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Highlights

• We study the Minimum Evolution problem (MEP), which arises in Computational Biology.

• We study the polyhedral combinatorics of the MEP.

• We present an exact solution approach for the MEP.

• We study relationships between the MEP and the Balanced Minimum Evolution Problem.

• We show the statistical consistency of the MEP.
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A Branch-Price-and-Cut Algorithm for the

Minimum Evolution Problem

Daniele Catanzaro∗ Roberto Aringhieri† Marco Di Summa‡ Raffaele Pesenti§

February 14, 2015

Abstract

We investigate the Minimum Evolution Problem (MEP), an NP-hard network design problem arising
from computational biology. The MEP consists in finding a weighted unrooted binary tree having n
leaves, minimal length, and such that the sum of the edge weights belonging to the unique path between
each pair of leaves is greater than or equal to a prescribed value. We study the polyhedral combinatorics
of the MEP and investigate its relationships with the Balanced Minimum Evolution Problem. We develop
an exact solution approach for the MEP based on a nontrivial combination of a parallel branch-price-and-
cut scheme and a non-isomorphic enumeration of all possible solutions to the problem. Computational
experiments show that the new solution approach outperforms the best mixed integer linear program-
ming formulation for the MEP currently described in the literature. Our results give a perspective on
the combinatorics of the MEP and suggest new directions for the development of future exact solution
approaches that may turn out useful in practical applications. We also show that the MEP is statistically
consistent.

Keywords: network design, combinatorial inequalities, branch-price-and-cut, mixed integer program-
ming, symmetry breaking, tree encoding, tree isomorphism, computational biology.

1 Introduction

Molecular phylogenetics studies the hierarchical evolutionary relationships among species, or taxa, by means
of molecular data such as DNA, RNA, amino acids, or codon sequences. These relationships are usually
described through a weighted tree, called a phylogeny (see Figure 1), whose leaves represent the observed
taxa, internal vertices represent the intermediate ancestors, edges represent the estimated evolutionary re-
lationships, and edge weights represent evolutionary processes (e.g., evolutionary rates, expected number of
mutations, and so on) between pairs of taxa (Felsenstein, 2004). As usual in most of the literature, in this
paper the leaves of a phylogeny are labeled in order to identify the given taxa, whereas the internal vertices
are unlabeled.

Phylogenies provide fundamental information in the analysis of many fine-scale genetic data. For this
reason, the use of molecular phylogenetics has become more and more frequent (and sometimes indispensable)
in a multitude of research fields such as systematics, medical research, drug discovery, epidemiology, and
population dynamics (Pachter and Sturmfels, 2007). For example, the use of molecular phylogenetics was
of considerable assistance in predicting evolution of human influenza A (Bush et al., 1999), understanding
the relationships between the virulence and the genetic evolution of HIV (Ross and Rodrigo, 2002; Ou
et al., 1992), identifying emerging viruses such as SARS (Marra et al., 2003), recreating and investigating
ancestral proteins (Chang and Donoghue, 2000), designing neuropeptides causing smooth muscle contraction
(Bader et al., 2001), and relating geographic patterns to macroevolutionary processes (Harvey et al., 1996).
More recently, phylogenies have been used to study the evolutionary relationships of the genetic factors
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34, L1.03.01, B-1348, Louvain-la-Neuve, Belgium.
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Figure 1: A phylogeny with five taxa (A, B, C, D, E) and three internal vertices. Though the internal vertices
of a phylogeny are unlabeled, here we attach numbers to them for ease of reference. Edge weights are not
shown.

involved in common human diseases (Pennington et al., 2006; Sridhar et al., 2007, 2008; Misra et al., 2011).
Similarly, phylogenies have been also employed to reconstruct a plausible progression of carcinomas over
time (Riester et al., 2010; Subramanian et al., 2013) by using, in particular, single-cell sampled data from
affected individuals (Catanzaro et al., 2013; Chowdhury et al., 2013). In this context, phylogenies allowed
the classification of tumor cells in subfamilies characterized by specific evolutionary traits. This classification
might enable a better understanding of cellular atypia over time and, on a long run, suggest new therapeutical
approaches for tumor pathologies. A recent survey concerning the practical uses of molecular phylogenetics
can be found in Beerenwinkel et al. (2015).

The internal vertices of a phylogeny of n taxa represent speciation events occurred throughout evolution
of the observed taxa and are usually constrained to have degree three. This constraint has both a biological
foundation (see Felsenstein, 2004) and a mathematical motivation, as it proves helpful when formalizing
the evolutionary process of taxa. In fact, it does not introduce oversimplifications, as any m-ary tree can be
transformed into a phylogeny by adding “dummy” vertices and edges, e.g., see Figure 2. Moreover, as observed
in Felsenstein (2004), the degree constraint helps both in quantifying a-priori the number of edges and internal
vertices of a phylogeny (2n − 3 and n − 2, respectively), otherwise hard to determine, and in counting the
overall number of possible phylogenies for a set of n taxa, (i.e., (2n−5)!! = 1×3×5×7×· · ·× (2n−5)). The
large number of possible phylogenies for a set of n taxa entails the use of an estimation criterion to select a
phylogeny from among plausible alternatives.

The literature on molecular phylogenetics proposes a number of possible criteria to estimate phylogenies
from molecular data. Apart from particular cases (e.g., Bayesian Inference, Huelsenbeck et al., 2001, 2002),
these criteria can be quantified and expressed in terms of objective functions, giving rise to families of
optimization problems, whose general paradigm can be stated as follows:

Problem 1 (The Phylogeny Estimation Problem (PEP)). Given a set Γ of n taxa, find a phylogeny T ∗ that
solves the problem

optimize Λ(T )

s.t. Ω(Γ, T ) ≥ 0

T ∈ T ,
where T is the set of all possible phylogenies of Γ, Λ : T → R is a function modeling the selected criterion
of phylogeny estimation, and Ω : Γ × T → Rm, for some m ≥ 1, is a function correlating the set Γ to a
phylogeny T .

A specific PEP is completely characterized by defining the functions Λ and Ω. A phylogeny T ∗ that
optimizes Λ and satisfies the constraints described by Ω is referred to as optimal.

A possible version of PEP is Minimum Evolution (ME) (see Felsenstein, 2004, p. 161) which consists in
minimizing the length of a phylogeny (i.e., the sum of its edge weights) with respect to a given measure of
dissimilarity among taxa (see Page and Holmes, 1998; Felsenstein, 2004; Gascuel, 2005). In the context of
ME, a phylogeny of Γ is defined to be optimal if it satisfies the following requirements:

(i) it has the shortest length, i.e., the minimum sum of edge weights;

(ii) it has nonnegative edge weights and, for each pair of distinct taxa i, j ∈ Γ, the sum of the weights of
the edges belonging to the (unique) path from i to j in T ∗ is not smaller than the given measure of the
dissimilarity between i and j.
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Figure 2: The 4-ary tree (on the left) can be transformed into a phylogeny by adding a dummy vertex and
a dummy edge (dashed, on the right).

We refer the interested reader to Farach et al. (1995) for a biological justification of constraint (ii). Here
we just observe that if only (i) and the nonnegativity of the weights were imposed, then the problem would
be trivial, as all weights would be set to zero.

A number of versions of ME have been proposed in the literature, mainly differing from one another
by the way in which the edge weights are estimated. Examples include Kidd and Sgaramella-Zonta (1971);
Beyer et al. (1974); Rzhetsky and Nei (1992, 1993); Felsenstein (2004); Gascuel (2005). One of the earliest
edge weight estimation models was proposed by Waterman et al. (1977) and can be stated as follows:

Problem 2 (The Minimum Evolution Problem (MEP)). Given a set Γ of n taxa and values dij ≥ 0 for all
pairs of taxa i, j ∈ Γ (i 6= j), find a phylogeny T ∗ ∈ T that solves the problem

min
T∈T

L(T ) =
∑

e∈E(T )

we (1)

s.t.
∑

e∈P (i,j)

we ≥ dij ∀ i, j ∈ Γ : i 6= j (2)

we ≥ 0 ∀ e ∈ E(T ) (3)

where E(T ) denotes the set of edges of a phylogeny T ∈ T , we is the weight of edge e ∈ E(T ), and P (i, j) is
the unique path in T connecting the distinct taxa i, j ∈ Γ.

The generic value dij in Problem 2 is called the observed evolutionary distance between taxa i and j,
and represents a given measure of the observed dissimilarity between i and j; the dij ’s satisfy dij = dji
for all i, j ∈ Γ, i 6= j. These values are usually computed, e.g., by using one of the models described in
Jukes and Cantor (1969); Fitch (1971); Kidd and Sgaramella-Zonta (1971); Beyer et al. (1974); Hasegawa
et al. (1981); Kimura (1980); Lanave et al. (1984); Rodriguez et al. (1990); Waddell and Steel (1997); Galtier
(2001); Huelsenbeck (2002); Lopez et al. (2002); Felsenstein (2004); Catanzaro et al. (2006).

The objective function (1) models condition (i), while constraints (2)–(3) impose condition (ii). Problem 2
is a particular network design problem (see Johnson et al., 1978; Pop, 2012) with specific degree constraints
and unknown edge weights. As observed in Catanzaro (2011), all known versions of ME can be obtained
from MEP by imposing further constraints on the edge weights.

The MEP can be solved in polynomial time if the observed evolutionary distances satisfy some specific
properties described in Waterman et al. (1977). In contrast, if the observed evolutionary distances are generic,
then the MEP is proved to be NP-hard via a reduction from the k-coloring problem (Farach et al., 1995).
Moreover, in such a case the MEP cannot be even approximated in polynomial time within ratio nε, for some
ε > 0, unless P = NP (Farach et al., 1995).

The hardness of the MEP has prevented researchers from finding practical solution techniques even for
small (n ≤ 10) instances. This fact justifies the interest of operations researchers in developing approaches
that can exactly solve the problem or approximate its optimal solution. In this context, Catanzaro et al.
(2009) recently presented mixed integer programming models for the MEP based on a particular encoding of
phylogenies by means of edge-path incidence matrices of trees (see, e.g., Nemhauser and Wolsey, 1999). This
encoding allowed the use of ad-hoc block decomposition methods capable of reducing the solution space of
the problem. Unfortunately, all the proposed models proved to be unable to solve real instances of the MEP
containing more than 8 taxa.

Starting from the theoretical results presented in Catanzaro et al. (2009); Aringhieri et al. (2011) and
Catanzaro et al. (2012), in this article we investigate the mathematical foundations of the MEP and its
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relationships with another recent version of the PEP: the Balanced Minimum Evolution Problem (BMEP),
an NP-hard combinatorial optimization problem closely related to the Quadratic Assignment Problem. One
of our findings shows that the BMEP provides lower bounds on the MEP. Moreover, we also show that the
MEP is statistically consistent, a very desirable property for phylogeny estimation methods (see Section 6).
We also develop an exact solution approach for the problem based on a nontrivial combination of a parallel
branch-price-and-cut scheme and a non-isomorphic enumeration of all possible phylogenies for a set of n taxa.
This particular approach has two main benefits: it allows both to break symmetries in the problem and to
solve instances whose size is 62.5% larger than the size of the instances solved on the same machine with
the techniques described in Catanzaro et al. (2009). Due to the hardness of the problem, the computational
performance of the algorithm is still far from being suitable for practical use. However, the theoretical
results provide a new perspective on the combinatorics of the MEP and may suggest new directions for the
development of better exact solution approaches that could turn out useful in practical applications.

The rest of the paper is organized as follows. In Section 2 we introduce some notation, definitions and
fundamental properties of phylogenies. In Section 3 we investigate a possible solution approach to the MEP
based on a particular type of implicit enumeration called Non-isomorphic Enumerative Approach (NEA). In
Section 4 we develop a branch-price-and-cut algorithm to speed-up some enumerative tasks involved in the
NEA. In Section 5 we discuss the computational performance of the NEA on real instances of the problem
and compare our results with the current state-of-the-art algorithm for the MEP. Finally, in Section 6 we
prove the statistical consistency of the MEP.

2 Notation and fundamental properties of phylogenies

In this section we introduce some notation and briefly recall some fundamental properties of phylogenies that
will be useful throughout the article. We mention that these properties allow one to consider the MEP as an
optimization problem over the lattice of the phylogenies of Γ. The interested reader is referred to Catanzaro
et al. (2012) and Parker and Ram (1996) for a more systematic discussion about these properties.

Given a phylogeny T of Γ and a taxon i ∈ Γ, we denote by Γi the set Γ\{i}, by VI the set of n−2 internal
vertices of T , and by τij the topological distance between two distinct taxa/internal vertices i, j ∈ Γ∪VI , i.e.,
the number of edges belonging to the path from i to j in T . We also assume that Γ is ordered and we use the
notation i < j, for some distinct i and j ∈ Γ, to indicate that taxon i precedes taxon j in Γ. We define the
path-length sequence τi = [τij : j ∈ Γi] to be the sequence of the topological distances relative to the n − 1
paths from taxon i to each taxon j ∈ Γi in T , ordered accordingly to the order of taxa in Γ. For example,
for the phylogeny shown in Figure 1, the path-length sequence from taxon ‘A’ is τA = [2, 4, 4, 3].

Given a phylogeny T of Γ and a taxon i ∈ Γ, we denote by î the only vertex adjacent to i in T . We say
that a given edge is external if it joins a taxon i with the corresponding vertex î, and internal otherwise.
For example, for the phylogeny shown in Figure 1, if i =‘A’ then î = 1, hence A-1 is an external edge and
e.g., 1-3 is internal. We denote by D an n × n symmetric distance matrix whose generic entry dij , i, j ∈ Γ,
i 6= j, represents the observed evolutionary distance between the corresponding pair of taxa. Finally, we call
unweighted a phylogeny of Γ for which the edge weights are not specified.

Topological distances in a phylogeny T ∈ T are symmetric, that is:

τij = τji

for all i, j ∈ Γ∪VI , i < j. Topological distances have also less trivial properties that derive from the particular
degree constraints of phylogenies. Specifically, we have:

Proposition 1. (Parker and Ram, 1996) Let Γ be a set of n taxa, and let i ∈ Γ. A sequence of positive
integers τi = [τij : j ∈ Γi] is a path-length sequence (with respect to taxon i) of a phylogeny T ∈ T if and only
if the entries of τi satisfy the following condition:

∑

j∈Γi

2−τij =
1

2
. (4)

We refer to equation (4) as the Kraft equality.
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Phylogenies Phylogenies
Number of Taxa Labeled Unlabeled Number of Taxa Labeled Unlabeled

4 3 1 13 1.4 · 1010 66
5 15 1 14 3.2 · 1011 135
6 105 2 15 7.9 · 1012 265
7 945 2 16 2.1 · 1014 552
8 10,395 3 17 6.2 · 1015 1132
9 135,135 4 18 1.9 · 1017 2410
10 2,027,025 11 19 6.3 · 1018 5098
11 34,459,425 18 20 2.2 · 1020 11,020
12 654,729,075 37 25 2.5 · 1028 565,734

Table 1: Number of labeled and unlabeled phylogenies for increasing number of taxa (some values are
approximated).

Proposition 2. (Catanzaro et al., 2012) Let Γ be a set of n taxa. Then, for all the T ∈ T , the following
equality holds:

∑

i∈Γ

∑

j∈Γi

τij2
−τij = 2n− 3. (5)

3 A non-isomorphic enumerative solution approach to the MEP

We say that two (unweighted) phylogenies T1, T2 ∈ T are isomorphic if there exists a graph isomorphism
between T1 and T2, i.e., a bijection φ from the vertex set of T1 to the vertex set of T2 such that two vertices u, v
are adjacent in T1 if and only if φ(u), φ(v) are adjacent in T2. (Note that here we ignore the edge weights of
phylogenies and only consider the underlying graph.) Phylogeny isomorphism defines an equivalence relation
in T and we refer to each equivalence class as a single unlabeled phylogeny. For example, the phylogeny in
Figure 1 belongs to the equivalence class of the unlabeled phylogeny shown in Figure 3.

Figure 3: An unlabeled phylogeny of five taxa.

All phylogenies in T can be generated starting from the knowledge of the equivalence classes (i.e., unlabeled
phylogenies) in which the set T is partitioned. In fact, given an unlabeled phylogeny U of Γ and denoting
by L the set of its n leaves, any phylogeny T ∈ T belonging to the class U can be defined by means of an
assignment of the taxa in Γ to the leaves in L, i.e., by means of a bijective mapping f : Γ→ L. This insight
is useful to develop a possible exact solution approach for the MEP based on the iteration of the following
two operations: (i) choose an unlabeled phylogeny U of Γ, and (ii) assign taxa to leaves of U and weights to
its edges in order to minimize (1). This approach, hereafter called Non-isomorphic Enumerative Approach
(NEA), has a fundamental advantage: the number of unlabeled phylogenies for an increasing number n
of taxa is a function that, though exponential in n, grows much slower than the corresponding number of
phylogenies of Γ (see Table 1). Hence, the NEA may have a chance to compete with the exact solution
approach for the MEP described in Catanzaro et al. (2009), provided that the unlabeled phylogenies of Γ
can be efficiently enumerated and the assignment problem can be efficiently solved. In this section we shall
investigate both the enumeration and the assignment problems. However, before proceeding we need to
introduce some definitions and tools that will prove useful.
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Figure 4: An unlabeled phylogeny with 10 taxa (numbers are attached to nodes for ease of reference).

3.1 Root-vertex and edge isomorphisms

Consider an unlabeled phylogeny U of Γ and let u be an internal vertex of U . Let S1 and S2 be two subtrees
of U rooted at u. We say that S1 and S2 are root-vertex isomorphic with respect to u if (i) they are isomorphic,
(ii) u is their only vertex in common, and (iii) the leaves of S1 and S2 are leaves of U . For example, in the
unlabeled phylogeny in Figure 4, the subtree rooted at vertex 12 having {1, 2} as leaf set and the subtree
rooted at vertex 12 having {3, 4} as leaf set are root-vertex isomorphic. Similarly, let e = uv be an internal
edge of U , and let S1 and S2 be two subtrees of U rooted at u and v, respectively. We say that S1 and S2

are edge-isomorphic with respect to e if (i) they are isomorphic, (ii) they have no vertex in common, and (iii)
the leaves of S1 and S2 are leaves of U . For example, in the phylogeny in Figure 4, the subtree rooted at
vertex 14 having {1, 2, 3, 4, 5} as leaf set and the subtree rooted at vertex 15 having {6, 7, 8, 9, 10} as leaf set
are edge-isomorphic.

With little abuse of notation with respect to the standard terminology, we call claw of U each K1,2-subtree
of U consisting of two external edges that are incident with a common internal vertex (thus the remaining
endpoints are two leaves of U). Note that each claw of U consists of two single-edge root-vertex isomorphic
subtrees. For instance, the unlabeled phylogeny shown in Figure 4 has four claws rooted at vertices 11, 13,
16, 18, respectively.

Finally, given an unlabeled phylogeny U of Γ, we denote by S the set of all unordered pairs of subtrees of
U that are either root-vertex isomorphic or edge-isomorphic. For example, the set S relative to the unlabeled
phylogeny shown in Figure 4 includes six pairs of root-vertex isomorphic subtrees, namely the four claws
mentioned before and two pairs of isomorphic subtrees rooted at vertices 12 and 17, respectively. Moreover,
S includes also one pair of edge-isomorphic subtrees rooted at the endpoints of edge 14-15.

We remark that for a fixed unlabeled phylogeny U , a given subtree of U can be root-vertex or edge
isomorphic to at most one other subtree, with possibly one exception: there might be a node of U that is the
root of three root-vertex isomorphic subtrees (see Figure 5). It is easy to see that this happens for at most
one node of U .

Figure 5: An unlabeled phylogeny containing a node that is the root of three root-vertex isomorphic subtrees.
The triangles represent isomorphic binary subtrees.
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3.2 Enumerating unlabeled phylogenies

The NEA enumerates the unlabeled phylogenies through a procedure based on the results on the degree-
constrained tree enumeration described in Aringhieri et al. (2003). Specifically, starting from an initial
tree, this procedure generates recursively larger and larger trees in such a way that, at each step of the
enumeration process, the degree constraint on the internal vertices is satisfied. Aringhieri et al. (2011)
showed that, when dealing with unlabeled phylogenies, this enumeration process can be easily performed by
recursively substituting a leaf of the current tree with a new claw. For example, the unlabeled phylogeny
with 5 taxa shown in Figure 6 can be obtained from the unlabeled phylogeny with 4 taxa by replacing its
top-right leaf with a new claw.

The enumeration procedure encodes the trees that it recursively generates in order to maximize the
efficiency of the process. Among the possible encodings, see e.g., Read (1972); Kvasnička and Pospichal
(1991); Trinajstić et al. (1991); Hansen et al. (1994), the CN -tuple encoding (Hansen et al., 1994) seems
particularly suitable for unlabeled phylogenies. This kind of encoding is based on the following result.

Proposition 3. (Jordan, 1869) Let T be a tree with n vertices.

1. If n = 2k + 1 for some k ∈ N, then there exists a unique node v in T , called the centroid, such that all
(two or more) subtrees obtained by removing v contain at most k nodes.

2. If n = 2k for some k ∈ N, then there exists in T either

(a) a unique node v, called the centroid, such that all (three or more) subtrees obtained by removing
v contain less than k nodes, or

(b) a unique edge e, called the bicentroid, such that the two subtrees obtained by removing e contain
exactly k nodes.

Here, we observe that if an unlabeled phylogeny T has a pair of edge isomorphic subtrees, then the
corresponding edge is the bicentroid of the tree. If T has a vertex that is the root of three isomorphic
subtrees, then this vertex is the centroid of the tree. In the remainder we refer to the centroid or the
bicentroid of a given unlabeled phylogeny simply as the center of the tree.

The CN -tuple code of an unlabeled phylogeny U with n taxa (and thus 2n − 2 vertices) is a string
〈α1α2 . . . α2n−2〉 over the alphabet Σ = {0, 1, 2, 3} that is associated to the center of U and built from U
accordingly to a particular recursive law. Specifically, if the center of U is a centroid, then the CN -tuple code
of U is recursively defined as follows:

Base case: If U consists of a single vertex, its code is 〈0〉.

Recursive law: If U has more than one vertex, let r be the center of U and let v1, . . . , vg, g ≤ 3, be the
vertices adjacent to r in U . Set g as the first character of the code. Remove r and its incident edges
from U . Recursively compute the codes c1, c2, . . . , cg associated to the roots of the subtrees rooted at
v1, . . . , vg. The code of U is then obtained by concatenating the codes c1, c2, . . . , cg in such a way that
the resulting string is lexicographically maximum.

For instance, let us consider the unlabeled phylogeny U in Figure 6(b). U has a unique center (labeled with
c), which is connected to g = 3 nodes. By removing the center, we obtain one single-vertex subtree, whose
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code is 〈0〉, and two subtrees (U1 and U2, say) with three nodes each. For i = 1, 2, Ui has a unique center,
whose g = 2 neighbors are single vertices and thus have code 〈0〉; then, for i = 1, 2, the code of Ui is obtained
by setting ‘2’ as the first character and then concatenating ‘0’ and ‘0’ in maximum lexicographic order, that
is 〈200〉. The final CN -tuple code of U is obtained by setting ‘3’ as the first character and then concatenating
‘0’, ‘200’ and ‘200’ in maximum lexicographic order: 〈32002000〉.

When the center of U is a bicentroid, the CN -tuple code of U is the string that is lexicographically
maximum between the ones that are obtained by applying the recursive law to each of the two vertices
that constitute the bicentroid. For example the CN -tuple code of the unlabeled phylogeny in Figure 6(a) is
〈320000〉.

The enumerating procedure exploits the CN -tuple encoding to avoid generating isomorphic phylogenies
from the same initial subtree U0. Specifically, it employs the code to detect the presence of isomorphic
subtrees in U0. As an example, in this way the enumerating procedure identifies that tree (a) in Figure 6
contains isomorphic subtrees and then it generates only one of the four isomorphic phylogenies (b) that can
be obtained by transforming into a claw any of the four leaves of (a). Other kinds of enumeration procedures
could have been implemented but, in the authors’ opinion, they would require more sophisticated techniques
to prevent the generation of isomorphic unlabeled phylogenies, see, e.g., the techniques described in Avis and
Fukuda (1992, 1996); Aringhieri et al. (2003).

3.3 The assignment problem

The second step in the NEA consists in assigning taxa to leaves of an unlabeled phylogeny U and weights to
its edges minimizing objective function (1). This task can be formalized as follows. Let U be an unlabeled
phylogeny of Γ, denote by F the set of all n! bijective mappings f of Γ to the set of n leaves of U , and
by Tf the phylogeny belonging to the class U such that the taxa are assigned to its leaves by means of the
assignment f ∈ F . Then, NEA solves the following assignment problem:

Problem 3 (Fixed Phylogeny Problem (FPP)). Given an unlabeled phylogeny U of Γ, find an optimal
assignment f∗ ∈ F and weights w∗e ≥ 0 that solve the problem

z(U) = min
f∈F

zf (6a)

zf = min
∑

e∈E(Tf )

we (6b)

s.t.
∑

e∈P (f(i),f(j))

we ≥ dij ∀ i, j ∈ Γ : i 6= j (6c)

we ≥ 0 ∀ e ∈ E(Tf ). (6d)

From now on, we define two phylogenies Tf and Tf ′ , that are feasible solutions of FPP, equivalent if each
pair i, j of taxa in Γ has the same topological distance τij = τ ′ij on the two phylogenies, and the weights we
and w′e of corresponding edges of the paths from i to j on the two phylogenies are equal, we = w′e. Then
we observe that in general, given an unlabeled phylogeny U of Γ, different assignments in F may produce
equivalent phylogenies. Given an assignment f ∈ F and any automorphism φ of Tf (i.e., any permutation
φ of the vertices of Tf , such that the pair of vertices uv forms an edge if and only if the pair φ(u)φ(v) also
forms an edge), the assignment f ′ ∈ F defined by f ′(i) = φ(f(i)) produces a phylogeny Tf ′ equivalent to
Tf . As an example, for the unlabeled phylogeny shown in Figure 4, it is easy to realize the equivalence of
the phylogenies that differ only for the swapping of the assignments of the taxa between the pair of leaves
{1, 2}, or {3, 4}, or {7, 8}, or {9, 10}. We also observe that the relation “defining an equivalent phylogeny”
is trivially an equivalence relation on F . Then we can constrain the search for an optimal assignment f∗ to
a single representative assignment f for each equivalence class in F .

The next proposition provides the number of automorphisms #T of a phylogeny T , i.e., the number of
elements of F in each equivalence class. To this end, we recall that by S we denote the set of unordered pairs
of root-vertex or edge isomorphic subtrees of U .

Proposition 4. Given a phylogeny T belonging to the class of U , #T = 3
4 · 2|S| if T has a node that is the

root of three root-vertex isomorphic subtrees, and #T = 2|S| otherwise.
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Proof. The proof is by induction on the number of nodes of T . For the induction to work, it is convenient to
prove the result not only for phylogenies, but for every tree in which all internal vertices have degree 3 except
at most one vertex, which might have degree 2. We remark that all the definitions and results of Section 3.1
apply to this more general case.

The base case of the induction is that of a tree consisting of a single node: in this situation S = ∅ and
the only automorphism is the identity, thus the result #T = 1 is verified.

Now let T be a tree as above, where the number of nodes is at least 2. Let us first assume that T does
not have a bicentroid (therefore there is no pair of edge isomorphic subtrees in T ). If there is a (unique) node
of degree 2 in T , let v denote such a node; otherwise, let v be the centroid of the tree. Let k be the degree
of v (so either k = 2 or k = 3) and denote by v1, . . . , vk its neighbors. If we remove v from T , we obtain k
subtrees T1, . . . , Tk (containing v1, . . . , vk, respectively).

In the following, as inductive step, we show that #T is proportional to
∏
i∈[k] #Ti, where [k] = {1, . . . , k},

and we determine the proportionality constant.
Note that every automorphism φ of T satisfies φ(v) = v, as either v is the unique vertex of degree 2 or

the unique centroid of T (and both properties are preserved by automorphisms). Note also that there exist
automorphisms φ of T such that φ(vi) = vj with i, j ∈ [k] if and only if Ti and Tj are root-vertex isomorphic
subtrees of T (or i = j). In general, we can say that every automorphism φ of T is associated with a specific
permutation σ of the set [k] such that φ(vi) = vσ(i) for i ∈ [k]. Accordingly, we call feasible every permutation
σ such that there is an automorphism of T associated with σ.

Denote by Si the set of unordered pairs of root-vertex or edge isomorphic subtrees of the class Ui that
includes Ti, for i ∈ [k], and observe that the properties of v can be linked to the number of root-vertex or
edge isomorphic subtrees of T and the number of automorphisms of T :

(a) if v is not the root of any two root-vertex isomorphic subtrees, then |S| = |S1| + · · · + |Sk| and there is
only one feasible permutation σ, the identical one (σ(i) = i for all i ∈ [k]), as every automorphism φ of
T must satisfy φ(vi) = vi for i ∈ [k];

(b) if v is the root of exactly two root-vertex isomorphic subtrees, let us say Ti and Tj , then |S| = |S1| +
· · ·+ |Sk|+ 1 and there are only two feasible permutations, the identical one and the one that permutes
only i with j, as every automorphism φ of T must satisfy either φ(vi) = vi for i ∈ [k], or φ(vi) = vj ,
φ(vj) = vi, and φ(vl) = vl for l ∈ [k] \ {i, j};

(c) if v is the root of exactly three root-vertex isomorphic subtrees (thus, in particular, k = 3), then |S| =
|S1|+ · · ·+ |Sk|+ 3 and all the k! = 6 permutations of [k] are feasible.

Let t be the number of feasible permutations. In the three cases analyzed above, the value of t is 1, 2,
and 6, respectively.

We now claim that #T = t ×∏i∈[k] #Ti. To see this, note that if φ is an automorphism of T and σ

is the associated permutation of [k], then σ−1 ◦ φ is an automorphism of T associated with the identity
permutation; vice versa, if φ′ is any automorphism of T associated with the identity permutation and σ is a
feasible permutation, then φ′ ◦σ is an automorphism of T associated with σ. It follows that #T is equal to t
times the number of automorphisms of T associated with the identity permutation. Now, an automorphism
of T is associated with the identity permutation if and only if its restriction to Ti is an automorphism of Ti,
for i ∈ [k]; vice versa, any choice of automorphisms of T1, . . . , Tk leads to an automorphism of T associated
with the identity permutation. It follows that the number of automorphisms of T associated with the identity
permutation is exactly

∏
i∈[k] #Ti, and thus #T = t×∏i∈[k] #Ti as claimed.

Note that each Ti is a tree with all internal vertices of degree 3, except for vi, whose degree is 2 (here we
use the fact the v is defined as the only vertex of degree 2 in T if there is such a vertex, and as the centroid
only when there is no vertex of degree 2 in T ). This easily implies that no vertex of Ti is the root of three
root-vertex isomorphic subtrees in Ti. Then, by induction, #Ti = 2|Si|, hence #T = t × 2|S1| × · · · × 2|Sk|.
The conclusion now follows by using (a)–(c) and recalling that t is equal to 1 (resp., 2, 6) in case (a) (resp.,
(b), (c)).

This concludes the proof for the case of a tree T with no bicentroid. Now assume that T has a bicentroid
e = uv. Note that in this case all nodes of T have degree 3 (otherwise by removing e we would obtain two
subtrees with a different number of nodes, a contradiction). We can reduce this case to the one analyzed
above by subdividing the edge e, i.e., replacing edge e = uv with a path of length two of the form u, z, v,
where z is a new node. It is easy to check that neither |S| nor #T changes.
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Figure 7: An example of unlabeled phylogeny with only two claws.

We remark that the above proof also shows that every automorphism of a phylogeny T can be derived as
composition of automorphisms of T associated with the pairs of subtrees in S. This will prove useful later.

By the above proposition, only n!
2|S| or 4

3 · n!
2|S| out of n! assignments need to be considered for each

unlabeled phylogeny. Assuming n ≥ 4, we can derive an estimation of |S| by using the following trivial
properties:

1. an unlabeled phylogeny has at least as many pairs of root-vertex isomorphic subtrees as the number of
its claws;

2. an unlabeled phylogeny has at most one pair of edge-isomorphic subtrees; moreover, this situation
occurs only if the unlabeled phylogeny possesses a bicentroid.

Then the following proposition holds:

Proposition 5. Every unlabeled phylogeny U of n taxa satisfies 3 ≤ |S| ≤ n.

Proof. We have |S| ≥ 3, as any unlabeled phylogeny has at least three claws, except for the unlabeled
phylogenies in which all n − 2 internal nodes are adjacent to a leaf (see Figure 7). For this latter kind of
phylogenies, |S| = 3 holds, since they have two claws and, if they have an odd number of internal vertices,
they contain two root-vertex isomorphic subtrees rooted at the centroid, and otherwise, they contain two
edge-isomorphic subtrees with respect to the bicentroid.

To see that |S| ≤ n, assume first that U does not have a vertex that is the root of three vertex isomorphic
subtrees. Then, since only the internal vertices can be roots of root-vertex isomorphic subtrees, and there is
at most one pair of edge-isomorphic subtrees, we have |S| ≤ n − 1. Finally, suppose that U has a vertex v
that is the root of three root-vertex isomorphic subtrees. Then v is the centroid of U , thus there is no pair of
edge-isomorphic subtrees. Since v is the root of three pairs of isomorphic subtrees, and every other internal
vertex is the root of at most one pair of isomorphic subtrees, we conclude that |S| ≤ n.

3.4 A mixed integer programming formulation for the fixed phylogeny problem

In the light of the results discussed in the previous sections, we now introduce a mixed integer programming
model to solve the FPP (Problem 3) for a fixed unlabeled phylogeny U of Γ having L as set of leaves. To this
end, let us assume without loss of generality that L = {1, . . . , n} and Γ = {1, . . . , n} (so they are both totally
ordered sets). Given an unlabeled phylogeny U of Γ, we define we, e ∈ E(U), as a nonnegative continuous
variable representing the edge weight of e ∈ E(U). Moreover, we use the following decision variables:

xpi =

{
1 if taxon p is assigned to leaf i

0 otherwise
∀ p ∈ Γ, ∀ i ∈ L

and

ypqij =

{
1 if p is assigned to i and q to j

0 otherwise
∀ p, q ∈ Γ : p 6= q, ∀ i, j ∈ L : i < j.

Note the correspondence between the above variables and the desired assignment f∗: xpi = 1 if and only
if f∗(p) = i, and ypqij = 1 if and only if f∗(p) = i and f∗(q) = j. Then a formulation for the FPP is the
following:
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Formulation 1.

z(U) = min
∑

e∈E(U)

we (7a)

s.t.
∑

e∈P (i,j)

we ≥ dpq(ypqij + yqpij ) ∀ i, j ∈ L : i < j, ∀ p, q ∈ Γ : p < q (7b)

∑

p,q∈Γ
p 6=q

ypqij = 1 ∀ i, j ∈ L : i < j (7c)

∑

i,j∈L
i<j

(ypqij + yqpij ) = 1 ∀ p, q ∈ Γ : p 6= q (7d)

ypqij ≤ xpi ∀ i, j ∈ L : i < j, ∀ p, q ∈ Γ : p 6= q (7e)

ypqij ≤ xqj ∀ i, j ∈ L : i < j, ∀ p, q ∈ Γ : p 6= q (7f)
∑

i∈L
xpi = 1 ∀ p ∈ Γ (7g)

∑

p∈Γ

xpi = 1 ∀ i ∈ L (7h)

we ≥ 0 ∀ e ∈ E(U) (7i)

xpi ∈ {0, 1} ∀ p ∈ Γ, ∀ i ∈ L (7j)

ypqij ∈ {0, 1} ∀ p, q ∈ Γ : p 6= q, ∀ i, j ∈ L : i < j. (7k)

Constraints (7b) impose that, for each pair of distinct taxa p, q ∈ Γ, the sum of the weights of the edges
in P (i, j) is greater than or equal to the observed evolutionary distance dpq if P (i, j) joins taxa p and q.
Equations (7c) impose that for a given pair of taxa (i, j) there is a unique ypqij -variable set to 1. Symmet-
rically, equations (7d) ensure that for each pair of taxa (p, q) there exists exactly one ypqij -variable set to 1.
Inequalities (7e) impose that xpi = 1 whenever ypqij = 1 for some leaf j and taxon q, and (7f) impose a similar
condition. Constraints (7g)–(7h) ensure that the xpi variables model a one-to-one taxon-leaf assignment.
Finally, constraints (7i)–(7k) impose the nonnegativity of the edge weights and integrality of variables xpi and
ypqij , respectively.

Thanks to the presence of constraints (7c)–(7d), we can replace inequalities (7b) with the following
stronger inequalities:

∑

e∈P (i,j)

we ≥
∑

p,q∈Γ
p 6=q

dpq(y
pq
ij + yqpij ) ∀ i, j ∈ L : i < j. (8)

Furthermore, inequalities (7e)–(7f) could be replaced by

∑

q∈Γ
q 6=p

ypqij = xpi ∀ p ∈ Γ, ∀ i, j ∈ L : i < j (9)

∑

p∈Γ
p 6=q

ypqij = xqj ∀ q ∈ Γ, ∀ i, j ∈ L : i < j, (10)

thus obtaining a strengthened linear-programming relaxation. However, extensive preliminary tests run on a
number of variations of the above model showed that, under our branch-price-and-cut approach described in
Section 4.1, it is convenient to write the constraints in the form (7e)–(7f) and add equations (9)–(10) as cuts.

We also observe that the integrality requirements on the ypqij -variables can be relaxed, as the following
proposition shows.

Proposition 6. Constraints (7k) can be relaxed to

ypqij ≥ 0 ∀ p, q ∈ Γ : p 6= q, ∀ i, j ∈ L : i < j. (11)
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Proof. We show that variables ypqij take integer values in any feasible solution to the problem in which
constraints (7k) are replaced by (11). Observe that constraints (11) and (7e)–(7f) imply

0 ≤ ypqij ≤ min{xpi , xqj} ∀ p, q ∈ Γ : p 6= q, ∀ i, j ∈ L : i < j, (12)

hence, because of (7j), ypqij > 0 only if xpi = xqj = 1. In this case, (7g)–(7h) imply that xp
′

i = xq
′

j = 0 for all

p′ 6= p and q′ 6= q. Then, by (7e)–(7f), yp
′q′

ij = 0 whenever (p′, q′) 6= (p, q). Equation (7c) then implies that
ypqij = 1.

3.4.1 Strengthening Formulation 1

A first family of valid cuts for our formulation is given below.

Proposition 7. For every leaf i ∈ L and distinct taxa p, q ∈ Γ, constraint
∑

j∈L
i<j

ypqij +
∑

j∈L
i>j

yqpji = xpi (13)

is valid for Formulation 1.

Proof. The proof of Proposition 6 shows that in any feasible solution ypqij = xpi x
q
j for all p, q ∈ Γ such that

p 6= q and i, j ∈ L such that i < j. With this in mind, one immediately sees that if xpi = 0 then both sides
of (13) are equal to zero and the equation is satisfied, and if xpi = 1, then there exists a unique j ∈ L \ {i}
such that xqj = 1, thus the equation is again satisfied.

By exploiting the fundamental properties of phylogenies and the integrality of variables xpi and ypqij , some
valid inequalities can be developed to strengthen Formulation 1. Specifically, the following propositions hold:

Proposition 8. The equalities

∑

q∈Γp

∑

j∈L
i<j

(
ypqij + yqpij

)
2−τij =

1

2
∀ i ∈ L,∀ p ∈ Γ (14)

∑

p,q∈Γ
p 6=q

∑

i,j∈L
i<j

(ypqij + yqpij )τij2
−τij = 2n− 3 (15)

are valid for Formulation 1.

Proof. The equalities follows by observing that in any feasible solution to the FPP the Kraft equality (4)
and equality (5) hold.

Proposition 9. Given an unlabeled phylogeny U of Γ, the inequality
∑

e∈E(U)

we ≥
∑

p,q∈Γ
p 6=q

∑

i,j∈L
i<j

(ypqij + yqpij )dij2
−τij (16)

is valid for Formulation 1.

Proof. From Semple and Steel (2004) it follows that for every phylogeny T belonging to the class U ,

L(T ) =
∑

e∈E(T )

we =
∑

i,j∈L
i6=j

δij2
−τij , (17)

where δij is equal to the sum of the weights of the edges belonging to the path from leaf i to leaf j in T .
Then, as E(T ) = E(U), constraints (6c) give

∑

e∈E(U)

we =
∑

i,j∈L
i6=j

δij2
−τij ≥

∑

i,j∈L
i6=j

dij2
−τij =

∑

p,q∈Γ
p 6=q

∑

i,j∈L
i<j

(ypqij + yqpij )dij2
−τij . (18)
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It is worth noting that Proposition 9 not only gives a valid inequality for the MEP, but it also provides a
relationship between the Balanced Minimum Evolution Problem (BMEP, Pauplin (2000); see also Catanzaro
et al., 2012) and the MEP. Specifically, given a set Γ of n taxa and its corresponding distance matrix D, the
BMEP consists in finding a phylogeny T that minimizes the following objective function (Pauplin, 2000):

∑

i,j∈Γ
i 6=j

dij2
−τij .

Proposition 9 states that the optimal solution to the BMEP provides a lower bound for the MEP. This will
be useful when proving the statistical consistency of the MEP in Section 6. Moreover, since it was observed
by Fiorini and Joret (2012) that the optimal value of the BMEP is at least half the length of the shortest
Hamiltonian cycle in the complete graph with vertex set Γ and weights dij , Proposition 9 immediately implies
the following result.

Proposition 10 (Cycle inequality). Let G be the weighted complete graph with vertex set Γ and weights dij
for i, j ∈ Γ, i 6= j. Denote by C∗ a shortest Hamiltonian cycle in G and by L(C∗) its length. Then the
inequality ∑

e∈E(U)

we ≥
1

2
L(C∗) (19)

is valid for Formulation 1.

The inclusion of inequality (19) in Formulation 1 can be performed by solving the Traveling Salesman
Problem (TSP) on G. Though the TSP is an NP-hard problem, it can be solved very efficiently for quite
large values of n (see, e.g., D’Ambrosio et al., 2011); in particular, it can be solved almost instantaneously
for the values of n of our instances using Concorde (Applegate et al., 2001).

3.4.2 Reducing the model size by symmetry breaking

A standard branch-and-bound algorithm tends to perform poorly when solving Formulation 1, due to the
presence of the equivalent assignments discussed in Section 3.3. Removing those assignments reduces the
size of the model and speeds up the overall solution time of the FPP. To do so, we enumerate a single
representative assignment for each class of equivalent assignments. Recalling that every automorphism of a
given unlabeled phylogeny is the composition of automorphisms associated with the pairs in S, it is sufficient
to require that, for each pair of subtrees {S1, S2} ∈ S, taxa assigned to S1 lexicographically precede taxa
assigned to S2. This can be implemented by imposing that, for each pair of isomorphic subtrees {S1, S2} ∈ S,
the following constraints hold:

ypqij = 0 ∀ p, q ∈ Γ : q < p (20)

where i and j = φ(i) are two reference vertices in S1 and S2, respectively (with φ being the isomorphism
between S1 and S2). As an example, if we consider the phylogeny in Figure 7, all equivalent assignments can
be excluded by imposing the following constraints:

ypq12 = 0 ∀ p, q ∈ Γ : q < p (21a)

ypqn,n−1 = 0 ∀ p, q ∈ Γ : q < p (21b)

ypq1,n−1 = 0 ∀ p, q ∈ Γ : q < p. (21c)

Imposing constraints (20) requires finding the tree symmetries discussed in Section 3. Specifically, given
an unlabeled phylogeny U , one can detect the presence of a pair of root-vertex isomorphic subtrees in U by
checking whether the CN -tuple code of U contains two consecutive identical substrings c1, c2, where the first
character of c1 and the first character of c2 correspond to nodes with the same predecessor. For example,
the phylogeny in Figure 6(b) has code 〈32002000〉; the two substrings 〈200〉 denote the presence of a pair of
root-vertex isomorphic subtrees rooted at the centroid of U , while each of the first two pairs of consecutive
0s indicates the presence of a claw. Edge-isomorphic subtrees in an unlabeled phylogeny can be detected in
a similar way.

Finding the tree symmetries for a fixed unlabeled phylogeny does not require any further computational
overhead and can be implemented in a very easy way by using the algorithms described in Aringhieri et al.
(2003).
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4 Improving the performance of the NEA

The large number of ypqij -variables in Formulation 1 tends to slow down the resolution of the FPP and
constitutes a bottleneck for the NEA. Therefore, it is worth investigating possible strategies to decrease the
number of variables involved in the formulation. To this end, in this section we shall develop a branch-price-
and-cut approach for the FPP. Moreover, we shall investigate possible heuristic strategies to speed up the
overall performance of the NEA.

4.1 A branch-price-and-cut approach for the fixed phylogeny problem

A possible strategy to speed up the resolution of the FPP consists in using a branch-price-and-cut approach
in which the ypqij -variables are dynamically added to Formulation 1. Specifically, at each node of the search
tree we solve the corresponding linear program by means of a column generation technique, as described
below. Subsequently, we strengthen the linear-programming bound by adding inequalities (9)–(10) and the
valid inequalities described in Section 3.4.1. If the node is not pruned, we perform a branching by fixing the
value of the most fractional xpi variable (i.e., the variable with maximum distance from the closest integer).
Finally, we reiterate the procedure by considering the resulting subproblems. We remark that at each node of
the search tree we compute a bound for a subproblem by removing all strengthening inequalities previously
added to the formulation and by including all the ypqij -variables introduced during the previous iterations.
The choice of ignoring the valid inequalities when performing column generation was due to the large number
of preliminary tests carried out on different variants of the model. The strategy described here turned out
to be the one providing the best trade-off between solution time and tightness of the bound.

Given a generic node of the search tree of the FPP, consider Formulation 1 and replace inequalities (7b)
by the stronger constraints (8); moreover, relax all of the integrality constraints on the decision variables.
We assign dual variables Bij to inequalities (8), dual variables Cij constraints to (7c), . . . , dual variables Hi

to constraints (7h). The feasible region of the dual problem reads as follows:

∑

i,j∈L:i<j
e∈P (i,j)

Bij ≤ 1 ∀ e ∈ E(U) (22a)

∑

j∈L
j>i

∑

q∈Γ
q 6=p

Epqij +
∑

j∈L
j<i

∑

q∈Γ
q 6=p

F qpji +Gp +Hi ≤ 0 ∀ i ∈ L, ∀ p ∈ Γ (22b)

dpqBij + Cij +Dpq − Epqij − F pqij ≤ 0 ∀ i, j ∈ L : i < j, ∀ p, q ∈ Γ : p 6= q (22c)

Bij ≥ 0, Epqij ≥ 0, F pqij ≥ 0, ∀ i, j ∈ L : i < j, ∀ p, q ∈ Γ : p 6= q. (22d)

We start with a reduced primal problem restricted to the following variables: variables we for all e ∈ E(U);
variables xpi for all i ∈ L and p ∈ Γ; variables yijij for all i, j ∈ L such that i < j. These variables are sufficient
to make the formulation feasible for the FPP. Note that none of inequalities (22a) or (22b) can be violated
by the dual solution of the reduced problem, as all primal variables corresponding to these constraints are
included in the reduced linear program. Thus we only have to check if the current dual solution satisfies all
inequalities (22c). We also note that if a variable ypqij is not part of the current reduced problem, then the
corresponding constraints (7e)–(7f) are redundant, and thus we can ignore the corresponding dual variables
Epqij and F pqij . On the other side, if a variable ypqij is part of the current reduced problem, then the dual
constraint (22c) associated with indices i, j, p, q is of course satisfied.

We conclude that, in order to verify whether there is a violated dual constraint, it is enough to check
whether there exist indices i, j ∈ L, i < j, and p, q ∈ Γ, p 6= q, such that the current dual solution satisfies

dpqBij + Cij +Dpq > 0.

This can be achieved by enumerating all possible quadruples of indices i, j, p, q —it seems unlikely that a
less trivial pricing oracle can be devised. Though this pricing oracle requires Θ(n4) operations, the overall
computation time needed to solve the linear relaxation of Formulation 1 with this approach turned out to be
much smaller than the time needed to solve directly the original model.
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4.2 Speeding up the NEA

In order to speed up the overall performance of the NEA, one can reduce the number of unlabeled phylogenies
of Γ to be considered during the enumeration process. This task can be accomplished by performing a
preprocessing phase consisting of the following subtasks: (i) computing a first primal upper bound for the
problem; (ii) computing a lower bound for each possible unlabeled phylogeny of Γ (e.g., by solving the linear
relaxation of Formulation 1); (iii) sorting in nondecreasing order the unlabeled phylogenies of Γ according
to their lower bounds; and finally (iv) pruning those unlabeled phylogenies whose lower bound is greater
then the primal bound previously computed. The fact of keeping ordered the list of the unpruned unlabeled
phylogenies allows a further potential dynamical pruning whenever a better primal bound is determined. The
efficiency of this strategy can be maximized by parallelizing the resolution of the assignment problem, i.e.,
by solving in parallel the FPPs corresponding to multiple unpruned unlabeled phylogenies.

Finding a good primal bound for the MEP is a critical step to reduce the number of unlabeled phylogenies
of Γ to be considered. In order to do so, we exploit the insights provided by Proposition 10. Specifically,
let G be the weighted complete graph with vertex set Γ and weights dij for i, j ∈ Γ, i 6= j. Let C∗ be a
shortest Hamiltonian cycle in G and denote by L(C∗) its length. Fix any unlabeled phylogeny U of Γ and
denote by T (C∗) the labeled phylogeny obtained from U by proceeding as follows: select at random a leaf
of U and assign the taxa to the leaves of U according to the order given by C∗, starting from the selected
leaf and proceeding clockwise. Now, finding weights w∗e for the edges of T (C∗) that minimize the length of
the phylogeny is a linear programming problem (as it is Problem 2 for a fixed T ) that can be solved in a
negligible time. Then we have the following primal bound for the MEP:

Proposition 11. For a fixed unlabeled phylogeny U of Γ, let (w̄e)e∈E(U) be the optimal weights for the edges
of U . Then

∑

e∈E(U)

w̄e ≤
∑

e∈E(T (C∗))

w∗e .

The bound provided by Proposition 11 is not tight, but it can be improved by (i) applying the heuristic
assignment to all unlabeled phylogenies of Γ, and (ii) using local search. In this context, it is worth noting
that for a fixed unlabeled phylogeny of Γ, a first improvement on the heuristic assignment of the taxa in C∗

to the leaves of U can be obtained by shifting the starting leaf during the assignment process. Moreover,
a further improvement can be achieved applying 2-OPT (Glover and Kochenberger, 2003) on the best shift
found. We experienced in preliminary numerical experiments that the primal bounds obtained by using this
approach are usually below 3% from the optimum.

5 Numerical experiments

In order to evaluate the efficiency of our exact solution approach for the MEP, we tested the performance of the
NEA on nine real aligned DNA datasets already used in Catanzaro et al. (2009, 2012), namely: “Primates12”,
a dataset of 12 sequences, 898 characters each from primates mitochondrial DNA; “SeedPlant25”, a dataset
of 25 sequences of 19784 characters each from pinoles; “RbcL55/1314”, a dataset of 55 sequences, 1314
characters each of the rbcL gene; “Rana64 /1976”, a dataset of mitochondrial DNA containing 64 taxa of
1976 characters each from ranoid frogs; “M17/2550”, “M43/2086”, “M18/8128”, “M82/2062”, “M62/3768”,
five datasets of respectively 17 sequences of 2550 characters each from insects, 43 sequences of 2086 characters
each from mammals, 18 sequences of 8128 characters each from cetacea, 82 sequences of 2062 characters each
from fungi, and finally 62 sequences of 3768 characters each from hyracoidae. Table 2 provides a summary
of the characteristics of considered datasets.

From each dataset we have extracted the first 20 taxa (or all taxa if n < 20) and built the associated
n×n distance matrix by using the General Time Reversible (GTR) model of DNA sequence evolution (Lanave
et al., 1984; Rodriguez et al., 1990). Moreover, from each distance matrix we have extracted the corresponding
k-th leading principal submatrices, k ∈ {10, . . . ,max}, where max is 12 for Primates12, 17 for M17, 18 for
M18, and 20 for the remaining datasets, generating therefore an overall number of 167 real instances of the
MEP. Datasets and corresponding distance matrices can be found at http://di.unito.it/datasetsmep2.

We implemented both the NEA and its improved version based on the Branch-Price-and-Cut approach
(BPC-NEA) in ANSI C++ by using Xpress Optimizer libraries v18.10.00. The experiments ran on a Pentium
4, 3.2 GHz, equipped with 2 GByte RAM and operating system Gentoo release 7 (kernel linux 2.6.17). During
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Dataset Taxa Sites Taxonomy Dataset Taxa Sites Taxonomy

Primates12 12 898 primates M17 17 2550 insects
SeedPlant25 25 19784 pinoles M18 18 8128 cetacea
RbcL55 55 1314 rbcL gene M43 43 2086 mammals
Rana64 64 1976 ranoids M62 62 3768 hyracoidae

M82 82 2062 fungi

Table 2: Description of the datasets.

the runtime of the NEA, we activated Xpress automatic cuts, Xpress pre-solve strategy, and Xpress primal
heuristic to generate the first upper bound for the FPP. In contrast, during the runtime of the BPC-NEA
we deactivated Xpress automatic cuts, pre-solve strategy, and primal heuristic. When computing the overall
solution time taken by both versions of the NEA to solve a specific dataset, we disregarded the overhead
added by the unlabeled enumeration routine. The reason for this choice is twofold: first, such overhead is
negligible as shown in Table 3, and second, the unlabeled enumeration can be performed offline once for all,
as the unlabeled phylogenies are independent of the specific dataset.

In order to measure the performance of both versions of the NEA, we considered, as a reference, the
performance of the mixed integer programming model introduced in Catanzaro et al., 2009, at present the
only exact algorithm for MEP available in the literature. We refer to such a model as the EPT model, as
it is based on a particular representation of a phylogeny in terms of the Edge-Path incidence matrix of a
Tree (EPT), see, e.g., Nemhauser and Wolsey, 1999. In order to have a sound comparison of the results, we
implemented the model in Catanzaro et al., 2009, on our machine.

Table 4 shows the computational results for the given datasets. The columns relative to the EPT model
show respectively the running time (expressed in seconds) taken to solve a generic instance of the MEP, the
number of branches needed, and the gap (expressed in percentage) i.e., the difference between the optimal
value found and the value of the linear relaxation at the root node of the search tree, divided by the optimal
value. When “24 hours” appears in the columns “Time”, this is to highlight that the run relative to a
specific instance took longer than 24 hour with respect to a specific approach. The columns “NEA Time”
and “BPC-NEA Time” show the running time (expressed in seconds) taken by the NEA and the BCP-NEA,
respectively, to solve a generic instance of the MEP. Finally, the last column provides the linear relaxation
gap, i.e., the percentage value relative to the difference between the optimal value to the MEP and the value
of the poorest linear relaxation in the list of the unlabeled phylogenies, divided by the optimal value.

As a general trend, we observe that the EPT model is unable to tackle instances of the MEP containing
more than 10 taxa within 24 hours. The solution time is usually very high, ranging from 1.3 hours to 6
hours, and the gap is always above 30%. In contrast, the NEA provides a better performance both in terms
of solution time and gap. Specifically, the solution time for 10 taxa ranged from 137 seconds to a maximum
of 333 seconds, with gap usually not above 11%; in some cases (see datasets Rana64 and M62) the value of
the gap approaches 1%, demonstrating tightness of the bounds provided by Formulation 1. Unfortunately,
the solution time trend of the NEA shows that its performance dramatically deteriorate as the number of
taxa increases. In fact, already with 11 taxa the solution time ranges from 944 seconds to 1.64 hours. This
behavior is mainly due to the large number of ypqij -variables involved in Formulation 1, which slows down
the simplex algorithm and, more in general, the whole solution time of the FPP. In these circumstances, the
BPC-NEA shows its advantages. Specifically, although slower than the NEA below 10 taxa, the BCP-NEA
turns out to be the faster approach when tackling instances containing 11 or more taxa. Although the BCP-
NEA was able to solve SeedPlant25 and Rana64 when considering 14 taxa, as a general trend the instances
containing more than 13 taxa constitute the current limitation for the BPC-NEA.

The performance of the NEA approach depends on the number of taxa and the structure of the distance
matrix D. As we have already noted, the number of taxa directly affects the number of ypqij -variables involved
in Formulation 1, which in turn slows down the resolution of the FPP. In this context, we tried to develop an
alternative model to the branch-and-price approach described in Session 4.1, which consists in substituting
the four-index ypqij -variables with the following three-index arc variables:

ωpqe =

{
1 if the arc e belongs to the path that joins taxa p, q

0 otherwise
∀ p, q ∈ Γ : p 6= q, ∀ e ∈ E(U).
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Number of Number of Unlabeled Time Number of Number of Unlabeled Time
Taxa Phylogenies (sec.) Taxa Phylogenies (sec.)

20 11020 0.07 24 254371 2.80
21 23846 0.16 25 565734 8.40
22 52233 0.39 26 1265579 24.537
23 114796 1.01 27 2841632 71.496

Table 3: Computing time necessary for enumerating the unlabeled phylogenies for a given number of taxa.

Unfortunately, we experienced very poor performance for such a model, mainly due to its linear relaxation
bound, which is significantly smaller than that of the BPC-NEA and quite close to that of the EPT model.

With regard to the structure of the distance matrix D, we observed that two main characteristics of D
may worsen the NEA performance, namely (i) the uniformity of the entries and (ii) the “non additivity” of
the entries, i.e., the tendency of the entries to not satisfy the additive property (Waterman et al., 1977)

dzi + dkj ≤ max{dzj + dik, dkz + dij}

for any four distinct taxa i, j, k, z ∈ Γ. Concerning the uniformity of the entries, the worst possible scenario
for the NEA consists in choosing a distance matrix D whose non-diagonal entries are equal to a given value
d. In this case, any phylogeny whose edge weights are

w∗e =

{
d
2 if e is an external edge

0 otherwise
∀ e ∈ E(U)

is optimal and has length nd
2 . In this situation, the NEA has to enumerate all possible phylogenies in T

before stopping, with consequent worsening of the performance.
Concerning the additive property, Waterman et al. (1977) showed that it plays a central role in solving

the MEP. In fact, the authors proved that the entries of D can be seen as the sum of the weights of the edges
of a phylogeny if and only if D is additive. When this situation occurs, the optimal solution to MEP is unique
and it can be found in O(n2) by using a constructive greedy called the Sequential Algorithm. In particular,
the Sequential Algorithm starts from an initial partial phylogeny of Γ, i.e., a phylogeny having a number of
taxa n′ < n, and determines the corresponding weights by using specific formulae described in Waterman
et al. (1977) valid only if D is additive. Subsequently, the algorithm picks a taxon from among those that are
not in the current partial phylogeny and constructs a new partial phylogeny with n′ + 1 taxa by using again
the previous mentioned formulae. The algorithm iterates the constructive step until the unique phylogeny
of Γ is obtained. Interestingly, the literature reports on faster versions of the Sequential Algorithms, the
best of which is characterized by a computational complexity O(n log n) (see Culberson and Rudnicki, 1989).
Describing these versions is out of the scope of the article. We refer the interested reader to Sattah and
Tversky (1977) and Culberson and Rudnicki (1989) for further information.

Unfortunately, the observed evolutionary matrices are usually not additive, as they are generally estimated
by means of specific Markov substitution models of molecular evolution, such as those described in Felsenstein
(2004); Hasegawa et al. (1981); Jukes and Cantor (1969); Kimura (1980); Lanave et al. (1984); Rodriguez
et al. (1990); Waddell and Steel (1997) or, more rarely, by means of metric models, such as those described
in Beyer et al. (1974); Kidd and Sgaramella-Zonta (1971). These estimation models provide evolutionary
matrices whose entries are nonnegative and symmetric, but that not necessarily satisfy the triangle inequality.
Thus, as the satisfaction of the triangle inequality is a necessary condition for additivity (Waterman et al.,
1977; Semple and Steel, 2003), these matrices are usually not additive. This fact prevents the use of the
Sequential Algorithm even to approximate the optimal solution to the problem, as it requires the additivity
of D to compute the edge weights. In this context, we observed that the “closer” D is to an additive matrix,
the easier (faster) solving the MEP. Hence, in a certain sense, the degree of additivity of a matrix can be
considered as a qualitative measure of the goodness of the MEP as a phylogenetic estimation paradigm.
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EPT NEA BPC-NEA BPC-NEA
Dataset Taxa Time (sec.) Branches Gap (%) Time (sec.) Time (sec.) Gap (%)

Primates12
10 4696.57 853090 38.52 136.37 306.78 3.43
11 24 hours n.a. n.a. 943.26 656.73 2.28
12 n.a. n.a. n.a. 4121.51 3234.96 3.08

SeedPlant25

10 5799.99 968639 30.45 150.93 259.16 9.81
11 24 hours n.a. n.a. 1555.61 1454.86 9.34
12 n.a. n.a. n.a. 8532.24 5500.48 9.20
13 n.a. n.a. n.a. 24 hours 40421.29 9.56
14 n.a. n.a. n.a. n.a. 291241.36 8.96
15 n.a. n.a. n.a. n.a. n.a. n.a.

RbcL55

10 20137.01 12342575 62.64 253.21 1254.95 4.77
11 24 hours n.a. n.a. 1162.42 2561.08 4.09
12 n.a. n.a. n.a. 13713.91 10424.21 4.33
13 n.a. n.a. n.a. 24 hours 160546.89 5.78
14 n.a. n.a. n.a. n.a. n.a. n.a.

Rana64

10 12695.21 2636771 54.73 227.90 221.47 1.91
11 24 hours n.a. n.a. 1105.15 596.58 2.04
12 n.a. n.a. n.a. 6632.99 4328.9 3.4
13 n.a. n.a. n.a. 24 hours 38243.53 4.98
14 n.a. n.a. n.a. n.a. 198152.90 5.54
15 n.a. n.a. n.a. n.a. n.a. n.a.

M17

10 18926.40 11638956 57.34 201.81 798.89 3.67
11 24 hours n.a. n.a. 2398.24 4324.14 3.53
12 n.a. n.a. n.a. 23598.71 21037.27 3.61
13 n.a. n.a. n.a. 24 hours 117682.58 4.53
14 n.a. n.a. n.a. n.a. n.a. n.a.

M18

10 38907.91 10034561 56.64 296.37 1538.53 10.59
11 24 hours n.a. n.a. 4448.06 12990.5 10.32
12 n.a. n.a. n.a. 84531.39 59220.61 8.94
13 n.a. n.a. n.a. 24 hours 101099.87 8.08
14 n.a. n.a. n.a. n.a. n.a. n.a.

M43

10 17946.91 10614369 69.99 204.27 562.55 2.97
11 24 hours n.a. n.a. 1514.56 1852.55 3.01
12 n.a. n.a. n.a. 24 hours 16688.27 3.14
13 n.a. n.a. n.a. n.a. 107301.53 2.52
14 n.a. n.a. n.a. n.a. n.a. n.a.

M62

10 10652.51 5623142 50.49 143.70 203.39 1.12
11 24 hours n.a. n.a. 1100.82 1001.76 1.47
12 n.a. n.a. n.a. 9783.43 4575.81 1.92
13 n.a. n.a. n.a. 24 hours 35567.51 2.03
14 n.a. n.a. n.a. n.a. n.a. n.a.

M82

10 28231.91 7069863 64.66 332.49 1070.73 9.63
11 24 hours n.a. n.a. 5930.71 8116.01 10.02
12 n.a. n.a. n.a. 49555.67 35981.18 10.39
13 n.a. n.a. n.a. 24 hours 243479.21 9.62
14 n.a. n.a. n.a. n.a. n.a. n.a.

Table 4: Numerical results obtained by the EPT model, the NEA, and the BPC-NEA on the analyzed
datasets.
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6 On the consistency of the MEP

There is no general way to empirically validate a candidate phylogeny for a set of molecular sequences
extracted from taxa, as their real phylogeny, i.e., the real evolutionary process undergone by the sequences, is
generally unknown. Hence, the literature proposes a number of criteria to select one phylogeny from among
plausible alternatives. Each criterion usually adopts its own set of evolutionary hypotheses. The ability of
such hypotheses to describe the real evolutionary process of taxa determines the gap between the real and the
true phylogeny, i.e., the phylogeny that one would obtain under the same set of hypotheses if all molecular
data from taxa were available (Felsenstein, 2004). If the optimal phylogeny of a given phylogenetic estimation
criterion approaches (according to a given metric) the true phylogeny as the amount of molecular data from
taxa increases, the corresponding criterion is said to be statistically consistent (Felsenstein, 2004).

The statistical consistency is a desirable property in molecular phylogenetics because it measures the
ability of a criterion to recover the true (and hopefully the real) phylogeny of the considered taxa. The
literature on molecular phylogenetics shows that in the context of distance matrix methods (see Felsenstein,
2004) a number of versions of the PEP are statistically consistent, such as the minimum evolution method
under the least squares edge weight estimation model (see Rzhetsky and Nei, 1993) and the BMEP (Desper
and Gascuel, 2004). In this section we show that MEP is statistically consistent as well by using a different
approach from the ones used e.g., in Rzhetsky and Nei (1993); Gascuel et al. (2001); Denis and Gascuel
(2003); Desper and Gascuel (2004); Gascuel (2005).

Before proceeding, we introduce some notation and definitions. For a given phylogeny T , we will use T
to denote both T and its support, i.e., the unweighted tree underlying T . Recall that when we disregard the
edge weights of T , we use terminology unweighted phylogeny. Note however that an unweighted phylogeny is
labeled. We denote by T ∗ the true phylogeny of Γ and by ∆ = {δij}i,j = {∑e∈P∗(i,j) w

∗
e}i,j the corresponding

true distance matrix, where P ∗(i, j) denotes the path from i to j in T ∗ and w∗e denotes the weight of edge
e in T ∗. Let Dl = {dlij}i,j , for l ∈ N, be the observed distance matrices, where superscript ‘l’ means that

its entries are estimated from molecular data of length l. Similarly to Gascuel (2005), we say that {Dl} is
a consistent estimate of ∆ if the greater the amount of molecular data of taxa we have (e.g., the longer the
DNA sequences), the closer Dl is to ∆; more formally, liml→∞ ‖Dl −∆‖∞ = 0. For each l, let T l be an
optimal phylogeny for the MEP when the input distance matrix is Dl, and let wle be the weight of edge e in
T l. We say that T l converges to T ∗ if the following conditions are satisfied:

1. there exists l̄ such that, for l ≥ l̄, the support of T l coincides with the support of T ∗;

2. for every edge e of T ∗,
lim
l→∞
l≥l̄

wle = w∗e .

The MEP is said to be statistically consistent if whenever {Dl} is a consistent estimate of ∆, T l converges
to T ∗.

Proposition 12. The MEP is statistically consistent.

Proof. For a given distance function D and an unweighted phylogeny T , we denote by LD(T ) the minimum
weight of a phylogeny whose support is T . Furthermore, we denote by BD(T ) the length of a phylogeny
whose support is T , computed under the BMEP objective function:

BD(T ) =
∑

i,j∈Γ
i6=j

dij2
−τij . (23)

Since ∆ is an additive matrix, then T ∗ is the unique optimal phylogeny under the BMEP when the input
distance function is ∆ (see Desper and Gascuel (2004)). Thus there exists ε > 0 such that

B∆(T ) ≥ B∆(T ∗) + ε (24)

for every unweighted phlyogeny T 6= T ∗. Moreover, if we fix an unweighted phylogeny T , then, since {Dl} is a
consistent estimate of ∆ and (23) is a continuous function of D, there exists l1 such that BDl(T ) ≥ B∆(T )−ε/2
for every l ≥ l1.
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Now fix an unweighted phylogeny T 6= T ∗. Then, for l ≥ l1,

LDl(T ) ≥ BDl(T ) ≥ B∆(T )− ε/2 ≥ B∆(T ∗) + ε/2 = L∆(T ∗) + ε/2, (25)

where the first inequality follows from (18), the second inequality holds because l ≥ l1, the third inequality
follows from (24), and the equation holds because (18) is satisfied at equality for T ∗ (as ∆ is the true distance
matrix corresponding to the true phylogeny T ∗).

On the other hand, since, for a fixed T , LD(T ) is a continuous function of D, there exists l2 ≥ l1 such
that LDl(T ∗) < L∆(T ∗) + ε/2 for l ≥ l2. Together with (25), this implies that, for l ≥ l2, the unique optimal
solution to the MEP with input distance matrix Dl has support T ∗. Thus the first condition in the definition
of convergence given above holds with l̄ = l2. The second condition follows from the continuity of LD(T )
when T = T ∗ is fixed.

Acknowledgment

RP acknowledges support from the FNRS for the “bourse missions scientifiques”. Part of this work was
developed while RP was visiting the Graphs and Mathematical Optimization Unit of the ULB. MDS was
supported by the “Progetto di Eccellenza 2008–2009” of the “Fondazione Cassa di Risparmio di Padova e
Rovigo”. The authors also thank Patrick Mardulyn, Fabio Pardi, and Olivier Gascuel for helpful discussions
and Rosa Maria Lo Presti for the datasets she provided.

This article is the fruit of a discussion between Mike Steel (who first proposed the term MEP) and DC
started during the INI Programme PLG Workshop “Future Directions in Phylogenetic Methods and Models”
in December 2007.

References
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