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Abstract 38 

Twenty-one populations of Scots pine sampled over the entire Italian range of the species were 39 

analysed for genetic variation scored at 9 nuclear SSR markers. The main aim of the work was to find 40 

genetic features useful for conservation management, namely allelic composition, gene diversity and 41 

differentiation. 42 

High levels of intra-population variability were scored. The only population sampled in the 43 

Apennines gave the lowest values, confirming the genetic erosion undergone in the Scots pine remnants in 44 

this area. A low level of genetic variability was also scored for populations from the Po valley and hills of 45 

Piedmont. Most genetic diversity was found within-populations, while only a small amount occurred among 46 

them (FST = 0.058). Both Bayesian clustering and sPCA analysis showed a East-West subdivision, 47 

notwithstanding the unclear position of populations from the Po valley. The population from the Apennines 48 

was always clearly separated from the others. 49 

The results are discussed in terms of post-glacial recolonisation, as well as for defining the regions of 50 

provenance of Scots pine in Italy. The management of genetic resources could benefit from the identification 51 

of genetically homogeneous regions, thereby avoiding the use of non-local reproductive material for 52 

plantations, which is well known as one of the most important reason for failure of reforestation. 53 

 54 

Key words 55 



 3 

Genetic differentiation, genetic variation, glacial refugia, regions of provenance, Scots pine, SSR markers 56 

 57 

Introduction 58 

Genetic erosion is one of the most serious threats for the survival of forest ecosystems worldwide. A 59 

high level of variability is essential to supply populations with strong adaptability. This is particularly 60 

important for forest species, which consist of individuals with long life-cycles and no possibility of migrating 61 

to more favourable sites (Palmberg-Lerche 2001, Toro and Caballero 2005). Genetic erosion can be strongly 62 

enhanced by habitat fragmentation and marginality in the species’ range (Jump and Peñuelas 2006, Eckert et 63 

al. 2008). However, the expected ‘genetic signal’ depending on increasing isolation and decreasing 64 

population size is often undetected, as fragmentation may have occurred relatively recently and fragments 65 

may contain large remnant populations and the longevity of many tree species can delay the loss of genetic 66 

variability (Kramer et al. 2008). In addition, the historically underestimated long distance dispersal capability 67 

of forest trees can also maintain a high connectivity among widely isolated stands (Robledo-Arnuncio and 68 

Gil 2005, Nathan 2006, Williams 2010). Conversely, climate warming can strengthen the loss of genetic 69 

variability due to fragmentation, causing a marked decline in growth and survival of marginal southern 70 

populations of temperate tree species, as demonstrated in European Pinus sylvestris populations by Rubiales 71 

et al. (2008) and Reich and Oleksyn (2008). 72 

Knowledge of the level and distribution of genetic variation is of the utmost importance in providing 73 

information for the conservation and the management of genetic resources. Furthermore, genetic analysis 74 

based on molecular markers can increase our understanding of the historical processes that led to the present 75 

distribution of a species (Petit et al. 2003). These markers can provide us with appropriate means to obtain 76 

information on the genetic structure of populations, as well as to analyse the distribution of within-species 77 

variability (Pautasso 2009). Such data provide important insights for preservation and restoration programs, 78 

indicating areas of high genetic diversity and geographic limits for seed collection, and delimiting the scale 79 

at which conservation should be planned (Escudero et al. 2003).  80 

Scots pine (Pinus sylvestris L.) is the most widespread European conifer tree, and its natural range 81 

extends from the arctic circle in Scandinavia down to southern Spain and central Italy, and from western 82 

Scotland to eastern Siberia. In southern Europe and Asia Minor, isolated occurrences are confined to the 83 
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mountain zone (up to 2200 m in altitude in the Balkans and Spain, and 2700 m in the Caucasus). In Italy the 84 

species is widely spread throughout the Alps, and some relic populations can be found in the northern 85 

Apennines, in the hilly areas of Piedmont (north-western Italy) and in the upper part of the Po valley 86 

(Pignatti 1982). The present distribution is highly influenced by human activities. In the Alps Scots pine has 87 

often been substituted by other species, namely Norway spruce and black pine, while the other populations 88 

are nowadays regressing, mainly due to recruitment limitation, competition with other forest trees and as a 89 

consequence of rural depopulation and the abandonment of wood management (Camerano et al. 2008). 90 

The complex biogeographic history of Scots pine in Europe has been extensively studied (Sinclair et 91 

al. 1999, Soranzo et al. 2000, Cheddadi et al. 2006). Recent work has shown the presence of a previously 92 

unknown glacial refugium in northern Europe during the last glaciation (Naydenov et al. 2007, Pyhäjärvi et 93 

al. 2008), and of several small putative refugial areas in Southern Europe that gave rise to geographically 94 

limited “interglacial refugia” (Cheddadi et al. 2006). Among the southernmost populations the Spanish, 95 

Balkan and Turkish ones have usually been considered in broad scale phylogeographic studies (Sinclair et al. 96 

1999, Soranzo et al. 2000, Naydenov et al. 2007, Pyhäjärvi et al. 2008), whereas Alpine and Apennine 97 

populations have received less attention (Scalfi et al. 2009). In the few studies where they were extensively 98 

sampled it was demonstrated that Italian populations shared a common mitochondrial haplotype, and that 99 

they are different from the surrounding Austrian, Swiss, and French alpine populations (Cheddadi et al. 100 

2006). Cheddadi et al. therefore hypothesised a common origin for Italian Scots pine populations from a 101 

refugial area in Southern Italy, even though the results by Puglisi and Attolico (2000), Labra et al. (2006) and 102 

Scalfi et al. (2009), obtained with more polymorphic genetic markers (respectively allozymes, ISSRs and 103 

SSRs), showed a marked differentiation between Alpine and Apennine populations, suggesting different 104 

recolonisation routes for the two mountain chains. The preservation of genetic resources of highly 105 

fragmented Apennine populations therefore appears to be a high priority challenge. 106 

At the population level genetic structure and gene flow patterns have been studied in Spanish 107 

populations from the northern Meseta by Robledo-Arnuncio and Gil (2005) and Robledo-Arnuncio et al. 108 

(2005), and show high within-populations genetic diversity and extremely high levels of pollen flow over 109 

long distances (5% longer than 30 km). On the other hand, small relic Scots pine populations from the 110 

Apennines had significantly lower genetic diversity, and are differentiated from the alpine ones, possibly as a 111 
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consequence of progressive isolation since the early Holocene and their origin from different glacial refugia 112 

(Labra et al. 2006, Scalfi et al. 2009). Scalfi et al. (2009) however, hypothesised a possible different role of 113 

gene flow via-pollen and seed in determining this genetic differentiation. 114 

In this study we surveyed the genetic variability of 21 Scots pine populations throughout the species 115 

distribution in the Italian peninsula, using 9 highly informative nuclear microsatellite (nSSR) markers. Our 116 

main aim was to assess the levels and distribution of genetic variability of this conifer by intensively 117 

sampling the entire Italian range of the species, and to investigate the presence of any cryptic genetic 118 

structure shaped by postglacial recolonisation which went undetected in previous studies based on organellar 119 

markers. We also discussed our results in the light of the European Directive 105/1999, with particular 120 

emphasis on the preservation and restoration of Scots pine genetic resources in the Alps and Apennines. 121 

 122 

Material and Methods 123 

Plant material 124 

 Twenty-one native populations of Scots pine were chosen within the natural range of diffusion of the 125 

species in Italy (Figure 1). Four of them (BOS, VEZ, PAS and CAS) are located in the hilly areas of 126 

Piedmont, two (TIC and OLG) grow in the upper part of Po valley and another (CRO) is found in the 127 

northern Apennines. All the others are distributed along the entire Italian Alpine region. Table 1 summarises 128 

names and locations of the populations analysed. Most of the populations belong to mixed forests, with the 129 

exception of populations CAR, FEN and SAV which are pure stands of Scots pine. In other locations 130 

accompanying species vary according to altitude and latitude: English oak, hornbeam and wild cherry (TIC), 131 

pubescent oak, flowering ash and juniper (CRO), sessile oak and European ash (OLG, MAS, GAR), sessile 132 

oak, black locust, elm and maples (BOS, VEZ, PAS, CAS), black pine (DOG), Norway spruce (VAL, SIU, 133 

BRU, COR, CLA), silver fir (TOC), larch (SAR) and mountain pine (BRI). Among the populations sampled, 134 

CRO, CAR, FEN, OLG, VAL, SIU and BRU are registered in the Italian National Book of Seed Stands for 135 

Scots pine, selected for their phenotypic characteristics and health status (Morandini and Magini 1975). 136 

Twenty-four adult non-adjacent trees were chosen at random in each population. Since some 137 

individuals did not show reliable nSSRs banding patterns, they were excluded from the analysis. The number 138 

of these individuals varied among populations: from zero up to six. Consequently, the total number of 139 
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analysed individuals was 449. Needles collected from the trees were stored at –20°C until DNA extraction 140 

was carried out. 141 

 142 

Molecular analysis 143 

Frozen needles (100 mg of tissue) were powdered in liquid nitrogen and genomic DNA was 144 

extracted using the QIAGEN® DNeasy plant mini kit, according to the manufacturer’s protocol. A total 145 

concentration of 20 ng/µl was obtained for each sample. 146 

Twelve simple sequence repeat markers (SSR) were selected according to the literature, and tested 147 

on our plant material (Table 2). While the SPAC and SPAG series consisted of primers specific for P. 148 

sylvestris (Soranzo et al. 1998), the PtTX series included primers originally designed for Pinus taeda, but 149 

they also proved to be as useful as the markers selected for P. sylvestris (Elsik et al. 2000, Auckland et al. 150 

2002, González-Martinez et al. 2004). 151 

Polymerase Chain Reaction (PCR) amplifications were performed using a Perkin Elmer GeneAmp® 152 

PCR System 9600 thermal cycler. The protocol was slightly modified, according to the presence of a 153 

fluorochrome (IR-Dye 700 and IR-Dye 800) attached to each forward primer. Each amplification reaction 154 

contained 1X reaction buffer (Promega), 2.5 mM MgCl2, 0.2 mM dNTPs, 0.5 µM of each primer, 0.65 U of 155 

GoTaq DNA Polymerase (Promega), approximately 10 ng genomic DNA, and deionised water to a total 156 

volume of 13 µl. 157 

The PCR profiles varied for different primers, and were adjusted for the presence of the forward 158 

labelled ones: for P. sylvestris specific primers the profiles included an initial step of 3 min at 94°C, followed 159 

by 5 cycles of touchdown consisting of 94°C for 30 s, 65°C for 30 s ∆↓ 1°C (SPAC 11.4 and SPAC 11.5) or 160 

60°C for 30 s ∆↓ 1°C (SPAC 11.8, SPAC 12.5, SPAG 3.7 and SPAG 7.14), 72°C for 1 min, and subsequent 161 

25 cycles of amplification consisting of 94°C for 30 s, 60°C for 30 s, 72°C for 1 min, and a final extension of 162 

72°C for 10 min. Touchdown PCR was not necessary for SPAC 11.6, where the protocol consisted of a first 163 

step at 95°C for 5 min, and 35 cycles (denaturation at 94°C for 1.5 min, annealing at 55°C for 1.5 min and 164 

elongation at 72°C for 1.5 min), followed by 10 min at 72° C. For P. taeda primers PCR profiles consisted of 165 

an initial step of 5 min at 94°C, followed by 20 cycles of touchdown [94°C for 1 min, 59°C for 30 s ∆↓ 166 

0,5°C (PtTX 3032) or 55°C for 30 s ∆↓ 0,5°C (PtTX 3116) or 60°C for 30 s ∆↓ 0,5°C (PtTX 3107, PtTX 167 
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4001 and PtTX 4011), 72°C for 1 min)], followed by 20 cycles of amplification at 94°C for 1 min, annealing 168 

temperature for 1 min, 72°C for 1 min, and a final extension of 72°C for 3 min. 169 

The forward sequence of each primer pair was labelled with a fluorescent dye at its 5’ end: IR-Dye 170 

800 for SPAC 11.6, SPAC 12.5, SPAG 7.14, PtTX 3107 and PtTX 4001, IR-Dye 700 for SPAC 11.4, SPAC 171 

11.8, SPAC 11.5, SPAG 3.7, PtTX 3032, PtTX 3116 and PtTX 4011. 172 

Electrophoresis and detection of PCR products were carried on a 6%, 25 cm long, 0.25 mm thick, 173 

denaturing polyacryalmide gel using a sequencer (model DNA 4200 Sequencer LI-COR Biotechnology). 174 

Gels were run at 2000 V in TBE 1X buffer, for 1 to 3 h, depending on the product sizes. Determination of 175 

polymorphism was obtained using two different marked standards of known molecular weight (50–350 bp, 176 

and 50–700 bp). Data were collected by e-Seq software (DNA Sequencing and Analysis Software), and all 177 

the size scores were visually checked. 178 

 179 

Data processing 180 

Allele frequencies and within-population genetic diversity parameters (mean number of alleles per 181 

locus, A; mean number of private alleles per locus, Pa; effective number of alleles per locus, Ne; observed and 182 

expected heterozygosity, HO and HE, respectively) were estimated using GenAlEx v.6 software (Peakall and 183 

Smouse 2006). Allelic richness, based on a minimum sample size of 16 gene copies (Ar16), was calculated 184 

using FSTAT (Goudet 1995). Genotypic disequilibrium between pairs of loci was tested at the single 185 

population level and across all populations, with Fisher’s exact test using Arlequin software (Excoffier et al. 186 

2005). 187 

Fisher’s exact test using the Markov Chain algorithm (Guo and Thompson 1992) was used to assess 188 

deviations from Hardy-Weinberg equilibrium for each population and each locus, and where significant 189 

deficiencies of heterozygotes from Hardy-Weinberg expectations were found the presence of a relatively 190 

high frequency of null alleles was suspected (Pemberton et al. 1995). Loci with high frequencies of null 191 

alleles were identified by estimating null allele frequencies for each locus and each population, using the 192 

software Micro-Checker (Van Oosterout et al. 2004). In further analysis we eliminated problematical loci 193 

with high null allele frequency from the dataset, using only loci with < 0.19 null allele frequencies. This 194 

value has been considered as a threshold over which significant underestimate of HE due to null alleles can 195 
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be found (Chapuis et al. 2008). Where possible, we employed robust analyses for the presence of null alleles 196 

(Chapuis and Estoup 2007, Chapuis et al. 2008), including STRUCTURE (Pritchard et al. 2000, Falush et al. 197 

2003), ordination methods (sPCA, Jombart et al. 2008), and the Mantel test on chord distance (DC, Cavalli-198 

Sforza and Edwards 1967). In particular the inbreeding coefficients (FIS) were calculated taking into account 199 

the estimated null allele frequencies using the program INEst, and running the individual inbreeding model 200 

(IIM) with a Gibbs sampler of 105 iterations (Chybicki and Burczyk 2009). 201 

FreeNA was used to compute the value of Weir’s (1996) estimators of F-statistics to analyse the 202 

population genetic structure of the overall samples. In particular, FST was calculated in order to estimate the 203 

proportion of the total genetic variation due to differentiation among populations. Genetic differentiation 204 

between populations was estimated computing a pairwise FST. FreeNA applies the ENA correction method to 205 

efficiently correct for the positive bias induced by the presence of null alleles on the FST estimation (Chapuis 206 

and Estoup 2007). 207 

The genetic structure of the populations was explored using Bayesian clustering and spatial principal 208 

components analysis (sPCA). Bayesian clustering was performed with the software STRUCTURE (Pritchard 209 

et al. 2000). The program uses a Markov chain Monte Carlo (MCMC) algorithm to cluster individuals into 210 

populations on the basis of multilocus genotypic data. Individual multilocus genotypes are first assigned 211 

probabilistically to genetic clusters (K) without considering sampling origins. Admixed or hybrid individuals 212 

can be identified as they will have a fraction of their alleles derived from each genetic cluster. The program 213 

was run setting a burn-in period of 105 followed by 5x105 iterations, and using the admixture ancestry model 214 

and the correlated allele frequency model, given the low FST and the high genetic connectivity typical of 215 

forest tree populations. Posterior probabilities of K were calculated from the means of 20 runs for each value 216 

of K ε {1, ... 10}, and the optimum K determined using the method of Evanno et al. (2005).  217 

The sPCA is a spatially explicit multivariate method recently developed by Jombart et al. (2008) to 218 

investigate the spatial pattern of genetic variability using allelic frequency data of individuals or populations. 219 

It takes spatial information directly into account as a component of the adjusted model, focusing on the part 220 

of the variability that is spatially structured. This analysis does not require data to meet the Hardy–Weinberg 221 

expectations, or linkage equilibrium to exist between loci. The sPCA yields scores summarising both the 222 

genetic variability and the spatial structure among individuals (or populations). Global structures (patches, 223 



 9 

clines and intermediates) are disentangled from local ones (strong genetic differences between neighbours) 224 

and from random noise. Neighbouring sites were defined by building a connection network based on 225 

Delaunay triangulation. The existence of global and local structuring was tested using the multivariate Monte 226 

Carlo tests implemented, as the sPCA procedure, in the adegenet package for R (Jombart 2008; R 227 

Development Core Team, 2009). 228 

A Mantel (1967) test was applied to the matrices of pairwise chord distance and log-transformed 229 

geographical distance between populations (natural logarithm scale) to assess isolation-by-distance, namely 230 

the model under which genetic differentiation between populations is the result of drift. Chord distance 231 

(Cavalli-Sforza and Edwards 1967) for each pair of populations was calculated using the INA correction 232 

described in Chapuis and Estoup (2007) with FreeNA. The test of significance for Mantel test was carried 233 

out on 9,999 permutations of the data. Mantel test was executed on the entire dataset and on clusters detected 234 

by STRUCTURE and sPCA analyses. 235 

Finally, we used the program Bottleneck v.1.2.02 (Piry et al. 1999) to test for recent population 236 

bottlenecks. A Wilcoxon’s sign rank test was used to compare expected heterozygosity from Hardy-237 

Weinberg equilibrium with predicted heterozygosity at mutation-drift equilibrium, on the basis of the 238 

observed allele number (Piry et al. 1999). The program was run under a two-phase model of mutation (TPM) 239 

that generally fits microsatellite evolution better than either pure stepwise or infinite allele models (Di 240 

Rienzo et al. 1994). One thousand simulations were performed for each sample based on a TPM consisting 241 

of 90% single-step mutations and 10% multistep changes. 242 

 243 

Results 244 

Allelic diversity of microsatellite loci 245 

Ten out of the 12 tested microsatellites (SPAC 11.4, SPAC 11.6, SPAC 11.8, SPAC 12.5, SPAG 246 

7.14, PtTX3032, PtTX3107, PtTX3116, PtTX4001 and PtTX4011) showed reliable banding patterns with 247 

clear and repeatable bands. On the contrary, SPAC 11.5 did not amplify in any sample, and SPAC 3.7 failed 248 

to amplify the DNA in the majority of samples. The latter two markers were therefore excluded from the 249 

analysis. SPAC 11.8 was also excluded due to the high frequency of possible null alleles (0.57). The 250 
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presence of null alleles was also suspected for 6 out of the remaining 9 loci, with lower frequencies ranging 251 

from 0.07 (PtTX3032) to 0.19 (SPAC 11.6). 252 

The 9 selected microsatellites were highly polymorphic, and generated a total of 532 alleles (range 253 

21 to 151), with a mean number of ~48 alleles per locus. It was also possible to detect 137 private alleles, i.e. 254 

present only in one population. The population frequency of private alleles was on average 0.036 and ranged 255 

between 0.021 and 0.208. The distribution of these alleles among loci ranged from 43 (PtTX3032) to 1 256 

(PtTX3107). PAS (17 alleles) was the population with the highest number of private alleles, followed by 257 

TOC (14 alleles) and COR (10 alleles), and three populations (BOS, CLA and GAR) presented only two 258 

private alleles each. 259 

 260 

Genetic variation within populations 261 

 Statistics on the genetic diversity within populations are given in Table 3. A high level of intra-262 

population variability was found, since on average more than 14 alleles per locus were observed (A = 14.45). 263 

CRO (the only populations from the Apennines) showed the lowest value of genetic diversity (A = 10.4, Ne = 264 

5.4, Ar16 = 6.781, and He = 0.754). The populations belonging to the Po valley (TIC and OLG) also showed a 265 

low variability, as well as the populations from the hills of Piedmont (BOS, VEZ, PAS, and CAS), even 266 

though the genetic impoverishment was less pronounced. Except for these particular populations (which, in 267 

most cases, are small, isolated, and/or on the edge of the main range) only BRI, GAR, and CLA showed a 268 

more or less marked reduction in genetic diversity. This pattern was confirmed for all genetic diversity 269 

parameters considered. 270 

Despite the fact that some of the investigated populations are characterised by a low genetic 271 

diversity, no evidence for recent bottlenecks was found. In fact, for all the populations HW heterozygosity 272 

and expected gene diversity at mutation drift equilibrium did not differ significantly.  273 

The probability that two randomly sampled alleles in a given population were not the same was 274 

higher than 84% (mean He = 0.847), whereas the observed heterozygosity (mean Ho = 0.670) was lower than 275 

expected. The difference, that determines a significant positive value for mean inbreeding coefficient, is 276 

mainly due to non-random mating and null alleles. Recalculating the inbreeding coefficients, taking into 277 

account the frequencies of null alleles, we found that deviations from the Hardy-Weinberg equilibrium were 278 
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low (FIS ranging from 0.052 in FEN to 0.016 in TIC, with a mean of 0.033). None of estimated FIS was 279 

significantly different from zero (confidence interval calculated through INEst estimates of FIS overlapped 280 

zero in all populations). 281 

 282 

Genetic differentiation among populations 283 

Most of the genetic diversity was found within populations, while a small amount of the variability 284 

occurred among populations (FST = 0.058, CI: 0.037-0.081). The FST values per locus ranged from 0.024 285 

(SPAC 11.6) to 0.12 (PtTX 4011), and there were no obvious differences between the P. sylvestris and the P. 286 

taeda sets of markers. The genetic divergence between populations was further investigated by computing a 287 

pairwise FST matrix. Multilocus FST values varied between 0.015 (CAR and SAR) and 0.141 (CRO and 288 

VEZ). The population from the Apennines (CRO) was always clearly separated by the others. Almost all 289 

pairwise FST values were significantly greater than zero, confirming the presence of a slight, although 290 

significant, amount of population structuring in Italian Scots pine (results not shown). 291 

Following the method of Evanno et al. (2005), the Bayesian clustering results obtained with 292 

STRUCTURE indicate that K=2 clusters represents the most informative representation of the overall 293 

genetic structure that we analysed (Figure 2). We found that most individuals from western populations 294 

(VEZ, PAS, CAS, SAV, and TOC) clearly belong to cluster 2, whereas eastern populations and CRO (the 295 

Apennine population) are primarily composed by individuals from cluster 1, with the exception of some 296 

admixed populations (COR, SIU, and VAL). Although populations belonging to the pedo-climatic region of 297 

the Po valley (TIC and OLG) are closer to western populations, their individuals are predominantly assigned 298 

to cluster 1. This East-West subdivision was confirmed by sPCA analysis (Figure 3). The existence of such 299 

‘global structure’ (sensu Jombart et al., 2008) was demonstrated using both Delaunay triangulation (tmax = 300 

0.0631, P < 0.05) and Gabriel graph (tmax = 0.0672, P < 0.05) for building the connection network. 301 

The correlation between genetic diversity, expressed as Cavalli-Sforza and Edwards (1967) chord 302 

distance for pairs of populations, and the logarithm of distances expressed in km, did not show the typical 303 

pattern of isolation by distance, and did not suggest a strong relationship between the two factors. Mantel’s 304 

test was not significant when performed on the entire dataset (P = 0.094), as well as when performed 305 
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separately on the two clusters detected by sPCA analysis (P = 0.669 in eastern populations, and P = 0.482 in 306 

western populations excluding CRO). 307 

 308 

Discussion and Conclusion 309 

The aim of this study was to assess the level and the distribution of genetic variation of Scots pine 310 

throughout its natural range in Italy, in order to get fundamental knowledge that can be applied for plant 311 

propagation and genetic resources conservation. The results could be slightly biased due to the limited 312 

number of individuals sampled per populations. Although a larger database (more than 50 individuals per 313 

population) would be preferred to obtain stronger data on genetic variation at the level of polymorphic loci 314 

(Nei 1978), phylogeographic studies using nSSR markers often are based on less than 30 individuals per 315 

populations (e.g. Williams et al. 2007, Ferrazzini et al. 2008, Bagnoli et al. 2009, Scalfi et al. 2009, Bai et al. 316 

2010). Kalinowski (2005) demonstrated that some genetic distances, such as FST, showed limited sampling 317 

variance at loci characterised by a high mutation. He also showed that increasing the number of loci, instead 318 

of increasing the number of individuals, is an effective way to improve the precision of measures of genetic 319 

differentiation. Miyamoto et al. (2008) showed by resampling simulations, that an accurate estimate of 320 

genetic diversity (He) can also be achieved with small samples (less than 30 plants per population) genotyped 321 

at nSSRs. On the other hand, larger sample sizes are needed in order to obtain more accurate estimates of 322 

allelic richness, although the statistical technique of rarefaction can compensate for sampling disparities and 323 

allow for meaningful comparisons among populations. In general, in the present paper we used population 324 

genetic indexes and techniques that minimize possible estimation biases caused by small sample size. 325 

The populations analysed showed a considerable amount of genetic diversity, as estimated by means 326 

of variation scored at nine nuclear microsatellite loci. The observed number of alleles per locus (A) ranged 327 

from 10.4 to 18.4, with an average per population of 14.45, and the average gene diversity (He) was as high 328 

as 0.847. The high degree of observed diversity is not surprising since it has been recognised for a long time 329 

as a peculiar characteristic of woody plants (Hamrick et al. 1992). Furthermore, species such as Scots pine, 330 

which do not have a strong habitat specificity, and are almost continuously distributed, are expected to have 331 

more within-population diversity than those with strong habitat preference and a scattered distribution. Data 332 

from this analysis are coherent with those reported in the literature: for example Robledo-Arnuncio et al. 333 
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(2005) estimated nSSR loci values of 23.0 and 0.923 for A and He respectively. However, this Authors used 334 

only three loci, but if we reference our data with these markers we obtained values of 19.4 (A) and 0.885 335 

(He). 336 

The Apennine population (CRO) showed lower values for all the calculated genetic variation indices. 337 

This confirms the genetic erosion undergone by this population, most likely as a consequence of isolation 338 

and limited population size. Lower values of genetic diversity in Apennine populations, compared to Alpine 339 

ones, were already recorded by Scalfi et al. (2009) at nSSR loci, and by Puglisi and Attolico (2000) and 340 

Labra et al. (2006), using different genetic markers, respectively isozymes and ISSRs. Similar patterns were 341 

also observed with reference to populations from the Po valley (TIC and OLG). As for CRO, habitat 342 

fragmentation could be the main cause of the genetic diversity reduction detected for these populations. TIC 343 

and, to a lesser extent, OLG can be considered as relic populations, especially after the reduction of the Scots 344 

pine range in the Po valley due to intensive use of land for both agriculture and urbanisation purposes. These 345 

non-alpine populations are nowadays regressing, mainly due to problems of seed dispersal, competition with 346 

other forest trees and as a consequence of rural depopulation and abandonment of wood management 347 

(Camerano 2008, Regione Piemonte and Regione Valle d’Aosta 2008). Their preservation is therefore a 348 

primary goal: it is needed to maintain genetic diversity as well as the forest landscape. Particular attention 349 

should be addressed to the population PAS. It is a very small population, where only a few dozens of 350 

individuals still survive, threatened by the competition with other species (namely black locust). This 351 

population showed the highest number of private alleles (17) confirming an ongoing genetic erosion process 352 

which could cause the local extinction of the population over a short period of time. 353 

 354 

The overall level of genetic diversity arising from the differentiation between populations found in 355 

this study (FST = 0.058) is moderate, but higher than that previously observed in the same species in other 356 

European countries (Müller-Starck et al. 1992). In the Scandinavian region, for instance, values of FST ≤ 0.02 357 

were found in populations of Scots pine studied with different markers (Karhu et al. 1996). Allozymes gave a 358 

FST = 0.03 between Sweden and Siberian populations (Wang et al. 1991), and a GST = 0.021 ÷ 0.046 among 359 

many European stands (Prus-Glowacki et al. 1993, Prus-Glowacki et al. 2003). The FST value found in our 360 

study is interesting, especially if we consider the relatively small geographic distances between the Italian 361 
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populations. A low level of genetic differentiation among populations is common in conifers. They maintain 362 

most of their variation within populations (Hamrick et al. 1992), which can be explained by the mainly 363 

allogamous mating system, and by the high gene flow rate favoured by their dispersal strategy and 364 

widespread diffusion (Petit and Hampe 2006, Piotti et al. 2009, Williams 2010). Mantel’s test, performed in 365 

order to check the presence of IBD between the populations studied was not significant, and thus IBD was 366 

apparently not a mechanism shaping the present distribution of genetic variability. 367 

The analysis of genetic differentiation, and the most likely population clustering according to 368 

STRUCTURE and sPCA analyses indicate that the global structure detected separate gene pools for the 369 

eastern and the western Alps. Despite the higher similarity of the Apennine population with the eastern Alps 370 

populations, rather than with closer populations from the western Alps, we found a generally high 371 

differentiation between populations from the two mountain chains. These two results seem to exclude a 372 

common postglacial origin of Italian P. sylvestris populations based on the shared RFLP and nad 1 intron 373 

mitotypes (Sinclair et al. 1999, Cheddadi et al. 2006, Labra et al. 2006). Our results support the hypotheses 374 

of an Apennine glacial refugium (see for instance Puglisi and Attolico 2000), but with no evidence of any 375 

expansion from Apennines into the southern slope of the Alps, as hypothesised by Cheddadi et al. (2006). 376 

The P. sylvestris Apennine population (CRO) is genetically distinct from those in the western Alps, although 377 

a certain level of admixture exists within the  BOS and CAR populations. Similar results have been recently 378 

obtained by Piovani et al. (2010), studying Abies alba populations. These authors also found that Apennine 379 

populations are genetically different from populations from the western Alps. Recent studies based on the 380 

analysis of stratigraphic records of pollen, stomata, and macrofossils in northern Italy showed that, although 381 

the southern slope of the Alps was extensively glaciated during the last glacial maximum (LGM), conifer and 382 

several broad-leaved tree species survived in the Po plain and along the southeastern Alpine border (Vescovi 383 

et al. 2007). It has also been recently demonstrated that P. sylvestris survived the LGM in the Euganean Hills 384 

(north-eastern Italy), a hilly area 50-60 km south of the maximum extent of the last Alpine glaciation 385 

(Kaltenrieder et al. 2009). An early presence (ca 15000 BP) of P. sylvestris after LGM was also signalled by 386 

Finsinger et al. (2006) in the western Alps, at Lago piccolo di Avigliana (Piedmont). Our results depict a 387 

scenario where populations from the western Alps, eastern Alps and the Apennines originated from at least 388 

three different refugia, with possible contact zones between the western and eastern Alps, 389 
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colonisation/expansion routes at the latitude of the TIC and TOC populations, and between the western Alps 390 

and the Apennine populations in southern Piedmont (BOS and CAR populations). In addition, our study 391 

presents further evidence of the possible past genetic connection of western Alps and Apennine populations 392 

through the Po plain, a vast area (ca 200 km large) where P. sylvestris was widespread during the early 393 

Holocene (Labra et al. 2006, Scalfi et al. 2009). 394 

The management of genetic resources may benefit from the identification of genetically 395 

homogeneous regions, since genetic pollution of local genetic stocks by plantations of non-local origin 396 

material can be greatly reduced by the use and transfer of suitable propagation material. Assuming local 397 

populations to be optimal as basic material for local uses, genetic zones would have relevance for defining 398 

variation in potential commercial and adaptive traits; and they would provide the genetic background 399 

required in order to establish the number and location of primary gene-pool reserves for the species. 400 

Moreover, the definition of genetic parameters based on molecular markers for each genetic zone can be 401 

useful for certification of seedlots and breeding programmes (Bucci and Vendramin 2000). Since 1999, the 402 

European Council Directive 1999/105/CE regulates the forest reproductive material market and transfer in 403 

Europe. The Italian Government has implemented this directive, with the Decree No. 386/2003. One of the 404 

most important features of the acts is the definition of region of provenance as “the area or group of areas 405 

subjected to sufficiently uniform ecological conditions in which stands or seed sources showing similar 406 

phenotypic or genetic characters are found”. The identification of these areas plays a basic role for a rational 407 

management of activities linked with forest tree propagation, including afforestation and in situ genetic 408 

preservation. 409 

The results of our study contribute to a better understanding of our knowledge on genetic variation of 410 

Scots pine in Italy. The information is of basic importance for the definition of regions of provenance for 411 

Scots pine, although a deeper knowledge of the ecological characteristics of the areas of the study, such as 412 

vegetational and phytogeographical data, is also needed. 413 
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FIGURE LEGENDS 648 

 649 

Figure 1. Geographical distribution of the 21 populations of Scots pine analysed in this study. 650 

 651 

Figure 2. STRUCTURE results. On the top the relationship between K (number of inferred clusters) and 652 

Ln(K) and DeltaK, respectively. On the bottom, the probability of belonging to each of the two inferred 653 

clusters, according to the method by Evanno et al. (2005) for each of the individuals. 654 

 655 

Figure 3. On the left the geographic representation of the connection matrix based on the Delaunay 656 

triangulation. On the right the geographic distribution of the first positive sPCA scores. 657 
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TABLE TITLES 658 

 659 

Table 1. Details of site characteristics of Scots pine populations from Italy which were sampled for the study. 660 

Data on annual and summer rainfall, and average annual temperature were inferred for a period of at least 661 

five years. 662 

 663 

Table 2. Descriptive statistics for the twelve microsatellite loci considered for the study. 664 

 665 

Table 3. Statistics of genetic variation within Scots pine populations at nine microsatellite loci. A, mean 666 

number of alleles per locus; Ne, effective number of alleles per locus; Ar16 Allelic richness based on a 667 

minimum sample size of 16 gene copies; Pa mean number of private alleles per locus; HO, average observed 668 

heterozygosity; HE, average gene diversity or expected heterozygosity; FIS, average inbreeding coefficient, 669 

calculated taking into account the estimated null allele frequencies. Values in parenthesis are standard errors. 670 
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Table 1 671 

Code Population Province Location 
Average 
elevation 
(m a.s.l.) 

Annual 
(and summer) 
rainfall (mm) 

CRO Vezzano sul Crostolo Reggio Emilia 44° 31’ N, 10° 31’ E 450 945 (174) 
CAR Carpe Imperia 43° 55’ N, 7° 47’ E 1000 1100 (260) 
BRI Carnino Briga Alta Cuneo 44° 18’ N, 7° 43’ E 1200 1170 (378) 
BOS Bossolasco Cuneo 44° 32’ N, 8° 03’ E 750 877 (145) 
VEZ Vezza d’Alba Cuneo 44° 45’ N, 8° 00’ E 300 660 (125) 
FEN Fenestrelle Torino 45° 02’ N, 7° 03’ E 1450 900 (300) 
SAV Savoulx Torino 45° 05’ N, 6° 40’ E 1300 396 (102) 
PAS Passerano Marmorito Asti 45° 05’ N, 8° 05’ E 225 554 (156) 
CAS Casalborgone Torino 45° 10’ N, 8° 00’ E 500 673 (142) 
SAR Sarre Aosta 45° 43’ N, 7° 15’ E 1300 698 (174) 
TOC Toceno Verbania 46° 10’ N, 8° 32’ E 1100 698 (459) 
TIC Ticino Novara 45° 30’ N, 8° 39’ E 250 1020 (234) 
OLG Olgelasca Como 45° 44’ N, 9° 11’ E 350 1635 (587) 
MAS Val Masino Sondrio 46° 09’ N, 9° 34’ E 300 458 (165) 
GAR Valvestino Garda Brescia 45° 45’ N, 10° 35’ E 800 685 (263) 
VAL  Valda Trento 46° 12’ N, 11° 16’ E 950 750 (350) 
SIU Alpe di Siusi Bolzano 46° 33’ N, 11° 33’ E 1200 800 (400) 
BRU Brunico Bolzano 46° 48’ N, 11° 56’ E 1100 692 (360) 
COR Cortina Belluno 46° 32’ N, 12° 18’ E 1200 1100 (383) 
CLA Claut Pordenone 46° 16’ N, 12° 31’ E 600 1186 (436) 
DOG Val Dogna Udine 46° 26’ N, 13° 19’ E 1000 908 (365) 
 672 



 24 

Table 2 673 
 674 

Locus Repeat motif Primer sequences (5’ →→→→ 3’) 
Number 
of alleles 

Molecular 
weight range 

(bp) 

SPAC 11.4a (AT)5(GT)19 
TCACAAAACACGTGATTCACA 
GAAAATAGCCCTGTGTGAGACA 

38 130-170 

SPAC 11.5a (AT)8(GT)19-(TA)11 
TGGAGTGGAAGTTTGAGAAGC 
TTGGGTTACGATACAGACGATG 

no amplification 

SPAC 11.6a (CA)29(TA)7 
CTTCACAGGACTGATGTTCA 
TTACAGCGGTTGGTAAATG 

76 103-220 

SPAC 11.8a (TG)16 
AGGGAGATCAATAGATCATGG 
CAGCCAAGACATCAAAAATG 

25 123-181 

SPAC 12.5a (GT)20(GA)10 
CTTCTTCACTAGTTTCCTTTGG 
TTGGTTATAGGCATAGATTGC 

62 116-202 

SPAG 3.7a (TC)45 
GTTAAAGAAAATAATGACGTCTC 
AATACATTTACCTAGAATACGTCA 

no scorable bands 

SPAG 7.14a (TG)17(AG)21 
TTCGTAGGACTAAAAATGTGTG 
CAAAGTGGATTTTGACCG 

64 174-252 

PtTX 3032b 
(GAT)35(GAC)3GAT(GAC)8

-(GAC)6AAT(GAT) 6 
CTGCCACACTACCAACC 
AACATTAAGATCTCATTTCAA 

151 254-572 

PtTX 3107c (CAT)14 
AAACAAGCCCACATCGTCAATC 
TCCCCTGGATCTGAGGA 

22 144-175 

PtTX 3116c (TTG)7-(TTG)5 
CCTCCCAAAGCCTAAAGAAT 
CATACAAGGCCTTATCTTACAGAA 

67 100-276 

PtTX 4001d (CA)15 
CTATTTGAGTTAAGAAGGGAGTC 
CTGTGGGTAGCATCATC 

31 197-231 

PtTX 4011d (CA)20 
GGTAACATTGGGAAAACACTCA 
TTAACCATCTATGCCAATCACTT 

21 230-284 

 675 

a Soranzo et al. 1998 676 
b Elsik et al. 2000 677 
c Elsik and Williams 2001 678 
d Zhou et al. 2002 679 
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Table 3 680 
 681 

Population A Ne Ar16 Pa Ho He FIS 
CRO 10.4 5.4 6.781 0.333 0.603 0.754 0.037 
CAR 15.9 10.4 9.525 1 0.714 0.886 0.030 
BRI 12.3 9.3 8.636 0.333 0.651 0.846 0.036 
BOS 12.4 8.0 8.353 0.222 0.724 0.829 0.022 
VEZ 14.6 9.4 8.939 0.778 0.670 0.852 0.032 
FEN 16.0 10.2 9.391 0.556 0.664 0.845 0.052 
SAV 18.4 12.2 10.003 1 0.665 0.877 0.023 
PAS 14.1 10.1 9.830 1.889 0.576 0.874 0.049 
CAS 13.9 8.7 8.601 0.778 0.645 0.858 0.031 
SAR 16.4 10.9 9.641 0.889 0.698 0.876 0.029 
TOC 17.6 11.0 9.637 1.556 0.641 0.850 0.025 
TIC 12.9 6.9 7.713 0.778 0.703 0.822 0.016 
OLG 11.2 7.2 8.049 0.444 0.621 0.811 0.047 
MAS 16.3 10.6 9.363 0.889 0.703 0.855 0.049 
GAR 13.1 8.2 8.398 0.222 0.661 0.808 0.028 
VAL 15.3 10.6 9.793 0.333 0.772 0.872 0.022 
SIU 15.7 9.7 9.137 0.889 0.676 0.854 0.028 
BRU 16.0 9.8 9.326 0.444 0.630 0.865 0.021 
COR 14.0 10.0 9.635 1.111 0.724 0.872 0.024 
CLA 12.8 8.1 8.771 0.222 0.684 0.828 0.044 
DOG 14.0 9.8 9.304 0.556 0.642 0.863 0.042 
Overall 
mean 14.45 (0.46) 9.37 (0.41) 8.992 0.724 0.670 (0.012) 0.847 (0.007) 0.033 (0.001) 

 682 
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