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Summary 

Mycobacterium avium subspecies paratuberculosis (MAP) is a pathogenic bacterium 

responsible of the lethal Johne’s disease in cattle. So far, several GWA studies have been carried 

out to identify chromosomal regions highly associated with Johne’s disease. The aim of this study 

was to investigate the genetic variability within a pool of 7 genes (LAMB1, DLD, WNT2, PRDM1, 

SOCS5, PTGER4 and IL10) indicated by former GWA/RNASeq studies as putatively associated 

with MAP infections and to achieve a confirmation study of association with paratuberculosis 

susceptibility in a population of 324 German Holstein cattle (162 cases: MAP-positive and 162 

controls MAP-negative) using ELISA and faecal cultural tests. SNP validation and genotyping 

information are provided, quick methods for allelic discrimination were set up and transcription 

factor binding analyses were performed. The SNP rs43390642:G>T in the WNT2 promoter region is 

associated with paratuberculosis susceptibility (p=0.013), suggesting a protective role of the T allele 

(p=0.043, OR 0.50 [0.25-0.97]). The linkage disequilibrium with the DLD rs134692583:A>T might 

suggest a combined mechanism of action of these neighbor genes in the resistance to MAP infection, 

which is also supported by a significant effect showed by the haplotype DLD
T
/WNT2

T 
(p=0.047). In 

silico analysis predicted rs43390642:G>T and rs134692583:A>T as essential parts of binding sites 

for the transcription factors GR and C/EBPGATA-1 respectively, hence suggesting a potential 

influence on WNT2 and DLD gene expression. This study confirms the region (UMD 3.1: 

50639460-51397892) on BTA 4 as involved in tolerance/resistance to Johne’s disesase. In addition, 

this study clarifies the involvement of the investigated genes in MAP infection and it contributes to 

the understanding of genetic variability involved in Johne’s disease susceptibility. 

 

Key Words: WNT2 gene, MAP infection, Johne’s disease, Friesian breed 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134692583
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134692583
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Introduction 

Mycobacterium avium subspecies paratuberculosis (MAP) is a pathogenic intra-cellular 

bacteria known to be the causative agent for the Johne’s disease (paratuberculosis) in cattle and 

other ruminants. The disease was described for the first time by Johne & Frottingam (1895) as an 

atypical case of bovine tuberculosis. Nowadays, the pathogenesis of the disease is not completely 

clarified, but the chronic inflammation of the intestine with granulomatous lesions of the ileum are 

considered as the main alterations of the intestinal mucosa caused by MAP. Animals with Johne’s 

disease show progressive loss of weight, chronic diarrhea and reduction of productive performances 

(for a review Purdie et al. 2011).  

Many reasons prevent the early diagnosis of the disease: the prolonged incubation time (up 

to 10 years) of MAP, the difficulties to clearly identify the infection status of the animals, the high 

incidence of subclinical infections and asymptomatic cases. Furthermore, the lack of quick and cost 

efficient commercially available diagnostic tests with high sensitivity make the application of 

prophylaxis programs difficult as well as the eradication of MAP from an infected herd very 

difficult (Beyerbach et al. 2001).  

It’s known that MAP infections are spread worldwide and this condition has a very negative 

impact on the economy of the dairy industry. Recently, Küpper et al. (2013) estimated a reduction 

of milk yield per day of life in MAP positive cows, whereas in US, the losses were estimated in 

approximately 200 million USD per year in terms of reduced milk production, limited reproduction 

efficiency and increased management costs (Ott et al. 1999).  

Susceptibility to paratuberculosis has been showed to have a genetic component and the 

heritability in cattle was estimated to range from 0.041 to 0.228 (Koets et al. 2000; Mortensen et al. 

2004; Gonda et al. 2006; Hinger et al. 2008; Attalla et al. 2010; Küpper et al. 2012; van Hulzen et 

al. 2012).  
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Despite many efforts done and genetic approaches (including microsatellite genotyping, 

whole genome scanning for quantitative trait loci, SNP arrays) have been attempted (for a review 

Purdie et al. 2011), the identification of the genetic part contributing to the phenotypic variance of 

MAP susceptibility is still not clear.  

However, independent genome wide association studies (GWAS) accomplished in the last 

years proved that only a restricted number of chromosomal regions carry strongly significant SNP 

involved in Johne’s disease (table 1). Although potential candidate genes have been indicated in 

each of these studies, so far no further investigation including characterization of the genes in 

Holstein cattle has been performed.  

The understanding of the loci associated with susceptibility/resistance to disease is 

fundamental to evaluate them into breeding schemes and to eradicate the disease. Therefore, the aim 

of this study was to investigate the genetic variability within a pool of genes putatively associated 

with MAP infection and accomplish a confirmation study of association with paratuberculosis 

susceptibility in a population of German Holstein cattle classified as MAP-positive and MAP-

negative using both ELISA and faecal cultural results. 

 

Material and methods 

Sample collection, Nucleic Acid Isolation and Diagnostic Tests 

A total of 324 German Holstein cows from 15 different farms located in Thuringia 

(Germany) were considered in this study. To eliminate potential stratification factors a case-control 

study was designed. Therefore 162 faecal culture positive (AVID, 2007) animals (age >24 months) 

were chosen as cases, whereas 162 faecal culture negative animals from the same farm, from the 

same sire and at the same age were used as controls. Blood samples were collected to isolate the 

DNA according to the procedure described by Montgomery & Sise (1990). DNA concentration and 
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OD260/280 ratio of the samples were measured with the Nanodrop ND-1000 Spectrophotometer 

(Thermo Fisher Scientific Inc., Waltham, MA, USA).  

Antibody levels were determined by using a commercially available ELISA test 

(CATTLETYPE
®
 MAP Ab, Labor Diagnostik Leipzig, Germany) according to manufactures 

information. 

 

SNP selection and PCR conditions 

Six genes falling within chromosomal regions indicated as highly associated with MAP 

resistance/susceptibility were investigated for genetic variability. The NCBI Reference SNP data 

base (http://www.ncbi.nlm.nih.gov/projects/SNP/) was used as tool for the identification of SNP to 

be genotyped in the MAP tested German Holstein population.  

The complete list of the SNPs, the corresponding genes, the positions and the genotyping 

information are reported in table 2 taking as reference the UMD 3.1 sequence assembly. RNA-Seq 

data analysis from a current project indicated interleukin-10 (IL10) as significantly upregulated 

during early MAP infection (data not shown), therefore IL10 gene was further included in the 

analysis for SNP discovery and genotyping (table 2). To reach this goal, the five exons and the 

intronic regions of the IL10 underwent re-sequencing for test samples. 

For genotyping DNA fragments ranging from 103 bp to 402 bp were amplified by PCR and 

digested by specific restriction endonucleases. A typical PCR reaction mix (25 l) comprised: 50 ng 

of genomic DNA, 1X PCR Buffer (Promega, Madison, WI, USA), 2.5 mM MgCl2, 5 pmol of each 

primer, dNTPs each at 200 M and 1 U of Taq DNA Polymerase (Promega). PCR was performed 

under the following thermal conditions: 95°C for 4 min, 35 cycles at 95°C for 30 s, 56°C for 30 s 

(with the exception of the protocol run for the SNP rs136770416 whose annealing was set up at 

50°C), 72°C for 30 s, and the final extension at 72°C for 5 min. Product specificity was confirmed 

by ethidium-bromide-stained 2% agarose gel electrophoresis.  

http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=136770416
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Test samples and genotyping 

A confirmation test of genetic variability was preliminarly run on 28 German Holstein (14 

MAP+ and 14 MAP-) belonging to 6 different farms to validate the chosen SNP. For the negative 

SNP, the confirmation test was extended to further 48 German Holstein (24 MAP+ and 24 MAP-). 

RFLP protocols were set up for each SNP. Digestion of 17 μl of each PCR amplification 

was accomplished with 10 U of endonuclease (Thermo Fisher Scientific Inc.) for 16h at 37°C. The 

digestion products were analysed directly by electrophoresis in 2% agarose gel in 1X TBE buffer 

and stained with ethidium bromide. The samples with missing genotypes were amplified and 

digested at least twice before the exclusion to the statistical analysis. 

 

In silico Analysis of Transcription Factors Binding Sites 

SNP DLD rs134692583:A>T; WNT2 rs43390642:G>T and IL10 AC_000173:g.3625A>G 

were analyzed for potential transcription factor binding sites applying the online tool TFSEARCH 

which is based on the TRANSFAC database (Heinemeyer et al. 1998). Transcription factors with 

predicted binding scores of ≥75 for each allele were included in the analysis (max. score = 100). For 

each SNP, major and minor alleles including the flanking 15 nucleotides upstream (5’) and 

downstream (3’) were analyzed. 

 

Statistical Analysis 

The allele frequency and Hardy-Weinberg equilibrium ( test) were calculated by means of 

PopGene software Ver 1.31 (University of Alberta, Canada). SAS system software (SAS 9.1, 

Institute Inc., Cary, USA) was used to estimate differences between the allele frequencies of the 

different polymorphisms in the investigated genes between cases and controls. Analyses were done 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134692583
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
http://www.ncbi.nlm.nih.gov/nuccore/AC_000173.1?from=4402474&to=4406412&report=genbank&strand=true
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by Fisher’s exact test using three different phenotypes: (1) faecal positive/negative, (2) ELISA 

positive/negative, and (3) faecal or ELISA positive/negative. According to the same scheme odds 

ratios (ORs) were calculated for the minor allele at each SNP by SAS system software considering 

95% confidence intervals (CI). A test of H0 for OR=1 was calculated by Fisher’s exact test. All tests 

were two-tailed considering p-values <0.05 as significant.  

The linkage disequilibrium parameters (D’ and r
2
) and the haplotype frequencies for the 

SNP located on chromosome 4 (rs211391398:C>T; rs134692583:A>T and rs43390642:G>T) were 

estimated with Haploview software according to the model proposed by Wang et al. (2002). 

 

Results 

Genetic variability occurred within a group of six genes (LAMB1, DLD, WNT2, PRDM1, 

SOCS5 and PTGER4) indicated as putative candidates for the resistence/susceptibility to MAP 

infection. Eight SNPs falling within these genes were chosen from NCBI Reference SNP data base 

for the genotyping of infected and un-infected animals. In silico analysis indicated that these SNPs 

were responsible for amino acid changes (table 2) or had a potential effect on the transcriptional 

regulation (either enhance or repress) because the affected nucleotide changes putative binding sites 

for gene transcription factors (table 3). 

Four out of eight SNPs (LAMB1 rs43388824:A>G; PRDM1 rs136770416:A>C; SOCS5 

rs134378401:A>C; PTGER4 rs41944920:C>G) were monomorphic in our test samples (38 MAP+ 

and 38 MAP-). Therefore the total population of German Holstein (162 cases and 162 controls) was 

genotyped for the remaining four (LAMB1 rs211391398:C>T; DLD rs134692583:A>T; WNT2 

rs43390642:G>T; PRDM1 rs136669229:A>C) polymorphic sites plus an additional SNP found in 

IL10. In fact, the comparison of the IL10 sequences showed two new SNPs (g.1309C>T at the 

intron 2 and g.3625A>G at the intron 4; numbering is relative to the EMBL acc. no. AC_000173 

used as reference) never reported in NCBI data base. The second polymorphic site is located only 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=211391398
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134692583
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43388824
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=136770416
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134378401
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=41944920
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=211391398
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134692583
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=136669229
http://www.ncbi.nlm.nih.gov/nuccore/AC_000173.1?from=4402474&to=4406412&report=genbank&strand=true
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14 bp upstream of exon 5 and it might potentially affect GATA binding sites, therefore it was 

chosen for the genotyping of the complete population by the set up of a PCR-RFLP method.  

The restriction patterns for each of the digestion protocols are reported in the figure 1. 

Briefly, the transition rs211391398:C>T in LAMB1 is restricted in 2 fragments for the TT samples 

(238 bp and 164 bp),  unrestricted (402 bp) for the CC genotype, whereas the heterozygote pattern 

is: 402bp, 238 bp and 164bp. A similar pattern for the transversion rs134692583:A>T is present for 

the gene DLD. The genotype AA is characterized by 2 fragments of 103 bp and 65 bp, the TT 

genotype shows an undigested band of 168 bp and the heterozygous sample results in 3 fragments 

(168 bp, 103 bp and 65 bp). The transversion rs43390642:G>T at the WNT2 locus shows the 

following restriction pattern: TT (167 bp), GT (167 bp, 95 bp and 72 bp), GG (95 bp and 72 bp).  

The restriction pattern for the transversion rs136669229:A>C in the PRDM1 gene is 

characterized by 2 fragments for the AA genotype (103 bp and 39 bp), 3 fragments (75 bp, 39 bp 

and 28 bp) for the CC and 4 fragments (103 bp, 75 bp, 39 bp and 28 bp) for the AC genotype. 

A similar pattern for the transversion AC_000173:g.3625A>G is detected at IL10 gene. The 

genotype AA shows 2 fragments of 282 bp and 71 bp. The band 282 bp long is further digested in 2 

fragments of 220 bp and 62 bp for the GG genotype. The heterozygous shows 4 fragments of 282 

bp, 220 bp, 71 bp and 62 bp. The last two bands have a difference in size of only 9 bp and they were 

not discriminated on the gel. Therefore, these bands appear as unique for the genotypes AG and GG 

(Figure 1, lines 22 and 23). 

The genotype distribution and the allelic frequencies are reported in the table 4. Missing 

genotypes vary between 0.3% (IL10) and 7.7% (DLD). Chi-square values indicated no evidence of 

departure from Hardy-Weinberg equilibrium in the total population for all the analyzed SNP. The 

distribution of genotypes according to the phenotypic test (faecal and ELISA) are provided in table 

5. Differences in the frequencies of rs43390642:G>T located in the promoter region of WNT2 were 

observed in infected animals compared to healthy controls (table 5). The SNP rs43390642:G>T is 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=211391398
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134692583
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=136669229
http://www.ncbi.nlm.nih.gov/nuccore/AC_000173.1?from=4402474&to=4406412&report=genbank&strand=true
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
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associated with paratuberculosis susceptibility using both faecal (p=0.035) and ELISA (p=0.049) 

diagnostic tests. Association (p=0.013) was also found when a more restrictive phenotype was used 

(faecal or ELISA positive/negative). In the MAP positive group, the frequency of the rarer T allele 

of the rs43390642:G>T polymorphism was 0.04 (faecal/ELISA), whereas in the controls it was 0.08. 

The OR value (p=0.043, OR 0.50 [0.25-0.97]) suggested a protective effect of the minor allele in 

MAP infection. In contrast, no associations were observed for the other investigated SNP with the 

exception of rs134692583:A>T in DLD gene, whose odd ratio showed a significant effect (p=0.046, 

OR 0.58 [0.34-0.99]) for the minor allele (T) when faecal and ELISA tests were matched together.  

A D’ value of 0.968 and an r
2
 value of 0.561 suggested a linkage disequilibrium between the 

2 SNP (DLD rs134692583:A>T and WNT2 rs43390642:G>T), which formed one haplotypic block 

covering a region of about 750 kb. The analysis allowed us to detect three haplotypes: AG, TT and 

TG whose frequencies were 0.894, 0.057 and 0.047 respectively. The χ
2
 test run for each haplotype 

showed a significant association (p=0.047) of the haplotype TT with the resistance to MAP 

infection.  

 

Discussion 

The most recent approach to understand which chromosomal region is involved in MAP 

susceptibilty is represented by GWAS. So far, several studies have been carried out (Settles et al. 

2009; Minozzi et al. 2010; Pant et al. 2010; Kirkpatrick et al. 2011; Zanella et al. 2011; Minozzi et 

al. 2012; van Hulzen et al. 2012) and a limited number of positional candidate genes have been 

indicated (table 1). Despite this information, little investigation within the genes more or less 

biologically involved with MAP infection and falling in such regions has been carried out. Our 

study focused on the variability of 7 genes (LAMB1, DLD, WNT2, PRDM1, SOCS5, PTGER4 and 

IL10) indicated from independent genome wide and RNAseq studies as potentially associated with 

MAP infection. 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134692583
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134692583
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
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Laminin -1 (LAMB1), dihydrolipoamide dehydrogenase (DLD) and wingless-type MMTV 

integration site family member 2 (WNT2) genes are located on chromosome 4 spread over a DNA 

region of about 2Mbp and in the surrounding (~1 Mbp) of the SNP ss66537488:C>T indicated by 

van Hulzen et al. (2012) as associated with paratuberculosis susceptibility by GWAS.  

Laminin is a biologically active protein and it is an important structural component of the 

basement membrane, mediating the interactions between cells and matrix. It was described as one 

of the molecular determinants involved in the adherence of MAP to epithelial cells (Pethe et al. 

2001). In human, 3 independent GWAS evidenced the controversial role of LAMB1 in relation to 

Crohn’s disease (Barrett et al. 2009; McGovern et al. 2010; van Sommeren et al. 2011). Although 

van Hulzen et al. (2012) indicated this gene as putatively involved in Johne’s disease, our 

association study using faecal, ELISA and the combination of both diagnostic test did not confirm 

such role (table 5). Moreover, the values of OR (range 0.87-1.33) gave no evidence of 

protective/susceptible allele effect for LAMB1. This result is in line with the findings of van 

Sommeren et al. (2011). Furthermore, our data showed that although located within a DNA 

fragment of 2Mbp, LAMB1 rs211391398:C>T does not belong to the same haplotype block as DLD 

rs134692583:A>T (LAMB1, DLD - r
2
: 0.002) and WNT2 rs43390642:G>T (LAMB1, WNT2 - r

2
: 

0.009), thus suggesting the probable existence of a recombination hot-spot among the first and the 

last two genes. 

The DLD gene codes for an enzyme called dihydrolipoamide dehydrogenase. Several recent 

GWAS report DLD as a putative candidate gene for resistance to both human (Barrett et al. 2009; 

McGovern et al. 2010) and bovine (van Hulzen et al. 2012) mycobacterial infection. This enzyme is 

involved in many biological pathways related to the energetic metabolism, including the 

degradation of essential amino acids. The different aptitude to use these nutrients as a result of 

genetic differences in DLD was proposed as a possible solution for the different development of the 

clinical stage of Johne’s disease among infected animals (van Hulzen et al. 2012). Our investigation 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43709737
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=211391398
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134692583
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
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was focused on the SNP rs134692583:A>T located only 8 bp upstream of exon 1. The association 

study with MAP infection data showed controversial results. The Fisher’s exact test did not confirm 

the association with all the available phenotypes (table 5). However, the OR (p=0.046; 0.58 [0.34-

0.99]) in restrictive phenotype conditions gave evidence of a protective effect of the T allele. The 

analysis of the putative transcription factor showed that this SNP is responsible of the alteration of 

several binding sites (table 3). In particular, C/EBP is an important regulator of cytokine 

expression (Cloutier et al. 2009), whereas GATA-1 is a potent suppressor of Th1 associated genes 

like interferon-γ and chemokine receptor-3 (Sundrud et al., 2005). Both sites are putatively active 

only in presence of the T allele with a binding allele score of 76.0 and 75.5% respectively, hence 

suggesting higher transcriptional activation of the DLD gene.  

The wingless-type MMTV integration site family member 2 (WNT2) gene, shown to be 

significantly associated with MAP infection (p=0.013-0.049) using all the available phenotypes, 

belongs to a family of structurally related genes (WNT) that encode glycoproteins and extracellular 

signaling molecules. Abnormal WNT signaling is linked to a range of diseases, especially cancer. 

The best-understood WNT-signaling pathway goes through the activation of the nuclear functions of 

-catenin, which leads to changes in gene expression which influences cell proliferation and 

survival (Moon et al. 2004). Abnormal proliferation of fibroblasts in animals affected with Johne’s 

disease is a key feature in the granuloma formation, consisting of chronic inflammatory cells which 

include macrophages, giant cells, lymphocytes, plasma cells and fibroblasts that deposit collagen 

and extracellular matrix (ECM) proteins to create a dense fibrous region similar to a capsule 

(Ackermann, 2013). Fibroblast proliferation and collagen synthesis are crucial in the repair of 

injured tissue associated with inflammatory lesions (for a review Flavell et al. 2008). WNT/-

catenin signaling is activated in this process (Cheon et al. 2004). In fact, the injection of soluble 

WNT inhibitor into adult mice inhibits intestinal cell proliferation and suggests the possibility of 

using WNT activators to regenerate gut epithelium as adjuvant therapy in inflammatory bowel 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134692583
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disease (Kuhnert et al. 2004). Therefore,  this suggests a possible role of the WNT2 gene in Johne’s 

disease. Our investigation was focused on the SNP rs43390642:G>T which is located in the 

promoter region of WNT2 gene. The significant association was confirmed by Fisher’s exact test 

and further validated through the OR values (table 5) which suggested a protective role of the T 

allele in MAP infection. The presence of thymine is responsible for the creation of a putative 

consensus sequence for a glucocorticoid receptor element (GR). Glucocorticoids have a vast array 

of functions within the body, including the potent suppression of immune response and 

inflammation. Their beneficial use as drugs in the treatment of human chronic inflammatory bowel 

diseases (IBD) were first recognized nearly 60 years ago (Truelove & Witts, 1954). The major anti-

inflammatory effects of glucocorticoids appear to be due largely to interaction between the 

activated GR and anti-inflammatory genes such as annexin-A1, interleukin-10, and the inhibitor of 

NF-kB (Hayashi et al. 2004). Such mechanism of interaction was well elucidated by Li et al. (2003) 

using a mouse mammary tumor virus (MMTV) promoter, which also characterizes the WNT2 gene. 

Briefly, glucocorticoids inhibit expression of adhesion molecules and trafficking of inflammatory 

cells to target tissues (Hayashi et al. 2004), this might explain the protective role of the T allele for 

the SNP rs43390642:G>T in WNT2 promoter.  

This SNP resulted in linkage disequilibrium with the polymorphic site found in DLD 

promoter. The haplotype TT was associated (p=0.047) with the resistance to MAP infection, but it 

was less significant than the WNT2 alone, hence suggesting that the existence of a cooperative 

action of these genes mediated by the activation of their specific transcription factors has to be 

deeply investigated. Functional studies are necessary to clarify the influence of C/EBPGATA-1 

and GR transcription factors on DLD and WNT2 gene expression, however the potential positive 

interaction between neighbor genes might partially explain the “infinitesimal” effect expected from 

these loci in the control of such complex trait. 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
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PR domain-1 (PRMD1) is a zinc finger-containing transcriptional repressor of beta-

interferon. Our investigation on two A>C transversions responsible for an amino acid change within 

the PRDM1 gene did not confirm any association with MAP susceptibilty. However, recently a rare 

allele identified in PRDM1 was associated with Crohn’s disesase in humans (Ellinghaus et al. 2013). 

Functional studies reported by the same authors showed that this rare risk allele led to increased 

peripheral blood lymphocytes (PBL) expression of the adhesion molecule L-selectin, increased 

CD4
+
 and CD8

+
 T-cell proliferation, IFN- secretion, and up-regulation of activation markers 

(Ellinghaus et al. 2013). Each of these factors may contribute to the pathogenic role of PRDM1 in 

this disease.  

Suppressor of cytokine signaling (SOCS) family of proteins are functionally closely related 

to interleukins. Cytokine signaling is in fact negatively regulated by SOCS proteins. We genotyped 

a SNP in SOCS5 gene which is reported in NCBI dbSNP as responsible of amino acid change 

rs134378401:Atyr
>C

Asp
, however this polymorphic site was monomorphic in German Holstein 

population. However, SOCS 5 remains functionally interesting because it is preferentially expressed 

in Th1 cells which promote cell-mediated effector responses to eliminate intracellular pathogens 

(Seki et al. 2002). 

Prostaglandin E receptor 4 (PTGER4) has been identified in human as a Crohn’s disease 

candidate gene by Libioulle et al. (2007) and Barrett et al. (2009). The same indication was 

reported after GWAS in Holstein cattle (Kirkpatrick et al. 2011). Our confirmation study was 

carried out on a SNP located at the exon 3 and reported as responsible for an amino acid change 

rs41944920: CLeu
>G

Val
. However, this SNP was not polymorphic in the German cattle population. 

Also the role of PTGER4 related to MAP infection has to be taken in great consideration. Recently 

in human, Glas et al. (2012) demonstrated the strong Crohn’s disease association of 2 SNP 

(rs4495224:A>C and rs7720838:G>T) as part of binding sites for NF-kB and XBP1, suggesting that 

these transcription factors may modulate PTGER4 gene expression. Therefore, future investigations 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134378401
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=41944920
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4495224
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=7720838
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are strongly required also in bovine to clarify the role of PTGER4 as candidate gene for 

paratuberculosis susceptibility. 

IL10 is classified as a class-2 cytokine. Recent studies of gene expression indicated a greater 

up regulation of IL10 in cow monocytes after 2 hours of infection with MAP (Weiss et al. 2005). 

The intronic SNP AC_000173:g.3625A>G within IL10 is putatively responsible for the alteration of 

GATA factors binding sites (table 3). This family of transcription factors plays a key role for 

cytokine gene expression by Th2 cells (Zheng & Flavell, 1997). In addition, intron GATA binding 

sites in the IL4 gene were proved to be essential for acting both as transcriptional enhancer and 

demethylation factor (Hural et al. 2000). Despite these biological functions, the result of the 

association of the SNP g.3625A>G with both faecal and ELISA tests did not confirm a role of IL10 

in the susceptibility to MAP infection (table 4).  

Although the frequencies of minor alleles for all the investigated SNP are low and 

genotyping larger sample sizes might better elucidate their role in the susceptibility to 

paratuberculosis, many studies report that low-frequency and rare variants are involved in the 

etiology of complex traits (Bodmer & Bonilla, 2008; Gibson, 2011). Furthermore, even for diseases 

with a strong genetic component, the identified common variants usually only explain a small 

portion of the total genetic heritability. For instance, in a study of Crohn disease, >30 loci were 

identified, but they explain <10% of the overall heritability (Barret et al. 2008).  

In conclusion, this study confirms the region (UMD 3.1: 50639460-51397892) on 

chromosome 4 as a susceptibility locus in Johne’s disesase. WNT2 is significantly associated with 

MAP infection on the basis of both diagnostic systems faecal culture and ELISA tests. The T allele 

at the rs43390642:G>T locus showed a potential protective role against paratuberculosis as part of 

binding sites for a glucocorticoid receptor element, suggesting that this transcription factor may 

modulate WNT2 expression. 

http://www.ncbi.nlm.nih.gov/nuccore/AC_000173.1?from=4402474&to=4406412&report=genbank&strand=true
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
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The linkage disequilibrium with the DLD rs134692583:A>T and the potential protective 

effect of the T allele also at this locus might suggest a combined mechanism of action of these 

neighbor genes in the resistance to MAP infection. However, functional assays are necessary to 

clarify if these two SNP modulate binding of transcription factors and thereby regulate their target 

gene expression and MAP infection susceptibility. The protective role of the haplotype TT could be 

a useful resource to support and verify the situation of the available 50K SNP Chip data in 

Holsteins and eventually be implemented in genome wide breeding programmes.  

No association with MAP infection was found for the other investigated genes, thus not 

confirming the results of previous reports (table 1). Further investigation is also required to clarify 

the possible biological role of these genes in the pathogenesis of Johne’s disease. 

This study contributes to the understanding of genetic variability involved in Johne’s disease 

susceptibility and it clarifies the involvement of the investigated loci in MAP infection. The 

identification of loci associated with MAP susceptibility is the first step to set up marker assisted 

selection programs in order to make cattle populations more resistant, reduce the transmission of 

MAP to other animals in the herd, improve the health status by breeding and increase the 

productivity of the livestock industry. 
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Table 1 - Positional candidate genes recently indicated as putatively involved in Johne’s disease 

after GWA studies.  

 

 

 

SNP ID BTA RefSeq genes (1 Mb)  Reference 

ss86341066:A>C 3 EDN2 Settles et al. 2009 

rs43070062:C>G 9 - Settles et al. 2009 

ss61491930:G>A 7 IL4, IL5, IL13, IRF1 Pant et al. 2010 

ss86328445:T>C 11 SOCS5 Pant et al. 2010 

ARS-BFGL-NGS-8531:A>G 9 PRDM1 Minozzi et al. 2010 

UA-IFASA-8974:A>C 20 PTGER4 Kirkpatrick et al. 2011 

rs41748405:A>C 15 GNA12 Zanella et al. 2011 

ss66537488:C>T 4 DLD, LAMB 1, WNT2 van Hulzen et al. 2012 
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Table 2 - Reference SNP chosen for a confirmation study of association with MAP susceptibility. Chromosome, gene location, alleles and amino 

acid changes are reported. Positions of the SNP related to the gene (5‘ flanking region/exon/intron) and related to BTA UMD 3.1 are also indicated. 

Primer sequences, amplicon size (bp) and restriction endonuclease information were provided for PCR amplification and RFLP genotyping. 

Asterisks indicate polymorphic alleles confirmed in German Holstein. 

Gene BTA RefSNP Alleles 
Aa 

change 

Gene Pos./ 

UMD3.1 
Primer Size (bp) Genotyping 

LAMB 1 4 rs43388824 A>G - Exon 8 5’-GGGAAGTAAACTTTACATAAG-3’ 345 BsmAI 

     49318278 5’-GCACGTACTTACCATTC-3’   

LAMB 1 4 rs211391398 C>T* Ser>Asn Exon 11 5’-TTGGTTAAAGATAAAATGAAGC-3’ 402 DraI 

     49312998 5’-TTTTGTGAAATTTGGAGGG-3’   

DLD 4 rs134692583 A>T* - 5‘ flank. reg. 5’-TTACGCTCTTTACGACAGT-3’ 168 SphI 

     50639460 5’-TTCTGCCAAGGATTTCAC-3’   

WNT2 4 rs43390642 G>T* - 5‘ flank. reg. 5’-GGGTGGATGAAATGATGGCAA-3’ 167 HaeIII 

     51397892 5’-TCTACCCCGAGCGCTTG-3’   

PRDM1 9 rs136669229 A>C* Phe>Val Exon 2 5’-CAGAGTCATATCCGCGTC-3’ 103 NlaIV 

     44375813 5’-CGGGACAATGGGGATTAA-3’   

PRDM1 9 rs136770416 A>C Val>Gly Exon 5 5’-TTGATGAGATTCACCGCCT-3’ 140 DraIII 

     44359367 5’-CTGAAGGACAAGGCCTG-3’   

SOCS5 11 rs134378401 A>C Tyr>Asp Exon 2 5’-AGAGCGACTTCCTACAGT-3’ 129 RsaI 

     29050621 5’-AGTTCACTGGATACGGATAAAA-3’   

PTGER4 20 rs41944920 C>G Leu>Val Exon 3 5’-TGATAAGTTCAGCGTTTCAC-3’ 277 HinfI 

     33764044 5’-AGCCATAGAGAAGATCAAAT-3’   

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43388824
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=211391398
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134692583
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=136669229
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=136770416
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134378401
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=41944920
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IL10 16 present work A>G* - Intron 4 5’-CATGACCTTCCCAGCAG-3’ 353 Alw26I 

      5’-AATAAATATATGTGGGAGCTGAG-3’   
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Table 3. Analysis of transcription factor binding sites in the DNA sequences surrounding the SNP: a) DLD rs134692583:A>T; b) WNT2 

rs43390642:G>T and c) IL10 AC_000173:g.3625A>G (present work) by TFSEARCH software. 

 

a) rs134692583:A>T (8 bp upstream DLD) 5’-AGGCCGCGCTCGTGC[A/T]TGCGCAGGGCGGGGA-3’ 

Transcription factor Consensus sequence* Position relative to SNP (5’>3’) DNA strand 
Binding allele score 

T A 

USF NCACGTGN -5 to +2 3’>5’ 78.4 78.4 

c-Myc NANCACGTGNNW -7 to +4 3’>5’ 76.8 - 

C/EBPb NKNTTGCNYAAYNN -3 to +10 5’>3’ 76.0 - 

Arnt NDDNNCACGTGNNNNN -8 to +5 3’>5’ 75.9 - 

N-Myc NNCCACGTGNNN -10 to +1 5’>3’ 76.0 77.0 

GATA-1 SNNGATNNNN -5 to +4 5’>3’ 75.5 - 

      

      

b) rs43390642:G>T (164 bp upstream WNT2) 5’-AAACACCTCCGTGTG[G/T]CCTCGAGCACCCGCG-3’ 

Transcription factor Consensus sequence* Position relative to SNP (5’>3’) DNA strand 
Binding allele score 

G T 

AML-1a TGCGGT -4 to +1 5’>3’ 83.7 - 

ZID NGGCTCYATCAYC -1 to +11 5’>3’ 78.9 - 

GR NNNNNNCNNTNTGTNCTNN -13 to +5 5’>3’ - 78.2 

c-Ets-1 NCMGGAWGYN -9 to +2 3’>5’ 75.1 75.1 

      

      

c) AC_000173:g.3625A>G (14 bp upstream the exon 5 of IL10) 5’-CACTGAACACGTCTT[A/G]TCTCCCCACACAGCT 

Transcription factor Consensus sequence* Position relative to SNP (5’>3’) DNA strand 
Binding allele score 

A G 

GATA-X NGATAAGNMNN -4 to +6 3’>5’ 93.1 - 

GATA-1 NNCWGATARNNNN -3 to +9 3’>5’ 90.3 - 

SREBP KATCACCCCAC -1 to +9 5’>3’ 90.1 85.9 

GATA-3 NNGATARNG -5 to +3 3’>5’ 89.1 - 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134692583
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
http://www.ncbi.nlm.nih.gov/nuccore/AC_000173.1?from=4402474&to=4406412&report=genbank&strand=true
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134692583
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
http://www.ncbi.nlm.nih.gov/nuccore/AC_000173.1?from=4402474&to=4406412&report=genbank&strand=true
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*Nucleotides in the genomic sequences according to the consensus sequences are underlined and the polymorphic nucleotide is marked in bold. 

Exonic regions are double underlined. Binding score threshold for each allele was set to ≥ 75.0. Nucleotide codes: K = G or T; M = A or C; S = C or 

G; W = A or T; Y = C or T; R = A or G; D = A, G or T; N = A, G, C or T.  
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Table 4 - Genotyping data, allele frequency and Hardy-Weinberg equilibrium (p≤0.05) of the SNP 

chosen as molecular marker for a confirmation study of association with MAP susceptibility in 

German Holstein population. All Chi square tests have one degree of freedom. 

 

 

Locus SNP  Observed genotypes   Allele frequency 

LAMB1 rs211391398:C>T 

 CC CT TT tot  C T 

Obs. 231 66 5 
302 

 
0.87 0.13 

Exp. 230.78 66.44 4.78  

χ
2
=0.013     

         

DLD rs134692583:A>T 

 AA AT TT tot  A T 

Obs. 240 54 5 
299 

 
0.89 0.11 

Exp. 238.42 57.15 3.42  

χ
 2

=0.908     

         

WNT2 rs43390642:G>T 

 GG GT TT tot  G T 

Obs. 287 36 1 
324 

 
0.94 0.06 

Exp. 287.11 35.77 1.11  

χ
 2

=0.013     

         

PRDM1 rs136669229:A>C 

 AA AC CC tot  A C 

Obs. 5 68 243 
316 

 
0.12 0.88 

Exp. 4.81 68.37 242.81  

χ
 2

=0.009     

         

IL10 AC_000173:g.3625A>G 

 AA AG GG tot  A G 

Obs. 2 39 282 
323 

 
0.07 0.93 

Exp. 1.43 40.14 281.43  

χ
 2

=0.259     

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=211391398
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=134692583
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=43390642
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=136669229
http://www.ncbi.nlm.nih.gov/nuccore/AC_000173.1?from=4402474&to=4406412&report=genbank&strand=true
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Table 5 – Frequencies observed for faecal and ELISA tests for each investigated SNP. Differences 

between the allele frequencies of the different polymorphisms were calculated by Fisher’s exact test 

using three different phenotypes: (1) fecal positive/negative, (2) ELISA positive/negative, and (3) 

fecal or ELISA positive/negative. Odds ratios (ORs) with 95% confidence intervals (CI) were 

calculated for each minor allele (MAF) according to the same scheme. Asterisks show significant 

value (p≤0.05). 

Test 
 LAMB1 rs211391398:C>T  

P Fisher 
 Alleles OR [95% CI] 

MAF 
P ORs 

 CC CT TT tot   C T 

(1) 
+ 116 29 3 148  

0.642 
 261 35 

0.87 [0.53-1.41]
 

0.581 
- 115 37 2 154   267 41 

(2) 
+ 71 25 2 98  

0.510
  167 29 

1.33 [0.81-2.19] 0.256 
- 160 41 3 204   361 47 

(3) 
+ 124 37 3 164  

0.926 
 285 43 

1.11 [0.68-1.80] 0.670 
- 107 29 2 138   243 33 

  DLD rs134692583:A>T        

  AA AT TT tot    A T   

(1) 
+ 126 22 2 150  

0.235 
 274 26 

0.64 [0.38-1.09]
 

0.108 
- 114 32 3 149   260 38 

(2) 
+ 85 15 0 100  

0.173
  185 15 

0.57 [0.31-1.05] 0.075 
- 155 39 5 199   349 49 

(3) 
+ 140 24 2 166  

0.135 
 304 28 

0.58 [0.34-0.99] 0.046* 
- 100 30 3 133   230 36 

  WNT2 rs43390642:G>T        

  GG GT TT tot    G T   

(1) 
+ 149 12 1 162  

0.050* 
 310 14 

0.56 [0.28-1.11] 0.098 
- 138 24 0 162   300 24 

(2) 
+ 103 7 1 111  

0.050* 
 213 7 

0.42 [0.18-0.97] 0.042* 
- 184 29 0 213   397 31 

(3) 
+ 166 13 1 180  

0.019* 
 345 15 

0.50 [0.25-0.97] 0.043* 
- 121 23 0 144   265 23 

  PRDM1 rs136669229:A>C        

  AA AC CC tot    A C   

(1) 
+ 3 30 124 157  

0.583 
 36 278 

0.85 [0.52-1.36] 0.505 
- 2 38 119 159   42 276 

(2) 
+ 2 26 77 105  

0.543
  30 180 

1.29 [0.79-2.11] 0.295 
- 3 42 166 211   48 374 

(3) 
+ 3 36 134 173  

0.926 
 42 304 

0.95 [0.59-1.54] 0.864 
- 2 32 109 143   36 250 

  IL10 AC_000173:g.3625A>G        

  AA AG GG tot    A G   

(1) 
+ 0 22 140 162  

0.495 
 22 302 

1.15 [0.61-2.17] 0.657 
- 2 17 142 161   19 301 

(2) 
+ 0 15 94 109  

0.589
  15 203 

1.13 [0.58-2.19] 0.702 
- 2 24 188 214   26 400 

(3) 
+ 0 24 155 179  

0.493 
 24 334 

1.13 [0.59-2.16] 0.694 
- 2 15 127 144   17 269 
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http://www.ncbi.nlm.nih.gov/nuccore/AC_000173.1?from=4402474&to=4406412&report=genbank&strand=true
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Figure 1. Genotyping of LAMB1, DLD, WNT2, PRDM1, and IL10 by PCR-RFLP in a German 

Holstein cattle population. Lines 1-4: locus LAMB1 rs211391398:C>T. Genotypes CC; CT and TT 

respectively in the lines 1, 2 and 3. Lines 6-9: locus DLD rs134692583:A>T. AA, AT and TT are 

the genotypes reported in the lines 6, 7 and 8 respectively. Lines 11-14: locus PRDM1 

rs136669229:A>C. Genotypes AA, AC and CC respectively reported in the lines 11, 12 and 13. 

Lines 16-19: locus WNT2 rs43390642:G>T. GG, GT and TT are the genotypes reported in the lines 

16, 17 and 18 respectively. Lines 21-24: locus IL10 g.3625A>G. Genotypes AA, AG and GG 

reported in the lines 21, 22 and 23 respectively. Lines 4, 9, 14, 19 and 24 are undigested PCR 

products each belonging to the relative locus. Lines 5, 10, 15 and 20 are empty. Line A is pUC 19 

DNA/MspI (HpaII) Marker, 23 (Fermentas); Line B is GeneRuler™ 100bp DNA Ladder (Thermo 

Scientific). 
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