
This is an author version of the contribution published on:

R. Aringhieri, M. Bruglieri, and R. Cordone.

Optimal results and tight bounds for the maximum diversity problem.

Foundations of Computing and Decision Sciences, 34(2):73-85, 2009.

DOI: –

The definitive version is available at:

http://fcds.cs.put.poznan.pl/fcds2/

http://fcds.cs.put.poznan.pl/fcds2/

OPTIMAL RESULTS AND TIGHT BOUNDS FOR THE
MAXIMUM DIVERSITY PROBLEM

Roberto ARINGHIERI ∗, Maurizio BRUGLIERI † Roberto CORDONE ‡

Abstract. The Maximum Diversity Problem (MDP) consists in selecting a subset
M of given cardinality out of a set N , in such a way that the sum of the pairwise
diversities between the elements of M is maximum. New instances for this problem
have been recently proposed in the literature and new algorithms are currently under
study to solve them. As a reference for future research, this paper provides a collection
of all best known results for the classical and the new instances, obtained by applying
the state-of-the-art algorithms. Most of these results improve the published ones.
In addition, the paper provides for the first time a collection of tight upper bounds,
proving that some of these instances have been optimally solved. These bounds have
been computed by a branch-and-bound algorithm based on a semidefinite formulation
of the Quadratic Knapsack Problem (QKP), which is a generalization of the MDP.

Keywords: Maximum Diversity Problem, Tabu Search, Semidefinite Program-
ming

1 Introduction

Given a set N of n objects, an integer number m and a matrix D = {dij} expressing
the diversity between each pair of objects i and j in N , the Maximum Diversity
Problem (MDP) requires to find a collection M ⊂ N of m objects such that the sum
of their pairwise diversities is maximum. It is customary to assume, w.l.o.g., that
the diversity matrix is symmetric (dij = dji for all i, j ∈ N) and that dii = 0 for all
i ∈ N [11].

∗Roberto Aringhieri (roberto.aringhieri@unito.it) Dipartimento di Informatica, Università
degli Studi di Torino, Corso Svizzera 185, 10149 Torino, Italy

†Maurizio Bruglieri (maurizio.bruglieri@polimi.it) INDACO, Politecnico di Milano, via Du-
rando 38/a, 20158 Milano, Italy

‡Roberto Cordone (roberto.cordone@unimi.it) DTI, Università degli Studi di Milano, via Bra-
mante 65, 26013 Crema, Italy

This NP-hard problem [13] has been recently tackled by a number of heuristic
approaches, such as the Greedy Randomized Adaptive Search Procedure (GRASP)
with path relinking proposed in [16] and [2], the hybrid GRASP proposed by [15],
the Tabu Search algorithms developed in [8] and [4], the Scatter Search algorithms
described in [9] and [3] and the Variable Neighborhood Search algorithm introduced
in [3]. A few exact algorithms were proposed much earlier (e.g. [10]) to solve small
instances. A combinatorial branch-and-bound algorithm [14] has been tested on a
benchmark generated ad hoc, solving all instances from 10 to 50 elements and some
instances up to 150 elements.

The present work is motivated by the following remarks:

1. Nearly all recent algorithms achieve identical results on the classical instances
proposed in [1] and [17], whose size ranges from n = 50 to n = 500. This is a
strong hint that the published results might be optimal, but no formal proof of
that has ever been made available.

2. Four new sets of benchmark instances have been recently proposed [8]. The
best results on these benchmarks are available only for some of the published
algorithms and they refer to a limited computational time. Our experiments
suggest that these results are far from being optimal and that the state-of-
the-art algorithms can strongly improve them in a longer, but still reasonable,
amount of time.

3. A tight upper bound on the available MDP benchmarks would certainly be
useful to estimate the quality of the known results; to the best of our knowledge,
no such bound has ever been published in the literature.

4. A frequently overlooked fact is that the MDP is a special case of the Quadratic
Knapsack Problem (QKP), for which exact algorithms exist (mostly based on
semidefinite relaxations [12]) and can provide optimal results or at least tight
bounds.

Our purpose is to provide the reader with a complete collection of the best results
obtained by the presently available algorithms for the MDP, with a collection of
tight upper bounds and with some optimal results, in order to guarantee a sound
reference for the evaluation and development of further algorithms on this problem.
The purpose of this paper is not an experimental comparison of heuristic algorithms:
such a comparison has already been done in [4] and [8], respectively on the classical
and on the new instances, in both cases leading to conclude that Tabu Search has
the strongest performance. The following results derive from a (truncated) branch-
and-bound algorithm starting from the best known heuristic solution. The branch-
and-bound algorithm described in Section 2 is an unpublished adaptation of a similar
algorithm for the QKP [12]. It is initialized by the Tabu Search briefly introduced in
Section 2.1 and described in detail in [4]. Section 3 presents the benchmark instances.
All optimality proofs, all upper bounds and a large part of the heuristic solution
values reported in Section 4 are unpublished.

2 A semidefinite-based branch-and-bound algorithm for the
MDP

The MDP can be formulated in terms of an unknown symmetric square matrix X =
{xij} of size n+ 1, where xij = 1 if i = j = 0, or i = 0, j > 0 and element j belongs
to solution M , or i > 0, j = 0 and element i belongs to M , or i, j > 0 and both
elements i and j belong to M (in particular, xii = 1 if i ∈M); xij = 0 otherwise.

z = max
1

2
D̃ •X (1)

rank (X) = 1 (2)

X � 0 (3)

x00 = 1 (4)

xii − x0i = 0 i ∈ N (5)∑

j∈N

xij = mxii i ∈ N (6)

∑

j∈N

(xjj − xij) = m (1− xii) i ∈ N (7)

Here • denotes the Frobenius product between matrices and D̃ is the matrix of size
n+1 obtained from D adding null vectors as row 0 and column 0, so that objective (1)
is the total diversity. Constraints (2), (3) and (4) guarantee that X =

(
1
x

) (
1 xT

)

for a suitable column vector x, since rank (X) is the rank of matrix X and X � 0
means that matrix X is positive semidefinite. Vector x may be interpreted as the
incidence vector of solution M ; in fact, constraints (5) guarantee that the entries of
X are all binary.

Constraints (6) and (7) represent the cardinality requirement. A simpler expres-
sion of this requirement would be I •X = m+1, where I is the identity matrix of size
n+1. This expression clearly shows that the MDP is a special case of the Quadratic
Knapsack Problem [12], in which the weight coefficient matrix is set equal to the
identity matrix I, while the inequality knapsack constraint is replaced by an equality
one without loss of generality (all diversities are ≥ 0). Constraints (6) and (7) are,
however, much tighter than I • X = m + 1. Most other valid inequalities for the
Quadratic Knapsack Problem [12] are useless for this special case and the correspond-
ing formulations collapse to (1)-(7).

An upper bound can be obtained by relaxing the non-convex rank constraint (2)
and solving the resulting problem with a semidefinite programming solver. We used
CSDP 5.0 [5].

Our branch-and-bound algorithm applies a best-bound visit strategy (always pro-
cess the open node with the highest upper bound). Branching occurs by selecting the
element i∗ such that

i∗ = argmin
i∈N

∣∣∣∣xii −
1

2

∣∣∣∣

where xij is the solution of the relaxed problem.

Two subproblems are generated by forcing i∗, respectively, out of or into the
solution. In the former case, the problem is trivially reduced by removing the row
and column referring to element i∗ from the data and from the variable matrix X. In
the latter case, element i∗ is again removed, but the following updates must also be
performed:

• constant m is replaced by m′ = m − |M ′|, where M ′ is the set of elements
currently forced into the solution;

• the diversities dij are replaced by auxiliary coefficients:

d′ij ← dij +

∑
k∈M ′

(dik + djk)

m′

• an offset term equal to 1
2

∑
h,k∈M ′

dhk is added to the solution of the reduced

problem.

Any feasible solution of the reduced problem corresponds to a solution of the original
problem, which has the same value thanks to the cardinality constraint, to the aux-
iliary coefficients (which take into account the diversities with respect to the already
fixed elements) and to the offset term (which takes into account the total diversity
between the fixed elements).

The branch-and-bound starts with the best solution obtained by the XTS algo-
rithm described in Section 2.1 (for further details see [4]), apart from a small number
of cases in which a better value is known from the literature. In these cases, the best
known value is used (see Section 4 for further details). A heuristic solution, which
might improve the current lower bound, is also derived at each node from the solution
X of the semidefinite relaxation, by selecting the m elements with the largest diagonal
terms xii (except, of course x00).

2.1 An eXploring Tabu Search (XTS)

A trivial greedy heuristic builds a starting solution by initializing M with the pair
of elements of maximum diversity dij and iteratively adding the element i∗ with the
maximum contribution ∆i∗ to M . This solution is improved by a Tabu Search based
on the exchange between an element s in the solution and an element t out of it
(M ← M ∪ {t} \ {s}) [4]. The non-tabu move yielding the largest improvement in
the objective function is applied, but a move improving the best known solution is
always performed, even if it is tabu (aspiration criterion).

We define two independent tabu lists: the former forbids a recently removed el-
ement to enter the solution for `in iterations, whilst the latter forbids a recently in-
cluded element to exit for `out iterations. The lengths of both tabu lists (tabu tenure)
decrease if the objective function has improved in the most recent iterations. This
intensifies the search in the regions which provide improving solutions, and therefore

appear more promising. The tabu tenure increases if the objective function has wors-
ened, in order to speed up the leaving from those regions which provide worsening
solutions, and therefore probably surround an already visited local optimum.

The algorithm also adopts a long term memory mechanism known as eXploring
Tabu Search (XTS) [6]. The basic idea is to maintain a set of good solutions M of
fixed cardinality. When exploring a neighborhood, the best solution M∗ becomes the
incumbent, and the second best solutionM ′ is inserted inM, if its value is better than
the worst inM. The search restarts from the best solution inM every time either the
best known solution is not improved for a suitable number of iterations (assuming the
currently explored region to be unpromising) or the length of one of the two tabu lists
resides in the upper half of its range for a suitable number of consecutive iterations
(assuming the short term mechanism to be insufficient to diversify the search). We
adopted the same set of parameters published in [4], increasing the total number of
iterations from 3 000 to 100 000.

3 Benchmark instances

At present, the following five sets of benchmark instances for the MDP are publicly
available at web sites http://www.uv.es/~rmarti/paper/results/mmdp%20instances.
zip and http://www.di.unito.it/~aringhie/benchmarks.html:

• benchmark APOM [1] includes 40 instances with n ranging from 50 to 250 and
m from 0.2n to 0.4n, subdivided into:

– type A: the elements are points on a plane, with random coordinates ex-
tracted from [1, 9]; the dij values are Euclidean distances;

– type B: all dij values are random integers uniformly drawn from [1, 9999];

– type C: the values are random integers; half of them are uniformly dis-
tributed in [1, 9999], the other half in [1, 4999];

– type D: the values are random integers; half of them are uniformly dis-
tributed in [1, 9999], the other half in [5000, 9999];

• benchmark SOM [17], consists of 20 instances with n ranging from 100 to 500
and m from 0.1n to 0.4n; the dij coefficients are random integers uniformly
distributed in [0, 9];

• benchmark GKD [8] consists of 20 instances with n = 500 and m = 50, in which
the elements are points in a 10-dimensional space with coordinates randomly
generated in [0, 10]; the dij values are Euclidean distances.

• benchmark DM1 [8], consists of 60 instances with real numbers generated from
a [0, 10] uniform distribution; 20 instances have n = 500 and m = 200, 20
instances have n = 2000 and m = 200, 20 instances have n = 500 and m = 50;

• benchmark DM2 [8], consists of 20 instances with real numbers generated from
a [0, 1000] uniform distribution; they have n = 500 and m = 50

4 Reference results

This section reports the results obtained by the branch-and-bound algorithm on all
160 publicly available instances of the MDP with a time limit of 24 hours of computa-
tion for each instance. The upper bounds reported correspond either to the optimum
value (for the instances which could be solved exactly) or to the largest upper bound
of the branching nodes still open at the end of the time limit. The lower bounds cor-
respond to the heuristic solutions provided by algorithm XTS, with a few exceptions
(specified in the following), in which they correspond to a better result available from
the literature. In all instances of the benchmark, the branch-and-bound was unable
to improve these starting solutions.

As for the 60 instances of the classical benchmarks APOM and SOM, the algorithm
was able to prove for 15 of them (all belonging to benchmark APOM) the optimality
of the previously best known result. For the other 45, it could only confirm these
results and provide an upper bound (with an average gap equal to 3.58%). Tables 1
and 2 report the results on these benchmarks. The first column reports the name
of each instance, the next two ones the upper and lower bound on the optimum
obtained by the branch-and-bound algorithm (a single value when optimum), the last
one the percent gap between them (symbol “−” means that the value is optimum,
while “0.00%” means that the gap is lower than 0.005%). For all these instances, the
starting solution (which coincides with the final one) was provided by algorithm XTS,
with three exceptions. The values for instances b200m80 and b250m100 are drawn
from [2], where they are attributed to previous algorithms. On these instances, both
XTS and the branch-and-bound could only confirm the values obtained in [2], which
are lower by 1 and 2, respectively, than the best known ones. The solution for instance
b250m50 was obtained by the Scatter Search and the Variable Neighbourhood Search
described in [3], but also some variants of XTS could obtain it.

An interesting remark about these result is that the instances with a smaller ratio
m/n between the number of chosen elements and the total cardinality of the set prove
consistently harder to solve, and exhibit a larger gap.

The best known results for the 20 instances of benchmark GKD, obtained by the
Tabu Search described in [8] and confirmed by XTS could not be improved by the
branch-and-bound algorithm. Table 3 reports them, together with the corresponding
upper bounds. These show that they appear to be easy instances. In fact, though
none of these instances could be solved exactly, the gap is always negligible. The table
has the same structure as the previous ones, but it reports the absolute gap instead
of the relative one, because the latter is always < 0.01%.

For the new benchmarks DM1 and DM2, XTS was able to improve the best known
result in 65 cases out of 80 (in particular, 19 of the 20 instances of benchmark DM1
with n = 2000) and to confirm it in 5 cases. In 10 cases out of 80, XTS could neither
improve nor equal the best solution known from the literature, which always derives
from the Tabu Search described in [8]. Since the aim of this work was specifically
to provide the best possible reference results for further research on this problem, we
have decided to initialize the branch-and-bound algorithm with the best known value
from [8] in these 10 cases.

Instance UB LB Gap (%)

a050m10 491.9 -
a050m20 1931.6 -
a100m20 2007.1 -
a100m40 7730.1 -
a150m30 4552.1 -
a150m60 17482.4 -
a200m40 8132.1 -
a200m80 31048.5 -
a250m50 12654.0 -
a250m100 48384.3 -

b050m10 334976 -
b050m20 1171416 -
b100m20 1313134 1267277 3.62%
b100m40 4586165 4544642 0.91%
b150m30 2870909 2758381 4.08%
b150m60 10078202 9960461 1.18%
b200m40 5004846 4788086 4.53%
b200m80 17733881 17544448 1.08%
b250m50 7737888 7389784 4.71%
b250m100 27560109 27168460 1.44%

c050m10 316409 -
c050m20 1094343 -
c100m20 1210319 1207522 0.23%
c100m40 4219641 4219476 0.00%
c150m30 2657611 2613286 1.70%
c150m60 9377502 9374611 0.03%
c200m40 4719609 4630545 1.92%
c200m80 16772509 16759895 0.08%
c250m50 7357973 7178043 2.51%
c250m100 26083700 26047022 0.14%

d050m10 381666 381379 0.08%
d050m20 1502908 -
d100m20 1620542 1570800 3.17%
d100m40 6082499 6067776 0.24%
d150m30 3664656 3502567 4.63%
d150m60 13673082 13611262 0.45%
d200m40 6500167 6207580 4.71%
d200m80 24244853 24133321 0.46%
d250m50 10163567 9685430 4.94%
d250m100 37917432 37753120 0.44%

Table 1: Results on the APOM instances

Instance UB LB Gap (%)

n100m10 369 333 10.81%
n100m20 1228 1195 2.76%
n100m30 2465 2457 0.33%
n100m40 4176 4142 0.82%
n200m20 1475 1247 18.28%
n200m40 4679 4450 5.15%
n200m60 9605 9437 1.78%
n200m80 16425 16225 1.23%
n300m30 3136 2694 16.41%
n300m60 10220 9689 5.48%
n300m90 21265 20743 2.52%
n300m120 36313 35881 1.20%
n400m40 5405 4658 16.04%
n400m80 17833 16956 5.17%
n400m120 37157 36317 2.31%
n400m160 63346 62487 1.37%
n500m50 8200 7141 15.01%
n500m100 27353 26258 4.17%
n500m150 57615 56572 1.84%
n500m200 98411 97344 1.10%

Table 2: Results on the SOM instances

Instance UB LB Gap

1 19 485.6 19 485.2 0.4
2 19 702.8 19 701.6 1.2
3 19 547.3 19 547.3 < 0.05
4 19 596.5 19 596.5 < 0.05
5 19 603.0 19 602.6 0.4
6 19 421.7 19 421.6 0.1
7 19 534.1 19 534.0 0.1
8 19 488.4 19 487.4 1.0
9 19 221.7 19 221.7 < 0.05
10 19 703.4 19 703.4 < 0.05
11 19 587.9 19 587.1 0.8
12 19 360.7 19 360.3 0.4
13 19 366.8 19 366.8 < 0.05
14 19 458.6 19 458.6 < 0.05
15 19 423.6 19 422.2 1.4
16 19 680.1 19 680.1 < 0.05
17 19 331.5 19 331.5 < 0.05
18 19 461.3 19 461.3 < 0.05
19 19 477.4 19 477.4 < 0.05
20 19 604.9 19 604.9 < 0.05

Table 3: Results on the GKD instances

Instance UB LB Gap (%)

1 108 539.3 107 394.8∗ 1.07%
2 108 366.5 107 156.0∗ 1.13%
3 108 323.0 107 260.4 0.99%
4 108 256.7 107 010.9 1.16%
5 108 102.5 106 944.6 1.08%
6 108 364.6 107 164.5∗ 1.12%
7 108 211.7 107 079.4 1.06%
8 108 259.1 107 038.3 1.14%
9 108 497.0 107 482.7 0.94%
10 108 404.2 107 265.8 1.06%
11 108 305.8 107 181.6 1.05%
12 108 045.7 106 853.5 1.12%
13 108 771.5 107 647.3 1.04%
14 108 502.1 107 423.7 1.00%
15 108 265.1 107 038.3 1.15%
16 108 597.0 107 420.7 1.10%
17 108 317.0 107 101.9 1.13%
18 108 201.4 106 982.1 1.14%
19 108 221.7 107 036.9 1.11%
20 108 015.4 106 815.7 1.12%

Table 4: Results on the DM1 instances with n = 500 and m = 200

Tables 4 to 7 report the results on these benchmarks. Their structure is the same as
in the previous tables. The lower bounds always correspond to the initial solution, and
it is marked by an asterisk (∗) in the 10 cases in which it derives from the literature [8]
and by an apex (′) in the 5 cases in which the result found by XTS equalled the
previous one. The other 65 best known results are new; they were all obtained by
XTS and the branch-and-bound could not improve them. The computational time
is always 24 hours and it includes the time required by XTS, which if of course
negligible. The interested reader can easily compute a quite precise approximation
of the computational time for XTS as γIm (n−m), where I = 100 000 is the total
number of iterations and γ is a machine-dependent coefficient. In our campaign, we
used a 2.2 GHz 2 Dual Core AMD Opteron(tm) Processor 275, with 3 GB of memory
and 250 GB of hard disk. For this machine, γ ≈ 1.05 · 10−8 seconds, so that the time
ranges from 24 seconds (for n = 500 and m = 50) to 380 seconds (for n = 2000 and
m = 200). The time required to obtain the best result is on average much lower.

As well as the classical benchmarks APOM and SOM, the new benchmarks prove
consistently harder when the ratiom/n is smaller: the gap is about 13% when n = 500
and m = 50 and 9% when n = 2000 and m = 200, versus a gap about 1% when
n = 500 and m = 200.

Though the purpose of this paper is not an experimental comparison of heuristics,
we can make some further remarks on the two Tabu Search algorithms which provide
the starting solutions. The one proposed in [8] (see the conclusions in the original
paper) implements a straightforward short-term memory function, with the aim to

Instance UB LB Gap (%)

1 124 527.0 113 935 9.30%
2 124 516.9 113 910 9.31%
3 124 509.5 113 932 9.28%
4 124 477.9 113 539 9.63%
5 124 513.0 113 798 9.42%
6 124 545.0 113 961∗ 9.29%
7 124 512.7 113 873 9.34%
8 124 515.3 113 943 9.28%
9 124 537.4 114 070 9.18%
10 124 543.2 113 999 9.25%
11 124 551.2 113 994 9.26%
12 124 551.8 114 047 9.21%
13 124 485.2 113 849 9.34%
14 124 544.2 114 037 9.21%
15 124 522.8 114 036 9.20%
16 124 450.2 113 831 9.33%
17 124 578.5 114 078 9.20%
18 124 491.0 114 202 9.01%
19 124 473.9 113 967 9.22%
20 124 672.4 113 968 9.39%

Table 5: Results on the DM1 instances with n = 2000 and m = 200

Instance UB LB Gap (%)

1 8 846.4 7 833.8′ 12.92%
2 8 790.3 7 754.9∗ 13.35%
3 8 813.8 7 757.1 13.62%
4 8 841.4 7 765.1 13.86%
5 8 785.7 7 755.2 13.29%
6 8 808.6 7 773.7 13.31%
7 8 807.4 7 752.7∗ 13.60%
8 8 780.4 7 741.0 13.43%
9 8 810.8 7 760.7 13.53%
10 8 844.7 7 778.7∗ 13.70%
11 8 822.8 7 771.0 13.54%
12 8 809.8 7 757.7∗ 13.56%
13 8 837.8 7 785.7 13.51%
14 8 802.2 7 795.6 12.91%
15 8 844.8 7 725.9 14.48%
16 8 840.0 7 792.8′ 13.44%
17 8 815.6 7 787.2 13.21%
18 8 819.3 7 756.3′ 13.71%
19 8 826.9 7 755.4′ 13.82%
20 8 787.6 7 733.9′ 13.63%

Table 6: Results on the DM1 instances with n = 500 and m = 50

Instance UB LB Gap (%)

1 884 050.7 778 030.6 13.63%
2 881 235.1 779 963.8∗ 12.98%
3 879 991.5 776 471.4∗ 13.33%
4 884 152.0 775 394.5 14.03%
5 881 461.8 775 611.4∗ 13.65%
6 878 124.3 775 153.6 13.28%
7 882 925.0 776 716.3 13.67%
8 886 052.8 779 168.6 13.72%
9 879 887.5 774 801.8∗ 13.56%
10 883 543.4 774 393.9 14.09%
11 881 098.8 777 468.8 13.33%
12 879 054.3 775 492.9 13.35%
13 879 878.1 780 191.9∗ 12.78%
14 888 410.8 782 232.7 13.57%
15 884 916.8 780 300.6∗ 13.41%
16 879 427.5 775 436.2 13.41%
17 881 565.9 775 292.9 13.71%
18 881 016.8 775 735.5 13.57%
19 884 906.8 778 802.8∗ 13.62%
20 878 128.9 778 644.7 12.78%

Table 7: Results on the DM2 instances

produce high quality solutions in short computation time. The published results
have been obtained in 10 seconds of computation on a Pentium IV at 3GHz with
1GB of RAM. The purpose of XTS is somewhat complementary: it exploits more
refined memory mechanisms to produce nearly optimal solutions in a reasonable time.
Consequently, its computational time is larger (from 24 to 380 seconds, though on a
different machine). In an attempt to compare the two algorithms on an equal-time
basis, we ran XTS for a fixed time determined by multiplying the time limit used
in [8] by a coefficient derived from Dongarra [7] in order to roughly account for the
different performance of the two machines employed. The results turned out to be
scarcely significant: as a matter of fact, in a large number of instances, different runs
of XTS obtained significantly different results. This is due to the fact that the number
of iterations performed in a fixed time limit cannot be rigorously fixed and that a time
limit comparable to the one used in [8] terminates XTS when it has still a relevant
potential for improvement. Though this is not explicitly stated in the original paper,
it is a rational assumption that the 10-second time limit for the simpler Tabu Search
exceeds, as it is usual, the time of the last improvement, and therefore that algorithm
is not affected by such a phenomenon. The comparison is further impoverished by
the fact that Dongarra’s coefficient is necessarily approximated and therefore the
the correct time limit could be different. Our conclusion is that, given the different
time scales for which the two algorithms are conceived, they should be considered as
different tools for different purposes, hardly comparable at all.

Acknowledgments

The authors wish to thank Mr. Alberto Ghilardi for his contribution to the organi-
zation of the experimental campaign.

References

[1] P. M. D. Andrade, A. Plastino, L. S. Ochi, and S. L. Martins. GRASP for
the Maximum Diversity Problem. In Proceedings of the Fifth Metaheuristics
International Conference (MIC 2003), 2003.

[2] P. M. D. Andrade, L. S. Plastino, and S. L. Martins. GRASP with path-
relinking for the maximum diversity problem. In S. Nikoletseas, editor, Proceed-
ings of the 4th International Workshop on Efficient and Experimental Algorithms
(WEA 2005), volume 3539 of Lecture Notes in Computer Science, pages 558–569.
Springer Berlin / Heidelberg, 2005.

[3] R. Aringhieri and R. Cordone. Better and faster solutions for the maximum
diversity problem. Note del Polo 93, Università degli Studi di Milano, Crema,
April 2006.

[4] R. Aringhieri, R. Cordone, and Y. Melzani. Tabu search vs. GRASP for the
maximum diversity problem. 4OR: A Quarterly Journal of Operations Research,
6(1):45–60, 2008.

[5] B. Borchers. CSDP 5.0 User Guide, September 2005.

[6] M. Dell’Amico and M. Trubian. Solution of large weighted equicut problems.
European Jurnal of Operational Research, 106:500–521, 1998.

[7] J. J. Dongarra. Performance of various computers using standard linear equa-
tions software. Report CS-89-85, Computer Science Department, University of
Tennesse, 2008.

[8] A. Duarte and R. Mart̀ı. Tabu search and GRASP for the maximum diversity
problem. European Journal of Operational Research, 178(1):71–84, April 2007.

[9] M. Gallego, A. Duarte, M. Laguna, and R. Mart̀ı. Hybrid heuristics for the
maximum diversity problem. Technical report, University of Valencia, June 2006.

[10] J. B. Ghosh. Computational aspects of maximum diversity problem. Operation
Research Letters, 19:175–181, 1996.

[11] F. Glover, G. Hersh, and C. McMillian. Selecting subset of maximum diversity.
MS/IS 77-9, University of Colorado at Boulder, 1977.

[12] C. Helmberg, F.Rendl, and R. Weismantel. A semidefinite programming ap-
proach to the quadratic knapsack problem. Journal of Combinatorial Optimiza-
tion, 4(2):197–215, 2000.

[13] C. C. Kuo, F. Glover, and K.S. Dhir. Analyzing and modeling the maximum
diversity problem by zero-one programming. Decision Science, 24:1171–1185,
1993.

[14] R. Mart̀ı, M. Gallego, and A. Duarte. A branch and bound algorithm for the
maximum diversity problem. European Journal of Operational Research. [in
press].

[15] L.F. Santos, M.H. Ribeiro, A. Plastino, and S.L. Martins. A Hybrid GRASP
with Data Mining for the Maximum Diversity Problem. In M.J. Blesa, C. Blum,
A. Roli, and M. Sampels, editors, Hybrid Metaheuristics, Second International
Workshop, volume 3636 of Lecture Notes in Computer Science, pages 116–127.
Springer Berlin / Heidelberg, 2005.

[16] G. C. Silva, M. R. Q. de Andrade, L. S. Ochi, S. L. Martins, and A. Plastino. New
heuristics for the maximum diversity problem. Journal of Heuristics, 13:315–336,
2007.

[17] G. C. Silva, L. S. Ochi, and S. L. Martins. Experimental comparison of greedy
randomized adaptive search procedures for the maximum diversity problem. In
Proceedings of the 3rd International Workshop on Efficient and Experimental
Algorithms (WEA 2004), volume 3059 of Lectures Notes on Computer Science,
pages 498–512. Springer Berlin / Heidelberg, 2004.

Received April, 2009

