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ABSTRACT
Morgana is a chaperone protein able to bind to ROCK I and II and to inhibit 

their kinase activity. Rho kinases are multifunctional proteins involved in different 
cellular processes, including cytoskeleton organization, centrosome duplication, cell 
survival and proliferation. In human cancer samples Morgana appears to be either 
downregulated or overexpressed, and experimental evidence indicate that Morgana 
behaves both as an oncosuppressor and as a proto-oncogene. Our most recent 
findings demonstrated that if on the one hand low Morgana expression levels, by 
inducing ROCK II hyperactivation, cause centrosome overduplication and genomic 
instability, on the other hand, Morgana overexpression induces tumor cell survival 
and chemoresistance through the ROCK I-PTEN-AKT axis. Therefore, Morgana belongs 
to a new class of proteins, displaying both oncogenic and oncosuppressor features, 
depending on the specific cellular context.

INTRODUCTION

Morgana is a protein containing two CHORD 
(cysteine and histidine rich) domains able to coordinate 
Zn++ ions and a C-terminal CS (after CHORD-containing 
proteins and Sgt1) domain [1], homologous to the small 
chaperones α-crystallin and p23 (Figure 1) [2]. CHORD 
domains are phylogenetically conserved from plants 
to mammals. The first CHORD containing protein 
identified was the plant protein RAR1, involved in disease 
resistance signaling [1]. In metazoan and fungi CHORD 
containing proteins (Chps) acquired the CS domain, with 
the exception of yeast, that does not possess Chps [1].
While not vertebrates hold a single Chp coding gene, in 
vertebrates two genes are present, coding for Morgana and 
melusin [3, 4]. Mammalian Chps share the 63% homology 
in the amino acid sequence and a similar domain structure. 
Melusin expression is restricted to skeletal muscle 
and myocardium [3, 5], where it is involved in signal 
transduction leading to compensatory hypertrophy in 
response to increased workload [6-9]. Instead, Morgana is 
ubiquitously expressed and it is involved in the control of 
centrosome duplication and tumorigenesis [4, 10].

MORGANA IS A CHAPERONE PROTEIN

CHORD containing proteins, RAR1 as well as 

Morgana and melusin, have been described to bind 
to HSP90 [11-18]. HSP90 is one of the best studied 
molecular chaperones in eukaryotes, accounting for 
the 2% of the total cytosolic protein content, acting as 
a dynamic dimer encompassing different molecular 
conformation shifts during its ATPase cycle. It consists 
of a N-terminal ATPase domain, a middle domain and a 
C-terminal dimerization domain. HSP90 interacts with 
two different classes of proteins: co-chaperones, able to 
assist and coordinate the HSP90 cycle and more than 200 
substrate proteins, also known as clients, depending on 
HSP90 for their stabilization and activation. A number of 
co-chaperone proteins have been identified and described 
to associate dynamically with HSP90 during its chaperone 
cycle, among them SGT1, PP5, p23, prolylisomerase, Hop, 
Cdc37, melusin and Morgana [19]. Specific co-chaperones 
can inhibit or stimulate HSP90 ATPase activity, stabilize 
particular conformations or recruit other components 
of the chaperone machinery or specific subset of client 
proteins [19]. Many HSP90 clients are signaling proteins 
and transcription factors often involved in oncogenesis 
and tumor progression. Given that HSP90 inhibition 
leads to client protein degradation, HSP90 inhibitors are 
in clinical trials as anti-cancer treatment [20]. Morgana 
binds to HSP90 in its ADP bound conformation [17], 
suggesting it might play a role in the last phase of HSP90 
cycle, eventually regulating client protein release. 
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Morgana, as other HSP90 co-chaperones [21], 
displays an HSP90 independent molecular chaperone 
activity in suppressing the aggregation of denatured 
proteins [15]. Different stress stimuli provoke unfolded 
proteins accumulation leading to cellular damage and 
death. Chaperone proteins, by inducing protein refolding, 
directing denatured proteins to degradation and inhibiting 
unfolded protein aggregation, are of crucial importance 
in limiting cellular damage and enhancing cell survival. 
Accordingly, Morgana overexpression protects cells 
from apoptosis induced by different stress stimuli, like 
heat shock and hydrogen peroxide [15]. Notably, in vivo 
experiments indicate that Morgana is upregulated, together 
with HSP70, in response to transient brain ischemia in 
gerbil hippocampus [15].

MORGANA IN SIGNAL TRANSDUCTION 
AND TUMORIGENESIS 

Besides HSP90, Morgana binds to Rho kinases 
ROCK I and ROCK II [10, 14], two proteins acting 
downstream of Rho GTPases [22]. Rho kinases regulate 
cell morphology, cell adhesion, and motility [22] by 
phosphorylating several downstream target proteins, 
including LIM kinase 1 and 2, the myosin regulatory 
light chain, and the myosin binding subunits of the 
MLC phosphatase [23]. Moreover, ROCK also regulates 
cell proliferation [24], differentiation [25], apoptosis 
[26, 27] and oncogenic transformation [23]. ROCK I 
and II are both ubiquitously expressed and share many 
downstream targets, however, differences in tissue 
expression levels and in substrate specificity have been 
reported [28]. Abnormalities in Rho kinase signaling 
play crucial roles in several human diseases such as 
cardiovascular and neurodegenerative disorders, tumor 
progression and metastasis [28]. ROCK activation is 
induced by different receptors for extracellular ligands 
and adhesion molecules and finely regulated by different 

intracellular proteins acting as activators and inhibitors. 
In addition to Rho, RhoGEFs and RhoGAPs, other 
proteins have been described to regulate ROCK, like 
Rnd3, Gem, C-Raf, nucleophosmin and others [28]. We 
demonstrated that Morgana binds to and inhibits ROCK I 
and II. In particular, Morgana interferes with the ability of 
nucleophosmin to activate ROCK II [14]. Nucleophosmin 
(NPM) is an ubiquitously expressed multifunctional 
protein, involved in a wide range of cellular processes like 
DNA repair, chromatin remodeling, ribosome biogenesis 
and centrosome duplication. NPM is often overexpressed 
in human solid tumors, it is involved in chromosome 
translocation driving hematologic neoplasms and it is the 
most frequently mutated gene in acute myeloid leukemia 
[30]. In S phase, NPM associates with and activates ROCK 
II, inducing centrosome duplication [31, 32]. In morgana 
+/- cells a higher amount of NPM binds to ROCK II, 
causing its hyperactivity and leading to centrosome 
overduplication [14]. Given that nucleophosmin does not 
bind to ROCK I [31], the precise mechanism by which 
Morgana inhibits this kinase needs to be clarified.

Besides Rho kinase inhibition, Morgana has been 
involved in the regulation of the size of dendritic arbors 
in Drosophila downstream of the Target of Rapamycin 
complex 2 (TORC2), a signaling complex comprising 
mTOR and Rictor, which regulates lipogenesis, glucose 
metabolism, actin cytoskeleton and apoptosis [33]. A 
further indication of Morgana involvement in metabolism 
and regulation of physiological process comes from the 
identification of Morgana transcript as a diurnal regulated 
gene in different brain region and in the liver [34-36].

The importance of Morgana dosage

Too low

Drosophila homozygous mutants for Morgana gene 
(mora) die as third instar larvae due to strong defects in 

Figure 1: Morgana structure. Schematic representation of Morgana structure. The protein is characterized by two tandemly repeated 
CHORD domains (CHORD1 and CHORD2) and a C-terminal CS domain. 
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cell proliferation. In particular, larval neuroblasts show 
strong impairment in chromosome condensation and 
the presence of supernumerary centrosomes leading 
to apoptosis or genomic instability. These phenotypes 
are fully rescued by a human Morgana gene, indicating 
a conserved role of Morgana between mammals and 
Drosophila. Moreover, Morgana null mice die early 
during embryogenesis and Morgana null embryonic 
stem cells undergo apoptosis when blastocysts are 
cultured in vitro. Morgana heterozygous mice are viable, 
however primary cells obtained from these mice display 
centrosome amplification and genomic instability, in 
accordance with the phenotype of Drosophila homozygous 
mutants [14]. ROCK hyperactivation caused by Morgana 
haploinsufficiency, is responsible for this phenotype 
and the use of ROCK inhibitors can rescue centrosome 
overduplication and consequently genomic instability in 
morgana +/- primary cells [14]. This Morgana function 
seems to have ancient phylogenetic roots, in fact, Morgana 
homolog CHPA has been described to be essential for the 
maintenance of genome stability in Aspergillus nidulans 
in diploid phase [37].

The anti-oncogenic role of Morgana was 
firstly disclosed by analyzing morgana +/- mouse 

embryonic fibroblasts (MEFs) that display a higher 
proliferation rate and oncogenic features [14]. Moreover, 
Morgana heterozygous mice are more susceptible to 
chemical induction of lung tumors and with age they 
develop spontaneously a lethal and transplantable 
myeloproliferative disease resembling human chronic 
myeloid leukemia (CML) [38]. In humans, CML is a 
myeloproliferative disorder caused, in the vast majority of 
cases, by the translocation t(9;22)(q34;q11) that results in 
the formation of the so called Philadelphia chromosome 
(Ph). This cytogenetic abnormality causes the fusion 
between BCR and ABL genes and leads to the expression 
of a constitutively active Bcr/Abl kinase. Imatinib, 
a tyrosine kinase inhibitor (TKI) able to target Bcr/
Abl, is the first-line therapy in CML treatment, leading 
to a complete hematologic remission in the majority of 
patients [39] (Figure 2). However, 5% of CML patients 
do not present the Philadelphia chromosome and lack 
BCR/ABL oncogene, being affected by “atypical” CML 
(aCML) [40]. Of note, this disease is characterized 
by aneuploid karyotypes [40-42] and non recurrent 
cytogenetic abnormalities in the bone marrow. Morgana 
haploinsufficiency is able per se to drive the pathology, 
given that the BCR/ABL translocation does not occur in 

Figure 2: Signal transduction in CML expressing normal Morgana levels. CML is caused by the presence of constitutive active 
kinase Bcr/Abl that leads to the hyperactivation of several signaling pathways, including PI3K, ROCK, MAPK and JAK-STAT signaling 
pathways [39], enhancing proliferation and survival (on the left). CML cells are addicted to Bcr/Abl signaling and Bcr/Abl inhibition using 
imatinib, induces apoptosis in these cells (on the right).
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mice [43]. When we analyzed bone marrow biopsies from 
5 patients affected by aCML, we found low/indetectable 
Morgana expression levels and high ROCK activity in all 
cases. In this context, reduced Morgana levels could be 
the causal event in inducing the pathology. The absence of 
specific and common targetable mutations makes aCML 
patients ineligible for target therapies. To date, the only 
therapeutic option for these patients is the treatment with 
conventional cytoreductive drugs with a median overall 
survival of 12.4 months [44]. morgana +/- diseased 
bone marrow cells are addicted to ROCK signaling and 
ROCK inhibitors induce apoptosis in these cells but not 
in wild-type controls (Figure 3) [44]. Thus, ROCK can be 
exploited as an innovative therapeutic target in Morgana 
low aCML. The fact that the ROCK inhibitor fasudil 
is safely used in Japan since 1995 for the treatment of 
cerebral vasospasm, makes this possibility even more 
attractive.

Not only low Morgana expression levels can be the 
driving cause of human aCML, but our work highlighted 
that Morgana downregulation cooperates with the BCR/
ABL oncogene in the 16% of CML Ph positive (Ph+) 
patients. Bcr/Abl is able to activate ROCK per se, and 
Bcr/Abl expressing cells are addicted to both Bcr/Abl and 
ROCK signaling [29, 45]. Since Morgana acts as a ROCK 
inhibitor, low Morgana levels in Bcr/Abl cells further 
increase ROCK activity and sustain ROCK activation 
also when Bcr/Abl kinase activity is inhibited by imatinib 

treatment, impairing apoptotic response to imatinib 
(Figure 4 left). Even if the majority of the Ph+ CML 
patients show a good response to imatinib at three months 
of treatment, a portion of patients exhibits a suboptimal 
response that has been found to be predictive of worse 
overall survival [46]. Our follow-up analysis indicated that 
low Morgana patients display a worse response during the 
first 24 months of imatinib treatment [38]. In this context, 
low Morgana levels can be used as a prognostic marker to 
predict a suboptimal response to imatinib treatment and 
to direct therapeutic intervention towards more potent, 
second-generation TKI like dasatinib and nilotinib. The 
fact that combined treatment with imatinib and ROCK 
inhibitors restores the apoptotic response in bone marrow 
cells from Morgana underexpressing patients [38] (Figure 
4 right) provides the rationale for a potential use of 
ROCK inhibitors to enhance the response to TKI. Indeed, 
ROCK hyperactivation has been recently identified as a 
frequent signaling alteration in acute and chronic myeloid 
leukemia and ROCK inhibitors have been proposed as 
new antileukemic drugs [29, 47]. In this context, also 
considering the functional relationship between Morgana 
and NPM, it would be of interest to evaluate Morgana 
expression levels in acute myeloid leukemia and its role, 
in cooperation with oncogenes, in activating ROCK.

Figure 3: Overview of atypical CML. Atypical CML bone marrow cells underexpressing Morgana are characterized by high ROCK 
activity which sustains survival of these cells establishing a mechanism of oncogene addiction (on the left). In fact, when ROCK is 
pharmacologically inhibited using fasudil, these cells can no longer survive and undergo apoptosis (on the right).
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Too high

Data from lung and breast tumor tissue arrays 
demonstrate that besides expressing low Morgana levels, 
a minority of cancer samples displays Morgana protein 
overexpression [14]. Elevated Morgana levels in breast 
cancer correlate with higher tumor grade, mitosis number 
and lymph node involvement [10], all prognostic markers 
of metastatic progression [48]. Morgana overexpression is 

found in 16% of breast cancers without being restricted to 
a particular subtype.

At the cellular level, Morgana overexpression 
transforms NIH3T3 mouse fibroblasts and increases 
MCF7 breast cancer cells oncogenic properties. In 
particular, high Morgana levels enhance the ability of 
cells to withstand diverse apoptotic stimuli such as serum 
withdrawal, anoikis and treatment with chemotherapic 

Table 1: Recent studies involving Morgana in cancer progression
Tumor type Hallmark described Reference

Breast High Morgana protein levels confer resistance from apoptosis through 
ROCK-PTEN pathway [10]

Breast CGH analysis reveals that Morgana is frequently gained in TNBCs [51]

Ovarian Morgana transcript is found upregulated in recurrent ovarian cancer 
samples compared to primary tumors [75]

Melanoma
Morgana transcript is overexpressed in metastatic melanoma cell lines 
resistant to tumor necrosis factor-related apoptosis-inducing ligand 
(TRAIL) compared to TRAIL-sensitive melanoma cell lines

[76]

Melanoma Morgana transcript is associated with metastatic dissemination of 
cutaneous melanomas [77]

Colorectal Morgana transcript is upregulated in liver metastasis compared to 
primary colorectal cancer [78]

Figure 4: Signal transduction in CML cells expressing low Morgana levels. In CML cells Bcr/Abl activates ROCK inducing 
addiction to its signaling and enhancing cell proliferation and survival. Morgana low expression levels cooperate with Bcr/Abl signaling 
to further increase ROCK activity. Consequently, low Morgana patients exhibit a sub-optimal response to imatinib (on the left). Using a 
combined treatment of imatinib and the ROCK inhibitor fasudil, the apoptotic response of low Morgana CML cells is restored (on the right). 
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Figure 5: Schematic representation of Morgana normal and Morgana overexpressing breast cancer cells. When breast 
cancer cells expressing normal Morgana levels are subjected to an apoptotic stimulus, they undergo apoptosis (on the right). Morgana 
overexpression, inhibiting ROCK activity, causes decreased PTEN stability and, in turn, increased AKT phosphorylation, responsible for 
cancer cells survival and chemoresistance (on the left). 

Figure 6: The importance of balancing Morgana levels. In tumor cells Morgana low expression levels enhance ROCK activity, 
inducing proliferation, survival and genomic instability. ROCK inhibitors may be used as a new therapeutic approach able to rescue low 
Morgana levels in tumor cells (on the left). On the other hand, Morgana overexpression reduces ROCK activity and PTEN stability, 
enhancing AKT activation. As a consequences, Morgana high expressing cells are resistant to chemotherapy. In this context, AKT inhibitors 
can represent a promising approach to restore chemosensitivity (on the right).
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drugs. Resistance to apoptosis depends on Morgana ability 
to inhibit ROCK I kinase activity. In particular, ROCK 
I can phosphorylate the oncosuppressor PTEN on serine 
229 and threonine 321 [49], thereby stabilizing the protein. 
Accordingly, Morgana overexpression in breast cancer 
cells and fibroblasts induces decreased ROCK activity, 
PTEN destabilization and higher P-AKT levels, leading 
to apoptosis resistance (Figure 5). This is confirmed by 
the fact that downregulation of Morgana in aggressive 
breast cancer cells causes sensitization to docetaxel and 
epirubicin, two drugs used for neo-adjuvant chemotherapy. 
Neo-adjuvant chemotherapy is often used in breast cancer 
patients to improve outcomes, reduce risk of recurrence, 
increase tumor resectability and overall survival. However, 
neo-adjuvant chemotherapy treatment does also carry high 
risks of toxicity and is ineffective in a relevant number 
of patients [50]. In this context, Morgana level can be 
exploited as a predictive marker to direct patients toward 
treatment or surgery. Of note, Morgana is more frequently 
overexpressed in triple negative breast cancers (TNBCs) 
(36%) than in other breast cancer subtypes (16%) [10, 51]. 
TNBCs are characterized by high aggressiveness, higher 
rates of relapse, unresponsiveness to treatment and shorter 
overall survival in the metastatic setting [52]. TNBCs lack 
the expression of estrogen receptor (ER), progesterone 
receptor (PR) and the amplification of HER2 [53], for 
this reason, TNBC patients are not eligible for targeted 
therapies and adjuvant chemotherapy is the mainstay of 
systemic medical treatment. The fact that high Morgana 
levels induce AKT hyperactivation, suggests that PI3K or 
AKT inhibitors, already in clinical trial [54], may have 
a therapeutic effect in Morgana overexpressing cancers. 
Besides breast cancers, recent studies indicate that 
Morgana overexpression may play a role in the recurrence, 
resistance and metastatization of other cancer types 
(Table 1), suggesting Morgana as a general biomarker of 
resistance able to direct personalized therapy.

CONCLUSIONS

Deletions and amplifications in cancer cells are 
known to alter oncosuppressor and oncogene expression 
levels and lead to cancer onset and progression. Even 
small variations in the expression of key regulatory genes 
impact very relevantly on tumorigenesis [55]. However, 
the fact that the same gene product can cause cancer either 
if overexpressed (three times compared to the normal 
level) or underexpressed (half of the normal level), is 
still puzzling. This apparent paradox can be explained by 
keeping in mind that most proteins play multiple roles in 
cells. Abnormal expression of a multifunctional protein 
involved in both oncogenic and oncosuppressive signaling 
pathways can eventually lead to the prevalence of one 
function over the other, in a context-dependent manner. 
Indeed, elevated ROCK expression and activity has been 
detected in different types of hematopoietic [29, 47, 56, 

57] and solid tumors [22, 58] and ROCK I and ROCK II 
activating somatic mutations have been found in cancers 
[59-62]. On the other hand, some studies report alteration 
in the expression of ROCK inhibitors and activators, like 
RhoE [63, 64] and RhoA [65-67], suggesting a role for 
ROCK inactivation in tumorigenesis.

Morgana is thus only one example of an increasingly 
growing class of proteins, acting both as proto-oncogenes 
and oncosuppressors (Figure 6), depending on their 
expression levels and the specific cellular context. NPM 
[68, 69], Wilms’ tumor 1 (WT1) [70], MDM2 [71], Notch 
[72], Met, NF-KB, β-catenin [73], SRPK1 [74], among 
others, have also been described to play opposite role in 
tumorigenesis. In conclusion, the definition of oncogene 
or oncosuppressor cannot be attributed to a particular gene 
product, but to its specific behavior in a defined cellular 
context.
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