.x (Jenness 2007). 169 

The relationship between regeneration composition and gap geometry was analyzed through 170 

redundancy analysis (RDA) (Rao 1964). This direct gradient analysis is a constrained ordination 171 

method that was used to investigate the variability explained by the explanatory variables and their 172 

correlation with regeneration composition variation. Two data sets were used in this ordination 173 

analysis: (a) regeneration composition (10 species x 60 plots); and (b) geometry of canopy gaps (5 174 

variables x 60 plots). The RDA was performed using Canoco® (ter Braak and Smilauer 1998), and 175 

the statistical significance of all ordination analyses was tested by the Monte Carlo permutation 176 

method based on 10000 runs with randomized data. 177 

 178 

3. Results 179 

3.1. Canopy gaps characteristics 180 

A total of 650 canopy gaps were located by multispectral remote detection within the Lom forest 181 

reserve (Table 2). The average size of these gaps was 78.2 m
2
 and the variability observed was 182 

high, ranging from 32 to 1776 m
2
. The total gap area was 5.1 ha, resulting in a gap fraction of 1.7 183 

% and the density of canopy gaps within the whole reserve was 2.2 ha
-1

. 184 

The core area and buffer zone differed in canopy gap density (1.7 and 2.3 ha
-1

 respectively) and 185 

mean size (62.6 and 81.2 ha
-1

 respectively). The average gap area was strongly influenced by the 186 

different size of the largest gap in the two zones (320 m
2
 in the core area and 1776 m

2
 in the buffer 187 

zone). Moreover, the variability of gap area was much smaller (50 m
2
 standard deviation) in the 188 

core area than in the buffer zone (106.7 m
2
 standard deviation). 189 

The frequency distribution of canopy gap size in both the core area and buffer zone (Fig. 3) 190 

followed a negative exponential form with smaller gaps more frequent than larger ones. The 191 

difference in size distribution between the two zones was not significant (Komolgorov-Smirnov 192 

test, p = 0.116). The proportion of gaps smaller than 100 m
2
 differed slightly between the core 193 

area (89%) and the buffer zone (80%), and the amount of gaps larger than 300 m
2
 was similar in 194 

the two zones (4% core area; 6.6% buffer zone). 195 
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3.2. Spatial pattern of canopy gaps 196 

The spatial distribution of canopy gaps varied in the different parts of the Lom reserve. The 197 

univariate Ripley’s L-function for the whole reserve showed a deviation from complete spatial 198 

randomness starting at a distance of 20 m (Fig. 4e). Spatial patterns between the buffer zone and 199 

the core area were different. In the core area the L-function values stay within the confidence 200 

envelope (Fig. 4a), indicating a random distribution of the canopy gaps at all scales (0 to 200 m). 201 

In the buffer zone the spatial pattern of the gaps was clustered for distances larger than 20 m (Fig. 202 

4c). The results are consistent with the O-ring analysis (Fig. 4b, d, f). 203 

3.3. Gap geometry and forest regeneration   204 

Silver fir was the dominant species in the seedling layer, beech in the sapling one, and Norway 205 

spruce, rowan and maple were denser in large and elongated gaps (Table 3).  The redundancy 206 

analysis revealed that gap geometry was related to regeneration composition (Fig. 5). The first and 207 

second axes accounted for 10.4 and 1.6 % of the total variation, respectively (Table 4). Early-208 

successional and shade-intolerant species, such as sycamore maple and rowan, were positively 209 

associated with large (Area, Perimeter) and elongated (Long) gaps. European beech saplings were 210 

not influenced by gap size, but were weakly associated to gap filler basal area. The different 211 

pattern observed for rowan seedlings (Sorbus_1) and saplings (Sorbus_2) was probably due to the 212 

fact that this species is shade-tolerant only in the first stages of its life. 213 

 214 

4. Discussion and conclusion 215 

4.1. Gap delineation using high resolution multispectral data 216 

In this study, high-spatial resolution Kompsat-2 satellite imagery was coupled with field data to 217 

assess important components of the gap disturbance regime across a temperate mixed forest 218 

landscape. Our results indicate that it is possible to measure key components of gaps using spectral 219 

and textural features from high-spatial resolution data. The 650 identified gaps were dominated by 220 

grasses, forbs, bare soil and coarse woody debris, indicating that the classification method adopted 221 

in this study picked out predominately recently formed gaps. This explains the very low gap 222 

fraction observed in the study compared to those values (often > 10%) reported in studies of 223 
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similar forests in Europe (Drösser and von Lüpke 2005; Nagel and Svoboda 2008; Splechtna et al. 224 

2005) and in a companion study (Bottero et al. 2011). Typically, field based surveys of gaps 225 

distinguish openings from closed canopy areas by using a height cutoff of gapfilling trees, often 226 

around half the height of the main canopy layer. The minimum gap size considered in the present 227 

study (32 m
2
) was larger than the threshold adopted in many field based surveys. Consequently, 228 

these studies sample a broad range of gap ages and sizes, resulting in a higher gap fraction. 229 

The NDVI was calculated to help in the classification process, but there was a low correlation 230 

between the index and the disturbed surfaces. The weak relationship observed was mainly due to 231 

the fact that vegetation (e.g. forest regeneration, shrubs, and grasses) was present beneath the 232 

forest canopy and within the openings. Forest canopy gaps with dense understory vegetation likely 233 

have a similar near infrared response to a closed canopy site, particularly for gaps in the later 234 

stages of the gapfilling process with gap fillers reaching the lower canopy layer. Nevertheless, 235 

disturbed sites like canopy gaps often have rougher texture and are more heterogeneous than 236 

closed canopy areas (Rich et al. 2010). To overcome the limits of spectral data, textural features 237 

were subsequently used to improve the automatic classification method. Although the 238 

classification method proved to be useful, a substantial improvement for canopy gap detection can 239 

be obtained through the use of LiDAR imagery (Gaulton and Malthus 2010; Vepakomma et al. 240 

2008). However, the automatic classification on high resolution multispectral data presented in this 241 

study proved to be a good estimator of recently formed canopy gaps and it is more cost effective 242 

than LiDAR. Another advantage of multispectral satellite imagery is the possibility of performing 243 

a diachronic study on a series of historical satellite images.  244 

4.2. Spatial pattern of canopy gaps 245 

The spatial pattern observed in our study site seems follow these findings. The gaps within the 246 

core area of the Lom reserve were randomly distributed, which is likely due to the relative 247 

environmental homogeneity of the area and the lack of recent higher severity disturbance events. 248 

Consistently, a large proportion of the gaps in the core area were formed by endogenous mortality 249 

of large canopy trees (Bottero et al. 2011). The random spatial distribution of canopy gaps found 250 

in Lom’s core area is in agreement with other studies in temperate forests (Frelich and Lorimer 251 
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1991; Nuske et al. 2009). In contrast, gaps were larger and clustered in the surrounding buffer 252 

zone, which is due to topographic and human caused influences. A higher density of gaps was 253 

found at higher elevations in close proximity to the ridges of the reserve. This may be partly 254 

because these areas are more wind exposed, but also due to several artificial gaps from recent 255 

(1992-1995 Bosnian War) illegal logging and former grazing activities. These artificial openings 256 

were located in close proximity to manmade trails and dirt roads, which likely contributed to the 257 

clumped pattern of gaps. 258 

4.3. Forest regeneration as influenced by canopy gap geometry 259 

First, it should be noted that the gap size range observed in Lom (32-1700 m2) was similar to the 260 

size distribution of gaps commonly reported for forests where small-scale disturbance events occur 261 

(Lawton and Putz 1988; Lertzman and Krebs 1991; Nagel and Svoboda 2008; Spies et al. 1990). 262 

Gap size had little influence on regeneration density in Lom, which was also found in a companion 263 

study (Bottero et al. 2011). This finding is confirmed by other studies in southeastern European 264 

forests, where the presence of a stratum of advance regeneration partially explains the weak 265 

relationship between regeneration density and gap size. Other factors such as gap age seem to be 266 

related to seedling density more than gap size, probably due to thinning and architectural 267 

differences between species over time due to competition (Poulson and Platt 1989; Spies et al. 268 

1990). 269 

The results from our study area partially confirmed a conceptual gap model that predicts an 270 

increase in the relative dominance of shade-intolerant species as size of disturbance increases 271 

(Runkle 1985). Gap geometry (size, direction, and shape) had very little influence on the 272 

occurrence of shade-tolerant species such as P. abies, F. sylvatica, and A. alba, because they were 273 

already present as advance regeneration before gap formation. Thus, it was not surprising to 274 

observe that forest canopy gaps were not primary sites of regeneration, but mainly acted in 275 

regulating the recruitment of advance regeneration dominated by shade-tolerant species (Busing 276 

and White 1997). Less shade-tolerant species, such as A. pseudoplatanus and S. aucuparia were 277 

present only in lager gaps and were dominant in only a few artificial openings located in the buffer 278 

zone of the reserve. Large canopy gaps are important for the maintenance of shade-intolerant 279 
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species that are more competitive in open areas (Whitmore 1989) and occur only in small numbers 280 

in closed canopy forests.  281 
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 393 

Tables 394 

Table 1. Nominal coefficients used for the calibration to surface reflectance of the Kompsat 2 395 

image. 396 

 397 

Band L max  

(W/(m
2
.sr.μm)) 

L min  

(W/(m
2
.sr.μm)) 

Sun Irradiance 

(W/(m
2
.sr.μm)) 

Central wavelength 

(μm) 

1 (Blue) -1.52 193.00 1929.00     0.485   

2 (Green) -2.84 365.00 1837.00      0.560   

3 (Red) -1.17 264.00 1556.00      0.660   

4 (NIR) -1.51 221.00 1068.00     0.830   

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 
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 412 

 413 

 414 

 415 

Table 2. Landscape metrics and statistics of geometrical attributes of canopy gaps of the Lom old-416 

growth forest in Bosnia Herzegovina. 417 

 418 

Metrics Unit Core area Buffer Zone Reserve 

Total area ha 55.8 242.0 297.8 

Number of gaps n 102 548 650 

Density of gaps n/ha 1.7 2.3 2.2 

Minimum gap area m
2
 32.0 32.0 32.0 

Maximum gap area m
2
 320.0 1776.0 1776.0 

Mean gap area m
2
 62.6 81.2 78.2 

Median gap area m
2
 48.0 48.0 48.0 

Stdv. gap area m
2
 50.0 106.7 100.2 

Minimun gap perimeter m 24.0 24.0 24.0 

Maximum gap perimeter m 96.0 368.0 368.0 

Mean gap perimeter m 35.1 40.8 39.9 

Stdv. gap perimeter m 15.1 27.6 26.1 

Gap fraction % 1.08 1.85 1.70 

 419 

 420 

 421 

 422 

 423 

 424 

 425 
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 426 

 427 

 428 

Table 3. Gap geometry characteristics and seedlings (1) and saplings (2) species composition 429 

(Abies = silver fir; Fagus = European beech; Picea = Norway spruce; Acer = sycamore maple; 430 

Sorbus = rowan) divided by 4 classes of canopy gaps’ area.  431 

 432 

Gap area classes (m
2
) < 50 50-100 100-250 >250 Total 

Number of gaps 21 14 16 7 58 

Gap area mean (m
2
) 25.64 74.66 145.47 670.80 139.22 

Gap area standard deviation (m
2
) 13.75 14.69 36.42 142.11 196.07 

Gap perimeter (m) 20.79 37.29 54.01 147.75 47.53 

Gap elongation (m) 8.23 14.06 19.41 38.92 16.03 

Gap fillers (m
2
/ha) 7.28 7.88 9.75 9.08 8.31 

Regeneration composition (n/ha)      

Picea_1 640 783 619 1120 719.77 

Picea_2 17 227 133 1238 229.58 

Abies_1 4143 4446 3890 3183 4045.58 

Abies_2 152 303 133 2476 428.14 

Fagus_1 1196 1036 1326 1415 1216.15 

Fagus_2 825 884 884 1592 936.94 

Acer_1 337 51 354 589 297.83 

Acer_2 0 25 0 0 6.20 

Sorbus_1 118 0 155 589 148.92 

Sorbus_2 0 0 0 236 24.82 

 433 

 434 

 435 
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 436 

 437 

 438 

Table 4. Correlation of gap geometry variables with the first four axes of the regeneration 439 

composition RDAs. Boldface numbers represent the correlations greater than 0.3 between 440 

explanatory variables and the ordination axes. A p value of 0.004 on the significance of all 441 

canonical axes is derived from a  Monte Carlo test with 10000 permutations.  442 

 443 

Axis RDA-1 RDA-2 RDA-3 RDA-4 

% of variance 10.4 1.6 1.2 0.3 

Species-environment correlations 0.74 0.39 0.31 0.16 

Area (gap area) 0.59 0.17 0.09 -0.04 

Perimeter (gap perimeter) 0.52 0.14 0.15 -0.03 

Long (gap elongation) 0.59 0.06 0.07 -0.01 

NE (gap direction) 0.16 0.03 0.12 0.13 

Fillers (gap fillers basal area) -0.20 0.30 -0.08 0.01 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 
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Figure captions 456 

Fig. 1 Canopy gap map of the Lom forest reserve showing the geographic distribution of canopy 457 

gaps (minimum mapping unit = 32 m
2
) bounded by the core area and the forest reserve borders. 458 

Example Kompsat-2 subset images reporting the zoom of a single canopy gap as observed on (A) 459 

the panchromatic (1-m resolution) and (B) the multispectral image are also showed.  460 

 461 

 462 

 463 

 464 
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Fig. 2 Comparison between spectral mean values of classified gaps (class ‘canopy gap’) and 18 465 

photointerpreted gaps from the Kompsat-2 image. Error bars represent standard deviation of 466 

spectral features. 467 

 468 

 469 

Fig. 3 Frequency distribution of canopy gap size in the core area and in the buffer zone of the Lom 470 

forest reserve in Bosnia and Herzegovina. 471 

 472 
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Fig. 4 Univariate Ripley’s L-functions -L(d)- and O-ring pair-correlation functions -O(r)- of the 473 

canopy gaps of the Lom old-growth forest using the polygon-based approach respectively in the 474 

core area (a, b), the buffer zone (c, d), and the whole reserve (e, f). Black line: estimated function; 475 

dotted lines: upper and lower confidence envelopes under the null hypothesis of complete spatial 476 

randomness, computed by Monte Carlo simulation using 1000 replicates.  477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 
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Fig. 5 Redundancy analysis (RDA of 60 plots) of regeneration composition in relation to canopy 485 

gap geometry and gap filler basal area. Dashed arrows show the tree species (Abies = silver fir; 486 

Fagus = European beech; Picea = Norway spruce; Acer = Sycamore maple; Sorbus = Rowan) 487 

divided by seedlings (1) and saplings (2). Solid line arrows represent the “biplot scores of canopy 488 

gaps geometry” (Perimeter = gap perimeter; Area = gap area; Long =  longest straight line across 489 

the interior of a gap; NE = north-eastness index of gap direction) and gap filler basal area (Fillers). 490 

A p value of 0.004 on the significance of all canonical axes is derived from a Monte Carlo test 491 

with 10000 permutations. 492 

 493 


