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BACKGROUND AND PURPOSE 

Cholesteryl butyrate solid lipid nanoparticles (cholbut SLN) provide a delivery system for the anti-

cancer drug butyrate. These SLN inhibit the adhesion of polymorphonuclear cells to the 

endothelium and may act as anti-inflammatory agents. As cancer cell adhesion to endothelium is 

crucial for metastasis dissemination, here we have evaluated the effect of cholbut SLN on adhesion 

and migration of cancer cells. 

EXPERIMENTAL APPROACH 

Cholbut SLN was incubated with a number of cancer cell lines or human umbilical vein endothelial 

cells (HUVEC) and adhesion was quantified by a computerized micro-imaging system. Migration 

was detected by the scratch ‘wound-healing’ assay and the Boyden chamber invasion assay. 

Expression of ERK and p38 MAPK was analysed by Western blot. Expression of the mRNA for E-

cadherin and claudin-1 was measured by RT-PCR. 

KEY RESULTS 

Cholbut SLN inhibited HUVEC adhesiveness to cancer cell lines derived from human colon–

rectum, breast, prostate cancers and melanoma. The effect was concentration and time-dependent 

and exerted on both cancer cells and HUVEC. Moreover, these SLN inhibited migration of cancer 

cells and substantially down-modulated ERK and p38 phosphorylation. The anti-adhesive effect 

was additive to that induced by the triggering of B7h, which is another stimulus inhibiting both 

ERK and p38 phosphorylation, and cell adhesiveness. Furthermore, cholbut SLN induced E-

cadherin and inhibited claudin-1 expression in HUVEC. 

CONCLUSION AND IMPLICATIONS 

These results suggest that cholbut SLN could act as an anti-metastastic agent and they add a new 

mechanism to the anti-tumour activity of this multifaceted preparation of butyrate. 
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Introduction 

Colorectal carcinoma (CRC) is one of the most frequent malignancies in both men and women in 

the Western world, in terms of both incidence and mortality (O'Neil and Goldberg, 2008). The 

propensity of CRC cells to invade surrounding tissues and metastasize to other organs is responsible 

for most deaths. The majority of CRCs are sporadic, and dietary risk factors are involved in their 

development. Epidemiological evidence suggests that a high-fibre diet is protective (Giovannucci et 

al., 1992; Scharlau et al., 2009), whose fermentation by colonic flora yields short-chain fatty acids 

(SCFAs) postulated to be important protective factors. The concentration of SCFAs may reach 

approximately 100 mM in the colon lumen and butyrate constitutes about 20–30% of these SCFAs 

(Cummings, 1981). Butyrate is taken up by colon epithelial cells and serves as a major source of 

energy for the colon mucosa. It stimulates fluid and electrolyte absorption, inhibits colon 

inflammation and oxidative stress, improves the colon's defence barriers and inhibits colon 

carcinogenesis (Gonçalves et al., 2009). The absence of butyrate is associated with mucosal atrophy 

and death of the colon cells. Butyrate has received close attention as a potential chemopreventive 

agent (Wollowski et al., 2001; Delzenne et al., 2003), especially because in vitro exposure of 

tumour cells to this agent has been shown to induce apoptosis, inhibit proliferation and promote 

differentiation (Kobayashi et al., 2003), not only in CRC cells but also in breast, gastric, lung, brain 

and pancreas cancer cells (Brioschi et al., 2008). Sodium butyrate is an inhibitor of histone 

deacetylase (HDAC) and has displayed some efficacy as an anti-tumour drug in phase I and phase II 

clinical trials (Minucci and Pelicci, 2006). Unfortunately, its clinical use is limited by its short half-

life, which is due to its rapid metabolism through the liver and rapid excretion (Pellizzaro et al., 

1999). This requires its continuous parenteral administration to maintain therapeutic concentrations. 

Furthermore, adverse events (such as anaemia, headache, nausea, diarrhoea, abdominal cramps and 

strong odour) further reduce patient compliance. 



The formation of clinically detectable tumour metastasis involves several steps that proceed in a 

defined sequence. Survival of the primary tumour beyond a certain size requires the production of 

angiogenic factors inducing the vascularization of the tumour mass. The next step is dissemination 

of tumour cells in the bloodstream and their homing to the site of the metastasis, where the tumour 

cell must proliferate in order to produce a detectable metastasis. Although the rate-limiting step of 

this process is unknown, the adhesion of the tumour cells to the vascular endothelium and the 

subsequent extravasation at the site of metastasis seem to be of crucial importance (Weiss, 1990). 

This process involves molecular interactions similar to those used in the course of leucocyte 

recruitment into tissues, which is crucial for the inflammatory and immune responses. This process 

is regulated by adhesion receptors and their ligands, whose expression and function are finely 

regulated in both vascular endothelial cells (EC) and leucocytes according to cell type, functional 

state and anatomical location, and it builds up a complex network of interactions that 

simultaneously involve several adhesion receptors (Dianzani and Malavasi, 1995; Laferrière et al., 

2001; 2004; Ley et al., 2007). The function of these adhesion receptors is mainly regulated by 

modulating their expression level, but some of them also modulate their intrinsic adhesiveness in 

response to activating stimuli. They cooperate in a multistep process involving (i) cell rolling on the 

EC surface, mediated by selectins; (ii) activation of integrins from a low to a high adhesive 

conformation, mediated by chemokines; (iii) cell arrest, mediated by integrins; and (iv) 

extravasation, mediated by integrins and other molecules such as CD31, JAM-A and CD44. 

However, this schematic picture underestimates the complexity of the process, as several adhesion 

molecules play roles in many steps. 

Solid lipid nanoparticles (SLN) have been extensively studied as promising innovative carriers for 

drugs and diagnostics (Westesen et al., 1997; Gasco, 2001; Dianzani et al., 2006). In the field of 

oncology, their use has been already evaluated in preclinical and clinical trials, and even approved 

for clinical use in some instances (Manjunath et al., 2005). SLN, prepared from a warm 



microemulsion and carrying a drug (either hydrophilic or lipophilic), have been tested in vivo in 

animals via duodenal, i.v. and ocular administration (Dianzani et al., 2006; Brioschi et al., 2008). 

SLN can increase bioavailability and modify the pharmacokinetics and tissue distribution of the 

incorporated drug. Generally, the lipophilic matrix consists of fatty acids and/or triglycerides 

(Gasco, 2001). Cholesteryl butyrate (cholbut) SLN have been prepared using the microemulsion 

method (Matsumura and Kataoka, 2009); they have a spherical shape with an average diameter of 

around 80 nm, and they have been extensively studied as a pro-drug of butyric acid (Gasco, 2004). 

In several tumour cell lines, they were internalized within a few minutes and displayed a greater 

anti-neoplastic effect than that of butyrate (Westesen et al., 1997; Salomone et al., 2001; Serpe et 

al., 2004). 

In earlier work (Dianzani et al., 2006), we showed that cholbut SLN inhibited the adhesion of 

polymorphonuclear cells (PMNs) to HUVEC, and we suggested that they may be used as anti-

inflammatory agents in chronic inflammatory diseases. The aim of the research reported here was to 

extend the analysis and assess the anti-metastatic potential of cholbut SLN, as tumour cell adhesion 

to EC – which is crucial for their metastatic dissemination – uses mechanisms similar to those used 

by PMNs (Dianzani et al., 2010). The results showed that cholbut SLN strikingly decreased 

adhesion of tumour cell lines to human umbilical vein endothelial cells (HUVEC) and the migration 

of cancer cells. These effects seemed to be mediated by inhibition of the ERK and p38 pathways on 

HUVEC and tumour cell lines, and they supported the possible efficacy of cholbut SLN in anti-

cancer therapy. 

Methods 

Preparation of cholbut SLN and sodium butyrate solutions 

Cholbut SLN were prepared by the microemulsion method reported elsewhere (Pellizzaro et al., 

1999) and described in PATENT WO0030620. Briefly, a warm oil-in-water microemulsion was 

prepared from cholesteryl butyrate (Asia Talent Chemical, Shenzen, China), Epikuron 200 (Cargill, 



Milan, Italy), sodium glycocholate and water; 2-phenylethanol was added as a preservative. The 

warm microemulsion was dispersed in cold water, and the resulting cholbut SLN aqueous 

dispersion was washed three times by dia-ultrafiltration using a Vivaflow50 membrane (Sartorius 

Stedim Biotech GmbH, RC; cut-off 100 000 Da) (Serpe et al., 2010). The aqueous dispersions of 

cholbut SLN were sterilized by 0.2 µm filtration before use. 

Solutions of sodium butyrate were freshly prepared in sterile water before each experiment, at a 

concentration of 5 M. 

Fluorescence microscopy 

Fluorescent cholbut SLN was prepared by adding 6-coumarin (Acros, Morris Plain, NJ) (0.04%). 

The microemulsion was subsequently dispersed in cold water, washed by ultrafiltration and 

sterilized. The cellular uptake of 6-coumarin-tagged cholbut SLN by HT29 cells was then 

investigated using fluorescence microscopy. Briefly, 25 × 103 HT29 cells were seeded in 1 mL of 

culture medium in 24-well plates and were allowed to attach for 24 h on glass coverslips in the 

wells. 4′,6′-diamidino-2-phenylindole (DAPI; 1 µg·mL−1) (Sigma-Aldrich, Milan, Italy) was used 

as nuclear staining. After 15 min incubation with 100 µM fluorescent cholbut SLN, the cells were 

washed with PBS solution, and the coverslips were inverted and mounted on glass slides. Cells 

were observed and photographed by Leica fluorescence microscope DM IL (Leica Microsystems, 

Wetzlar, Germany). 

Cell culture 

HUVEC were isolated from human umbilical veins (informed consent was obtained from all 

donors) by trypsin treatment (1%) and cultured in M199 medium with the addition of 20% fetal calf 

serum (FCS) and 100 U·mL−1 penicillin, 100 µg·mL−1 streptomycin, 5 UI·mL−1 heparin, 12 

µg·mL−1 bovine brain extract and 200 mM glutamine. HUVEC were grown to confluence in flasks 

and used between the second and fifth passages. EC viability was not affected by the drug 

treatment. 



HT29, HCT116 and CaCo-2 cells derived from human colon adenocarcinoma and MCF-7 cells 

from human breast carcinoma were obtained from American Type Culture Collection (Manassas, 

VA). PC-3 cells from human prostate carcinoma was a gift by Dr Pili (Roswell Park Cancer 

Institute, Buffalo, NY), and M14 and LM cells, from human melanoma were a gift by Dr Pistoia 

(Gaslini Institute, Genoa). The human tumour cell lines were grown in culture dishes as a 

monolayer in RPMI 1640 medium plus 10% FCS, 100 U·mL−1 penicillin and 100 µg·mL−1 

streptomycin at 37°C in a 5% CO2 humidified atmosphere. 

Cell surface phenotype was assessed by immunofluorescence and flow cytometry using the 

appropriate FITC- and PE-conjugated mAb to ICAM-1 (Biolegend, San Diego, CA, USA), 

ICAM-2 (Diaclone Research, San Diego, CA, USA), MadCAM (Abcam, Cambridge, UK), CD62P 

(Immunotools, Friesoythe, Germany) and Sialyl Lewis X (Santa Cruz Biotechnology, Santa Cruz, 

CA, USA). MAb to CD62E (ImmunoKontact, Abingdon, UK), Sialyl Lewis A (Santa Cruz 

Biotechnology) and VCAM-1 (Caltag-Medsystem, Buckingham, UK) were detected with FITC-

conjugated goat anti-mouse-Ig (Caltag). 

Cell adhesion assay 

HUVEC were grown to confluence in 24-well plates, washed and rested for 1 day in M199 plus 

10% FCS. In most experiments, they were incubated or otherwise with increasing concentrations of 

cholbut SLN, sodium butyrate and cholpalm SLN (0.1–100 µM) for 10 min–48 h, washed with 

fresh medium twice and incubated for 1 h with the tumour cells (1 × 105 cells per well); the 1 h 

incubation time was chosen to allow full sedimentation of the adhering cells, but similar results 

were obtained with shorter incubation times (10 and 20 min). After incubation, non-adherent cells 

were removed by being washed three times with M199. The centre of each well was analysed by 

fluorescence image analysis (Dianzani et al., 2006). Adherent cells were counted by the Image Pro 

Plus Software for micro-imaging (Media Cybernetics, version 5.0, Bethesda, MD, USA). Single 

experimental points were assayed in triplicate, and the standard error of the three replicates was 



always below 10%. Data are shown as percentages of the inhibition of treated cells versus the 

control adhesion measured on untreated cells; this control adhesion was 40 ± 4 cells per microscope 

field (n= 17) for HT29 cells and in a similar range for the other cell types. 

In some experiments, HUVEC were treated with SB203580 (10 µM) or PD98059 (10 µM) (p38 and 

ERK inhibitors, respectively) in the presence and absence of cholbut SLN (10 µM) for 24 h. Cells 

were then washed and incubated with HT29 for 1 h. In a few experiments, HUVEC were pre-

activated with IL-1β (0.01 µM) for 1 h and then exposed or not exposed to cholbut SLN for a 

further 24 h. 

In other experiments, only the cancer cells were treated with cholbut SLN. HT29 or HCT116 cells 

were treated with increasing concentrations of cholbut SLN (0.1–100 µM) for 8–48 h, washed with 

fresh medium twice and then incubated for 1 h with untreated HUVEC. We also assessed the effect 

of treating both HT29 cells and HUVEC with cholbut SLN. In these experiments, cells were 

separately treated with increasing concentrations of cholbut SLN (0.1–10 µM) for 24 h, washed 

with fresh medium twice and incubated together for 1 h. 

In the experiments assessing the combined effect of cholbut SLN and ICOS-Fc, HUVEC were 

treated with ICOS-Fc (0.5–0.1 µg·mL−1) and/or cholbut SLN (0.3–1 µM) for 24 h, washed with 

fresh medium twice and incubated for 1 h with HT29 cells. ICOS-Fc is a recombinant protein 

composed of the extracellular portion of the T-cell co-stimulatory receptor ICOS (inducible co-

stimulator) and the Fc portion of human IgG1. 

Cell motility assay 

To assess the effect of cholbut SLN and sodium butyrate on PC-3 cell motility, we carried out 

standard wound-healing experiments. In brief, cells were plated onto six-well plates (at a 

concentration of 106 cells per well) and grown to confluence. PC-3 cells were then left for 12 h 

with FCS free-medium (to prevent cell proliferation). Cell monolayers were carefully wounded by 

scratching with a sterile plastic pipette tip along the diameter of the well (as illustrated in the 



Results). The cells were washed twice with FCS-free medium before their subsequent incubation 

with culture medium in the absence (control) or presence of cholbut SLN or sodium butyrate at 

appropriate concentrations. In order to monitor cell movement into the wounded area, five fields of 

each of the three wounds analysed per condition were photographed immediately after the scratch 

was made (0 h) and 24 and 48 h later. 

Matrigel invasion area 

In order to determine the effects of cholbut SLN on cell invasiveness, we used the Boyden chamber 

(BD Biosciences, Milan, Italy) invasion assay. PC-3, HT29 and HCT116 cells (8000) were plated 

onto the apical side of Matrigel-coated (50 µg·mL−1) filters in serum-free medium with or without 

cholbut SLN or sodium butyrate (1–100 µM). Medium containing 20% FCS was placed in the 

basolateral chamber as a chemoattractant. After 8 h, the cells on the apical side were wiped off with 

Q-tips. Cells on the bottom of the filter were stained with crystal violet and counted (five fields of 

each triplicate filter) with an inverted microscope. Results are expressed as the number of migrated 

cells per high-power field. 

In some experiments, HT29 cells were treated with SB203580 or PD98059 (10 µM) with or without 

cholbut SLN 10 µM for 8 h and then used in the invasion assay. 

Protein extraction and Western blot analysis 

In order to stimulate ERK and p38 activation, cholbut SLN-treated and untreated HUVEC were 

exposed to 0.01 µM VEGF-A for 10 min, whereas cholbut SLN-treated and untreated HT29 cells 

were exposed to 0.01 µM phorbol 12-myristate 13-acetate (PMA) for 10 min. 

In order to evaluate the effect of cholbut SLN on acetyl-H3 and p21CIP1 expression level, HT29 

cells were treated with 5 mM sodium butyrate, or 0.1 µM Trichostatin A, or 100 µM cholbut SLN, 

and the expression levels of acetyl-H3 and p21CIP1 were analysed by Western blot in the cell 

lysates. 



Cells were lysed in a buffer composed of 50 mM Tris–HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 

1% NP40, phosphatase and protease inhibitor cocktails. Cell lysates were then cleared from 

insoluble fractions through high-speed centrifugation, and protein concentrations were determined 

with a commercially available kit (Bio-Rad Laboratories, Milan, Italy). 10–40 µg proteins were 

loaded on 10% SDS-PAGE gels and, after electrophoresis, transferred onto nitrocellulose 

membranes. These were blocked by incubation for 1 h at room temperature with 5% non-fat milk 

dissolved in TBS Tween 20. The membranes were then probed overnight with primary antibodies 

and, after three washes, incubated for 1 h with HRP-conjugated secondary antibodies. Bands were 

detected by chemiluminescence, and densitometric analysis was performed with the Multi-Analyst 

software (version 1.1, Bio-Rad Laboratories). 

RNA isolation and SYBR Green real time RT-PCR 

In order to clarify the cholbut SLN effect on cadherin and claudin-1, the expression level of the 

mRNA was measured after 4, 8 and 24 h of incubation with 100 µM cholbut SLN by quantitative 

SYBR Green real-time RT-PCR. Total RNA was obtained from HT29 and HUVEC using the 

RNeasy Plus Mini Kit (Qiagen, Milan, Italy) according to the manufacturer's instructions. The RNA 

concentrations were quantified with the Qubit Fluorometer (Invitrogen, Milan, Italy). The Quant-iT 

RNA Assay Kit (Invitrogen) was used, and calibration was performed using a two-point standard 

curve according to the manufacturer's instructions. QuantiTect Primer Assay (Qiagen) was used as 

the gene-specific primer pair for human E-cadherin CDH1 (cat. no. QT00080143), claudin-1 

CLDN1 (cat. no. QT00225764). Real-time RT-PCR analysis was carried out using 100 ng of total 

RNA, which was reverse transcribed in a 20 µL cDNA reaction using the QuantiTect Reverse 

Transcription Kit (Qiagen) according to the manufacturer's instructions; 10 ng of cDNA was used 

for each 25 µL real-time RT-PCR reaction. Quantitative RT-PCR was performed using the 

QuantiTect SYBR Green RT-PCR Kit (Qiagen). To normalize mRNA data, the transcript of the 

housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (cat. no. QT01192646) 



was used, and real-time PCR was performed by a MiniOpticon Real Time PCR system (Bio-Rad, 

Milan, Italy). The PCR protocol conditions were as follows: HotStarTaq DNA polymerase 

activation step at 95°C for 15 min, followed by 40 cycles at various temperatures/times (i.e. 94°C 

for 15 s, 55°C for 30 s and 72°C for 30 s). All samples were run in duplicate. At least two non-

template controls were included in all PCR runs. The quantification data analyses were performed 

using the Bio-Rad CFX Manager Software version 1.6 (Bio-Rad) in accordance with the 

manufacturer's instructions. These analyses were performed following the MIQE guidelines 

(Minimum Information for Publication of Quantitative Real-time PCR Experiments) (Bustin et al., 

2009). 

Data analysis 

Data are shown as mean ± SEM or mean ± SD for mRNA expression. Statistical analyses were 

performed with GraphPad Prism 3.0 software (La Jolla, CA, USA) using one-way anova and 

Dunnett's test. Values of P < 0.05 were considered statistically significant. 

Materials 

Cholbut and cholesteryl palmitate SLN were produced by Dr Gasco (Nanovector s.r.l. Turin, Italy). 

FCS (endotoxin tested) was from Hyclone Laboratories (Milan, Italy). Trypsin was from Difco 

Laboratories (Milan, Italy). M199, RPMI, IL-1β, PMA, sodium butyrate, Trichostatin A, 

phosphatase inhibitor cocktail, protease inhibitor cocktail and β-actin (A-1978) were purchased 

from Sigma-Aldrich. Rabbit polyclonal anti-phospho-P38 (sc-17852-R) or mouse monoclonal anti-

phospho ERK (sc-7383) antibodies were purchased from Santa Cruz Biotechnology; anti acetyl H3 

(06-599) was from Millipore-Upstate (Milan, Italy), and P21CIP1 (ab7960) from Abcam. 

Results 

Cholbut SLN inhibits CRC adhesion to HUVEC 

Initially, we evaluated the internalization of cholbut SLN in the HT29 cell line by assessing the 

uptake of fluorescent 6-coumarin-tagged cholbut SLN. HT29 cells were allowed to attach for 24 h 



to glass coverslips in 24-well plates. They were then incubated for 15 min with 100 µM fluorescent 

cholbut SLN, washed and analysed by fluorescence microscopy. Figure 1 shows that high levels of 

fluorescence were detectable in the cytoplasm throughout the entire observation period (15–60 

min), which confirmed the results previously obtained on HUVEC and PMNs by confocal 

microscopy (Dianzani et al., 2006). 

We analysed the effect of cholbut SLN on adhesion of HT29 to HUVEC and compared it with the 

effect of the free drug, as sodium butyrate. Cholesteryl palmitate (cholpalm) SLN were used as 

control of the cholesteryl matrices because of their known ineffectiveness in several cell lines 

(Brioschi et al., 2008). The cholbut concentrations used had previously been found not to be toxic 

for HUVEC (Dianzani et al., 2006). 

First, we investigated the effect of cholbut SLN on HUVEC. HUVEC were treated or otherwise 

with titrated amounts (0.1–100 µM) of each reagent for 24 h, washed and used in the adhesion assay 

with HT29 cells. Figure 2A shows that cholbut SLN inhibited HT29 adhesion to HUVEC in a 

concentration-dependent manner; the effect was already significant at 1 µM (about 50% inhibition), 

with maximal inhibition (75 ± 5%) obtained at the highest concentration (100 µM) (IC50= 3.86 ± 

1.03 µM). By contrast, sodium butyrate significantly inhibited adhesion only at 100 µM, whereas 

no significant inhibition was detected with any concentration of cholpam SLN, which showed the 

lack of effect exerted by both the cholesteryl matrices and the palmitate. Duration of the inhibitory 

effect was investigated by performing the HT29 adhesion assay on HUVEC treated for different 

times (2–48 h) with titrated amounts (0.1–100 µM) of cholbut SLN. The results showed that 

adhesion inhibition was detectable after 8 h of treatment, but only at the highest concentration of 

cholbut SLN, and it was maximal at 24–48 h (Figure 2B). No effect was detected after 2–4 h of 

treatment (data not shown). As EC adhesiveness is potentiated by pro-inflammatory cytokines, we 

repeated the adhesion assay using HUVEC pre-activated with 0.01 µM IL-1β for 1 h to assess the 

effect of cholbut SLN in an inflammatory environment. Pre-activated HUVEC were treated or 



otherwise with cholbut SLN for a further 24 h and used in the adhesion assay with HT29 cells. The 

results showed that treatment with IL-1β increased HT29 adhesion by 152 ± 6%, and cholbut SLN 

inhibited this adhesion in a concentration-dependent manner reaching 100% inhibition at the highest 

concentration (Figure 2C). 

Second, we investigated the direct effect of cholbut SLN on HT29 and HCT116 cells. HT29 and 

HCT116 cells were treated with cholbut SLN (0.1–100 µM) for 8–48 h, washed and used on the 

adhesion assay on untreated HUVEC. The results showed that treatment with cholbut SLN inhibited 

cancer cell adhesion to a similar extent and with kinetics similar to those displayed on HUVEC. The 

inhibition was apparently more effective on HCT116 (Figure 3B) than on HT29 cells (Figure 3A). 

As these data indicated that the drug exerted its effect on both HUVEC and cancer cells, we also 

evaluated the overall effect of cholbut SLN acting on both cell targets. HT29 cells and HUVEC 

were separately treated with cholbut SLN (0.1–10 µM) for 24 h, washed and then used together in 

the adhesion assay. The results showed that cholbut SLN inhibited adhesion with maximal efficacy 

(about 70% of inhibition) at a low concentration, 0.1 µM (Figure 3C), which indicated that the 

effect was maximal when the drug acted on both partners of the adhesion assay. 

To assess these inhibitory effects over a wider range of cancer cells, we evaluated adhesiveness of 

HUVEC treated with different concentrations of cholbut SLN for 24 h to other tumour cell lines, 

HCT116 and CaCo-2 cells (weakly and highly differentiated CRC, respectively), MFC-7 cells 

(breast), PC-3 cells (prostate), LM and M14 cells (melanoma). The results showed that cholbut SLN 

inhibited adhesion of all cell lines to an extent similar to that of HT29 (Figure 3D). 

We have recently shown that a similar inhibition of tumour cell adhesion to HUVEC was also 

induced by the triggering of B7h, a surface receptor expressed by both HUVEC and several tumour 

cell lines including HT29 cells, using the T-cell receptor fusion protein, ICOS-Fc (Dianzani et al., 

2010). In this case, too, inhibition was exerted on both partners of the adhesion assay. To assess 

whether the two drugs might cooperate in inhibiting HT29 cell adhesion, HUVEC were treated for 



24 h with ICOS-Fc (0.5–0.1 µM) or cholbut SLN (0.3–1 µM) or both and then used in the adhesion 

assay with HT29 cells. The results showed that the combination of treatments had a higher 

inhibitory effect than that of each single treatment, with an additive effect (Figure 4). 

Cholbut SLN inhibit cell migration 
A crucial component of tumour cell invasion is cell migration. To assess the effect of cholbut SLN 

on directional migration of tumour cells, we performed the scratch assay, an in vitro‘wound-healing’ 

assay, on PC-3 cells chosen because they displayed high migratory activity in this assay. A linear 

scratch was performed on a confluent monolayer of PC-3 cells, which were then cultured in FCS-

free medium to minimize cell proliferation with or without cholbut SLN and sodium butyrate (1–

100 µM). Microscopic analysis evaluating cell capacity to migrate and fill the empty areas at 

different times showed that, in the absence of any drug, substantial counts of cells migrating in the 

wound area were detectable after 24–48 h, and treatment with cholbut SLN inhibited this migration 

in a concentration-dependent manner, starting at 10 µM. By contrast, no significant inhibition of 

migration was detected using sodium butyrate at any concentration (Figure 5A). 

The effect on cell migration was further investigated using the Boyden chamber invasion assay 

using PC-3, HT29 and HCT116 cells, as they efficiently migrate in this assay. These cells were 

suspended in a FCS-free medium, seeded in the upper chamber in the presence and absence of 

titrated amounts of cholbut SLN or sodium butyrate (1–100 µM) and allowed to migrate for 8 h 

towards the lower chamber containing medium+20% FCS used as a migratory stimulus. Figure 5B 

shows that PC-3, HT29 and HCT116 cell migration was inhibited by about 50% and 35% upon 

treatment with 100 and 10 µM cholbut SLN respectively. By contrast, sodium butyrate was 

ineffective at any concentration. 

Cholbut SLN modulate MAPK signalling and expression of E-cadherin and claudin-1 

To investigate the mechanism of cholbut SLN-mediated inhibition of cell adhesiveness, we 

compared the expression of adhesion molecules in HT29 cells and HUVEC treated with (10–100 



µM) cholbut SLN for 24 h. The surface expression of crucial adhesion molecules such as ICAM-1, 

ICAM-2, VCAM-1, MadCAM, CD31, E-selectin (CD62E), CD62P, CD15s (Sialyl Lewis X), Sialyl 

Lewis A and B7h was assessed by immunofluorescence and flow cytometry. The results showed 

that cholbut SLN treatment had no effect on these expression patterns, either on HUVEC or on 

HT29 (Table 1). 

Lack of effect of cholbut SLN on expression of adhesion molecules in HT29 cells and HUVECAn 

alternative possibility was that cholbut SLN modulated the intrinsic adhesiveness of adhesion 

molecules without affecting their expression level. This effect might be mediated by modulation of 

signalling pathways involved in the spatial organization of the adhesion receptors and the 

cytoskeleton. 

The MAPK signalling pathway has been shown to play a key role in regulating tumour cell invasion 

(Hwang et al., 2011). In line with this notion, the interaction of HT29 cells with HUVEC induces 

p38 and ERK phosphorylation (Tremblay et al., 2006); moreover, B7h triggering inhibits this 

pathway and, in turn, the reciprocal adhesion of these cells. To investigate whether Cholbut SLN, 

too, may influence this pathway, HUVEC, HT29 and HCT116 cells were incubated with 100 µM 

cholbut SLN for 8–48 h and then treated with 0.01 µM VEGF-A (HUVEC) or 0.01 µM PMA 

(HT29 or HCT116 cells) for 10 min to trigger the MAPK pathway (Qian et al., 2006). Western blot 

analysis of ERK1/2 and p38 phosphorylation showed that ERK phosphorylation was induced by 

VEGF-A in HUVEC (Figure 6A), by PMA in HT29 (Figure 6B) and in HCT116 cells (Figure 6C), 

and that it was time-dependently inhibited by treatment with cholbut SLN. Similarly, p38 

phosphorylation was induced by VEGF-A in HUVEC, and it was inhibited by treatment with 

cholbut SLN for 24 h or 48 h (Figure 6D). By contrast, PMA did not induce p38 phosphorylation in 

HT29 or HCT116 cells, and this was not changed by treatment with cholbut SLN (data not shown). 

To further assess involvement of the MAPK pathway in the cholbut SLN-mediated inhibition of 

tumour cell adhesion to HUVEC, we performed the adhesion assay, using HUVEC treated for 24 h 



with and without SB203580 (10 µM) or PD98059 (10 µM), p38 and ERK inhibitors, respectively, 

in the presence and absence of cholbut SLN (10 µM). Results showed that PD98059 and SB203580 

inhibited HT29 adhesion by 33 ± 5% and 38 ± 4%, respectively, and this inhibition was not 

increased by treatment of the cells with cholbut SLN. The same results were obtained using this 

approach in the migration assay (37 ± 8% and 40 ± 7% respectively). 

Cadherins and claudin-1 (CLDN1) are also involved in cell migration and invasiveness by 

modulating the organization of the cytoskeleton and tight junctions (Gumbiner, 1996). In CRC, a 

low expression of E-cadherin is correlated with poor outcome and increased invasiveness 

(Christofori and Semb, 1999), and claudin-1 is highly expressed, especially at the metastatic lesion 

level (Dhawan et al., 2005). Moreover, sodium butyrate has been shown to increase expression of 

E-cadherin and decrease expression of claudin-1 in CRC cell lines (Barshishat et al., 2000; 

Schmalhofer et al., 2009). To assess the effect of cholbut SLN on expression of E-cadherin and 

claudin-1, HT29 and HUVEC cells were treated with 100 µM cholbut SLN, and expression of the 

E-cadherin mRNA was assessed by real-time PCR at different times. A significant increase of E-

cadherin mRNA was detected in HT29 cells after 8–24 h of treatment with cholbut SLN, whereas a 

significant decrease of claudin-1 mRNA was detected after 24 h (Figure 7). By contrast, no effect 

was detected in HUVEC (data not shown). 

Cholbut SLN does not induce H3-hyperacetylation and P21CIP1 

The anti-tumour effects of sodium butyrate may depend on its HDAC inhibitor activity. To 

determine whether cholbut SLN maintained this activity in HT29 cells, we compared the capacities 

of sodium butyrate, cholbut SLN and Trichostatin A (a known HDAC inhibitor) to induce 

hyperacetylation of the H3 histone and expression of the cell cycle inhibitor P21CIP1, which are 

features of HDAC inhibitor activity (Druesne et al., 2004). The results showed that treatment of 

HT29 cells with either 5 mM sodium butyrate or 0.1 µM Trichostatin A-induced hyperacetylation of 

H3 and expression of P21CIP1, whereas 100 µM cholbut SLN had no effect (Figure 8); 1 mM 



cholbut SLN also had no effect (data not shown). These results suggest that cholbut SLN had no 

HDAC inhibitor activity at these concentrations. Similar results have been obtained using PC-3 

cells. 

Discussion and conclusion 

This work has shown that cholbut SLN inhibited the adhesion of several tumour cell lines to EC by 

acting on both EC and tumour cells, and that it inhibited tumour cell migration. These effects were 

not attributable to drug toxicity as the proliferation of both EC and tumour cells was not affected in 

the concentration range affecting cell adhesion. 

Key players in tumour cell adhesion to EC are selectins with their mucin-like ligands, and integrins, 

whose ligands mostly belong to the immunoglobulin superfamily. But several other adhesion 

molecules may also be involved. Cell adhesiveness may be modulated not only by the expression 

levels of the adhesion molecules but also by their spatial distribution in specialized membrane 

structures, which may compartmentalize different adhesion molecules to specific regions of the 

plasma membrane and favour their cooperation with other receptors and signalling molecules. This 

topographic organization requires a finely regulated cellular cytoskeleton that also enables the 

recruitment of signalling intermediates and second messengers that lead to cell activation (Barreiro 

et al., 2005; 2007). 

Our data showed that the adhesion inhibition mediated by cholbut SLN was relatively delayed and 

long-lasting, since it was detectable 8 h after treatment with the drug and lasted up to 48 h. This was 

not due to a slow uptake of the drug because substantial uptake into the cells was already detectable 

after 15 min. Brioschi et al., 2008 have reported that cholbut SLN are rapidly internalized by 

phagocytosis in glioma cells, where they persist for several days and possibly undergo a complex 

intracellular metabolism, as suggested by their different subcellular localizations in the subsequent 

days. 



One possibility was that the cholbut SLN anti-adhesive effects in our experiments were mediated by 

modulation of expression of adhesion receptors, but this seemed not to be the case because flow 

cytometry did not detect expression of adhesion receptors in EC and tumour cells. By contrast, we 

found that cholbut SLN induced up-modulation of E-cadherin and down-modulation of claudin-1 at 

the mRNA level, which is in line with data previously reported for sodium butyrate (Barshishat et 

al., 2000), and may be relevant to the anti-adhesive effects because these proteins are involved in 

organization of the cytoskeleton and influence cell adhesiveness and motility. Indeed, low 

expression of E-cadherin has been correlated with poor outcome and high invasiveness in CRC in 

vivo (Christofori and Semb, 1999), and enforced expression of E-cadherin has been shown to 

inhibit cell invasiveness in vitro (Behrens, 1999). Furthermore, claudin-1 expression has been 

positively correlated with CRC progression, invasion and metastasis dissemination (Dhawan et al., 

2005). 

Cholbut SLN also inhibited phosphorylation of ERK and p38, without affecting their expression. 

This effect, too, was intriguing, since ERK and p38 have been involved in several signalling 

pathways modulating tumour cell adhesion and migration, possibly by influencing membrane 

distribution, and the clustering of several adhesion receptors and their connection with the 

cytoskeleton (Kiely et al., 2003; Van Slambrouck et al., 2009). Moreover, ERK signalling 

influences the organizational status of α2 integrin and has been correlated with tumour invasiveness 

(Buda et al., 2003; Sawhney et al., 2006). In line with a role of the MAPK pathway in the cholbut 

SLN effect, we found that MAPK inhibitors decreased tumour cell adhesion and migration, and that 

this effect was not potentiated by cholbut SLN. By contrast, cholbut displayed an additive effect on 

the adhesion inhibition induced by ICOS-Fc-mediated triggering of B7h, which also inhibited 

MAPK phosphorylation. However, the effect of B7h triggering was already detectable after a few 

minutes, which suggested that it used mechanisms partly different from cholbut SLN, whose effect 

was delayed for several hours. This finding is intriguing because it suggests that simultaneous use 



of cholbut SLN and ICOS-Fc may substantially improve the effectiveness of these drugs, given that 

relatively low doses of cholbut SLN (0.03 µM) induced a striking inhibition (about 60%) of cell 

adhesion when used in the presence of ICOS-Fc. These data match those showing that, in several 

CRC cell lines and primary tumours, constitutively activated MAPK have been associated with 

enhanced cell proliferation and minor survival (Kuno et al., 1998; Hoshino et al., 1999; Xu et al., 

2009), and these kinases have been regarded as an attractive target for anticancer therapies (Sebolt-

Leopold and Herrera, 2004; Kohno and Pouyssegur, 2006). Moreover, alterations in cell signalling 

pathways, including that of MAPK, may play a role in the complex mechanisms underlying tumour 

resistance to chemotherapeutic agents (Boldt et al., 2002), and inhibition of the MAPK pathway has 

been shown to result in the down-regulation of the P-glycoprotein involved in multidrug resistance, 

with a consequent decrease of multidrug resistance itself (Katayama et al., 2007). 

The integration of Rho family GTPase and ERK signalling is also important for tumour cell motility 

(Pullikuth and Catling, 2010; Adachi et al., 2011). But the Rho family seemed to be not involved in 

the cholbut SLN effect on migration because experiments showed that the Rho kinase inhibitor 

Y-27632, stimulating cancer cell migration, did not influence the capacity of cholbut SLN to inhibit 

tumour cell migration (data not shown). 

A key finding is that cholbut SLN inhibited adhesion at concentrations that were 1000 times lower 

than those active for free butyrate (0.1–1 µM vs. 0.1–1 mM), which suggested that cholbut SLN 

were an effective delivery system for the drug. In the colon lumen, butyrate is present at high 

concentrations (about 2–3 mM), which would reach pharmacological effectiveness, but colon 

cancer cells must develop mechanisms to escape these effects, since they grow despite these 

concentrations. Several studies have indicated that expression of the anion transporters, 

monocarboxylate transporter 1 (MCT1) and sodium-coupled monocarboxylate transporter 1 

(SMCT1) (Davis et al., 2008), involved in specific carrier-mediated transport of SCFA anions, are 

significantly down-regulated in colon cancer cells, which would decrease the intracellular 



concentration of butyrate and deregulate butyrate-induced gene expression. In addition, expression 

of SMCT1 is often decreased also in stomach, thyroid, prostate, breast and brain cancers (Gupta et 

al., 2006). We suggest that cholbut SLN may overcome these transport defects by entering into the 

cells without a specific carrier-mediated transport, and the cholbut SLN entered may prevent rapid 

elimination from the cell by locating far away from the transmembrane efflux pumps responsible 

for drug elimination (Hamer et al., 2008). 

A second finding is that cholbut SLN effects may be partly different from those displayed by 

sodium butyrate, since both drugs inhibited adhesion but only the former also inhibited migration, 

whereas only the latter displayed HDAC inhibitor activity. In line with a partly different effect of 

the two drugs, cholbut SLN had been shown to exert anti-proliferative and pro-apoptotic effects at 

lower doses and shorter treatment times than sodium butyrate in several tumour cell lines (Brioschi 

et al., 2008). Moreover, cholbut SLN caused a cell cycle arrest in the G1 phase in myeloid cell lines, 

mainly ascribed to c-myc repression and/or p21WAF1 up-regulation, but it caused an unexplained 

arrest in the G2 phase in lymphoid cell lines (Serpe et al., 2004). 

Current anticancer treatments mostly target tumour cell proliferation and are relatively ineffective 

on slowly proliferating tumour cells, which may survive and give rise to new tumours even after 

several years (Entschladen et al., 2004). Moreover, tumour cell adhesiveness and migration play a 

crucial role in metastatic dissemination of cancer (Hayot et al., 2006), and migrating cells often 

display a decreased proliferation rate and are thus relatively insensitive to standard chemotherapies 

(Giese et al., 2003; Haga et al., 2003; Douma et al., 2004). Therefore, a focus of innovative cancer 

therapies is to inhibit the spreading of tumour cells by targeting their migratory activity mainly 

through use of antagonists against the adhesion molecules involved in adhesion to the extra-cellular 

matrix (Sawyer, 2004) or against the proteases facilitating migration by degrading the extra-cellular 

matrix (Zucker et al., 2000; Coussens et al., 2002; Overall and López-Otín, 2002). Unfortunately, 



no tested compounds have to date reached the market because of poor in vivo anti-tumour activity, 

unsuitable therapeutic index or rapid development of chemoresistance. 

The application of nanotechnology to drug delivery has already had a significant impact on many 

areas of medicine. Currently, more than 20 nanoparticle therapeutic agents are in clinical use, and 

they validate the ability of nanoparticles to improve the therapeutic index of drugs. In addition to 

the nanoparticles already approved, several other nanoparticle platforms are currently in preclinical 

and clinical development, including liposomes, polymeric micelles, dendrimers, quantum dots, gold 

nanoparticles and ceramic nanoparticles (Zhang et al., 2008). 

In conclusion, our data indicated that cholbut SLN may be an effective anti-metastatic agent acting 

on both EC and tumour cells, and that it may remedy some of the pharmacological weaknesses of 

other compounds. Moreover, preliminary experiments did not detect any in vivo toxicity of cholbut 

SLN in mice upon delivery either p.o. or i.v. (oral LD50≥1000 mg·kg−1; i.v. LD50≥400 mg·kg−1), 

but further in vivo study is required to assess the effect of repeated administration. Therefore, a drug 

like cholbut SLN, which affects cancer cells, acting on several fronts and without severe toxic 

effects, may be a valuble tool in cancer therapy because it acts on several aspects of tumour 

progression with minimal toxicity on normal cells. 
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Figure Captions 

Figure 1. Microscopical analysis of HT29 cells stained with DAPI (shown in blue), as nuclear stain, 

after a 15 min exposure to 100 µM of fluorescent cholbut SLN (63× magnification). 

Figure 2. Effect of cholbut SLN on HUVEC adhesiveness to HT29 cells. (A) Effect of HUVEC 

treatment with cholbut SLN, sodium butyrate (Nabut) and cholpalm SLN on their adhesiveness to 

HT29 cells. HUVEC were pre-treated or otherwise with increasing concentrations of these drugs 

(0.1–100 µM) for 24 h and then incubated with HT29 for 1 h. Data are expressed as mean ± SEM 

(n= 5) of the percentage of inhibition versus control adhesion detected on untreated HUVEC; 

control adhesion was 40 ± 4 cells/microscope fields (*P < 0.05; **P < 0.01 significantly different 

from the control). (B) Effect of HUVEC treatment for different times with cholbut SLN on their 

adhesiveness to HT29 cells. HUVEC were pre-treated or otherwise with increasing concentrations 

of cholbut SLN (0.1–100 µM) for 8, 12, 24 or 48 h, and then incubated with HT29 cells for 1 h. 

Data are expressed as mean ± SEM (n= 5) of the percentage of inhibition versus the control 

adhesion (*P < 0.05; **P < 0.01 significantly different from the control). (C) Effect of treatment of 

IL-1β-stimulated HUVEC with cholbut SLN on their adhesiveness to HT29 cells. HUVEC were 

pre-treated for 1 h with 0.01 µM IL-1β, then incubated or otherwise with increasing concentrations 

of cholbut SLN (0.1–100 µM) for 24 h and then incubated with HT29 for 1 h. IL-1β increased 

HT29 adhesion by 152 ± 6%. Data are expressed as mean ± SEM (n= 5) of the percentage of 

inhibition versus control adhesion detected on stimulated HUVEC (*P < 0.05; **P < 0.01 

significantly different from the control). 

Figure 3. Effect of cholbut SLN on adhesiveness of several cell lines. (A) Effect of cholbut SLN on 

HT29 adhesiveness. HT29 cells were pre-treated or otherwise with increasing concentrations of 

cholbut SLN (0.1–100 µM) for 8, 24 or 48 h, washed, and then incubated with HUVEC for 1 h. 

Data are expressed as mean ± SEM (n= 5) of the percentage of inhibition versus the control 

adhesion (**P < 0.01 vs. the control). (B) Effect of cholbut SLN on HCT116 adhesiveness. 



HCT116 cells were pre-treated or otherwise with increasing concentrations of cholbut SLN (0.1–

100 µM) for 8, 24 or 48 h, washed, and then incubated with HUVEC for 1 h. Data are expressed as 

mean ± SEM (n= 5) of the percentage of inhibition versus the control adhesion (*P < 0.05; **P < 

0.01, significantly different from the control). (C) Additive effect of cholbut SLN on HT29 and 

HUVEC adhesiveness. HUVEC and HT29 were separately pre-treated or otherwise with increasing 

concentrations of drugs (0.1–10 µM) for 24 h, washed twice and then incubated together for 1 h. 

Data are expressed as mean ± SEM (n= 5) of the percentage of inhibition versus control adhesion 

detected on untreated HUVEC (*P < 0.05; **P < 0.01, significantly different from the control; #P 

< 0.05, significantly different from single treatment). (D) Effect of cholbut SLN on HUVEC 

adhesiveness to several tumour cell lines. HUVEC were pre-treated or otherwise with increasing 

concentrations of drugs (0.1–100 µM) for 24 h and then incubated with HT29, HCT116, CaCo-2, 

PC-3, MCF-7, M14 and LM for 1 h. Data are expressed as mean ± SEM (n= 5) of the percentage of 

inhibition versus control adhesion detected on untreated HUVEC (*P < 0.05; **P < 0.01, 

significantly different from the control). 

Figure 4. Additive effect of ICOS-Fc and cholbut SLN on HUVEC adhesiveness to HT29. HUVEC 

were pre-treated or otherwise with cholbut SLN (0.3–1 µM) and/or ICOS-Fc 0.5–0.1 µg·mL−1 for 

24 h, washed and then incubated with HT29 for 1 h. Data are expressed as mean ± SEM (n= 5) of 

the percentage of inhibition versus the control adhesion (cells not treated either with cholbut SLN or 

ICOS-Fc) (*P < 0.05; **P < 0.01, significantly different from single treatment). 

Figure 5. Inhibition of tumour cell motility and invasion by cholbut SLN. (A) Inhibition of PC-3 

cell motility evaluated by a scratch ‘wound-healing’ assay. PC-3 cells were grown to confluence on 

6 well-plates. A scratch was made through the cell layer using a pipette tip; the cells were washed 

and then treated with cholbut SLN (10-100 µM) or sodium butyrate (Nabut; 100 µM) for 24–48 h. 

Microphotographs of the wounded area were taken immediately after the scratch was made (0 h) 

and 24–48 h later, in order to monitor cell migration into the wounded area (n= 3). (B) Inhibition of 



tumour cell invasion by a Boyden chamber assay. PC-3, HT29 and HCT116 cells were plated onto 

the apical side of Matrigel-coated filters in 50 µL of cholbut SLN of (1–100 µM) for 8 h. The cells 

migrated to the bottom of the filters were stained using crystal violet and counted (five fields of 

each triplicate filters) using an inverted microscope. Control migration was 34 ± 4 cells/microscope 

fields. Data are expressed as mean ± SEM (n= 5) of the percentage of inhibition versus the control 

migration (*P < 0.05; **P < 0.01 significantly different from the control). 

Figure 6. Effect of cholbut SLN on ERK and p38 phosphorylation induced in HUVEC, HT29 and 

HCT116 cells by activation stimuli. (A, D) HUVEC were treated with 100 µM cholbut SLN for 8, 

24 or 48 h and subsequently incubated with fresh media containing (0.01 µM) VEGF-A in order to 

stimulate ERK (A) and p38 (D) phosphorylation (as p-ERK, p-p38), which was then evaluated by 

Western blot in the cell lysates; the same blots were also probed with anti β-actin antibody as a 

control. Left: Western blot analysis from a representative experiment. Right: Densitometric analysis 

of ERK and p38 phosphorylation expressed in arbitrary units from three independent experiments. 

(B, C) Effect on HT29 (B) and HCT116 (C) cells. HT29 or HCT116 cells were treated with 100 µM 

cholbut SLN for 8, 24 or 48 h and subsequently incubated with fresh media containing (0.01 µM) 

PMA in order to stimulate ERK phosphorylation, which was then evaluated by Western blot in the 

cell lysates; the same blots were also probed with anti β-actin antibody as a control. Left: Western 

blot analysis from a representative experiment. Right: Densitometric analysis of ERK 

phosphorylation expressed in arbitrary units of three independent experiments. Data are expressed 

as mean ± SEM (n= 3) of the percentage of inhibition versus the control (**P < 0.01, significantly 

different from the control). 

Figure 7. Time-dependent expression of the E-cadherin and claudin-1 mRNA after treatment with 

cholbut SLN. E-cadherin (CDH1) and claudin-1 (CLDN1) mRNA expression in HT29 cells were 

analysed by real-time PCR at 4, 8 and 24 h after incubation with 100 µM cholbut SLN. The 



housekeeping GAPDH gene transcript was used as reference to normalize mRNA levels. Data are 

expressed as mean ± SD (n= 3) (*P < 0.05, significantly different from the control). 

Figure 8. Effect of cholbut SLN, sodium butyrate (Nabut) and Trichostatin A (Trich A) on acetyl-

H3 and p21CIP1 expression level. HT29 cells were treated with 5 mM sodium butyrate, or 0.1 µM 

Trichostatin A, or 100 µM cholbut SLN, and the expression levels of acetyl-H3 and p21CIP1 were 

analysed by Western blot in the cell lysates; the same blots were also probed with anti-β-actin 

antibody as a control (n= 3). 



Table 1. Lack of effect of cholbut SLN on expression of adhesion molecules in HT29 cells and 
HUVEC 

HT29 and HUVEC cells were treated with 100 µM of cholbut SLN for 24 h and stained for the 

adhesion molecules listed. The results are shown as the fluorescence signal from cells (as mean 

flourescence intensity), with and without treatment with cholbut SLN (n= 3). 
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