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Multidimensional Lobachevsky Spline Integration on Scattered

Data

Giampietro Allasia, Roberto Cavoretto, Alessandra De Rossi∗

Abstract

This paper deals with the topic of numerical integration on scattered data in R
d, d ≤ 10,

by a class of spline functions, called Lobachevsky splines. Precisely, we propose new inte-
gration formulas based on Lobachevsky spline interpolants, which take advantage of being
expressible in the multivariate setting as a product of univariate integrals. Theoretically,
Lobachevsky spline integration formulas have meaning for any d ∈ N, but numerical results
appear quite satisfactory for d ≤ 10, showing good accuracy and stability. Some compar-
isons are given with radial Gaussian integration formulas and a quasi-Monte Carlo method
using Halton data points sets.

Keywords: Lobachevsky splines, scattered data interpolation, integration formulas, high-dimen-
sional integrals, quasi-Monte Carlo methods.

1 Introduction

The topic of numerical integration on multivariate scattered data has recently gained popularity
and interest in various areas of applied mathematics and scientific computing, such as multivari-
ate interpolation, approximation theory, and computer physics (see [7, 13, 14, 15, 19, 20, 23, 24]),
although it has been much less developed with respect to the construction of integration formulas
on data with a prefixed distribution (see, e.g., [12]).

In particular, we consider the problem of constructing new integration formulas for high-
dimensional scattered data by a class of spline functions, called Lobachevsky splines, arisen in
probability theory [17, 21] and then also proposed in multivariate interpolation on scattered data
[4] and landmark-based image registration [1, 3, 6]. Lobachevsky splines consist in an infinite
sequence of univariate spline functions depending on a shape parameter, which are compactly
supported, strictly positive definite, and enjoy noteworthy theoretical and computational prop-
erties, such as the convergence to the Gaussian function and the convergence of the sequence
of their integrals and derivatives to integrals and derivatives of the Gaussian, respectively (see
[4]).

Now, starting from the previous work [5], where we investigate the integration problem on
scattered data in R

d, for d = 1, 2, in this paper we focus on the use of Lobachevsky spline
integration formulas for 3 ≤ d ≤ 10. The idea of using Lobachevsky splines to construct inte-
gration formulas on scattered data turns out to be quite natural, not only for the recent interest
in meshfree numerical integration, but also for the performance and computation easiness of
Lobachevsky spline integrals. In fact, Lobachevsky spline interpolation formulas take advantage
of being expressible in the multivariate setting as a product of univariate functions. This makes
simple the computation of d-dimensional integrals on hypercubes: at first, the integrand func-
tion is approximated by a Lobachevsky spline interpolation formula; then, the d-variate integral
is evaluated as a product of d univariate integrals. The proposed formulas may be interesting
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because other effective techniques for multidimensional integration on scattered data such as
Monte Carlo methods, which are usually used in high dimensions, have poor convergence rates
(see e.g. [18, 22]).

Moreover, we remark that Lobachevsky spline interpolation formulas are neither mesh-based
formulas (no grid is here considered) nor radial ones, but they asymptotically behave like Gaus-
sian interpolants (see [4]). This feature, together with the uniform convergence of Lobachevsky
splines to the Gaussians, allows us to give error estimates for Lobachevsky splines integration
formulas. Numerical experiments point out that Lobachevsky spline interpolants are compara-
ble in accuracy with Gaussian interpolants, but they are usually much better conditioned than
the Gaussians.

The paper is organized as follows. In Section 2 we consider the problem of scattered data
interpolation by Lobachevsky splines, recalling their analytic expressions and some properties.
In Section 3 we firstly describe the resulting integration formulas obtained by Lobachevsky
spline interpolants, then we analyze conditioning and errors of Lobachevsky spline integration
formulas, discussing the role of two essential quantities: the spectral norm of the inverse of
the interpolation matrix and the 1-norm of the weight vector. Section 4 summarizes several
numerical experiments in order to verify performances of Lobachevsky spline integration for-
mulas, focusing on both accuracy (integration errors) and stability (condition numbers) and
comparing Lobachevsky spline results with those of radial Gaussian integration formulas and a
quasi-Monte Carlo considering Halton point sets. Finally, Section 5 deals with conclusions and
future works.

2 Lobachevsky spline interpolation

Let us consider a continuous function g : Ω → R on a compact domain Ω ⊂ R
d, d ≥ 1, a

set X = {xi = (x1i, x2i, . . . , xdi), i = 1, 2, . . . , N} ⊂ Ω of scattered data points, and the vector
g = {g(xi), i = 1, 2, . . . , N} of the corresponding function values.

For even n ≥ 2, we construct the Lobachevsky spline interpolant of g at the nodes xi in the
form

Fn(x) =

N
∑

j=1

cjφnj(x), x ∈ Ω, (1)

requiring Fn(xi) = g(xi), i = 1, 2, . . . , N . The interpolant Fn is a linear combination of products
of univariate shifted and rescaled functions f∗

n

φnj(x) ≡ φnj(x;α) =
d
∏

h=1

f∗
n(α(xh − xhj)), (2)

where for j = 1, 2, . . . , N

f∗
n(α(xh − xhj)) =

√

n

3

1

2n(n− 1)!

n
∑

k=0

(−1)k
(n

k

)

×

[
√

n

3
α(xh − xhj) + (n− 2k)

]n−1

+

, (3)

and α ∈ R
+ is a shape parameter. The coefficients c = {cj} are computed by solving the linear

system

Ac = g, (4)
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where the interpolation matrix

A = {aij} = {φnj(xi)}, i, j = 1, 2, . . . , N, (5)

is symmetric and depends on the choice of n and α in (2). Since Lobachevsky splines are strictly
positive definite for any even n ≥ 2, the interpolation matrix A in (5) is positive definite for
any set of distinct nodes.

From the central limit theorem (see [17, 21]), we remark that the d-variate Lobachevsky
spline converges for n → ∞ to the d-variate Gaussian, i.e.

lim
n→∞

d
∏

i=1

f∗
n(αxi) =

1

(2π)d/2
exp

(−α2(
∑d

i=1 x
2
i )

2

)

.

Hence, Lobachevsky splines asymptotically behave like radial functions, though they are not
radial in themselves.

Finally, we observe that, since Lobachevsky splines are (univariate) strictly positive definite
functions for even n ≥ 2, we can construct multivariate strictly positive definite functions from
univariate ones (see, e.g., [25]), expressing them as products of Lobachevsky splines [4].

3 Lobachevsky spline integration

3.1 Approximation of d-variate integrals

Let us now consider the problem of computing an approximate value of the integral

I(g) =

∫

Ω
g(x) dx, x ∈ Ω ⊂ R

d,

where g(x) is an integrable function, which is generally known only on a scattered data set.
Solving this problem consists in integrating a formula of type (1), which interpolates the

given data, that is,

I(g) ≈ I(Fn) =

∫

Ω

N
∑

j=1

cjφnj(x)dx

=
N
∑

j=1

cj

∫

Ω
φnj(x)dx

=
N
∑

j=1

cjI(φnj). (6)

Since we consider numerical integration on the unit hypercube Ω = [0, 1]d ⊂ R
d, d ≥ 1, we

have

I(φnj) =

∫ 1

0

∫ 1

0
· · ·

∫ 1

0
φnj(x1, x2, . . . , xd) dx1dx2 · · · dxd

=

∫ 1

0
f∗
n(α(x1 − x1j)) dx1

×

∫ 1

0
f∗
n(α(x2 − x2j)) dx2

· · ·

×

∫ 1

0
f∗
n(α(xd − xdj)) dxd.
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Thus, the problem consists in evaluating the d integrals

∫ 1

0
f∗
n(α(x1 − x1j)) dx1,

∫ 1

0
f∗
n(α(x2 − x2j)) dx2,

· · ·

∫ 1

0
f∗
n(α(xd − xdj)) dxd,

and the h-th integral, h = 1, 2, . . . , d, is computed by the relation

∫ 1

0
f∗
n(α(xh − xhj)) dxh

=
1

α
[Φ∗

n(α(1− xhj)− Φ∗
n(α(−xhj))] , (7)

where the explicit form of Φ∗
n(x) is

Φ∗
n(x) =

1

2nn!

n
∑

k=0

(−1)k
(n

k

)

[x+ (n− 2k)]n+.

Hence, we can approximate a multiple integral by evaluating d simple integrals, whose integrands
are given by polynomial functions of degree n−1. Note that a numerically equivalent technique,
despite computationally less efficient, to evaluate Lobachevsky spline integrals is given in [5].

3.2 Conditioning and errors

In this subsection, referring to the error analysis in [5], we focus on stability and accuracy
of Lobachevsky spline integration formulas, firstly considering the uniform convergence of
Lobachevsky spline to the Gaussian and then discussing the role of two important parame-
ters.

Taking into account the convergence results of Gaussian interpolation (see, e.g., [25]), we
can deduce that, for sufficiently regular g, the error |I(g)− I(Fn)| may decrease exponentially
as n → ∞ and h → 0, where h denotes the so-called fill distance, i.e.

h = sup
x∈Ω

min
xi∈X

‖x− xi‖2 .

Moreover, we note that the convergence rate depends on the function g, the Lobachevsky spline
regularity degree and the form of the domain Ω.

In order to get useful information for numerical implementation, we want to develop a further
analysis of the error of the integration formula (6), which can be written by (4) in the form

I(g) ≈ I(Fn) = 〈c, I〉 =
〈

A−1g, I
〉

= 〈g,w〉 =
N
∑

j=1

wjgj , (8)

with

Aw = I, (9)

where 〈·, ·〉 denotes the scalar product in R
d, and I = {I(φn,j)}1≤j≤N is the vector of integrals

of Lobachevsky splines. It is clear from (8) that the quantities |wj | play a central role both in
the study of the integration error and in the effect of perturbations in the data values gj [23].
Moreover, the computational trouble caused by the Gaussian ill-conditioning is significantly
reduced for Lobachevsky splines, because for small values of n Lobachevsky splines are much
better conditioned than Gaussians [4]. As a consequence, the errors obtained by approximating
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the vector of integrals I = {I(φn,j)}1≤j≤N are less influenced than for the Gaussians by the
weights cj computed solving the linear system (4).

Now, referring to integration formulas in (8) and (9), we can take into account the presence
of errors in the evaluation of the integrals of Lobachevsky splines, i.e.

{Ĩ(φn,j)} = Ĩ ≈ I,

which generates a vector w̃ of approximate weights and from (8) the perturbed integration
formula

Ĩ(Fn) = 〈c, Ĩ〉 = 〈g, w̃〉 =
N
∑

j=1

w̃jgj ,

where w̃ = A−1Ĩ.
In error investigation it must also be considered the parameter ‖A−1‖2, which measures the

sensitivity to perturbations of the interpolation processes based on the Gaussian or Lobachevsky
splines. Now, in the literature lower bounds for the smallest eigenvalue of the interpolation
matrix A of the Gaussian have been extensively studied (see, e.g., [25]), providing upper bounds
for ‖A−1‖2 in terms of the so-called separation distance of the nodes

q =
1

2
min
i 6=j

‖xi − xj‖2 .

When q tends to zero, it happens that ‖A−1‖2 diverges exponentially and A tends to become
singular due to collapsing of two rows. Considering the convergence property of the Lobachevsky
splines to the Gaussian, we can reasonably expect that the upper bounds for ‖A−1‖2 relating
to Lobachevsky splines are closed to Gaussian ones; in fact, numerical tests show that in the
case of Lobachevsky splines the values assumed by ‖A−1‖2 are quite acceptable and, generally,
considerably smaller than those of the Gaussian.

Then, an error estimate of the Lobachevsky spline integration formula (8) may be expressed
as follows

|I(g)− 〈w̃,g〉| ≤ meas(Ω) ‖g − Fn‖∞
+ ‖A−1‖2‖I− Ĩ‖2‖g‖2.

Finally, taking into account the effect of perturbations on the data values, that is, considering
the perturbed data

{g̃(xj)} = g̃ ≈ g,

we obtain the error estimate

|I(g)− 〈w̃, g̃〉| ≤ (meas(Ω) + ‖w‖1)EX ,φn
(g)

+ ‖g− g̃‖∞‖w‖1 + ‖A−1‖2‖I− Ĩ‖2‖g̃‖2,

where EX ,φn
(g) = infz∈span(φn,j) ‖g − z‖∞ (see [5]).

4 Numerical experiments

In order to test accuracy and stability of the d-variate integration formulas obtained by Lobachev-
sky spline interpolants, we investigate their performances considering some scattered data sets
X ⊆ Ω = [0, 1]d ⊂ R

d, 3 ≤ d ≤ 10, which are given by Halton points and generated by using the
MATLAB program haltonseq.m [16]. Precisely, we firstly consider some sets of Halton points
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whose size N depend on the dimension d, i.e. we take N = 4d, for 3 ≤ d ≤ 6. Then, we keep
fixed the point number taking N = 1024, but varying the dimension d, for 6 ≤ d ≤ 10. The
choice of taking N depending on d is done to analyze the behavior of integration rules main-
taining a strict connection between N and d. However, since we need to solve a linear system
N ×N , which (for large N) turns out to be quite expensive from a computational standpoint,
we fix N for 6 ≤ d ≤ 10.

Thus, we focus on Lobachevsky spline integration formulas for n = 2, 4, 6, that are denoted
by L2, L4, L6, respectively, also considering the Gaussian (G) integration formula for compari-
son. In Figure 1 we show the convergence property of Lobachevsky splines to the Gaussian.
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y
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Figure 1: Example of convergence of Lobachevsky splines to the Gaussian for d = 1 and α = 1.

All the results reported below are obtained by using the following d-variate test function
(see, e.g., [16])

gd(x) = 4d
d
∏

h=1

xh(1− xh), x = (x1, x2, . . . , xd) ∈ Ω,

whose exact integral on Ω is I(gd) = (2/3)d. Obviously, other integrands have been tested
obtaining a uniform behavior as regard to accuracy and stability.

In Table 1 we show the behavior of Lobachevsky spline integration errors for 3 ≤ d ≤ 6
by varying the value of the shape parameter α ∈ [1, 9]. Numerical results highlight that the
variation of α may greatly influence the quality of approximation results, though the behavior
of such errors turns out to be uniform for any d. In particular, we remark that the best level
of accuracy is reached when α ∈ [1, 4]. Moreover, as already remarked in [5] for d = 1, 2, these
tests point out reliability and robustness of Lobachevsky spline integration formulas in high
dimensions as well.

Using the norm function of MATLAB, in Figures 2-3 we report the values of two crucial
quantities considered in Subsection 3.2: the spectral norm ‖A−1‖2 and the 1-norm ‖w̃‖1. The
former gives us a measure of the absolute conditioning of the considered linear systems, whereas
the latter provides useful information on the conditioning of the integration formula.

Thus, for each of the Lobachevsky splines we observe that increasing the shape parameter
produces more peaked (or localized) basis functions with the effect of better conditioning, but
losing accuracy (and vice versa). Note that, the values of quantities ‖A−1‖2 and ‖w̃‖1 strongly
depend on the distribution of nodes, while they are independent of function values.

Furthermore, analyzing all the taken tests, we remark that the Lobachevsky splines are
comparable in accuracy with the Gaussians, though they are usually much better conditioned
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than the Gaussians (see Figures 2-3); it holds above all when α ∈ [1, 4] where we have the
hightest level of accuracy. Note that there is an exact correspondence between the Lobachevsky
and Gaussian shape parameter α.

Then, in order to strengthen the effectiveness of the Lobachevsky spline integration formulas,
in Table 2 we report the obtained errors by applying a quasi-Monte Carlo method, which in
literature is considered as the most practical integration technique in high dimensions. These
results confirm once more the goodness of our approach, because for suitable values of the shape
parameter α we are able to obtain errors which are lower of one or even two orders of magnitude
than those of the quasi-Monte Carlo method.

d N α L2 L4 L6 G

1 5.14E− 3 9.12E− 3 2.13E− 3 9.74E− 4
2 1.15E− 3 2.85E− 3 3.67E− 3 3.97E− 3
3 1.21E− 4 1.47E− 3 3.10E− 3 2.73E− 3
4 3.11E− 3 3.71E− 4 3.00E− 4 3.22E− 4

3 64 5 7.85E− 3 3.32E− 4 9.84E− 4 2.29E− 3
6 2.15E− 2 8.44E− 3 9.60E− 3 1.27E− 2
7 4.72E− 2 2.52E− 2 2.69E− 2 3.18E− 2
8 7.26E− 2 4.84E− 2 5.05E− 2 5.70E− 2
9 9.86E− 2 7.49E− 2 7.76E− 2 8.53E− 2

1 3.24E− 3 2.30E− 3 1.52E− 3 2.75E− 4
2 2.61E− 3 1.14E− 3 1.14E− 3 9.49E− 5
3 1.36E− 3 1.26E− 3 5.95E− 4 2.60E− 4
4 1.37E− 3 1.40E− 4 1.26E− 3 1.19E− 3

4 256 5 3.91E− 3 7.16E− 4 1.02E− 3 1.14E− 4
6 1.20E− 2 3.67E− 3 4.21E− 3 6.51E− 3
7 2.88E− 2 1.53E− 2 1.67E− 2 2.06E− 2
8 4.99E− 2 3.37E− 2 3.57E− 2 4.10E− 2
9 7.27E− 2 5.61E− 2 5.84E− 2 6.45E− 2

1 2.45E− 4 1.72E− 3 1.05E− 4 1.35E− 5
2 2.84E− 5 3.54E− 4 1.78E− 5 1.02E− 4
3 4.59E− 5 3.13E− 4 2.94E− 4 2.90E− 4
4 3.93E− 4 1.10E− 5 1.80E− 4 3.73E− 4

5 1024 5 1.40E− 4 1.05E− 3 1.25E− 3 1.24E− 3
6 3.09E− 3 6.94E− 4 5.04E− 4 3.48E− 4
7 1.18E− 2 4.24E− 3 5.02E− 3 7.27E− 3
8 2.64E− 2 1.54E− 2 1.68E− 2 2.06E− 2
9 4.53E− 2 3.19E− 2 3.38E− 2 3.88E− 2

1 2.76E− 4 3.79E− 4 4.33E− 4 4.51E− 5
2 9.40E− 5 1.12E− 4 1.24E− 4 1.48E− 5
3 1.05E− 6 7.73E− 5 5.36E− 5 1.25E− 4
4 2.64E− 4 2.16E− 5 3.24E− 5 8.33E− 5

6 4096 5 5.38E− 4 5.81E− 4 6.50E− 4 7.15E− 4
6 7.41E− 4 9.81E− 4 9.73E− 4 7.41E− 4
7 5.18E− 3 5.63E− 4 9.05E− 4 2.07E− 3
8 1.46E− 2 6.60E− 3 7.54E− 3 1.02E− 2
9 2.86E− 2 1.83E− 2 1.99E− 2 2.39E− 2

Table 1: Integration errors for 3 ≤ d ≤ 6.

d N quasi-Monte Carlo

3 64 1.91E− 3

4 256 3.43E− 3

5 1024 5.27E− 4

6 4096 3.37E− 4

Table 2: Integration errors of quasi-Monte Carlo for 3 ≤ d ≤ 6.
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Figure 2: Spectral norm of A−1 for 3 ≤ d ≤ 6.

Finally, in Table 3 we report Lobachevsky spline integration errors with N = 1024 for
6 ≤ d ≤ 10, obtained by varying the value of α ∈ [1, 5] and, for comparison, also considering
the results obtained by applying a quasi-Monte Carlo method. These tests (and other ones
not reported here for shortness) show that, for a suitable choice of the shape parameter α, the
Lobachevsky spline integration formulas turn out to be effective for any d ≤ 10. Conversely, by
further increasing d, i.e. for d > 10, we observe a gradual loss of accuracy due to the particular
feature of this type of integration formulas, which are expressed as a product of univariate
integrals.

5 Conclusions

In this paper, thinking of the problem of the curse of dimensionality, we investigated the per-
formance of Lobachevsky spline integration formulas on scattered data in R

d, 3 ≤ d ≤ 10, thus
extending the work [5]. In particular, we used the remarkable property of these formulas of be-
ing defined in the d-variate setting as a product of univariate functions. Moreover, we analyzed
accuracy (errors) and stability (conditioning) of such integration formulas as well as those of
the Gaussian ones for comparison, referring to two crucial parameters: the spectral norm of the
inverses of interpolation matrices and the 1-norm of the computed weight vectors. Numerical
experiments confirmed the good performances of Lobachevsky spline integration formulas for
3 ≤ d ≤ 10, as already observed in [5] for d = 1, 2. To further check our integration technique,
we reported results obtained on the same data point sets by applying a quasi-Monte Carlo
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Figure 3: 1-norm of w̃ for 3 ≤ d ≤ 6.

method, a standard procedure in multidimensional integration.
In a work still in progress, we are going to apply Lobachevsky splines in local methods for

fast computation in multivariate and spherical interpolation (see, e.g., [2, 9, 10, 11]).
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d α L2 L4 L6 quasi-Monte Carlo
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