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Local Uncertainty Principles for the Cohen Class

P. Boggiatto, E. Carypis, A. Oliaro

Department of Mathematics
University of Torino
Via C. Alberto, 10

10123 Torino (TO), Italy

Abstract

In this paper we analyze time-frequency representations in the Cohen class, i.e.,
quadratic forms expressed as a convolution between the classical Wigner transform and
a kernel, with respect to uncertainty principles of local type. More precisely the results
we obtain concerning the energy distribution of these representations show that a “too
large” amount of energy cannot be concentrated in a “too small” set of the time-frequency
plane. In particular, for a signal f ∈ L2(Rd), the energy of a time-frequency representa-
tion contained in a measurable set M must be controlled by the standard deviations of
|f |2 and |f̂ |2, and by suitable quantities measuring the size of M .

Keywords: Time-Frequency representations, Wigner sesquilinear and quadratic form, lo-
cal uncertainty principles.

Mathematics Subject Classification: 42B10.

1 Introduction

In this paper we prove local uncertainty principles for time-frequency representations in the
Cohen class, i.e. quadratic forms of the kind

Qσf(x, ω) := (σ ∗Wig f)(x, ω), (1.1)

where Wig f is the classical Wigner transform, defined as

Wig f(x, ω) =

∫
e−2πitωf

(
x+

t

2

)
f

(
x− t

2

)
dt,

and σ is a function or distribution on R2d. This class appears both as a widely used set
of time-frequency representations, as well as in connection with some theoretical aspects of
harmonic analysis, for example Weyl symbols of localization operators belong to this class.
References can be found in [6], [7], [8], [14], [18], [13], [19].
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Our purpose is to provide a reformulation, in the framework of the time-frequency rep-
resentations, of the local uncertainty principle for the Fourier transform introduced by Price
in [17], [12], [16].

In order to motivate the main results of this paper, which are contained in Sections 2, 3, 4,
we begin by reviewing some basic facts on the Cohen class; we recall then the local uncertainty
principle of Price and compare it with the classical Heisenberg uncertainty principle.

The expression (1.1) makes sense for f ∈ S(Rd) and σ ∈ S(R2d), and in this case Qσf ∈
S(R2d). Other more general functional frameworks are however possible in the Schwartz
distribution space S ′, in such a way that the convolution in (1.1) is well defined. For example,
when f ∈ L2(Rd) and σ ∈ L1(R2d) we obtain that Qσf is a well defined element of L2(R2d).

From the point of view of time-frequency analysis, when considering separately a function
f and its Fourier transform f̂ we analyze separately the energy distribution of the “signal”
f with respect to time, represented by |f(x)|2, and the energy distribution of f with respect
to frequency, represented by |f̂(ω)|2. A time-frequency representations Qσf(x, ω) gives the
energy distribution of a signal f with respect to time x and frequency ω at the same time, and
in fact it doubles the dimension of its domain, being (x, ω) ∈ R2d. The Cohen class contains
the most important covariant representations, and moreover gives the freedom to design the
kernel σ in order that the corresponding form Qσ has specific features. In this framework we
refer for example to [7, Chapter 11], [1], [2], [15]. As particular cases of the representation Qσ
we recover the Wigner transform when σ is the Dirac distribution δ; moreover, if τ ∈ [0, 1],

τ ̸= 1/2, and σ(x, ω) = 2d

|2τ−1|d e
2πi 2

2τ−1
xω, the corresponding representation Qσ becomes the

τ -Wigner transform

Wigτ f(x, ω) =

∫
e−2πitωf (x+ τt) f (x− (1− τ)t) dt, (1.2)

see for example [4] (the classical Wigner transform is obtained by letting τ = 1/2). For a
deep investigation of the Winger representations in connection with symplectic geometry and
quantization we refer to [9], [10] and [11]. In the cases τ = 0 and τ = 1 we get the Rihaczek
and conjugate Rihaczek forms, given by

Rf(x, ω) = e−2πixωf(x)f̂(ω) and R∗f(x, ω) = e2πixωf(x)f̂(ω),

respectively. Another relevant class of time-frequency representations contained in the Cohen
class is the Spectrogram, defined as follows. Given a “window” function ϕ ∈ S(Rd), the
Gabor transform of f ∈ S(Rd) is given by Vϕf(x, ω) =

∫
e−2πitωf(t)ϕ(t− x) dt. Then, for

ϕ, ψ ∈ S(Rd) and f ∈ S(Rd) (with possible generalizations to larger functional settings) the
(generalized) spectrogram is defined as follows:

Spϕ,ψ f(x, ω) = (Vϕf · Vψf)(x, ω). (1.3)

For ϕ = ψ we have in particular the classical spectrogram |Vϕf(x, ω)|2. We refer to [3], [14]
for a treatment of (1.3) and for further references. Here we just recall that the generalized
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spectrogram belongs to the Cohen class, and the corresponding kernel is σ = Wig(ψ̃, ϕ̃),
where g̃(t) := g(−t).

In this paper we prove local uncertainty principles for representations in the Cohen class,
transferring to the time-frequency frame the idea of local uncertainty principle of Price [17]
for the Fourier transform. We set ∥ · ∥Lp(E) for the usual Lp-norm on E ⊂ Rd or E ⊂ R2d (if

E = Rd or E = R2d we simply write ∥ · ∥p). Moreover, the Fourier transform of f ∈ S(Rd) is
given by f̂(ω) =

∫
e−2πitωf(t) dt, with standard extensions to L2(Rd) and S ′(Rd).

For a function f ∈ L2(R) (for simplicity we consider here d = 1) we define x =
∫
x|f(x)|2 dx

and ω =
∫
ω|f̂(ω)|2 dω. Then the corresponding standard deviations are σf = ∥(x−x)f(x)∥2

and σf̂ = ∥(ω − ω)f̂(ω)∥2. The classical Heisenberg uncertainty principle states that, for

every f ∈ L2(R) with ∥f∥2 = 1 we have

σfσf̂ ≥ 1

4π
. (1.4)

The local uncertainty principle, cf. [17], states that, for every f ∈ L2(R) with ∥f∥2 = 1 and
for every measurable set E ⊂ R we have

∥f̂∥L2(E) ≤ 2πm(E)σf , (1.5)

where m(E) is the Lebesgue measure of E (see the subsequent Theorem 2.1 for a more general
formulation). Since σf and σf̂ measure how much the function f and its Fourier transform

are concentrated, (1.4) tells us that if a function is very concentrated (i.e., σf is small), then
σf̂ must be large, i.e., the Fourier transform of f must be sufficiently spread out. From the
Heisenberg uncertainty principle however we do not have information on the admissible ways
f̂ may be spread out; for example it could be spread out in a uniform way, or it could be
concentrated in small intervals sufficiently far away from one another. The latter possibility
is excluded by (1.5), which tells us that the energy of the Fourier transform f̂ in a measurable
set E must be small as σf and m(E) are small.

Observe that in (1.5) the energy of f̂(ω) is estimated on a set E ⊂ Rd, which in the time-
frequency space R2d

(x,ω) would correspond to a set M of the form Rd × E, i.e., an horizontal
strip. In this paper we prove estimates of the energy of a time-frequency distribution in a
general set M ⊂ R2d

(x,ω), not necessarily an horizontal (or vertical) strip, obtaining that if M

is sufficiently “small” and the function f or its Fourier transform f̂ are not too spread out
then the energy of the time-frequency distribution Qσf inM must be small. One of the main
points is to specify the meaning of “small” for the set M , eventually depending on the kernel
σ of the representation. We leave to the next sections the precise definitions, presenting here
the main results and some examples.

Given a time-frequency representation Qσ in the Cohen class, we prove that there exists
a positive constant C such that for every measurable set M ⊂ R2d, every f ∈ L2(R) and
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every α, α1, α2 > d/2 the following inequalities hold:

∥Qσf∥2L2(M) ≤ C⟨M⟩1∥f∥4−d/α2 ∥|t− t|αf∥d/α2 ,

∥Qσf∥2L2(M) ≤ C⟨M⟩2∥f̂∥4−d/α2 ∥|ω − ω|αf̂∥d/α2 ,

∥Qσf∥2L2(M) ≤ C⟨M⟩3∥f∥4−d/α1−d/α2

2 ∥|t− t|α1f∥d/α1

2 ∥|ω − ω|α2 f̂∥d/α2

2 ,

where ⟨M⟩j , j = 1, 2, 3, are real non negative functions of the set M , which in a suitable
sense measure the size of M ; they will be precisely defined in the subsequent sections for
different (classes of) kernels σ. In particular, the kernels that we are able to treat are

σ = δ (Dirac distribution, corresponding to the classical Wigner), σ = 2d

|2τ−1|d e
2πi 2

2τ−1
xω (that

corresponds to the τ -Wigner distributions for τ ̸= 1/2, and in particular to the Rihaczek and
conjugate Rihaczek representations for τ = 0 and τ = 1, respectively), and then a generic
σ ∈ L1(R2d) ∩ L2(R2d). We give now some examples, in order to better explain the results
and compare the previous inequalities with the local uncertainty principle (1.5). We consider
now d = 1, α = α1 = α2 = 1 and ∥f∥2 = 1, and observe that in this particular case our
results read in the following way:

∥Qσf∥2L2(M) ≤ C⟨M⟩1σf , (1.6)

∥Qσf∥2L2(M) ≤ C⟨M⟩2σf̂ , (1.7)

∥Qσf∥2L2(M) ≤ C⟨M⟩3σfσf̂ , (1.8)

forM ⊂ R2 measurable. In the caseM = R×E, for a measurable set E ⊂ R, we will see that
⟨M⟩1 = m(E). The inequality (1.6) then becomes ∥Qσf∥2L2(R×E) ≤ C m(E)σf ; it is the closest

generalization of (1.5), since it tells that in an horizontal strip having E as the projection on
the ω-axis, the energy of the time-frequency distribution has to be small proportionally to the
measure of E and the standard deviation of f . Analogously, for strips of the kindM = F×R,
F ⊂ R measurable, we will see that (1.7) becomes ∥Qσf∥2L2(F×R) ≤ C m(F )σf̂ . On the other
hand, we have here much more freedom in the choice of the set M . For example, we can
consider oblique strips, i.e. sets of the kindM = {(x, ω) ∈ R2 : kx+a ≤ ω ≤ kx+b} for a < b
and k ̸= 0 (otherwise we are in one of the previous cases). For such sets, we will see that
(1.6) and (1.7) read as ∥Qσf∥2L2(M) ≤ C(b − a)σf and ∥Qσf∥2L2(M) ≤ C b−a

|k| σf̂ , respectively.
This tells us that a time-frequency representation applied to a function f such that at least
one between σf and σf̂ is finite, cannot contain a great amount of energy in a narrow strip

of the time-frequency plane. Till now we have analyzed (1.6) and (1.7). Concerning the last
estimate (1.8), it becomes significative in general when M has finite measure (as subset of
R2d), while both its orthogonal projections on the x and ω axes have infinite measure (as
subsets of Rd). In this case (1.6) and (1.7) shall not give any information, while (1.8) becomes
∥Qσf∥2L2(M) ≤ C m(M)σfσf̂ , saying that if M has small Lebesgue measure and both σf and
σf̂ are finite, then Qσf must show small energy in the set M , even if M is very spread in the
time-frequency plane.
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The paper is organized as follows. We prove local uncertainty principles for the Rihaczek
and conjugate Rihaczek in Section 2, for τ -Wigner representations in Section 3, and for
representations in the Cohen class with kernel belonging to L1(R2d) ∩ L2(R2d) in Section
4. The reason for keeping separate these cases is that both the proofs and the results are
different. We present examples and comparisons between the various results, in particular
for what concerns the bounding functions ⟨M⟩j , and consequently for what concerns the sets
M for which our results become significative.

2 Local uncertainty principle for Rihaczek transform

We start this Section recalling the local uncertainty principle for the Fourier transform of
Price [17], see also [12], [16] in a slight generalized form obtained by using translations and
modulations of the signal. We study then the case of the Rihaczek and conjugate Rihaczek
representations.

Theorem 2.1. Let E ⊂ Rd a measurable set and α > d/2. Then for every f ∈ L2(Rd) and
t, ω ∈ Rd we have ∫

E
|f̂(ω)|2 dω < K m(E)∥f∥2−d/α2 ∥|t− t|αf∥d/α2 (2.1)

and ∫
E
|f(t)|2 dt < K m(E)∥f̂∥2−d/α2 ∥|ω − ω|αf̂∥d/α2 , (2.2)

where m(E) the Lebesgue measure of the set E,

K = K(d, α) =
πd/2

α

(
Γ

(
d

2

))−1

Γ

(
d

2α

)
Γ

(
1− d

2α

)(
2α

d
− 1

) d
2α

(
1− d

2α

)−1

(2.3)

and Γ is the Euler function given by Γ(x) =
∫ +∞
0 tx−1e−t dt. Moreover, the constant K is

optimal, and equality in (2.1)-(2.2) is never attained when f ̸= 0.

The main tool used in [17] to prove Theorem 2.1 is the following proposition, that we
recall here since we shall use it in the following for time-frequency representations.

Proposition 2.2 (Price [17, Proposition 2.1’]). For every α > d/2, f ∈ L2(Rd) and t ∈ Rd
we have

∥f∥1 ≤
√
K∥f∥1−

d
2α

2 ∥|t− t|αf∥
d
2α
2 (2.4)

where K is given by (2.3). In particular, if f ∈ L2(Rd) and ∥|t − t|αf∥2 < ∞ for some
α > d/2 and t ∈ Rd, then f ∈ L1(Rd).

We observe that in [17] the estimate (2.4) is proved only for t = 0; the case t ̸= 0 can be
easily deduced by considering a translation of f instead of f itself. Furthermore, we remark
that in [17] a more general version of Proposition 2.2 is proved, involving in (2.4) Lp and Lq
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norms. This can be used, with techniques analogous to those of this paper, to obtain local
uncertainty principles in the Cohen class involving general Lebesgue norms. However this
would not lead to a much deeper insight, therefore, as in Price [17], we choose to limit our
attention to the L2 framework.

In order to state the local uncertainty principle for the Rihaczek and conjugate Rihaczek
representations we need the following definition.

Definition 2.3. Fix a measurable set M ⊂ R2d. We set Mx = {ω ∈ Rd : (x, ω) ∈ M} for
x ∈ Rd, and Mω = {x ∈ Rd : (x, ω) ∈ M} for ω ∈ Rd. Then we know that Mx ⊂ Rd is
measurable for almost every x ∈ Rd, and Mω ⊂ Rd is measurable for almost every ω ∈ Rd.
We define

mω(M) = ∥m(Mx)∥L∞(Rd
x)

and
mx(M) = ∥m(Mω)∥L∞(Rd

ω)
,

where the Lebesgue measure in the norm in the right-hand sides is the d-dimensional one.

Remark 2.4. Observe that mω(M) and mx(M) are well defined (either finite or infinite) for
every measurable set M ⊂ R2d.

We can now state the main result of this section.

Theorem 2.5. Let M ⊂ R2d a measurable set, and α, α1, α2 > d/2. Then for every f ∈
L2(Rd) and for every fixed t, ω ∈ Rd we have:

∥Rf∥2L2(M) ≤ min
{
K mω(M)∥f∥4−

d
α

2 ∥|t− t|αf∥
d
α
2 ,

K mx(M)∥f̂∥4−
d
α

2 ∥|ω − ω|αf̂∥
d
α
2 ,

K1K2m(M)∥f∥
4− d

α1
− d

α2
2 ∥|t− t|α1f∥

d
α1
2 ∥|ω − ω|α2 f̂∥

d
α2
2

}
,

(2.5)

where K,K1,K2 are given by (2.3) in correspondence to α, α1 and α2 respectively, and Rf is
the Rihaczek representation. The same estimates hold for the conjugate Rihaczek form R∗f .

Proof. We observe at first that for every measurable set M ⊂ R2d we have ∥Rf∥L2(M) =
∥R∗f∥L2(M), and so we can limit ourselves to prove (2.5) in the case of the Rihaczek.

(i) We start by proving the first estimate in (2.5). From Fubini Theorem, writing ΠxM
for the orthogonal projection of M on the x-space, we have

∥Rf∥L2(M) =

∫
ΠxM

∫
Mx

|f(x)f̂(ω)|2 dω dx =

∫
ΠxM

|f(x)|2∥f̂∥2L2(Mx)
dx.
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Since Mx is measurable for almost every x, we can apply Theorem 2.1 to ∥f̂∥2L2(Mx)
almost everywhere in x, obtaining

∥Rf∥L2(M) ≤ K∥f∥2−
d
α

2 ∥|t− t|αf∥
d
α
2

∫
ΠxM

|f(x)|2m(Mx) dx

≤ K∥f∥2−
d
α

2 ∥|t− t|αf∥
d
α
2 mω(M)∥f∥22.

(ii) As in the previous case, we have

∥Rf∥L2(M) =

∫
ΠωM

|f̂(ω)|2∥f∥2L2(Mω)
dω. (2.6)

We can then complete the proof by applying Theorem 2.1 and the same procedure as
point (i).

(iii) From (2.6) and Theorem 2.1 we have that

∥Rf∥L2(M) ≤ K2∥f̂∥2∞∥f̂∥
2− d

α2
2 ∥|ω − ω|α2 f̂∥

d
α2
2

∫
ΠωM

m(Mω) dω.

Now,
∫
ΠωM

m(Mω) dω = m(M). By the mapping properties of the Fourier transform
we then have

∥Rf∥L2(M) ≤ K2m(M)∥f∥21∥f∥
2− d

α2
2 ∥|ω − ω|α2 f̂∥

d
α2
2 .

We can then apply Proposition 2.2 with α1 instead of α and we get the third estimate
in (2.5).

Remark 2.6. Since Mx ⊂ ΠωM for every x ∈ Rd and Mω ⊂ ΠxM for every ω ∈ Rd, we
have that

mω(M) ≤ m(ΠωM) and mx(M) ≤ m(ΠxM), (2.7)

and so, under the hypotheses of Theorem 2.5, the estimates (2.5) hold with m(ΠωM) and
m(ΠxM) instead of mω(M) and mx(M), respectively. On the other hand, in general we do
not have equality in (2.7); we may even have mω(M) < +∞ and m(ΠωM) = +∞, so the
expressions mω(M) and mx(M) become significative in many cases.

An immediate consequence of the previous theorem is the following estimate. It is trivially
obtained multiplying the first and the second estimate in (2.5), but actually yields new infor-
mation about the local concentration in the particular case where M is rectangle. Analogues
corollaries will hold with regard to Theorems 3.6 and 4.3 and they will be omitted.
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Corollary 2.7. In the same hypotheses of Theorem 2.5, if M = E×F , with E,F measurable
sets in Rd, then we have

∥Rf∥2L2(M) ≤
√
K1K2

√
m(M)∥f∥

4− d
2α1

− d
2α2

2 ∥|t− t|α1f∥
d

2α1 ∥|ω − ω|α2 f̂∥
d

2α2 .

We want now to analyze some examples, in the case d = 1 (i.e., M ⊂ R2), in order to
clarify the meaning of Theorem 2.5, in particular from the point of view of the classes of sets
M for which the result becomes significative.

First of all we remark that our results generalize the local uncertainty principle of Price
in the following sense. If M = E × F , with E,F measurable sets in Rd, then ∥Rf∥L2(M) =

∥f∥L2(E)∥f̂∥L2(F ) and m(M) = m(E)m(F ). Therefore, by simply multiplying (2.1) and (2.2)
we get the third case of (2.5). The fact that estimate (2.5) involves a minimum over three
different cases and is valid for general measurable sets M ⊆ R2d indicates the extention of
the obtained generalization. We illustrate this now in some more details.

Example 2.8. Theorem 2.5 tells us which are the functions f and the sets M such that
the (conjugate) Rihaczek representation of f must contain a small percentage of energy in
M . This happens when the right-hand side of (2.5) is small, and this in turn depends on a
combination of some features, namely, the concentrations of f and f̂ , and the size of the set
M . The concentrations of f and f̂ are measured by

inf
t∈Rd, α>d/2

∥|t− t|αf∥2 (2.8)

and
inf

ω∈Rd, α>d/2
∥|ω − ω|αf̂∥2, (2.9)

respectively. The size of M is measured by one of the quantities mω(M), mx(M), m(M).

We analyze now some particular classes of M ⊂ R2.

(i) Let M = F × E, for measurable sets F,E ⊂ R. Then mω(M) = m(E) and mx(M) =
m(F ). Fix a function f such that both f and f̂ are not spread out (in the sense that
the quantities (2.8) and (2.9) are finite). Then Rf and R∗f contain a small percentage
of energy in M when one between E and F have small measure. In particular, this is
true in small horizontal and vertical strips R × E and F × R. On the other hand, if
for example E has finite (but not necessarily small) measure and f is very concentrated
(in the sense that (2.8) is very small), then the first inequality in (2.5) tells us that
Rf and R∗f must show small energy in R × E. Further information can be similarly
deduced from the other inequalities.

(ii) Consider a set of the kind M = {(x, ω) ∈ R2 : x+ a ≤ ω ≤ x+ b} with a < b; we have
mω(M) = mx(M) = b− a. Observe that m(ΠxM) = m(ΠωM) = m(M) = +∞, so this
is a simple example such that the inequalities in (2.7) are strict. In this case only the
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first two inequalities in (2.5) are significative, and they tell that if f is such that one
between (2.8) and (2.9) is finite, then the time-frequency representations Rf and R∗f
must contain in M an amount of energy as small as b− a is small, i.e., as small as the
strip is narrow. On the other hand, if we fix a (not necessarily narrow) oblique strip
M , the energy of the representations in M must be small if one between f and f̂ is very
concentrated.
Observe that these arguments easily apply to strips not parallel to the bisector. In fact,
consider M = {(x, ω) ∈ R2 : cx + a ≤ ω ≤ cx + b}, with a < b and c ̸= 0, and write
α = min{−a/c,−b/c} and β = max{−a/c,−b/c}. We have that mω(M) = b − a and
mx(M) = β − α, giving again that mω(M) and mx(M) are as small as the strip is
narrow.

(iii) We can generalize the case (ii), by considering, for a measurable function µ : R → R,
sets of the kind

M1 = {(x, ω) ∈ Rd : µ(x) + a ≤ ω ≤ µ(x) + b},

or
M2 = {(x, ω) ∈ Rd : µ(ω) + a ≤ x ≤ µ(ω) + b}.

We have in these cases mω(M1) = mx(M2) = b − a. Then such sets are “small” as
b − a is small, in the sense of mω(M1) and mx(M2), respectively, and we have similar
information as in case (ii). The same happens also with more general sets; consider for
example

M3 = {(x, ω) ∈ R2 : r2 ≤ x2 + ω2 ≤ R2}

for 0 < r < R. Observe that mω(M3) = mx(M3) = 2
√
R2 − r2, and m(M) = π(R2−r2).

Then the smallness of M3 is proportional to the smallness of R − r, and reasoning as
in case (ii) we have that a good combination of concentration of f (or f̂) and smallness
of R− r gives that Rf and R∗f must show small energy in M3.

3 Local uncertainty principle for τ-Wigner representations

In this section we prove a result, analogous to Theorem 2.5, for the τ -Wigner transforms, cf.
(1.2). The result is slightly different from the point of view of the quantities that measure
the size of the set M . As a consequence, we shall be able to treat, for the τ -Wigner repre-
sentations, sets of the kind of Example 2.8, (i) and (ii), but not of the kind of Example 2.8,
(iii). We start by proving a preliminary local uncertainty principle for the τ -Wigner repre-
sentations, that constitutes the basic result for proving in the following part of the section a
stronger version of it. Recall that, for every f ∈ L2(Rd), we have Wigτ f ∈ L2(R2d), cf. [4],
and so, for a measurable set M ⊂ R2d, the norm ∥Wigτ f∥L2(M) is finite.
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Proposition 3.1. Let M ⊂ R2d be a measurable set, and α, α1, α2 > d/2. Then for every
f ∈ L2(Rd) and for every fixed t, ω ∈ Rd we have:

∥Wigτ f∥2L2(M) ≤ min
{
cτK m(ΠωM)∥f∥4−

d
α

2 ∥|t− t|αf∥
d
α
2 ,

cτK m(ΠxM)∥f̂∥4−
d
α

2 ∥|ω − ω|αf̂∥
d
α
2 ,

cτK1K2m(M)∥f∥
4− d

α1
− d

α2
2 ∥|t− t|α1f∥

d
α1
2 ∥|ω − ω|α2 f̂∥

d
α2
2

}
,

(3.1)

for every τ ∈ [0, 1], where K,K1,K2 are given by (2.3) corresponding to α, α1, α2, and

cτ =

{
min

{
1
τd
, 1
(1−τ)d

}
, τ ∈ (0, 1)

1, τ = 0, 1
(3.2)

Remark 3.2. Since the τ -Wigner representations contain the Rihaczek and conjugate Ri-
haczek for τ = 0 and τ = 1, respectively, we can compare Proposition 3.1, for τ = 0, 1, with
Theorem 2.5, and observe that the latter is stronger, in the sense that the constants involving
the set M in the right-hand side are better, as we can deduce from Remark 2.6. In the sequel
of the section we shall improve the estimates (3.1), even tough we shall not obtain the same
constants as in (2.5).

Proof of Proposition 3.1. From Proposition 2.2 we have that in the first estimate in (3.1) we
can assume f ∈ L1(Rd), otherwise the right-hand side is infinity and the estimate is trivial.
Analogously we can assume f̂ ∈ L1(Rd) in the second estimate, and f, f̂ ∈ L1(Rd) in the
third.

(i) We start by proving the second estimate of (3.1). By Fubini Theorem we have

∥Wigτ f∥2L2(M) ≤
∫
ΠxM

(∫
ΠωM

|Wigτ f(x, ω)|2 dω
)
dx

≤ m(ΠxM) sup
x∈Rd

∥Wigτ f(x, ω)∥2L2
ω(Rd).

Now, since Wigτ f(x, ω) = Ft→ω

[
f(x+ τt)f(x− (1− τ)t)

]
and the Fourier transform

is an isomorphism on L2 we obtain

∥Wigτ f∥2L2(M) ≤ m(ΠxM) sup
x∈Rd

∫ ∣∣f(x+ τt)f(x− (1− τ)t)
∣∣2 dt.

Recall that we can assume that f̂ ∈ L1(Rd), so that f ∈ L∞(Rd). Suppose now that
τ ∈ [0, 1/2]; we can proceed as follows:

∥Wigτ f∥2L2(M) ≤ m(ΠxM) sup
x∈Rd

∥f∥2∞
∫ ∣∣f(x− (1− τ)t)

∣∣2 dt
=

1

(1− τ)d
m(ΠxM)∥f∥2∞∥f∥22.

(3.3)
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If τ ∈ [1/2, 1] we can leave f(x+ τt) instead of f(x− (1− τ)t) in the integral in (3.3),
and we obtain the same estimate with 1/τd instead of 1/(1 − τ)d. Since ∥f∥2 = ∥f̂∥2
and ∥f∥∞ ≤ ∥f̂∥1, we have

∥Wigτ f∥2L2(M) ≤ cτ m(ΠxM)∥f̂∥21∥f̂∥22.

The conclusion is then and application of Proposition 2.2.

(ii) Recall that, for every τ ∈ [0, 1],

Wigτ f(x, ω) = Wig1−τ f̂(ω,−x), (3.4)

cf. for example [5]. Let M1 = {(x, ω) ∈ R2d : (−x, ω) ∈M}. We have

∥Wigτ f∥L2(M) = ∥Wig1−τ f̂(ω,−x)∥L2(M) = ∥Wig1−τ f̂(ω, x)∥L2(M1).

We can then repeat the same procedure as in point (i), with x and ω interchanged,
1− τ in place of τ and f̂ instead of f , obtaining:

∥Wigτ f∥2L2(M) ≤ c1−τ m(ΠωM1)∥ ˆ̂f∥21∥
ˆ̂
f∥22.

Now we observe that c1−τ = cτ , and m(ΠωM1) = m(ΠωM). Since
ˆ̂
f(t) = f(−t) we

have
∥Wigτ f∥2L2(M) ≤ cτ m(ΠωM)∥f∥21∥f∥22,

and we conclude by applying Proposition 2.2.

(iii) The third estimate in (3.1) can be proved by using the continuity properties of the
τ -Wigner transform, in particular the fact that, for f ∈ L1(Rd) ∩ L∞(Rd), we have
Wigτ f ∈ L∞(R2d) and ∥Wigτ f∥∞ ≤ cτ∥f∥1∥f∥∞; this can be easily proved by a
direct estimate, and is also part of a general study of the continuity properties of Wigτ
in Lebesgue spaces, that can be found in [4]. From the observations at the beginning
of the proof, we can assume without loss of generality that f ∈ L1(Rd) ∩ L∞(Rd), and
so we have

∥Wigτ f∥2L2(M) ≤ m(M)∥Wigτ f∥2∞ ≤ cτ m(M)∥f∥21∥f∥2∞ ≤ cτ m(M)∥f∥21∥f̂∥21.

The conclusion is then an application of Proposition 2.2 to ∥f∥1 and ∥f̂∥1, with α1 and
α2 respectively.

Remark 3.3. In the following we shall need a slightly more general version of the first
inequality in (3.1). Fix M , α and f as in Proposition 3.1, and let g, h ∈ L2(Rd) be such that
|g(t)| = |h(t)| = |f(t)| for almost every t ∈ Rd. Then for every t ∈ Rd we have

∥Wigτ (g, h)∥2L2(M) ≤ cτK m(ΠωM)∥f∥4−
d
α

2 ∥|t− t|αf∥
d
α
2 ,
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for every τ ∈ [0, 1], where cτ and K are as in Proposition 3.1, and Wigτ (f, g) is the polarized
sesquilinear form corresponding to the τ -Wigner, i.e.

Wigτ (f, g)(x, ω) =

∫
e−2πitωf (x+ τt) g (x− (1− τ)t) dt.

We can in fact use the identity

Wigτ (g, h)(x, ω) = Wig1−τ (ĝ, ĥ)(ω,−x),

cf. [5], and since the Lp-norms of g and h coincide with the Lp-norm of f for every p, we
can repeat the same procedure as in the proof of Proposition 3.1.

Proposition 3.1 gives non trivial information in the cases M , or at least one of its pro-
jections, has finite measure (i.e., as basic examples, sets with finite measure, and horizontal
and vertical strips); we want now to generalize this result, in order to get information also
when M is of the kind of an oblique strip. In order to do this, we need some preliminary
results. We shall consider the case τ ∈ (0, 1), since for τ = 0, 1 (corresponding to Rihaczek
and conjugate Rihaczek) we already have better information from Section 2.

Lemma 3.4. Let τ ∈ (0, 1) and f, g ∈ L2(Rd). Fix a real symmetric d × d matrix C, and
write (Cx, x) for the corresponding quadratic form. We have

Wigτ (f, g)(x, ω) = e
1−2τ

τ(1−τ)
πi(Cx,x)

Wigτ

(
e−πi

1−τ
τ

(Ct,t)f(t), e−πi
τ

1−τ
(Ct,t)g(t)

)
(x, ω − Cx).

(3.5)

Proof. Since C is symmetric, we have that (Ct, x) = (Cx, t) for every t, x ∈ Rd. Then

1− τ

τ

(
C(x+ τt), x+ τt

)
− τ

1− τ

(
C(x− (1− τ)t), x− (1− τ)t

)
=

=
1− 2τ

τ(1− τ)
(Cx, x) + 2(Cx, t).

Using this fact, we have that

Wigτ

(
e−πi

1−τ
τ

(Ct,t)f(t), e−πi
τ

1−τ
(Ct,t)g(t)

)
(x, ω) =

=

∫
e−2πitωe

− 1−2τ
τ(1−τ)

πi(Cx,x)
e−2πi(Cx,t)f(x+ τt)g(x− (1− τ)t) dt

= e
− 1−2τ

τ(1−τ)
πi(Cx,x)

∫
e−2πit(ω+Cx)f(x+ τt)g(x− (1− τ)t) dt

= e
− 1−2τ

τ(1−τ)
πi(Cx,x)

Wigτ (f, g)(x, ω + Cx),

that is equivalent to (3.5).
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In order to state the main result of this section, we need to define new quantities for
measuring the size of the set M .

Definition 3.5. Consider, for real symmetric d× d matrices C and D, the following trans-
formations:

ΦC : (x, ω) ∈ R2d 7−→ (X,W ) = (x, ω − Cx) ∈ R2d

and

ΨD : (x, ω) ∈ R2d 7−→ (X,W ) = (x+Dω,ω) ∈ R2d.

We define
mω,Φ(M) = inf

{
m
(
ΠW (ΦC(M))

)
, C real symmetric d× d

}
(3.6)

and
mx,Ψ(M) = inf

{
m
(
ΠX(ΨD(M))

)
, D real symmetric d× d

}
, (3.7)

for every measurable set M ⊂ R2d.

We have the following local uncertainty principle for the τ -Wigner representations.

Theorem 3.6. Let M ⊂ R2d be a measurable set, and α, α1, α2 > d/2. Then for every
f ∈ L2(Rd) and for every fixed t, ω ∈ Rd we have:

∥Wigτ f∥2L2(M) ≤ min
{
cτK mω,Φ(M)∥f∥4−

d
α

2 ∥|t− t|αf∥
d
α
2 ,

cτK mx,Ψ(M)∥f̂∥4−
d
α

2 ∥|ω − ω|αf̂∥
d
α
2 ,

cτK1K2m(M)∥f∥
4− d

α1
− d

α2
2 ∥|t− t|α1f∥

d
α1
2 ∥|ω − ω|α2 f̂∥

d
α2
2

}
,

(3.8)

where K,K1,K2 are given by (2.3) corresponding to α, α1, α2 respectively, and cτ by (3.2).

Proof. The third inequality of (3.8) has already been proved in Proposition 3.1. We then
have to prove the other two estimates.

(i) Concerning the first inequality, from Lemma 3.4 we have that for every real symmetric
d× d matrix C,

∥Wigτ f∥2L2(M) =

∫
M

|Wigτ (g, h)(x, ω − Cx)|2 dx dω,

where g(t) = e−πi
1−τ
τ

(Ct,t)f(t) and h(t) = e−πi
τ

1−τ
(Ct,t)f(t). Then, by the change of

variables X = x, W = ω − Cx, we get

∥Wigτ f∥2L2(M) =

∫
ΦC(M)

|Wigτ (g, h)(X,W )|2 dX dW = ∥Wigτ (g, h)∥2L2(ΦC(M)).

13



Since |g(t)| = |h(t)| = |f(t)| for every t ∈ Rd, we can then apply Remark 3.3 and
conclude that

∥Wigτ f∥2L2(M) ≤ cτK m
(
ΠW (ΦC(M))

)
∥f∥4−

d
α

2 ∥|t− t|αf∥
d
α
2 ,

for every α > d/2 and t ∈ Rd. Then, taking the inf over all C in the right-hand side,
we get the first inequality of (3.8).

(ii) Using (3.4) and Lemma 3.4 we have

∥Wigτ f∥2L2(M) =

∫
M

|Wig1−τ f̂(ω,−x)|2 dx dω

=

∫
M

|Wig1−τ (g1, h1)(ω,−x−Dω)|2 dx dω,

where g1(t) = e−πi
1−τ
τ

(Dt,t)f̂(t) and h1(t) = e−πi
tau
1−τ

(Dt,t)f̂(t). Now, by the change of
variables X = x+Dω, W = ω, we get

∥Wigτ f∥2L2(M) ≤
∫
MD

|Wig1−τ (g1, h1)(W,X)|2 dX dW, (3.9)

where MD = {(X,W ) ∈ R2d : (−X,W ) ∈ ΨD(M)}. Now we have |g1(t)| = |h1(t)| =
|f̂(t)|, and so we can apply Remark 3.3; since in the integral in (3.9) the variables X
and W are interchanged, we have

∥Wigτ f∥2L2(M) ≤ c1−τK m
(
ΠX(MD)

)
∥f̂ |4−

d
α

2 ∥|ω − ω|αf̂∥
d
α
2 ,

for every ω ∈ Rd. The conclusion then follows from the fact that c1−τ = cτ and
m
(
ΠX(MD)

)
= m

(
ΠX(ΨD(M))

)
.

Remark 3.7. For every measurable set M ⊂ R2d we have

mω,Φ(M) ≤ m(ΠωM), mx,Ψ(M) ≤ m(ΠxM),

and the inequalities can be strict; it can even happen that both the projections have infinite
measure and both mω,Φ(M) and mx,Ψ(M) are finite, see Example 3.8 below. So Theorem 3.6
is stronger than Proposition 3.1.

As we have observed in Section 2, the local uncertainty principles (3.8) gives information
on how small the energy of Wigτ f must be in the set M , depending on the concentration
of f and f̂ (in the sense of (2.8) and (2.9), respectively), and on the size of M (here in the
sense of mω,Φ(M), mx,Ψ(M), m(M)). We observe that the quantities (3.6) and (3.7) are finite
when the image of the set M through a transformation of the kind of ΦC or ΨD is contained
in an horizontal or vertical strip. In particular this is the case when M is an oblique strip,
as in Example 2.8, (ii). We now run through Example 2.8 and see what happens in the case
of Theorem 3.6.
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Example 3.8. We analyze now the sets M ⊂ R2 of Example 2.8; we want to compare
the quantities mω,Φ(M), mx,Ψ(M) of Theorem 3.6, with mω(M), mx(M) of Theorem 2.5,
respectively.

(i) Let M = F × E, for measurable sets F,E ⊂ R. In this case, we have mω,Φ(M) =
mω(M) = m(E) and mx,Ψ(M) = mx(M) = m(F ), and so the situation is the same as
for the Rihaczek and conjugate Rihaczek.

(ii) Consider now the case of an oblique strip M = {(x, ω) ∈ R2 : cx + a ≤ ω ≤ cx + b},
with a < b and c ̸= 0. We write α = min{−a/c,−b/c} and β = max{−a/c,−b/c}. In
this case the matrices C and D in Definition 3.5 are real constants, and, for the set M ,
the inf in (3.6) and (3.7) are realized for C = c and D = −1/c, respectively. For these
values of C and D we have

ΦC(M) = {(X,W ) ∈ R2 : a ≤W ≤ b}

and
ΨD(M) = {(X,W ) ∈ R2 : α ≤ X ≤ β},

so that mω,Φ(M) = b − a and mx,Ψ(M) = β − α. Comparing with Example 2.8 we
observe that also in this case we have mω,Φ(M) = mω(M) and mx,Ψ(M) = mx(M).
Then the observations we made for Rihaczek and conjugate Rihaczek apply also to the
τ -Wigner; if the strip is narrow and/or one between f and f̂ are very concentrated,
Wigτ must contain a small amount of energy in M .

(iii) The case of Example 2.8, (iii) cannot be treated in general for the τ -Wigner, unless M
is contained in a strip, and even in this case, mω,Φ(M) and mx,Ψ(M) can be strictly
bigger than the corresponding mω(M) and mx(M) of the Rihaczek case. As particular
cases, let us compare mω(M) with mω,Φ(M) for the sets

M1 = {(x, ω) ∈ R2 : x2 + a ≤ ω ≤ x2 + b}

and
M2 = {(x, ω) ∈ R2 : x+ sinx+ a ≤ ω ≤ x+ sinx+ b},

for a < b. As observed in Example 2.8 we have mω(M1) = mω(M2) = b − a. On the
other hand, mω,Φ(M1) = +∞ and mω,Φ(M2) = b − a + 2, that means that on M1 the
first estimate in (3.8) gives no information for Wigτ , while the corresponding one in
(2.5) is not trivial for R and R∗; moreover, on M2 the first estimate in (3.8) is weaker
than the corresponding one in (2.5).

Remark 3.9. It is natural to compare the constants appearing in estimates (2.5) for the
Rihaczek representation with those in the corresponding estimate (3.8) for the Wigτ . To this
aim we observe that the transformations of the type ΦC send “vertical” sections of the set M
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into “vertical” sections of the set ϕC(M), i.e. ΦC(Mx) = (ΦCM)x. As ΦC are isometries
and (ΦCM)x ⊆ ΠωΦCM , we have, for every x and for every C:

m(Mx) = m(ΦC(Mx)) ≤ m(ΠωΦCM).

Taking the supremum in x on the left-hand side and infimum in C on the right-hand side,
we have therefore

mω(M) = sup
x

m(Mx) ≤ inf
C

m(ΠωΦCM) = mω,Φ(M).

In an analogous way we have mx(M) ≤ mx,Ψ(M). The estimates for the Rihaczek contain
therefore “better” constants for measuring the “size” of M then those for the τ−Wigner
representation.

4 Local uncertainty principle in the Cohen class

In this section we shall prove that results of the kind of Proposition 3.1 and Theorem 3.6
also apply to representations of the form Qσf(x, ω) = (σ ∗ Wig f)(x, ω) belonging to the
Cohen class. However, we consider here the case of kernels σ ∈ L1(R2d) ∩ L2(R2d) and, as
none of the kernels of Wigτ , R and R∗ satisfy this property, the results of this Section are
independent of the local uncertainty principles of Sections 2 and 3. Moreover, the proofs
in this section make use of the previous results on the classical Wigner representation, but
present non trivial differences with respect to the ones of Section 3.

We start by proving the analogue of Proposition 3.1 for the Cohen class.

Proposition 4.1. Let M ⊂ R2d be a measurable set, and σ ∈ L1(R2d) ∩ L2(R2d). Then for
every α, α1, α2 > d/2, t, ω ∈ Rd and f ∈ L2(Rd) we have

∥Qσf∥2L2(M) ≤ min
{
K m(ΠωM)∥σ∥22∥f∥

4− d
α

2 ∥|t− t|αf∥
d
α
2 ,

K m(ΠxM)∥σ∥22∥f̂∥
4− d

α
2 ∥|ω − ω|αf̂∥

d
α
2 ,

2dK1K2m(M)∥σ∥21∥f∥
4− d

α1
− d

α2
2 ∥|t− t|α1f∥

d
α1
2 ∥|ω − ω|α2 f̂∥

d
α2
2

}
,

(4.1)

where K,K1,K2 are given as usual by (2.3). More precisely, the first two estimates are valid
for every σ ∈ L2(R2d) and the third one holds for every σ ∈ L1(R2d).

Proof. Using the same arguments as at the beginning of the proof of Proposition 3.1, we
observe that we can assume f ∈ L1(Rd) in the first estimate of (4.1), f̂ ∈ L1(Rd) in the
second one, and f, f̂ ∈ L1(Rd) in the third one, in order that the corresponding right-hand
sides are finite.
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(i) We start by proving the second estimate, under the hypothesis σ ∈ L1(R2d) ∩ L2(R2d)
(that ensures that Qσf is well defined for every f ∈ L2(Rd)). We observe that

Qσf(x, ω) = (σ ∗Wig f)(x, ω)

=

∫
σ(y, η)e−2πit(ω−η)f

(
x− y +

t

2

)
f
(
x− y − t

2

)
dt dy dη,

and in this expression we can interchange the order of integration as we want, since the
integrand belongs to L1(Rdt × Rdy × Rdη). We then have

∥Qσf∥2L2(M) ≤

≤
∫
ΠxM

∫
Rd

∣∣∣∣∫
R3d

e−2πitωe2πitηf
(
x− y +

t

2

)
f
(
x− y − t

2

)
σ(y, η) dy dη dt

∣∣∣∣2 dω dx
≤ m(ΠxM) sup

x∈ΠxM

∥∥∥∥Ft→ω

[∫
R2d

e2πitηf
(
x− y +

t

2

)
f
(
x− y − t

2

)
σ(y, η) dy dη

]∥∥∥∥2
L2(Rd

ω)

.

Now, writing σ1 = F−1
2 σ, where F−1

2 means the inverse Fourier transform with respect
to the second Rd variable, we have:

∥Qσf∥2L2(M) ≤ m(ΠxM) sup
x∈Rd

∥∥∥∥∫ σ1(y, t)f
(
x− y +

t

2

)
f
(
x− y − t

2

)
dy

∥∥∥∥2
L2(Rd

t )

≤ m(ΠxM)

∥∥∥∥∥
∥∥∥∥∫ σ1(y, t)f

(
x− y +

t

2

)
f
(
x− y − t

2

)
dy

∥∥∥∥
L∞(Rd

x)

∥∥∥∥∥
2

L2(Rd
t )

= m(ΠxM)

∥∥∥∥∥
∥∥∥∥[σ1(·, t) ∗ (f(·+ t

2

)
f
(
· − t

2

))]
(x)

∥∥∥∥
L∞(Rd

x)

∥∥∥∥∥
2

L2(Rd
t )

.

In the L∞ norm we can apply Young inequality, in the form ∥g ∗ h∥∞ ≤ ∥g∥2∥h∥2,
obtaining

∥Qσf∥2L2(M) ≤ m(ΠxM)

∫ ∣∣∣∣σ1(y, t)f(s+ t

2

)
f
(
s− t

2

)∣∣∣∣2 dy ds dt.
Since we can assume without loss of generality that f ∈ L∞(Rd), we can estimate as
follows

∥Qσf∥2L2(M) ≤ m(ΠxM)∥σ1∥22∥f∥2∞∥f∥22 = m(ΠxM)∥σ∥22∥f̂∥21∥f̂∥22,

since σ1 = F−1
2 σ. The conclusion is then an application of Proposition 2.2.

(ii) By the formula (3.4) for τ = 1/2 we easily get

Qσf(x, ω) = Qσ2 f̂(ω,−x), (4.2)
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where σ2(s, ζ) = σ(−ζ, s). Writing M1 = {(x, ω) ∈ R2d : (−x, ω) ∈M} we then have

∥Qσf∥2L2(M) =

∫
M

|Qσf(x, ω)|2 dx dω =

∫
M1

|Qσ2 f̂(ω, x)|2 dx dω;

by point (i) we obtain that for every t ∈ Rd and for every α > d/2

∥Qσf∥2L2(M) ≤ K m(ΠωM1)∥σ2∥22∥
ˆ̂
f∥4−

d
α

2 ∥|t− t|α ˆ̂
f∥

d
α
2 .

Now, m(ΠωM1) = m(ΠωM), ∥σ2∥2 = ∥σ∥2, and moreover
ˆ̂
f(t) = f(−t), so since t is

arbitrary we have the desired estimate, in the case σ ∈ L1(R2d) ∩ L2(R2d).

(iii) Suppose now σ ∈ L1(R2d). Since ∥Qσf∥2L2(M) ≤ m(M)∥Qσf∥2∞, we have by Young
inequality

∥Qσf∥2L2(M) ≤ m(M)∥σ∥21∥Wig f∥2∞

≤ m(M)∥σ∥21 sup
(x,ω)∈R2d

∫ ∣∣∣∣f(x+
t

2

)
f
(
x− t

2

)∣∣∣∣ dt
≤ 2dm(M)∥σ∥21∥f∥2∞∥f∥21
≤ 2dm(M)∥σ∥21∥f̂∥21∥f∥21.

We can then apply Proposition 2.2, with two different α1 and α2 for f and f̂ , respec-
tively, and obtain the conclusion.

Now we want to extend the validity of the first two estimates in (4.1) to the case of kernels
σ ∈ L2(R2d) but not necessarily in L1(R2d). We prove for example the second estimate in
(4.1), the first is analogous.

(a) Suppose that m(M) < +∞. For f ∈ L2(Rd) we have Wig f ∈ L2(R2d) and, from the
density of L1(R2d) ∩ L2(R2d) in L2(R2d), σ is the limit in L2(R2d) of a sequence of
functions σn ∈ L1(R2d) ∩ L2(R2d). The continuity of the convolution L2 ∗ L2 −→ L∞

implies then that Qσnf = σn∗Wig f −→ σ∗Wig f = Qσf in L∞(R2d) and therefore also
in L∞(M). The continuous immersion L∞(M) ↪→ L2(M), valid under the assumption
m(M) < +∞, implies now that Qσnf −→ Qσf in L2(M). Proposition 4.1 applied to
σn yields the estimates

∥Qσnf∥2L2(M) ≤ K m(ΠxM)∥σn∥22∥f̂∥
4− d

α
2 ∥|ω − ω|αf̂∥

d
α
2 ,

which for n→ +∞ gives

∥Qσf∥2L2(M) ≤ K m(ΠxM)∥σ∥22∥f̂∥
4− d

α
2 ∥|ω − ω|αf̂∥

d
α
2 .
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(b) Suppose now that m(M) = +∞. If m(ΠxM) = +∞ then the assertion is trivially true.
Suppose then m(ΠxM) < +∞ and set Mn = M ∩ Bn, n ∈ N, with Bn = {Z ∈ R2d :
|Z| ≤ n}. From part (a) applied to Mn we have

∥Qσf∥2L2(Mn)
≤ K m(ΠxMn)∥σ∥22∥f̂∥

4− d
α

2 ∥|ω − ω|αf̂∥
d
α
2 .

FromMn ⊆M we have that the sequences ∥Qσf∥2L2(Mn)
and m(ΠxMn) are increasingly

convergent to ∥Qσf∥2L2(M) and m(ΠxM) respectively which proves the estimate

∥Qσf∥2L2(M) ≤ K m(ΠxM)∥σ∥22∥f̂∥
4− d

α
2 ∥|ω − ω|αf̂∥

d
α
2 .

Remark 4.2. We know that in general for f ∈ L2(Rd) and σ ∈ L2(R2d), Young’s inequality
only yields Qσf ∈ L∞(R2d). Therefore, although Qσf needs not to be in L2(R2d), the last
part of the proof of Proposition 4.1 shows that Qσf ∈ L2(M) for every measurable set M for
which either m(ΠxM) or m(ΠωM) are finite.

We can now state the following local uncertainty principle for the Cohen class, corre-
sponding of Theorem 3.6 for a generic representation Qσ with σ as in Proposition 4.1.

Theorem 4.3. Let M ⊂ R2d be a measurable set, and α, α1, α2 > d/2. Then for every
f ∈ L2(Rd) and for every fixed t, ω ∈ Rd we have:

∥Qσf∥2L2(M) ≤ min
{
K mω,Φ(M)∥σ∥22∥f∥

4− d
α

2 ∥|t− t|αf∥
d
α
2 ,

K mx,Ψ(M)∥σ∥22∥f̂∥
4− d

α
2 ∥|ω − ω|αf̂∥

d
α
2 ,

2dK1K2m(M)∥σ∥21∥f∥
4− d

α1
− d

α2
2 ∥|t− t|α1f∥

d
α1
2 ∥|ω − ω|α2 f̂∥

d
α2
2

}
,

(4.3)

where K,K1,K2 are given by (2.3) and mω,Φ(M), mx,Ψ(M) are defined in Definition 3.5.
The first two estimates in (4.3) are valid for every σ ∈ L2(R2d) and the third one holds for
every σ ∈ L1(R2d).

Proof. The third inequality of (4.3) has already been proved in Proposition 4.1, so we only
have to prove the other two estimates. From Lemma 3.4, applied for τ = 1/2, we get

Qσf(x, ω) =

∫
σ(y, η)Wig f(x− y, ω − η) dy dη

=

∫
σ(y, η)Wig

(
e−πi(Ct,t)f(t)

)
(x− y, ω − η − C(x− y)) dy dη

for every real symmetric d × d matrix C. Then, by the change of variables η − Cy = ζ, we
obtain

Qσf(x, ω) =

∫
σ(y, ζ + Cy)Wig

(
e−πi(Ct,t)f(t)

)
(x− y, ω − Cx− ζ) dy dζ.
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Writing σ3(y, ζ) = σ(y, ζ + Cy) we have

Qσf(x, ω) = Qσ3
(
e−πi(Ct,t)f(t)

)
(x, ω − Cx). (4.4)

(i) We prove now the first estimate of (4.3). From (4.4) we have

∥Qσf∥2L2(M) =

∫
M

∣∣∣Qσ3(e−πi(Ct,t)f(t))(x, ω − Cx)
∣∣∣2 dx dω,

for every real symmetric d×d matrix C. By the change of variables X = x,W = ω−Cx
we obtain

∥Qσf∥2L2(M) =
∥∥Qσ3(e−πi(Ct,t)f(t))∥∥2L2(ΦC(M))

,

where ΦC is given in Definition 3.5. We can then apply the first estimate in (4.1),
obtaining that

∥Qσf∥2L2(M) ≤ K m
(
ΠW (ΦC(M))

)
∥σ3∥22∥e−πi(Ct,t)f(t)∥

4− d
α

2 ∥|t− t|αe−πi(Ct,t)f(t)∥
d
α
2

for every α > d/2 and t ∈ Rd. Now, we observe that e−πi(Ct,t) can be deleted from the
norms, and ∥σ3∥2 = ∥σ∥2. Then we can take the inf over all C in the right-hand side,
and we have the desired estimate.

(ii) By (4.2) and the same procedure that we used to obtain (4.4), we have

Qσf(x, ω) = Qσ2 f̂(ω,−x) = Qσ4
(
e−πi(Dt,t)f̂(t)

)
(ω,−x−Dω),

for every real symmetric d×d matrix D, where σ4(y, ζ) = σ(−ζ−Dy, y). By the change
of variables X = x+Dω, W = ω we then have

∥Qσf∥2L2(M) =

∫
ΨD(M)

∣∣Qσ4(e−πi(Dt,t)f̂(t))(W,−X)
∣∣2dX dW.

We now write MD = {(X,W ) ∈ R2d : (−X,W ) ∈ ΨD(M)} and, using again the first
estimate of (4.1), we obtain

∥Qσf∥2L2(M) =

∫
MD

∣∣Qσ4(e−πi(Dt,t)f̂(t))(W,X)
∣∣2dX dW

≤ K m
(
ΠX(MD)

)
∥σ4∥22∥e−πi(Dt,t)f̂(t)∥

4− d
α

2 ∥|ω − ω|αe−πi(Dω,ω)f̂(ω)∥
d
α
2 ,

for every α > d/2 and ω ∈ Rd. Observe now that, as before, e−πi(Dω,ω) can be deleted;
moreover, m

(
ΠX(MD)

)
= m

(
ΠX(ΨD(M))

)
and ∥σ4∥2 = ∥σ∥2. The conclusion then

follows by taking the inf over all D in the right-hand side, and the proof is complete.
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We complete the description with some remarks about Theorem 4.3.

1) Taking for simplicity the case d = 1, the two sets M = {(x, ω) ∈ R2 : 0 ≤ ax+ by ≤ c}
andM = {(x, ω) ∈ R2 : either |ω| ≤ e−x

2
or |x| ≤ e−ω

2} show that the finiteness of mω,Φ(M)
and mx,Ψ(M) are actually independent from that of m(M), and that each of the estimates
(4.3) can be optimal.

2) The estimates in Theorem 4.3 can be easily adapted to particular regions M for which
mω,Φ(M) = mx,Ψ(M) = m(M) = +∞. Suppose in fact that M can be decomposed into a
finite (disjoint) union M = M1 ∪ ... ∪MN of regions Mj for which one of the previous three

quantities is finite, then ∥Qσf∥2L2(M) =
∑N

j=1 ∥Qσf∥2L2(Mj)
and a suitable estimate can be

applied to each term. For example in R2 we can consider M = {(x, ω) : |x| ≤ a ∨ |ω| ≤
b; a, b ≥ 0} obtaining

∥Qσf∥2L2(M) ≤ 2K∥σ∥22∥f∥
4− d

α
2

(
a ∥|t− t|αf∥

d
α
2 + b ∥|ω − ω|αf̂∥

d
α
2

)
. (4.5)

More generally, we have then proved that, even if Qσf needs not to be in L2(R2), it is always
square-integrable e.g. on every finite union of “strips” of the type c0 ≤ ax+ by ≤ c1.

As application of the result of Theorem 4.3 we prove the following “local” boundedness
property which pursues the direction of Remark 4.2. As already observed, under the hypoth-
esis σ ∈ L2(R2d) we do not have in general a bounded map Qσ : f ∈ L2(Rd) −→ Qσf ∈
L2(R2d). This includes for example the important case of spectrograms |Vgf |2 with window
g ∈ L2(Rd) for which one has σ = Wig(g̃) ∈ L2(R2d). The following property is then of prac-
tical interest in applications as it permits to still consider only the L2 functional framework
for f and Qσf also in this case, under reasonable limitations on f , f̂ , Qσf .

Proposition 4.4. Let σ ∈ L2(R2d), M ⊂ R2d and BR
0 = {x ∈ Rd : |x| ≤ R} (when necessary

we implicitly extend f ∈ L2(BR
0 ) by zero outside BR

0 ), then Qσ defines the following quadratic
bounded maps:
(i) If mω,Φ(M) < +∞ then Qσ : f ∈ L2(BR

0 ) −→ Qσf ∈ L2(M) and

∥Qσf∥L2(M) ≤
√

2

d

πd/4Rd/2

Γ(d/2)1/2
mω,Φ(M)1/2∥σ∥2∥f∥22.

(ii) If mx,Ψ(M) < +∞ then Qσ : f ∈ FL2(BR
0 ) −→ Qσf ∈ L2(M) and

∥Qσf∥L2(M) ≤
√

2

d

πd/4Rd/2

Γ(d/2)1/2
mω,Φ(M)1/2∥σ∥2∥f∥22.

(iii) If m(M) < +∞ then Qσ : f ∈ L2(Rd) −→ Qσf ∈ L2(M) and

∥Qσf∥L2(M) ≤ m(M)1/2∥σ∥2∥f∥22.
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Proof. (i) Suppose that mω,Φ(M) < +∞. Choosing t = 0 the first estimate (4.3) is

∥Qσf∥2L2(M) ≤ Kαmω,Φ(M)∥σ∥22∥f∥
4− d

α
2 ∥|t|αf∥

d
α
2 .

As suppf ⊆ BR
0 the right-hand side is well defined for every α and

∥f∥4−
d
α

2 ∥|t|αf∥
d
α
2 ≤ ∥f∥4−

d
α

2 Rd∥f∥
d
α
2 = ∥f∥42Rd. (4.6)

Rewriting the constant Kα using Euler’s formula for the Gamma function Γ(z)Γ(1 − z) =
π

sin(πz) we have

Kα =
πd/2

α

(
Γ

(
d

2

))−1

Γ

(
d

2α

)
Γ

(
1− d

2α

)(
2α

d
− 1

) d
2α

(
1− d

2α

)−1

=
2πd/2

d

(
Γ

(
d

2

))−1 πd
2α

sin(πd2α)

(
2α

d
− 1

) d
2α

(
1− d

2α

)−1

.

As the function Kα is decreasing in α, the best estimate is obtained by letting α → +∞
and we have:

lim
α→∞

Kα =
2πd/2

d

(
Γ

(
d

2

))−1

. (4.7)

The thesis follows then immediately from (4.6) and (4.7).
(ii) It is analogous to (i) using now the second estimate (4.3) f̂ has compact support.
(iii) Suppose that m(M) < +∞. Then

∥Qσf∥L2(M) ≤ m(M)
1
2 ∥Qσf∥∞ ≤ m(M)

1
2 ∥Q̂σf∥1

= m(M)
1
2 ∥σ̂Ŵigf∥1 ≤ m(M)

1
2 ∥σ̂∥2∥Ŵigf∥2 = m(M)

1
2 ∥σ∥2∥f∥22.

In an analogous way the boundedness of the sesquiliner map Qσ(f, g) can be proved.
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