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Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development
represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune
cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the
mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism
underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic
solid tumors, and multiple myeloma.

1. Introduction

Bone is an active tissue that undergoes continuous remod-
elling by two distinct processes, bone formation and bone
resorption [1]. These events are strongly linked and tightly
regulated to maintain skeletal homeostasis [2]. The bone
cells responsible for the dual processes include the bone
resorbing cells, that is, the osteoclasts (OCs), which are
differentiated cells derived from hematopoietic cells of the
monocyte-macrophage lineage and bone forming cells, that
is, the osteoblasts (OBs), which are of mesenchymal origin.
Alteration of the differentiation/activity of OCs as well as
OBs leads to bone diseases. The close relationship between
the bone and the immune system has been increasingly
recognized, in particular during pathological conditions in
which activation of both systems occurs [3]. It is known that
inflammation increase leads to an augment in the immune
function, which culminates in an increased production of
tumour necrosis factor (TNF) or receptor activator of NF-
kB ligand (RANKL) by activated T cells, that has been
linked to bone loss associated diseases (inflammatory and
autoimmune disease, postmenopausal osteoporosis). Differ-
ent studies have been performed to identify the T cell subset

involved in osteoclastogenesis. In general, T cells could be
classified as effector-cytotoxic T population (CD8+ cells) and
helper T cells (CD4+ cells). CD4+ T cells, upon activation
and expansion, develop into diverse T helper (Th) cell subsets
secreting signature cytokine profiles and mediating distinct
effector functions [4]. Until recently, T cells were divided
into Th1 or Th2 cells, depending on the cytokines they
produced (with Th1 producing IFN-gamma and IL-2 and
Th2 producing primarily IL-4/IL-5/IL-10). Regulatory T cells
(Tregs, CD4+CD25+Foxp3+) potently inhibit the function of
effector T cells [4]. A third subset of IL-17-producing effector
T helper cells, called Th17 cells, has been more recently dis-
covered and characterized. Th17 cells produce IL-17, IL-17F,
and IL-22, thereby inducing a massive tissue reaction owing
to the broad distribution of the IL-17 and IL-22 receptors.
Th17 cells support OC formation mostly through the expres-
sion of IL-17, which is recognized to induce RANK expression
on OC precursors as well as RANKL production by cells sup-
porting OC formation [4, 5]. IL-17 also makes possible local
inflammation through the recruitment and the activation
of immune cells, leading to the release of proinflammatory
molecules, as IL-1 and TNF𝛼 [4]. These proinflammatory
molecules increase RANKL expression and synergize with
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RANKL signalling to maximize OC formation. A relatively
high expression of RANKL onTh17 cells may also participate
in the enhanced osteoclastogenesis. Collectively, Th17 cells
can be considered an osteoclastogenic Th subset; however,
they are not the only ones. In fact, activated T cells, expressing
high RANKL levels, have the ability to directly induce OC
differentiation by acting on OC precursor cells [6].

However, because T cells/immune cells also secrete a
variety of cytokines and express membrane-bound factors
other than RANKL, which could support OC formation,
mainly in pathological condition; this issue might be further
explored, together with the mechanisms that could modulate
their expression.

We describe recent efforts highlighting the prominent
role of immune system in the alteration of bone remod-
elling, thus favouring the development of many bone dis-
eases, such as periodontal disease (PD), psoriatic arthri-
tis (PsA), postmenopausal osteoporosis, glucocorticoid-
induced osteoporosis (GIO), metastatic solid tumors, and
multiple myeloma (MM).

PeriodontalDisease. PD is a common complex infection of the
oral cavity that specifically affects the gingiva, the periodontal
ligament, and the alveolar bone. It is characterized by an
inflammatory response to bacteria present in the gingival
pocket [7] and may remain confined to the gingiva or may
progress to extreme periodontal destruction with the loss
of the alveolar bone. PD is the main cause of tooth loss
among adults and is associated with important alteration
in facial aesthetics and defeat of masticatory and phonetics
function [8]. It is also well recognized that the presence of
only pathogenic bacteria is insufficient to PD. Progression
of this disease occurs due to a combination of factors,
including the presence of periodontopathic bacteria, high
levels of proinflammatory cytokines (IL-1, TNF𝛼, IL-4, IL-
6, IL-8, and IL-11), prostaglandin E2 (PGE

2
), low levels of

anti-inflammatory cytokines including IL-10, transforming
growth factor (TGF-𝛽), and retinoic acid [9]. Genetic factors
increase the susceptibility of some individuals in developing
this inflammatory disease. It has been supported by reports
of familial aggregation of severe forms of the disease [10], and
twin studies [11]. Recent candidate gene studies for periodon-
tal disease have focused on genes related to host immunity
and inflammatory response such as cytokines, cell-surface
receptors, chemokines, enzymes, and antigen recognition.
Histological examination of periodontitis lesions reveals that
the granulocytes appear to play a key role in the main-
tenance of the periodontal health. These cells are present
in the junctional epithelium in large numbers and they
isolate tissues from the bacteria action; thus, severe forms of
periodontitis frequently affect patients with diseases such as
leukocyte adhesion deficiency and neutropenia. The failure
of granulocytes to transmigrate into the endothelium results
in an increase on the inflammatory response and reduces
the protective response against periodontal pathogens. In the
presence of active disease, the epithelial migration causes
a deep periodontal pocket resulting in bacterial invasion,
inflammation, and destruction of the connective tissue, with
subsequent bone loss and possible tooth loss. Langerhans

cells and dendritic cells of bone marrow origin, that are
located within the epithelium, are a connecting link with
acquired immunity. The adaptive immune response is acti-
vated when the epithelial barrier, with its innate system,
is penetrated. The dendritic cells participate to the innate
inflammatory response and moreover they capture and
present antigens to B and T cells of the acquired immune
system [12]. Activated CD4 T helper cells produce subsets
of cytokines with different immune responses: Th1 and
Th2 cells, respectively, associated with cellular and humoral
immunity [13]. The recently described Th17 and Treg cells
have antagonistic roles as effector and suppressive cells [8].
B cells differentiate into plasma cells producing specific
antibodies. Thus, tissues affected by periodontitis become
colonized with both lymphocytes subtypes with B cells being
more represented than T cells. In a not progressive lesion,
IFN-𝛾 increases the phagocytic activity of both neutrophils
andmacrophages and hence contains the infection. In case of
a reduced innate immune response, a consequent weak Th1
responsemay not contain infection.Moreover, activatedmast
cells determine aTh2 response, B cell activation, and antibody
production.The antibodies can control the infection or, as in
the case of production of IgG2 in large amount, the lesion will
persist. Sustained B cell activation may lead to IL-1 secretion
and periodontal disease progression. Th17 cells have been
identified in the periodontal tissues. IL-17 mainly produced
by Th17 has been shown to stimulate epithelial, endothelial,
and fibroblastic cells to produce IL-6, IL-8, and PGE

2
, thus

sustaining the disease progression. In addition, IL-17 induces
RANKL production by osteoblasts stimulating bone resorp-
tion. It has been demonstrated that periodontitis bacteria
induce a significant increase in the production of IL-17 [14].
According to recent studies, IL-17 significantly enhances
RANKL and inhibits osteoprotegerin (OPG) expression in
human periodontal ligament cells [15]. It has been hypoth-
esized thatTh17 cells may be involved inTh1modulation and
enhanced inflammatory mediators’ production by gingival
fibroblasts in periodontal disease. Circulating T cells express
high levels of RANKL and spontaneously promote osteoclas-
togenesis in patients [16].Th1 andTh17 cells, as well as B cells,
increase RANKL expression [17].Other studies demonstrated
that also B cells produce RANKL in response to periodontal
pathogen stimulation [17]. Contrarily, Treg cells decrease
RANKL secretion whereas TGF-𝛽 stimulates Treg cell differ-
entiation.This process is supported by retinoic acid and coun-
teracted by IL-6 and IL-1. In chronic inflammatory disease
as PD, retinoic acid levels are suppressed and Treg activity is
inhibited in favor ofTh17 pathogenic effect [18]. In PD, proin-
flammatory cytokines overcome anti-inflammatory ones, and
Th17 cells surmount Treg: this inflammatory state determines
the destruction of connective tissue and alveolar bone.

Psoriatic Arthritis. Psoriasis is a chronic inflammatory disease
of the skin; a considerable part of patients with psori-
asis develops an inflammatory arthritis characterized by
increased bone remodeling with osteolysis called PsA [19].

The mechanisms responsible for the development of the
PsA should be better explained, but the immune system plays
the main role in the pathogenesis of this disorder, that has to
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be considered as a chronic inflammation. Therefore, patients
with psoriasis have elevated levels of circulating neutrophils.
TheThcells play an important role; in particular,Th1 andTh17
are involved in the pathogenesis of the disease. PsA is char-
acterized by T and B cell infiltrates and neoangiogenesis in
the synovial membrane and by the overexpression of inflam-
matory cytokines. PsA synovitis is indicated by hyperplasia
of the synovial lining cells and mononuclear cell infiltration.
Moreover, ectopic lymphoid neogenesis appears. Fibroblasts
and T cells in PsA synovial fluid induce osteoclastogenesis
and bone resorption, mediated by RANKL, TNF-𝛼, and IL-7
[37]. Inflammatory cytokine set such as TNF-𝛼, IL-1𝛽, IL-10,
IFN-𝛾, IL-12, IL-15, IL-17, and IL-18 were highly expressed in
synovial fluid of PsA patients, while fibroblasts isolated from
their skin and joints secreted IL-1 and IL-6; some of these
cytokines have also recognized osteoclastogenic features.

BothT cell suppression andTNF-𝛼 inhibitors are effective
in humans in the treatment of psoriasis. In PsA patients, there
is a great increase in the number of peripheral blood Th17
cells. Thus, recent studies indicated that Th17 cells [38] are
the cells most significantly involved in psoriasis. LikeTh1 and
Th2 cells,Th17 cells appear to be evolved in inducing acquired
immune responses against microorganisms, such as bacteria.
Abnormal Th17 responses are believed to play a significant
role in the onset of various autoimmune diseases. Moreover,
IL-23 is indispensable for Th17 effector functions in immune
disorders and maintenance of Th17 cells.

Orphan nuclear receptor ROR𝛾t (retinoid-related orphan
receptor gamma t) has been identified as specific Th17
transcription factor [39]. ROR𝛾t is involved in the production
of IL-23 receptor (IL23R) which is expressed by monocytes,
Th1, Th0, Th17, NK, and dendritic cells. IL23R has an
important role in stimulating Th17 cells. IL-23 receptors
promote IL-17 transcription and Th17 cell differentiation via
enforced ROR𝛾t expression. IL-23 acts on cells that have been
differentiated intoTh17 cells, potentiatingROR𝛾t activity, and
participates in maintenance and proliferation of Th17 cells.

Clinical trials studying the effects of anti-IL-17 and anti-
IL-23 neutralizing antibodies in PsA patients are in progress
[29], while the first results seemed to be not as impressive
as those for TNF-𝛼 inhibitor therapy, a recent clinical trial
indicated that Brodalumab, an IL-17RA inhibitor, determined
a significant improvement, when administered for 12 weeks
to PsA patients [36]. Moreover, new studies demonstrated
that Ustekinumab, a monoclonal antibody against both IL-
12 and IL-23 cytokines, interfering, respectively, withTh1 and
Th17 activity, improved significantly PsA symptoms, although
similar efficacy of TNF-𝛼 inhibitors needs about 52 weeks of
treatment to be achieved [33]. Although immune responses
mediated by IL-17 and IL-23 are not as evident as those with
TNF-𝛼, Th17 cells appear to play an important role in PsA.

The activation of natural immunity in PsA stimulates
Th17 and Th1 cells, which sustain autoimmune pathology.
There is an interesting report regarding the relationship of
PsA with microbial infection that is suggestive of PsA patho-
genesis [40].

The observation of the lack of symptoms improvement
in PsA patients underwent to HIV infection and thus to
CD4+ reduction, suggested that Th cells cooperate in the

pathogenesis with CD8+ cells [41]. Probably, CD8+T cells
potentiates the production of cytokines in the synovial
membrane, and the cytokines induce fibroblast proliferation
promoting fibrosis [42–44], that probably contribute to joint
stiffness and ankylosis [45].

Postmenopausal Osteoporosis. Postmenopausal osteoporosis
is a systemic skeletal disorder characterized by reduced bone
mineral density andmicroarchitectural deterioration of bone
tissue resulting in fragility and susceptibility to fractures
[46] and uncoupling of osteoblast-mediated bone formation
and osteoclast-mediated bone resorption. Postmenopausal
osteoporosis stems from the cessation of ovarian function at
menopause and from genetic and nongenetic factors which
heighten and prolong the rapid phase of bone loss char-
acteristic of the early postmenopausal period. OC activity
increases after menopause; these cells may be considered as
cells at the crossroad between immune system and bone as
their precursors circulate within the mononuclear fraction
of peripheral blood [47–53] and they interact with other
immune cells as T cells [54].

OC precursors increase during estrogen deficiency [47]
and in condition characterized by increased bone turnover as
bone metastases [50, 55] or inflammatory diseases [55–57].

Estrogens act on OC formation and activity both directly
and indirectly, in particular their action is mediated through
the influence on immune system [54]. In particular, estrogen
loss upregulates OC formation and activity through an
increased production of proosteoclastogenic cytokines by
bone marrow cells [58], OBs [59], and immune cells [47, 60].

Proinflammatory and proosteoclastogenic cytokines as
macrophage colony stimulating factor (M-CSF) and RANKL
are increased during estrogen deficiency [61, 62].

Additional inflammatory cytokines are responsible for
the upregulation of OC formation observed during estrogen
deficiency; some of these molecules have a well-established
role in osteoclastogenesis and bone loss, while others have
not. Among these molecules, the most involved ones in
estrogen deficiency bone loss appear to be TNF-𝛼, IL-1, IL-
7, and IL-17 [1, 63–70]. A key role of T cell-produced TNF𝛼
has been demonstrated also in bone metastasis [51, 71].

Estrogens are key regulators of immune function as
demonstrated both in animals and in humans [72, 73]. Des-
pite some inverse reports [74, 75], the main body of literature
firmly supports the essential role of activated T cells in
regulating bone loss induced by estrogen deficiency [47, 69,
72, 76–79].

In humans, we have demonstrated a fundamental role for
T cells in postmenopausal bone loss. In particular, we showed
that osteoclastogenesis from peripheral blood precursors
occurs only in the presence of T cells and that T cells aremore
active than in healthy post- and premenopausal controls [47].
T cells from osteoporotic patients produce more RANKL
and TNF-𝛼, thus inducing OC formation and activity [47].
It has also been demonstrated that hormone replacement
therapy decreases osteoclastogenic cytokine production in
postmenopausal women. RANKL expression on lympho-
cytes andmarrow stromal cells is significantly elevated during
estrogen deficiency in humans and correlates directly with
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increases in bone resorption markers and inversely with
serum estrogen levels [77].

Estrogen loss promotes T cell activation by increasing
antigen presentation [76, 80] and increases thymus output
of T cells into peripheral blood [68]. Estrogen loss expands
the proliferation and lifespan of bone marrow T cells [76, 78]
increasing expression of class II transactivator (CIITA), a
transcriptional coactivator acting on MHCII promoter [76,
81, 82].

Estrogen deficiency increases the number of activated
CD40L-expressing T cells that promote the expression of M-
CSF and RANKL by stromal cells and downregulates the
production of OPG. The net result is a significant increase
in the rate of osteoclastogenesis [83, 84]. This mechanism
was also described in bone loss due to increased PTH levels
[85, 86]. It is known that the CD40/CD40L system is crucial
for T cell activation and several functions of the immune sys-
tem. It promotes macrophage activation and differentiation,
antibody isotype switching, and the adequate organization of
immunological memory in B cells.

Also, theTh17 cells have been implicated in ovariectomy-
induced bone loss; these cells increased after ovariectomy
and stimulate osteoclastogenesis through IL-17 production
[69]. This effect is reversed by treatment with estradiol. IL-
17 increases OB production of proosteoclastogenic cytokines
as TNF𝛼, IL-6, and RANKL; these effects are antagonized by
estradiol.

Activated T cells have also been suggested to inhibit
osteoclastogenesis by diverting early OC precursors towards
dendritic cells differentiation [87]. Indeed T cells have the
capacity to generate both osteoclastogenic cytokines such
as RANKL and TNF-𝛼 [47], as well as antiosteoclastogenic
factors such as IL-4. It has also been suggested that the effects
of activated T cells on osteoclastogenesis in vitro depend on
the manner in which they are activated [88]. The net effect
of T cells on OC formation may consequently represent the
prevailing balance of anti- and proosteoclastogenic T cell
cytokine secretion. However, in humans, T cells seem to be
proosteoclastogenic in different diseases including estrogen
deficiency [47, 56, 66, 89–91].

Taken together, these observations demonstrate the
causal relation among estrogen deprivation, T cell activation,
increased cytokines production, and bone demineralization.

Also another type of immune cell the B cell has recently
been studied as directly implicated in the regulation of bone
resorption and may be directly involved in the pathogenesis
of postmenopausal osteoporosis. Recent data have shown
that B cells are the dominant producers of OPG in the bone
microenvironment in vivo [79]. In fact, B cell KO mice
have an osteoporotic phenotype with enhanced osteoclastic
bone resorption and reconstitution with B cells by adoptive
transfer, completely rescuedmice fromdevelopment of osteo-
porosis, and normalizing OPG production [79].

In human and animal B cells, OPG production can be sig-
nificantly upregulated by the activation of CD40 [79]. In line
with these data, bothCD40 andCD40LKOmice displayed an
osteoporotic phenotype and a significant deficiency in bone
marrow OPG concentrations [79].

Thus, the emerging data suggest that the B lineage, rather
than the OB lineage, is likely the major source of OPG in the
bone microenvironment and that T cell signalling to B cells,
through the costimulatory molecules CD40L and CD40,
plays an important role in regulating basal OC formation and
in regulating bone homeostasis.

On the other hand, it has been recently demonstrated that
activated B cells overexpress RANKL, contributing to bone
resorption [92, 93] and that ovariectomy in mice increases
the number of RANKL-expressing B lymphocytes in the bone
marrow [94].

A recent paper shows that mice lacking RANKL in B cells
were partially protected from the ovariectomy-induced loss
of cancellous bone [60]. The role of B-lymphocytes has also
been evaluated in disease characterized by focal bone loss
as in periodontal inflammation [66, 69, 95] and rheumatoid
arthritis [93]. In rheumatoid arthritis, a recent paper sug-
gests that B cells depletion ameliorates the suppressed bone
turnover [96].

Taken together, these data suggest that B-lymphocyte
involvement in the adaptive immune response contributes to
bone resorption by the upregulation of RANKL expression
through Toll-like receptor pathways and aligns with the
known ability of T cells to produce RANKL in the presence
of immune stimulus and to increase osteoclastogenesis. The
effect of estrogen deficiency on B cell modulationmay be one
of the mechanisms through which menopause affects bone
metabolism.

Thus, the involvement of T and B cells in the control
of bone turnover may provide a novel explanation for the
propensity to osteopenia and osteoporosis development after
the cessation of ovarian function.

Glucocorticoid-Induced Osteoporosis. GIO is the most fre-
quent origin of secondary osteoporosis in adults due to the
direct effects of glucocorticoids (GCs) on bone cells [97].
GCs primarily affect trabecular bone, whereas the cortical
bone mass is reduced to a lower and slower extent. Thus,
fractures of the vertebrae are more recurrent. GC exposure
determines a rapid and early phase of bone loss, which is
the consequence of bone resorption exacerbation.This phase
is followed by a more chronic and progressive phase in
which bone mass declines because of impaired OB activity.
GCs augment RANKL expression and reduce OPG levels
in stromal and osteoblastic cells leading to the initial phase
of rapid bone loss. Further, GCs increase MCSF expression
as well as receptor subunits for osteoclastogenic cytokines
of the gp130 family. However, the main pathophysiological
mechanism of GIO is the impaired bone formation, due to
reduced OB formation and activity [97, 98]. GCs impair on
OBs the synthesis of type I collagen, the major protein in
bone matrix. GCs may also influence osteocyte metabolism
and function, modifying the elastic modulus adjacent to the
osteocyte lacunae leading to reducedmineral to matrix ratios
in the same areas with an enlargement of the lacunar size.
Besides the GC direct actions on bone cells, GC extraskeletal
effects on calcium metabolism have been reported. In par-
ticular, GCs decrease renal tubular calcium reabsorption and
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calcium absorption from the gastrointestinal tract is reduced
by mechanisms that oppose vitamin D action [97].

GCs also impair bone metabolism during the growth.
In particular, in animal models, GC administration during
growth is the cause of decreased bone formation and resorp-
tion, reductions in the age-dependent increases in trabecular
bonemineral and trabecular thickness, and reductions in lin-
ear growth and accrual of cortical thickness in the femur [99].

A decrease of bone mineral density (BMD) has been
reported in numerous pediatric diseases that require
GCs, both as long term replacement therapy, such as 21-
hydroxylase deficiency (21-OHD), and as treatment of acute
phase, such as asthma, systemic lupus erythematosus, juve-
nile rheumatoid arthritis, inflammatory bowel disease, organ
transplantation, and steroid sensitive nephrotic syndrome
[22]. In particular, in 21-OHD patients on chronic GC ther-
apy, the high osteoclastogenic potential of peripheral blood
mononuclear cells has been reported [100]. It is supported by
both the presence of circulating OC precursors and RANKL
released by T cells [100]. Further, high dickkopf-1 (DKK1)
levels, a secreted antagonist of the Wnt/𝛽-catenin pathway,
have been demonstrated in sera and circulating monocytes,
T cells, and neutrophils from 21-OHD patients [28].

Multiple Myeloma. MM is a haematological malignancies,
characterized by the clonal proliferation of plasma cells in
the bone marrow [101]. Amajor number of mechanisms have
been proposed to explain the increased formation and activ-
ity of the bone resorbing cells, the OCs in MM bone disease,
whereas few mechanisms have been identified to explain the
impairment of the bone forming cells, the OBs. In particular,
MM cells produce different cytokines that directly or indi-
rectly affect the bone cell activity, such as IL-6, MIP-1alpha,
IL-3, DKK1, and sclerostin [101–103]. The proposed mecha-
nism is that MM cells adhere to bone marrow stromal cells
(BMSCs) and induce the secretion of numerous proosteo-
clastogenic and antiosteoblastogenic cytokines.The adhesion
involved integrins such as CTLA4-1 and VLA-4 expressed by
MM cells and VCAM-1 expressed on BMSCs [101].

Moreover, it has previously demonstrated an important
role of T cells in supporting the formation and survival ofOCs
from peripheral blood mononuclear cells (PBMCs) isolated
fromMM patients with osteolysis, through the expression of
high levels of RANKL and decoy receptor 3 (DcR3) [104, 105].
Interestingly, Giuliani et al. showed that malignant human
myeloma cells stimulate RANKL expression in T cells [66].
Additionally, other authors demonstrated the high expression
levels of IL-17 in T cells from MM patients [30–32]. IL-
17 plays a key function in the progression of bone disease
in MM, since the levels of IL-17 are higher in the more
advanced bone disease. IL-17 is also able to increase RANKL
expression on BMSCs, thus determining osteoclastogenesis
increase and consequently the development of bone lesions
[31]. The amount of Th17 in the bone marrow positively
correlated with the number of osteolytic lesions [31] as
well as the clinical tumor stage [106]. Very recently, the
involvement of LIGHT/TNFSF14 has been reported in MM-
bone disease [21]. LIGHT is a newly identified member of
the TNF superfamily, expressed by activated leukocytes [21].

Recent literature data linked the high serum levels of LIGHT
with the bone loss associated with rheumatoid arthritis [107].
Higher expression levels of LIGHT were found in CD8+
T cells, monocytes, and neutrophils from osteolytic MM
patients with respect to the same cells from asymptomatic
MM patients as well as monogammopaty of undetermined
significant (MGUS) and healthy subjects. Further, LIGHT
inhibition significantly reduces OC formation from PBMCs
of osteolytic MM patients and stimulates OB differentiation
in cultures derived from MM bone marrow mononuclear
cells, as demonstrated by the increase of colony forming units
of OBs and by the upregulation of osterix transcription factor,
bone sialoprotein, and osteocalcin bone matrix proteins.

Bone Metastatic Tumors. The skeleton is the predominant
metastatic site for many cancers, including breast, prostate,
and lung cancers [108, 109]. Tumor invasion into bone is
associated with dramatic skeletal related events (SRE) such
as fractures, bone pain, hypercalcemia, and spinal cord com-
pression [110]. The current model for the pathophysiology of
bone metastasis centers on the interaction between tumor
cells and OCs and is known as the “tumor/bone bone
vicious cycle.” Tumor cells secrete a plethora of factors and
cytokines that can directly stimulate OC activation. Once
mature OCs start to resorb the bone, they release bone-
stored factors, such as TGF-𝛽, that further stimulate tumor
cell recruitment and proliferation [111]. Animal studies have
shown that antiresorptive therapies protect from SRE and
reduce tumor burden. Thus, antiresorptive agents, such as
zoledronic acid (ZOL) and the anti-RANKL monoclonal
antibody (Ab), denosumab, are widely used in the clinic in
patients with bone metastasis [23, 24, 108]. Despite reducing
tumor-associated bone complications, recent meta-analysis
studies show controversial results on the antitumor effects of
OC blockade in breast cancer patients with bone metastasis
[112, 113]. A significant fraction of breast cancer patients with
bone metastases shows progression in their bone disease
while they are on potent antiresorptive agent treatment [114–
116]. A recent study suggested the existence of a preosteolytic
early phase of bone metastasis that is independent of OC
activation [117]. Considering the complexity of the bone
microenvironment, serving as home to hematopoietic stem
cells and their progeny, which constitute the immune system,
it is logical to consider the interactions between tumor cells
and immune cells as potentially important regulators of bone
metastasis beyond the OC.

Presence of activated CD4+ and CD8+ T cells has been
observed in the bone marrow of untreated patients with
breast cancer [118]. CD8+ T cells have the capacity to specif-
ically identify and eliminate tumor cells via recognition of
tumor-specific antigens. Activated CD4+ T cells can further
facilitate the development of cytotoxic CD8+ T cells by
secreting numerous cytokines, including Interferon 𝛾 (IFN).
Interferon 𝛾 (IFN) exerts antiproliferative [119], proapoptotic
[120], and angiostatic [121] effects resulting in the killing of a
proportion of the tumor. Thus, presence of CD4+ and CD8+
T cells at tumor site is a good prognostic indicator. However,
whether T cells modulate bone metastatic dissemination
and/or tumor growth in the bone microenvironment is not
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totally clear. In a recent report, Bidwell et al. demonstrated
that silencing of IFN regulatory factor (Irf)7, a transcription
factor controlling the induction of IFN genes, in breast
cancer cells promotes bonemetastases through escaping from
immune control [122]. Importantly, an association with low
expression of Irf7 signatures in primary breast tumors and
higher number of bone metastatic events has been observed
[122]. This finding is a strong indication that the immune
system can modulate metastatic dissemination to bone in
breast cancer patients.

Using animal models with established T cell immune
deficiencies, we have also demonstrated that CD4+ and
CD8+ T cell populations exert antitumor effects in the
context of bone metastases [123]. We found that depletion of
both CD4+ or CD8+ T cell subsets can reduce the antitumor
effects ZOL in animals with bone metastases. Importantly,
ZOL treatment is still highly effective in suppressing tumor-
induced bone loss [123]. Conversely, T cell activation induced
by administration of anti-CTLA4 Ab can significantly reduce
bone tumor burden [123].These observations have important
clinical implications and suggest that reduced T cell numbers
or impaired T cell activationmight be the cause for the failure
of ZOL to reduce tumor burden and increase survival in
breast cancer patients.

Developing neoplasms can also acquire the ability to
escape CD8+ T cell cytotoxicity by promoting expansion of
Th2-polarized CD4+ T helper and regulatory T cells, as well
as immune suppressor cells of myeloid origin reviewed in
[124–126]. Monteiro et al. recently found that CD4+ T cells
isolated from bone marrow of tumor bearing mice are potent
stimulators of osteoclastogenesis [126]. This subset of tumor-
specificCD4+T cells has the ability to promoteOC activation
and induce osteolytic bone disease even before seeding of
tumor cells in the bone microenvironment. Importantly,
when tumor-specific CD4+ T cells are adoptively transferred
into mice orthotopically injected with 4T1 tumor cells, tumor
colonization to bone, but not to other metastatic sites, is
increased. Whether this particular population of CD4+ T
cells is increasing tumor bone metastases by affecting the
OCs or also by inducing an immune suppressive environment
needs to be established.

The bone microenvironment is particularly enriched in a
highly heterogeneous population of immature myeloid pro-
genitor cells that have the ability to exert immune suppressive
effects in the presence of a tumor. This immature myeloid
population, herein referred to as myeloid derived suppressor
cells (MDSCs), represents 30–40% of the total bone marrow
cells of näıve mice and is further expanded up to 60–70%
of total marrow cells depending on the tumor type [127].
CirculatingMDSCs are detected in the blood of patients with
various types of cancer [128]. In response to factors secreted
by a tumor, MDSCs leave the bone marrow and are found in
high numbers in circulation, spleen, and tumor sites where
they induce suppression of cytotoxic T cells [129]. MDSCs
exert their proneoplastic effects through the release of small
soluble oxidizers, by altering T cell/antigen recognition, and
depletion of essential amino acids from the local extracellular
environment, all ultimately leading to T cell suppression
[130–133]. In addition, MDSCs can induce the expansion

of regulatory T cells, a subtype of T cells exerting immune
suppressive functions. Furthermore, direct effects of MDSCs
on tumor proliferation through overproduction of cytokines
and angiogenic factors have also been proposed [134].

A correlation between high MDSC numbers, advanced
stage of malignancy, and poor prognosis has been observed.
We have recently shown that increased bone metastasis in
PLC𝛾2−/− mice is due to suppression of antitumor T cells
responses. Although PLC𝛾2 is not expressed by T cells, we
found that PLC𝛾2−/− mice have increased MDSC numbers
with more potent immune suppressive effects than WT
[135]. Downregulation of PLC𝛾2 activation also occurs in the
MDSCs of patients with advanced pancreatic cancer [135].

Recent evidence also indicates that MDSCs participate
in the preparation of premetastatic niches where they create
a favorable environment for subsequent tumor colonization
[136, 137]. Accumulation ofMDSCs in bonemarrow has been
observed during early stages of MM [138]. A role for MDSCs
in promoting tumor growth in bone through the OCs has
also been proposed. Zhuang et al. discovered that MDSCs
frommice injectedwithMMcells have increased osteoclasto-
genic potential. Importantly, coinjection of tumor-challenged
MDSCs together with MM cells leads to increased tumor
burden and osteolytic lesions, an effect that is inhibited
by administration of ZOL [139]. Similarly, Sawant et al.,
using an immune competent model of breast cancer bone
metastases, showed that MDSCs isolated from the tumor
bone microenvironment differentiate into resorbing OCs in
vitro. Remarkably, MDSCs isolated from tumor-free mice
or tumor-bearing animals without bone metastases lack the
ability to undergo OC differentiation [140]. This impor-
tant observation suggests that there are intrinsic differences
between MDSCs, depending on the tumor location. Why
MDSCs from mice bearing bone metastases have the ability
to differentiate into OCs might depend on the proosteoclas-
togenic rich cytokine milieu that characterizes the tumor
bone microenvironment. However, it is unlikely that the
bone tumor promoting effects of this subset of MDSCs is
primarily dependent on their ability to differentiate into
OCs. PLC𝛾2−/− mice display increased bone metastatic
dissemination and higher MDSC numbers, but deletion of
PLC𝛾2−/− also impairs the OC differentiation process [123,
135].Thus, in the context of PLC𝛾2−/− deficiency,MDSCs are
more likely to support tumor growth in bone by suppressing
T cell activity. All together, these studies indicate thatMDSCs
are central players in the tumor/bone vicious cycle either
through suppression of antitumor T cell responses or through
differentiation into resorbing OCs.

Unfortunately to date there is no curative treatment
for bone metastasis. Tumor cells that reach the bone envi-
ronment are usually resistant to the current antitumor
therapeutic approaches. The only options for these patients
are palliative treatments to reduce bone pain and prevent
additional bone destruction. More studies are needed to
exploit the importance of antitumor and tumor promoting
immune responses in patients with bone metastases and
whether manipulation of T cell-MDSC interactions could
offer therapeutic advantages to maximize the antitumor
effects of OC blockade.
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Table 1: Established and possible novel therapeutic targets in the
different bone diseases.

(a)

Established
therapeutic
targets

Pathologies References

TNF-𝛼 PsA [20]

RANKL
PsA, osteoporosis,
MM, and bone

metastatic tumors
[22–27]

IL-17 PsA [29]
IL-23 PsA [29, 33]
IL-17RA PsA [36]

(b)

Possible
novel
therapeutic
targets

Pathologies References

LIGHT MM [21]

DKK1 Bone metastasis and
GIO [28]

IL-17 MM [30–32]
MDSC
targeting Bone metastasis [34, 35]

2. Conclusions

The reviewed mechanisms underlying the bone disease
clearly highlighted the key involvement of the cells with an
immunological role. Further, it is also clear that numerous
pathways are common to the different diseases, whereas
others are disease-specific. Thus, these recent findings repre-
sent an important issue, leading to the identification of new
therapeutic targets, mainly biological drugs, which in the last
years are in strong development (Table 1).
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