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Two and three dimensional partition of unity interpolation by

product-type functions

Roberto Cavoretto
∗

Abstract

In this paper we analyze the behavior of product-type radial basis functions (RBFs) and
splines, which are used in a partition of unity interpolation scheme as local approximants. In
particular, we deal with the case of bivariate and trivariate interpolation on a relatively large
number of scattered data points. Thus, we propose the local use of compactly supported
RBF and spline interpolants, which take advantage of being expressible in the multivariate
setting as a product of univariate functions. Numerical experiments show good accuracy and
stability of the partition of unity method combined with these product-type interpolants,
comparing it with the one obtained by replacing compactly supported RBFs and splines
with Gaussians.

Keywords: multivariate approximation, local interpolation schemes, partition of unity methods,
radial basis functions, splines, scattered data.

1 Introduction

We consider the problem of interpolating a continuous function g : Ω → R on a compact domain
Ω ⊂ R

m, m = 2, 3, defined on a finite set XN = {xi, i = 1, 2, . . . , N} of data points or nodes,
which are situated in Ω. It consists of finding an interpolant I : Ω → R such that, given
the xi and the corresponding function values gi, the interpolation conditions I(xi) = g(xi),
i = 1, 2, . . . , N , are satisfied.

In particular, we are interested in considering the interpolation of large scattered data sets,
a problem which has gained much interest in several areas of applied sciences and scientific
computing, where the need of having accurate, fast and stable algorithms is often essential (see,
e.g, [17, 19, 23, 24]). Among the various multivariate approximation techniques, the partition
of unity methods such as Shepard’s type interpolants turn out to be particularly effective in
meshfree or meshless interpolation (see [2, 8, 12, 13, 14, 20, 21, 25, 27, 28]).

In this paper, we propose the use of product-type compactly supported radial basis func-
tions (RBFs) and splines, which are used in a partition of unity interpolation scheme as local
approximants. Specifically, here we consider two families of basis functions, known as Wendland

functions and Lobachevsky splines, which can be expressed in the multivariate setting as prod-
ucts of univariate functions. The former are well-known in approximation theory and practice,
and are usually used as radial functions in the field of multivariate interpolation and approxi-
mation (see e.g. [10, 17, 30]). On the other hand, the latter, firstly considered in probability
theory [18, 26], have successfully been proposed for multivariate scattered data interpolation
and integration in [4, 5, 6] and for landmark-based image registration in [1, 3]. We remark that
both of these families of univariate functions (depending on a shape parameter) are compactly
supported, strictly positive definite, and enjoy noteworthy theoretical and computational prop-
erties, such as the spline convergence to the Gaussian function. Furthermore, we observe that
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the multivariate spline interpolant is noteworthy because it is neither a mesh-based formula nor
a radial one, but it asymptotically behaves like a Gaussian interpolant (see [4, 9]). Numerical
experiments point out that, for sufficiently regular basis functions such as the product-type
radial basis function and spline of smothness C4, the partition of unity scheme combined with
RBF and spline interpolants is comparable in accuracy with that obtained by using Gaussian
ones, even if they are usually much better conditioned than Gaussians.

The paper is organized as follows. In Section 2 at first we consider the problem of scattered
data interpolation by product-type Wendland functions and Lobachevsky splines, recalling their
analytic expressions and some properties; then, we describe the partition of unity method, which
makes use of product-type RBF and spline interpolants as local approximants. In Section 3 we
refer to the corresponding partition of unity algorithms designed for bivariate and trivariate
interpolation. Section 4 summarizes several numerical results in order to analyze accuracy
and stability of the local approximation scheme combined with compactly supported radial
basis function and spline interpolants, also comparing their errors with those of the Gaussian.
Finally, Section 5 deals with conclusions and future work.

2 Partition of unity scheme

Let us consider a continuous function g : Ω → R on a compact domain Ω ⊂ R
m, m ≥ 1, a

set XN = {xi = (x1i, x2i, . . . , xmi), i = 1, 2, . . . , N} ⊂ Ω of scattered data points, and the set
GN = {g(xi), i = 1, 2, . . . , N} of the corresponding function values.

2.1 Product-type functions

2.1.1 Radial basis functions

In order to construct an interpolation formula generated by compactly supported RBFs, for
even p ≥ 0 we consider the product-type interpolant of the form

Fp(x) =
N
∑

j=1

cjφpj(x), x ∈ Ω,

requiring Fp(xi) = g(xi), i = 1, 2, . . . , N . The interpolant Fp is a linear combination of products
of univariate shifted and rescaled functions ζp, called Wendland functions [30], i.e.

φpj(x) ≡ φpj(x; δ) =
m
∏

h=1

ζp(δ(xh − xhj)), (1)

where, setting r = (xh − xhj), for j = 1, 2, . . . , N

ζ0(δr)
.
= (1− δr)+ ,

ζ2(δr)
.
= (1− δr)3+ (3δr + 1) ,

ζ4(δr)
.
= (1− δr)5+

(

8(δr)2 + 5δr + 1
)

,

ζ6(δr)
.
= (1− δr)7+

(

21(δr)3 + 19(δr)2 + 7δr + 1
)

,

and δ ∈ R
+ is a shape parameter. Note that the support of ζp is [−1/δ, 1/δ]. The coefficients

c = {cj} are computed by solving the linear system

Ac = g,

where the interpolation matrix

A = {aij} = {φpj(xi)}, i, j = 1, 2, . . . , N, (2)

2



is symmetric and depends on the values of p and δ in (1). Since these compactly supported
RBFs are strictly positive definite, the interpolation matrix A in (2) is positive definite for any
set of distinct nodes (see [17]).

Furthermore, since Wendland functions are (univariate) strictly positive definite functions,
we can construct multivariate strictly positive definite functions from univariate ones (see, e.g.,
[30]).

Theorem 2.1. Suppose that λ1, λ2, . . . , λm are strictly positive definite and integrable functions
on R, then

Λ(x) = λ1(x1)λ2(x2) · · ·λm(xm), x = (x1, x2, . . . , xm) ∈ R
m,

is a strictly positive definite function on R
m.

2.1.2 Spline functions

For even n ≥ 2, we construct the product-type spline interpolant of g at the nodes xi in the
form

F̃n(x) =
N
∑

j=1

c̃jφ̃nj(x), x ∈ Ω,

requiring F̃n(xi) = g(xi), i = 1, 2, . . . , N . The interpolant F̃n is a linear combination of products
of univariate shifted and rescaled functions f∗

n, known as Lobachevsky splines [4], i.e.

φ̃nj(x) ≡ φ̃nj(x;α) =
m
∏

h=1

f∗
n(α(xh − xhj)), (3)

where for j = 1, 2, . . . , N

f∗
n(α(xh − xhj)) =

√

n

3

1

2n(n− 1)!

n
∑

k=0

(−1)k
(n

k

)

×
[
√

n

3
α(xh − xhj) + (n− 2k)

]n−1

+

,

or, equivalently,

f∗
n(α(xh − xhj)) =

√

n

3

1

2n(n− 1)!

⌊

n
2
+ 1

2

√
n
3
αx
⌋

∑

k=0

(−1)k
(n

k

)

×
[
√

n

3
α(xh − xhj) + (n− 2k)

]n−1

,

and α ∈ R
+ is a shape parameter. Here the support of f∗

n is given by [−
√
3n/α,

√
3n/α]. The

coefficients c̃ = {c̃j} are obtained by solving the system of linear equations

Ãc̃ = g,

whose interpolation matrix

Ã = {ãij} = {φ̃nj(xi)}, i, j = 1, 2, . . . , N, (4)

is symmetric and depends on the choice of n and α in (3). As also these splines turn out to be
strictly positive definite for any even n ≥ 2, the interpolation matrix Ã in (4) is positive definite
for any distinct node set.
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From the central limit theorem (see [18, 26]), we remark that the m-variate spline converges
for n → ∞ to the m-variate Gaussian, i.e.

lim
n→∞

m
∏

i=1

f∗
n(αxi) =

1

(2π)m/2
exp

(−α2(
∑m

i=1 x
2
i )

2

)

.

Hence, these product-type functions asymptotically behave like radial functions, though they
are not radial in themselves.

Finally, since also these splines are (univariate) strictly positive definite functions for even
n ≥ 2, from Theorem 2.1 it follows that we can construct multivariate strictly positive definite
functions from univariate ones.

2.2 Interpolation method

In this subsection we present the partition of unity method. It was firstly suggested in [7, 22]
in the context of meshfree Galerkin methods for the solution of partial differential equations,
but then it became a common tool also used in the field of approximation theory (see [30]).

The basic idea of the partition of unity method is to start with a partition of the open
and bounded domain Ω ⊆ R

m into d subdomains Ωj such that Ω ⊆ ⋃d
j=1Ωj with some mild

overlap among the subdomains. Firstly, we take a partition of unity, which consists of a family
of compactly supported, non-negative, continuous functions Wj with supp(Wj) ⊆ Ωj such that

d
∑

j=1

Wj(x) = 1.

Then, we consider the global approximant of the form

I(x) =
d

∑

j=1

Hj(x)Wj(x), x ∈ Ω, (5)

where

Hj(x) =

mj
∑

k=1

ckϕk(x),

is a local interpolant, which is constructed using the mj nodes belonging to the subdomain Ωj

and solving a local interpolation problem. In particular, Hj denotes either a RBF interpolant
Fpj or a spline interpolant F̃nj , whereas ϕk represents the generic k-th basis, φpk or φ̃nk. In
fact, we note that if the local approximants satisfy the interpolation conditions at data point
xi, i.e.

Hj(xi) = g(xi),

the global approximant also interpolates at this node, i.e.

I(xi) = g(xi), i = 1, 2, . . . , N.

Then, we give the following definition (see [29]).

Definition 2.1. Let Ω ⊆ R
m be a bounded set. Let {Ω}dj=1 be an open and bounded covering of

Ω. This means that all Ωj are open and bounded and that Ω ⊆ ⋃d
j=1Ωj. Set δj = diam(Ωj) =

sup
x,y∈Ωj

||x − y||2. We call a family of nonnegative functions {Wj}dj=1 with Wj ∈ Ck(Rm) a

k-stable partition of unity with respect to the covering {Ωj}dj=1 if

1) supp(Wj) ⊆ Ωj;
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2)
∑d

j=1Wj(x) ≡ 1 on Ω;

3) for every β ∈ N
m
0 with |β| ≤ k there exists a constant Cβ > 0 such that

||DβWj ||L∞(Ωj) ≤ Cβ/δ
|β|
j ,

for all 1 ≤ j ≤ d.

In accordance with the statements in [29] we require additional regularity assumptions on
the covering {Ωj}dj=1.

Definition 2.2. Suppose that Ω ⊆ R
m is bounded and XN = {xi, i = 1, 2, . . . , N} ⊆ Ω are given.

An open and bounded covering {Ωj}dj=1 is called regular for (Ω,XN ) if the following properties
are satisfied:

1) for each x ∈ Ω, the number of subdomains Ωj with x ∈ Ωj is bounded by a global constant
K;

2) each subdomain Ωj satisfies an interior cone condition;

3) the local fill distances hXj ,Ωj
are uniformly bounded by the global fill distance hXN ,Ω, where

Xj = XN ∩ Ωj.

Therefore, after defining the space Ck
ν (R

m) of all functions g ∈ Ck whose derivatives of order
|β| = k satisfy Dβg(x) = O(||x||ν2) for ||x||2 → 0, we consider the following convergence result
(see, e.g., [17, 30]).

Theorem 2.2. Let Ω ⊆ R
m be open and bounded and suppose that XN = {xi, i = 1, 2, . . . , N} ⊆

Ω. Let ϕ ∈ Ck
ν (R

m) be a strictly positive definite function. Let {Ωj}dj=1 be a regular covering

for (Ω,XN ) and let {Wj}dj=1 be k-stable for {Ωj}dj=1. Then the error between g ∈ Nϕ(Ω), where
Nϕ is the native space of ϕ, and its partition of unity interpolant (5) can be bounded by

|Dβg(x)−DβI(x)| ≤ Ch
(k+ν)/2−|β|
XN ,Ω |g|Nϕ(Ω),

for all x ∈ Ω and all |β| ≤ k/2.

Remark 2.1. We observe that the partition of unity method preserves the local approximation
order for the global fit. In fact, we can efficiently compute large product-type interpolants by
solving small interpolation problems and then combine them along with the global partition of
unity {Wj}dj=1. This approach allows us to decompose a large problem into many small problems,
ensuring at the same time that the accuracy obtained for the local fits is carried over to the
global one. In particular, the partition of unity method can be thought as a Shepard’s method
with higher-order data, since local approximations Hj instead of data values gj are used.

3 Algorithms

In this section, we describe in detail the partition of unity algorithms used in the interpolation
processes, first referring to the bivariate algorithm and then to the trivariate one. They are
characterized by the partition of the domain Ω in square or cube cells, enabling us to use efficient
searching procedures. The basic versions of these interpolation algorithms have been proposed
and widely tested in [15, 16]. Here, such algorithms have been modified and efficiently updated
to locally apply the product-type interpolants.
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3.1 Bivariate interpolation

INPUT:

• N , number of data;

• XN = {(x1i, x2i), i = 1, 2, . . . , N}, set of data points;

• GN = {gi, i = 1, 2, . . . , N}, set of data values;

• d, number of subdomains;

• Cd = {(x̄1i, x̄2i), i = 1, 2, . . . , d}, set of subdomain points;

• s, number of evaluation points;

• Es = {(x̃1i, x̃2i), i = 1, 2, . . . , s}, set of evaluation points.

OUTPUT:

• As = {I(x̃1i, x̃2i), i = 1, 2, . . . , s}, set of approximated values.

Stage 1. The set XN of nodes and the set Es of evaluation points are ordered with respect to
the x2-axis direction by applying a quicksortx2 procedure.

Stage 2. For each subdomain point (x̄1i, x̄2i), i = 1, 2, . . . , d, a local circular subdomain is
constructed, whose radius depends on the subdomain number d, that is

δsubdom =

√

2

d
. (6)

This value is suitably chosen, supposing to have a nearly uniform node distribution and assuming
that the ratio n/d ≈ 4.

Stage 3. A double structure of crossed strips is constructed as follows:

i) a first family of q strips, parallel to the x1-axis direction, is considered taking

q =

⌈

1

δsubdom

⌉

, (7)

and a quicksortx1 procedure is applied to order the nodes belonging to each strip;

ii) a second family of q strips, parallel to the x2-axis direction, is considered.

Note that each of the two strip structures are ordered and numbered from 1 to q; moreover, the
choice in (7) follows directly from the side length of the domain Ω (unit square), that here is 1,
and the subdomain radius δsubdom in (6).

Stage 4. The unit square is partitioned by a square-based structure consisted of q2 squares,
whose length of the sides is given by δsquare ≡ δsubdom. Then, the following structure is consid-
ered:

• the sets XN , Cd and Es are partitioned by the square structure into q2 subsets XNk
, Cdk

and Esk , k = 1, 2, . . . , q2,

where Nk, dk and sk are the number of points in the k-th square.

Stage 5. In order to identify the squares to be examined in the searching procedure, we
consider the following two steps:
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(I) since δsquare ≡ δsubdom, the ratio between these quantities is denoted by i∗ = δsubdom/δsquare
= 1. Thus, the number j∗ = (2i∗ + 1)2 of squares to be examined for each node is 9.

(II) for each square k = [v, w], v, w = 1, 2, . . . , q, a square-based searching procedure is con-
sidered, examining the points from the square [v− i∗, w− i∗] to the square [v+ i∗, w+ i∗],
with the exception of those points close to the boundary of Ω, where we reduce the total
number of squares to be examined.

Then, after defining which and how many squares are to be examined, the square-based
searching procedure is applied:

• for each subdomain point of Cdk , k = 1, 2, . . . , q2, to determine all nodes belonging to a
subdomain. The number of nodes of the subdomain centred at (x̄1i, x̄2i) is counted and
stored in mi, i = 1, 2, . . . , d;

• for each evaluation point of Esk , k = 1, 2, . . . , q2, to find all those belonging to a subdomain
of centre (x̄1i, x̄2i) and radius δsubdom. The number of subdomains containing the i-th
evaluation point is counted and stored in ri, i = 1, 2, . . . , s.

Stage 6. A local interpolant Hj , j = 1, 2, . . . , d, is found for each subdomain point.

Stage 7. A local approximant Hj and a weight function Wj , j = 1, 2, . . . , d, is found for each
evaluation point.

Stage 8. Applying the global fit (5), one can find approximated values computed at any
evaluation point (x̃1, x̃2) ∈ Es.

3.2 Trivariate interpolation

INPUT:

• N , number of data;

• XN = {(x1i, x2i, x3i), i = 1, 2, . . . , N}, set of data points;

• GN = {gi, i = 1, 2, . . . , N}, set of data values;

• d, number of subdomains;

• Cd = {(x̄1i, x̄2i, x̄3i), i = 1, 2, . . . , d}, set of subdomain points;

• s, number of evaluation points;

• Es = {(x̃1i, x̃2i, x̃3i), i = 1, 2, . . . , s}, set of evaluation points.

OUTPUT:

• As = {I(x̃1i, x̃2i, x̃3i), i = 1, 2, . . . , s}, set of approximated values.

Stage 1. The set XN of nodes and the set Es of evaluation points are ordered with respect to
the x3-axis direction by applying a quicksortx3 procedure.

Stage 2. For each subdomain point (x̄1i, x̄2i, x̄3i), i = 1, 2, . . . , d, a local spherical subdomain
is constructed, whose spherical radius depends on the subdomain number d, that is

δsubdom =

√
2

3
√
d
. (8)

Although other choices δsubdom are possible, this value is suitably chosen, supposing to have a
nearly uniform node distribution and assuming that the ratio n/d ≈ 8.

Stage 3. A triple structure of intersecting parallelepipeds is constructed as follows:
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i) a first family of q parallelepipeds, parallel to the x1-axis direction, is considered taking

q =

⌈

1

δsubdom

⌉

, (9)

and a quicksortx1 procedure is applied to order the nodes belonging to each parallelepiped;

ii) a second family of q parallelepipeds, parallel to the x2-axis direction, is constructed and
a quicksortx2 procedure is used to order the nodes belonging to each of the resulting
parallelepipeds;

iii) a third family of q parallelepipeds, parallel to the x3-axis, is considered.

Note that each of the three families of parallelepipeds are ordered and numbered from 1 to q;
the choice in (9) follows directly from the side length of the domain, i.e. the unit cube, and the
subdomain radius δsubdom in (8).

Stage 4. The unit cube is partitioned by a cube-based structure consisted of q3 cubes, whose
side length is δcube ≡ δsubdom. Then, the following structure is considered:

• the sets XN , Cd and Es are partitioned by the cube structure into q3 subsets XNk
, Cdk and

Esk , k = 1, 2, . . . , q3, where Nk, dk and sk are the number of points in the k-th cube.

Stage 5. In order to identify the cubes to be examined in the searching procedure, we consider
the following two steps:

(I) since δcube ≡ δsubdom, the ratio between these quantities is denoted by i∗ = δsubdom/δcube =
1. Thus, the number j∗ = (2i∗ + 1)3 of cubes to be examined for each node is 27.

(II) for each cube k = [u, v, w], u, v, w = 1, 2, . . . , q, a cube-partition searching procedure
is considered, examining the points from the cube [u − i∗, v − i∗, w − i∗] to the cube
[u+ i∗, v+ i∗, w+ i∗], with the exception of those points close to the boundary of Ω, where
we reduce the total number of cubes to be examined.

Then, after defining which and how many cubes are to be examined, the cube-partition
searching procedure is applied:

• for each subdomain point of Cdk , k = 1, 2, . . . , q3, to determine all nodes belonging to a
subdomain. The number of nodes of the subdomain centred at (x̄1i, x̄2i, x̄3i) is counted
and stored in mi, i = 1, 2, . . . , d;

• for each evaluation point of Esk , k = 1, 2, . . . , q3, in order to find all those belonging
to a subdomain of centre (x̄1i, x̄2i, x̄3i) and radius δsubdom. The number of subdomains
containing the i-th evaluation point is counted and stored in ri, i = 1, 2, . . . , s.

Stage 6. A local interpolant Hj , j = 1, 2, . . . , d, is found for each subdomain point.
Stage 7. A local approximant Hj and a weight function Wj , j = 1, 2, . . . , d, is found for each
evaluation point.

Stage 8. Applying the global interpolant (5), one can find approximated values computed at
any evaluation point (x̃1, x̃2, x̃3) ∈ Es.

3.3 Complexity

The algorithms make a repeated use of the quicksort routine along different directions. They
require on average a time complexity O(M logM), M being the number of nodes to be sorted.
In particular, we need a preprocessing phase to build the data structure, whose computational
cost is of the order O(N logN) for the sorting of all N nodes and O(s log s) for the sorting of
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all s evaluation points in Stage 1. Then, to compute the local product-type interpolants, we
solve d linear systems of (relatively) small sizes and the computational cost is of order O(m3

i ),
i = 1, 2, . . . , d, for each subdomain, where mi is the number of nodes in the i-th subdomain (see
Stage 6). Moreover, in Stage 5, 7 and 8 we also have a cost of rk · O(mi), i = 1, 2, . . . , d,
k = 1, 2, . . . , s, for the k-th evaluation point of Es.

4 Numerical results

In this section we investigate the performances of the partition of unity interpolants obtained
by using product-type interpolants as local approximants. In doing so, we focus on accuracy
and stability of such interpolation formulas, considering some sets XN of Halton scattered data
points contained in Ω = [0, 1]m ⊂ R

m, for m = 2, 3. They are uniformly distributed random
points and generated by using the MATLAB program haltonseq.m [17]. In particular, here
we consider some sets of Halton points of size N = 16641, 66049, and N = 35937, 274625, for
bivariate and trivariate interpolation, respectively. Note that in this local interpolation scheme
we need to solve d linear systems, one for each subdomain Ωj , j = 1, 2, . . . , d, of relatively small
size mj ×mj .

Thus, we analyze the behavior of the partition of unity scheme combined with radial basis
function (R) and spline (S) interpolants of smoothness C2 (p = 2 and n = 4) and C4 (p = 4
and n = 6), which are denoted by R2, R4 and S2, S4, respectively. Moreover, for a comparison
we also report the results obtained by using the Gaussian (G) as local approximant.

All the results reported below are obtained computing on the following bivariate and trivari-
ate Franke’s test functions (see, e.g., [2, 11]), i.e.,

g1(x1, x2) =
3

4
e−

(9x1−2)2+(9x2−2)2

4 +
3

4
e−

(9x1+1)2

49
−

9x2+1
10

+
1

2
e−

(9x1−7)2+(9x2−3)2

4 − 1

5
e−(9x1−4)2−(9x2−7)2 ,

and

g2(x1, x2, x3) =
3

4
e−

(9x1−2)2+(9x2−2)2+(9x3−2)2

4

+
3

4
e−

(9x1+1)2

49
−

9x2+1
10

−
9x3+1

10

+
1

2
e−

(9x1−7)2+(9x2−3)2+(9x3−5)2

4

− 1

5
e−(9x1−4)2−(9x2−7)2−(9x3−5)2 ,

the root mean square error (RMSE), whose formula is given by

RMSE =

√

√

√

√

1

s

s
∑

i=1

|g(xi)− I(xi)|2.

However, in order to have a more complete picture on the local interpolation scheme, we have
tested other functions which we here omit for shortness, since accuracy and stability have shown
a uniform behavior of the errors.

In Figures 1–2 we show the behavior of compactly supported radial basis function and spline
interpolation errors both for 2D and 3D cases by varying the value of the shape parameters
α ∈ [1, 10], δ ∈ [0.1, 1.9]. Note that there is an exact correspondence between the spline and
Gaussian shape parameter α, whereas it does not hold by varying δ; hence, though this study
turns out to be significant from a numerical standpoint, a direct comparison of δ and α should
be viewed as purely indicative.
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Numerical experiments highlight that the variation of α and δ may greatly influence the
quality of approximation results. Moreover, the behavior of such errors turns out to be more
regular and uniform for compactly supported radial basis functions and splines of product-
type, whereas it is quite unstable for the Gaussian above all when we take small values of
α. More precisely, comparing for example spline and Gaussian results, this study points out
that the interpolation scheme with product-type interpolants is more stable than the one with
the Gaussian. In fact, in the latter case we have interpolation matrices that are very ill-
conditioned, thus producing the fast and sudden error variation shown in Figure 1 for (i) α ∈
[1, 3.9), (ii) α ∈ [1, 6.3), (iii) α ∈ [1, 2.5) and (iv) α ∈ [1, 3.9). Thus, in practice, this error
analysis also provides useful information on the conditioning of the different local approximants.
Furthermore, analyzing all the tests done, we observe that the product-type functions such as
the R4 and S4 (of smoothness C4) are comparable in accuracy with the Gaussians.

Specifically, we remark that the best level of Gaussian accuracy is reached when α ∈ [1, 6],
which is exactly the interval where the Gaussian is unstable. Conversely, though the optimality
interval remains the same also for the spline, in that region we have a complete stability; similar
considerations, even if depending on the value δ, can also be done for the radial basis function
case. Hence, it follows that these tests point out reliability of product-type interpolants also
when they are used as local approximants in partition of unity interpolation schemes.

Finally, in Tables 1–2 we report the errors obtained considering optimal values of δ and α,
i.e. taking values for which we obtain the smallest RMSEs.
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Figure 1: RMSEs obtained by varying the shape parameters α for bivariate and trivariate
Franke’s functions.
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Figure 2: RMSEs obtained by varying the shape parameters δ for bivariate and trivariate
Franke’s functions.

N 16641 66049

RMSE δopt, αopt RMSE δopt, αopt

R2 2.4893E− 5 0.88 6.9639E− 6 0.84

R4 1.8259E− 6 0.46 2.9154E− 7 0.66

S2 2.3715E− 5 2.9 6.5901E− 6 2.7

S4 1.5553E− 6 2.5 2.5635E− 7 2.6

G 7.9092E− 7 2.9 3.1658E− 7 2.6

Table 1: RMSEs obtained by using optimal values of δ and α for g1.

5 Conclusions and future work

In this paper we studied the performance of product-type interpolants when they are applied as
local approximants in a local interpolation scheme such as the partition of unity method. More
precisely, we analyzed the behavior of such interpolants in the bivariate and trivariate setting,
considering some sets of scattered data points. This study highlighted that these product-
type functions work well also in local approaches. Finally, as confirmed by several numerical
experiments, they turn out to be more stable than Gaussians and in general, for sufficiently
regular basis functions, comparable in accuracy.

As future work, we are going to implement adaptive partition of unity algorithms for scat-
tered data interpolation in high-dimensions, adopting suitable data structures like kd-trees and
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N 35937 274625

RMSE δopt, αopt RMSE δopt, αopt

R2 1.2433E− 4 0.70 3.4168E− 5 0.74

R4 2.4558E− 5 0.96 4.3705E− 6 1.16

S2 1.1088E− 4 2.5 2.8425E− 5 2.5

S4 2.2148E− 5 4.0 3.3542E− 6 4.6

G 8.8797E− 6 2.7 1.4928E− 6 2.8

Table 2: RMSEs obtained by using optimal values of δ and α for g2.

range trees.
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[26] A. Rényi, Calcul des Probabilités, Dunod, Paris, 1966.
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