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Abstract

A method to build and calibrate custom fuel models was developed by linking Genetic Algorithms
(GA) to the Rothermel fire spread model. GA randomly generates solutions of fuel model parameters
to form an initial population. Solutions are validated against observations of fire rate of spread via a
goodness-of-fit metric. The population is selected for its best members, crossed over, and mutated
within a range of model parameters values, until a satisfactory fitness is reached. We showed that GA
improved the performance of Rothermel model in three published custom fuel models for litter, grass,
and shrub fuels (RMSE decreased by 39%, 19% and 26%). We applied GA to calibrate a mixed grass-
shrub fuel model, using fuel and fire behaviour data from fire experiments in dry heathlands of
Southern Europe. The new model had significantly lower prediction error against a validation dataset
than either standard or custom fuel models built using average values of inventoried fuels, and
predictions of the Fuel Characteristics Classification System. GA proved a useful tool to calibrate
fuel models and improve Rothermel model predictions. GA allows exploration of a continuous space
of fuel parameters, making fuel model calibration computational effective and easily reproducible,
and does not require fuel sampling. We suggest GA as a viable method to calibrate custom fuel models
in fire modelling systems based on the Rothermel model.

Running head: Optimization of fuel models by Genetic Algorithms

Brief summary

Calibration of Rothermel fuel models by Genetic Algorithms improves simulation of fire behaviour
in both published and newly measured fire experiments. Genetic Algorithms are computational
effective, make calibration reproducible, and do not require fuel sampling. A fuel model for European
heathlands was calibrated using the gaRoth () function of the Rothermel package for R.
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Introduction

The Rothermel (1972) fire spread model is one of the most used models to simulate the forward rate
of spread (ROS) at the head of a surface fire (Sullivan 2009), and is the primary fire spread model of
many fire prediction systems (Lopes et al. 2002; Ferragut et al. 2008; Sullivan 2009; Finney et al.
2011; Andrews 2013).

In the Rothermel model, ROS is simulated as a function of topography, weather and a "fire behaviour
fuel model” (hereafter: fuel model) that consists of a number of fuel parameters for a given fuel
complex (Albini 1976; Burgan and Rothermel 1984), including fuel load (kg m) and surface area-
to-volume (SAV) ratio (m? m=) for different fuel categories and size classes; fuel bed depth (cm);
dead fuel moisture of extinction (%); heat content (kj kg?) of dead and live fuels (see Table 1).
“Standard” stylized fuel models have been built for most areas in North America (Rothermel 1972;
Anderson 1982; Scott and Burgan 2005) to facilitate ROS simulation. However, standard fuel models
are often inappropriate for some situations, such as simulating the effects of fuel treatments on
potential fire behaviour (Sandberg et al. 2007; Cruz and Alexander 2010), and many studies have
identified the need to build custom fuel models to represent local conditions (e.g., Davies 2006; Cruz
and Fernandes 2008; Cai et al. 2014).

Several methods have been used to build custom fuel models (Hough and Albini 1978; Rothermel
and Rinehart 1983; Burgan 1987; Cruz and Fernandes 2008; Wu et al. 2011). Generally, fuel models
are built using inventoried average characteristics of fuelbeds, but often without testing their
performance (e.g., Wu et al. 2011). A more rigorous approach is that of fuel model calibration (Hough
and Albini 1978; Burgan 1987; Cruz and Alexander 2010), which iteratively adjusts fuel model
parameters based on their performance against observed ROS or flame length (Rothermel and
Rinehart 1983; Burgan and Rothermel 1984; van Wilgen et al. 1985; Cai et al. 2014). This was usually
done by starting from either standard fuel models, or mean or median characteristics of sampled
fuelbeds, followed by subjective adjustments until a satisfactory match between predictions and
observations is achieved (Hough and Albini 1978; Burgan 1987; Cruz and Alexander 2010). These
empirical adjustments usually target first those parameters to which the Rothermel model is more
sensitive, such as fuel bed depth (Catchpole et al. 1998), and 1-h fine fuel load and SAV (Burgan
1987), and only then dead fuel moisture of extinction, 10-h and 100-h parameters, and heat content
(Burgan and Rothermel 1984).

However, empirical calibration suffers from several shortcomings. First, the process is highly
subjective and hardly reproducible. Second, due to non-linearities in the relationships between fuel
model parameters in Rothermel system of equations, it is difficult to determine how adjustments will
affect the ROS output (Burgan 1987; Jolly 2007). For example, an increase in fuel load can increase
the reaction intensity but also decrease the wind factor, which are both directly proportional to ROS
in Rothermel equation (Rothermel 1972). Therefore, an increase in fuel load can either increase or
decrease ROS predictions (Burgan 1987). Third, empirical calibration may underestimate the fire
spread because of the difficulty in quantifying the proportion and packing ratio of the fine fuel that is
actually carrying the fire (Cruz and Fernandes 2008).

To overcome problems related to the calibration of stylized fuel models, two solutions were adopted.
Sandberg et al. (2007) proposed a reformulation of the Rothermel model that allows the direct use of
mean or median fuel parameter values measured in the field. However, this reformulation has yet to
be fully tested (Schaaf et al. 2007; Prichard et al. 2013). Using the original Rothermel model coupled
with mathematical optimization of fuel models is considered more effective (Cruz and Alexander
2010).

In previous studies, mathematical optimization of fuel models was obtained by systematically
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perturbing their parameters by discrete increments within a predefined range (“search space”), and
choosing the values that maximize the fit between predicted and observed fire behaviour (Hough and
Albini 1978; Cruz and Fernandes 2008). However, this approach can result in high computational
load and incomplete exploration of the search space.

Genetic Algorithms (Holland 1975) are a method for solving optimization problems which have been
successfully used to calibrate multi-dimensional and nonlinear models in several fields of ecology
and natural resource management (e.g., Stockwell and Noble 1991; Wang 1991), including fire
science (Finney 2004; Lautenberger et al. 2006; Wendt et al. 2013). They use stochastic search rules
and explore a continuous search space, which make them suitable to calibrate fuel model parameters
in a computationally effective way.

In order to propose an objective, reproducible, and effective method to build Rothermel fuel model,
this paper aims to: (1) test if optimization by Genetic Algorithms (GA) improves the accuracy of
custom fuel models for the Rothermel system of equations, (2) calibrate a custom fuel model for dry
heathlands dominated by the dwarf shrub Calluna vulgaris (L.) and the perennial grass Molinia
arundinacea Shrank by GA optimization, using fuel, weather, and fire behaviour data measured under
experimental conditions to demonstrate GA procedures, and (3) evaluate the performance of the GA-
optimized fuel model for dry heathlands against standard fuel models, custom fuel models using mean
values from the field, and predictions of the reformulation of Rothermel model by Sandberg et al.
(2007).

Methods
GA optimization settings

When applying GA to fuel model calibration, the first step is to generate the initial set of fuel model
parameters. This is done via random sampling within a user-defined range for each of the parameters
(Fig. 1). More than one set of parameters are generated at the same time to explore the largest part of
the search space. Then, Rothermel model is run using all sets of parameters, and the fitness of each
(i.e., the agreement between predicted and observed ROS) is evaluated. Several iterations are carried
out, where the fittest parameter sets from one iteration are retained for inclusion in the next one
(“selection”), recombined (“crossing over”), and randomly perturbed (“mutation”) (Fig. 1). A
successful variant of the process is to allow some of the best parameter sets to carry over unaltered
through selection (“elitism”). The process is iterated until a maximum number of iterations has been
produced, or a given fitness has been reached (Goldberg 1989).

We ran GA calibration by using the GA package (Scrucca 2013) for the R statistical framework,
version 3.0 (R Core Team 2013). This package allows the users to customize GA rules for selection,
crossing over, mutation and elitism. Several studies evidenced how GA performs differently with
different problems, so rules for one GA does not generalise to all cases (Eiben et al. 1999). Much
research has been devoted to find rules that avoid premature convergence to non-optimal solutions
(Grefenstette 1986). As a first application of GA to fuel model calibration, we decided to adopt default
settings of the GA package (Scrucca 2013): population size =50, probability of crossing over =80%,
probability of mutation =10%, elitism =5%, selection operator = fitness proportional, crossover
operator = local arithmetic, mutation operator = uniform random value replacement. The maximum
number of iterations was set to 9999.

The fitness function to be minimized was Root Mean Square Error (RMSE) between predicted and
observed ROS. RMSE has already been used to optimize fuel models (Cruz and Fernandes 2008).
Since it is expressed in units homogenous to the dependent variable, under the assumption of
homoscedasticity, it is directly proportional to values of the modeled variable, which makes it apt to
correct for the common underprediction bias in the Rothermel model (Catchpole et al. 1993; Cruz
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and Alexander 2013). To simulate ROS, we used the system of equations implemented in the ros ()
function of the Rothermel package for R (Vacchiano and Ascoli 2014). This function uses the
imperial version of the Rothermel model (Rothermel 1972), includes corrections to the original model
by Frandsen (1973) and Albini (1976), the dynamic fuel load transfer function (Scott and Burgan
2005), and has removed the maximum wind factor limit (Andrews et al. 2013).

Fig. 1. Flowchart for the optimization of fire behaviour fuel model parameters by Genetic Algorithms (GA).
As example, we used a population size = 3 and a fuel model of five parameters: load, surface area-to-volume
ratio (SAV), fuel depth, moisture of extinction (Mx), heat content. GA rules for selection, crossing-over,
mutation, and elitism are described in the Methods section.
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GA optimization testing

First, we searched the wildland fire science literature for studies testing the Rothermel model
(reviewed by Cruz and Alexander 2013), and reporting the following information: (i) a dataset of
observed ROS; (ii) measures of fuel moisture, wind speed and slope steepness associated to each
ROS observation; (iii) a custom fuel model calibrated using published ROS observations; (iv) a
dataset of inventory or laboratory fuel characteristics, from which to infer ranges of fuel model
parameters to force GA optimization. Following these criteria, we selected test-run studies for litter
(Grabner et al. 1997; 2001), grass (Sneeuwjagt 1974; Sneeuwjagt and Frandsen 1977) and shrub fuels
(van Wilgen 1984; van Wilgen et al. 1985), with the following modifications:

(@) for the litter study, as several fires in Grabner et al. (1997) did not present alignment of wind
and slope vectors, we retained only ROS observations with a difference between aspect and
wind direction <30°, indicative of better alignment of vectors;

(b) for the grass study, we used a unique fuel model as calibrated in Sneeuwjagt (1974) using
ROS observations reported by Sneeuwjagt and Frandsen (1977) — who, by contrast, averaged
fuel input parameters measured at each fire site;

(c) for the shrub study, to be consistent with van Wilgen et al. (1985) we considered the fuel
model as “static”, despite the presence of live herb fuels would require a “dynamic” model.

A total of 10, 42 and 14 ROS observations were used, together with associated wind speed, slope and
fuel moisture, for the litter, grass and shrub study, respectively. We constrained GA optimization of
fuel model parameters using ranges of fuel characteristics specified in each study (Table 1). For each
test study we ran one GA optimization. Then, we computed the goodness-of-fit of observed vs.
predicted ROS using either custom fuel models from the test studies, or GA optimization. Goodness-
of-fit metrics for Rothermel predictions were: root mean square error (RMSE), mean absolute error
(MAE), mean absolute percent error (MAPE), and mean bias error (MBE) (Cruz and Alexander
2013). Finally, we did a t-test to identify significant differences (p<0.05) between means of residuals
of published and GA-optimized models under the hypothesis that the latter would produce a lower
prediction error.

Heathland fuel model data

We used GA optimization to calibrate a mixed grass-shrub fuel model (GA-heath) for dry heathlands
of Southern Europe, which are lowland heaths on mineral soil dominated by Calluna and Molinia
(Lonati et al. 2009). We selected this vegetation for the following reasons:

(i) heathlands satisfy Rothermel model assumptions, i.e., fuel is homogenous, well mixed,
continuous, contiguous to the ground, vertically oriented (Rothermel 1972);

(ii) the flammability of heath fuels is well documented (e.g., Davies and Legg 2011; Santana and
Marrs 2014);

(iii) management of European heathlands by prescribed burning (Davies et al. 2009; Fernandes et
al. 2013) could benefit from a custom fuel model targeted to dry heaths.
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Table 1. Ranges of fuel model parameters used to constrain GA optimization in test-run fuelbeds (litter, grass
and shrub fuels) and for the heathland fuel model (GA-heath) calibration. Single values indicate that no range
was applied. Dashes indicate absence of the parameter from the fuel model.

Variables Litter fuel® Grass fuel® Shrub fuel® GA-heathP
Fuel model parameters

Model Type Static Static Static Static
Load 1-h (t ha') 5.24 - 8.65 05-49 1.56 - 6.24 1.50-7.24
Load 10-h (t ha't) 0.36 -1.51 - 04-12 -

Load 100-h (t ha't) 0.57-6.49 - 0.06 -0.18 -

Load Live Herb (t ha'l) - - 1-6 -

Load Live Woody (t hal) - - 0.64 -6.72 2.90 - 10.40
SAV 1-h (m? m) 4921-11423 4600 — 14800 4200 — 8000 6640 — 10036
SAV 10-h (m? m) 358 - 358 -

SAV 100-h (m? m?) 98 - 98 -

SAV Live Herb (m? m?) - - 4200 - 6500 -

SAV Live Woody (m? m3) - - 4200 — 5500 8810 — 10560
d (cm) 6-76 9-53 100 — 200 19-70
My (%) 12-40 12 -25 20-40 25-50
Heat content 1-h (kJ kg) 18622 18622 18000 — 22000 18719 — 19919
Heat content 10-h (kJ kg?) 18622 - 18000 — 22000 -

Heat content 100-h (kJ kg?) 18622 - 18000 — 22000 -

Heat content Live Woody (kJ kg™) - 18622 18000 — 22000 20000 — 22504
Fire variables

Rate of spread (m min‘t) 0.3-10.1 0.2-61.0 2.4-534 0.9-26.3
Wind speed (km h) 0-8 31-113 3.7-1238 04-79
Dead fuel moisture (%) 4-20 8-15 2-13 10-27
Live fuel moisture (%) - 55-170 91 - 147 50-70
Slope (%) 1-24 0-7 0 0

Fuel model parameters: 1-h: dead fuels below 6 mm in diameter; 10-h: dead fuels between 6 and 25 mm in diameter; 100-
h: dead fuels between 25 and 75 mm in diameter; SAV: surface area to volume ratio; &: fuel bed depth; My: dead fuel

moisture of extinction; Heat: high heat content of combustion.

AFuel load after Table 6 in Grabner et al. (2001); SAV, §, My and Heat content after standard fuel models tested in

Grabner et al. (2001).

B Fuel load, SAV, §, and Heat content after Sneeuwjagt and Frandsen (1977); My after group “Grass” of standard fuel

models (Scott and Burgan 2005).

€ Fuel load after Table 1 in van Wilgen et al. (1985); SAV and Heat content after Table 2 and Table 3 in van Wilgen
(1984); & after van Wilgen et al. (1985); Myafter group “Shrub” of standard fuel models (Scott and Burgan 2005).

P Fuel load and & from field measures; SAV, My and Heat content after Fernandes and Rego (1998), Spielmann (2009),
Davies and Legg (2011), Santana and Marrs (2014).
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The GA-heath model was optimized against ROS observations recorded in nine wind-driven field
fire experiments in Northwest Italy (Ascoli et al. 2013; VVacchiano et al. 2014). Fire experiments were
carried out on a flat terrain in Calluna stands in the “building” phase, i.e., a growth stage 8 to 15 years
old, characterized by a dense uniform canopy and many slender stems (Davies et al. 2009). Eight fire
experiments were conducted under moderate to dry weather on four different burn days during the
winter dry season (two fires per day) when grass fuel is fully cured. Two burn days were in the early
dry season (January-February), during the legal prescribed burning season, and others two burn days
were in the late dry season (March), when wildfires usually occur in heathlands of NW Italy (Ascoli
and Bovio 2010). The ninth fire experiment was conducted at a fifth burn day under marginal burning
conditions (i.e., high fuel moisture and low wind speed). To let the fire front reach a pseudo-steady
state, each fire experiment was ignited upwind by line ignitions ranging from 25 to 50 m in length,
and the fire was allowed to spread for 50 to 80 m before being suppressed along a fuel break.

Fine fuel (<6 mm in diameter) moisture was assessed at each fire experiment by collecting five
samples of dead and live Calluna crowns and dead Molinia leaves. Fresh samples were weighed in
the field using a portable scale, and then oven-dried in laboratory at 90°C to constant weight. Fuel
moisture was computed on a dry weight basis.

During each fire experiment, the spread rate was assessed at a microplot scale (Fernandes et al. 2001)
by measuring the arrival time of the fire front at the vertices of a triangle and computing ROS
according to the trigonometric method developed by Simard et al. (1984). At each fire experiment
site (hereafter: fire site), 10 equilateral triangles (10 m side) were visualized using 2 m rods placed at
each triangle vertex. During fire progression, six observers recorded the time of arrival of the fire
front at each rod. Wind speed and direction were assessed every 30 seconds by two anemometers
positioned at a height of 2 m above ground, upwind to the experimental plot. In a few cases, marked
changes in wind direction occurred during the burn. However, the microplot approach allowed data
recorded during backfire and flank fire phases to be discarded. Acceleration phases (<10 m from the
ignition) were also excluded. A total of 40 ROS observations were retained.

We used data from both a fuel inventory and the literature to populate the initial ranges of fuel
parameters for the GA-heath model (Table 1). Fuel characteristics were measured on all nine fire
sites, plus three additional Calluna stands in the building phase. In total, twelve heath stands were
assessed. At each stand, fuels were harvested in six 1 m? quadrats and oven-dried in the laboratory at
90°C to determine the load range of 1-h (dead Calluna and fully cured Molinia) and live woody
(Calluna live foliage with a diameter <6 mm). Large dead fuels (10-h and 100-h parameters) were
not present, while live stems with a diameter >6 mm were not considered, since they largely remain
unburned (Davies et al. 2009). Presence-absence and depth of shrub and grass fuels were measured
every 0.5 m along six linear transects (length =10 m) at each stand. Shrub and grass cover were then
computed as 1/20 times the respective presence counts along the transect. Ranges of flammability
parameters (SAV, moisture of extinction, heat content) for heath fuels were derived from published
studies (Fernandes and Rego 1998; Spielmann 2009; Davies and Legg 2011; Santana and Marrs
2014). The fuel model was conceived as static, consequently the load of cured grass was added to the
1-h class whose SAV and moisture were weighted using the method described in Burgan and
Rothermel (1984, Appendix E).

Calibration and validation of the heathland fuel model

ROS observations were divided into a calibration and a validation set. The calibration set included
the fire experiment with the highest ROS recorded on each burn day, and the ninth fire experiment
burnt under marginal conditions. Following these criteria, 20 ROS observations were assigned to the
calibration set and 20 to the validation set, producing a balanced design. We carried out optimization
of GA-heath by one Genetic Algorithm run using ROS and environmental conditions from the
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calibration set, and fuel parameters ranges reported in Table 1.

Using the validation set and the ros () function of the Rothermel package for R (Vacchiano and
Ascoli 2014), we computed goodness-of-fit metrics (RMSE; MAE; MAPE; MBE) for model
predictions obtained using the following alternative fuel models:

- GA-heath: the heathland fuel model calibrated using GA optimization;

- Stand-GS: the standard fuel model selected among the grass-shrub group (Scott and Burgan
2005) which produced Rothermel predictions with the least RMSE against observations, as
determined by the function bestFM () from the Rothermel package for R (Vacchiano and
Ascoli 2014). Since the grass-shrub group is described by dynamic fuel models, we activated
the fuel load transfer function (Scott and Burgan 2005) implemented in the R package, and
set live herb fuel moisture at 30%, i.e., complete transfer of fully cured herbaceous fuels to
the 1-h class;

- Cust-1: a custom fuel model for Calluna heaths, parameterized by averaging fuel
characteristics sampled in all 12 heath stands (72 observations);

- Cust-2: a site-specific custom fuel model parameterized by averaging fuel loadings and
structure measured at each fire site (six observations per site).

We also computed the fitness metrics for ROS predicted by the Rothermel model reformulation that
is implemented in the Fuel Characteristics Classification System (FCCS), version 2.2 (Sandberg et
al. 2007; Prichard et al. 2013). We instructed FCCS to calculate fuel model parameters by selecting
Calluna in the shrub layer, and Andropogon gerardii Vitman in the non-woody layer (grass fuels in
FCCS), i.e., a species with a SAV of 4920 m? m~ which is adequate for Molinia (source: FCCS
Inferred variables)!. Shrub loads in FCCS are a function of shrub cover and height, therefore we
entered median fuel load of Calluna (both for all stands pooled — FCCS-1, and for each fire site —
FCCS-2) by adjusting the cover of the shrub layer in FCCS until the desired load at the given median
depth was reached. Median values of grass fuel loads, fuel bed height and cover (both for all stands
pooled, and for each fire site) were entered directly in the non-woody layer (Table 2). Custom fuel
moisture scenarios recorded at each fire experiment were used, and the non-woody moisture was set
at 30%.

Finally, we assessed the accuracy of each fuel model, including FCCS, by running an analysis of
variance (ANOVA) of model residuals and a bootstrapped regression-based equivalence test
(Robinson et al. 2005). After successfully testing for ANOVA assumptions, we used a least-square
difference (LSD) post-hoc test to identify significant differences (p<0.05) between means of model
residuals. The equivalence tests were carried out on the validation set of experiments by using the
function equiv.boot () of the package “equivalence” version 0.5.6 (Robinson 2013) for the statistical
software R. The amplitude of the equivalence intervals for the intercept and slope of the
predicted:observed regression line was set to £25%. If the two one-sided confidence intervals for the
intercept and slope was within the equivalence interval, we could reject the null hypothesis of
dissimilarity against a zero intercept and a 1:1 slope, therefore ascertaining the absence of bias and
trends in model predictions.

http:/fiwww.fs.fed.us/pnwifera/fces/inferred_variables/table2_metric/table2_metric.htm
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Results
GA optimization testing

GA optimization produced fuel models for the litter, grass and shrub test studies which markedly
differed from those published (Table 2). GA-optimized fuel models displayed a lower bulk density,
I.e., 23%, 73% and 18% lower than the published value for the litter, grass and shrub models,
respectively. The relative packing ratio (ratio of actual to optimum packing ratio for combustion
efficiency) (Rothermel 1972) was also reduced by GA optimization (Table 2). However, while the
relative packing ratio in the litter model declined from 2.43 to 1.12 (i.e., closer to the optimum) in
both the grass and shrub models it diverged from optimum, showing a decrease from 0.37 to 0.12,
and from 0.23 to 0.19, respectively.

All goodness-of-fit statistics improved after GA optimization. RMSE decreased by 39%, 19% and
26% for the litter, grass and shrub models, respectively (Table 3). Other statistics also showed a
substantial contribution by GA optimization in improving performance relative to the published fuel
models. The t-test evidenced that GA optimization significantly reduced the mean of residuals for
both the litter and grass fuel model, but not for the shrub one (Table 3).

The heathland fuel model

Fire experiments in heath fuels were carried out under a relatively broad range of weather and fuel
moisture conditions: days since last rain, air temperature and humidity, and wind speed ranged
between 3 to 24 days, 90 to 25%, 2 to 20°C, and 0.4 to 7.9 km h™, respectively; fuel moisture ranges
were 10-27% for dead fuels (dead Calluna and cured Molinia), and 50-70% for live fuels (Calluna
foliage). Notably, in most experiments live Calluna had a moisture <60%, i.e., a value close to the
lower edge of physiological activity, indicative of winter desiccation, and thus of high flammability
(Davies et al. 2010). Therefore, even though experiments were carried out under prescribed burning
conditions due to safety reasons (Ascoli and Bovio 2013), experiments from the late dry winter season
approached wildfire conditions under moderate fire weather. Consequently, we observed a relatively
broad array of fire behaviour with ROS ranging from 0.9 to 26.3 m min™. The complete dataset of
ROS observations and environmental conditions during fire experiments is available on
Comprehensive R Archive Network? as example data (firexp) in the Rothermel Package for R
(Vacchiano and Ascoli 2014).

GA-heath optimization against the calibration data resulted in a RMSE of 1.67 m min** and a MAPE
of 20%. Three quarters of observed ROS values were predicted with less than +25% error. Half of
these values displayed underprediction, as showed by the predicted vs. observed scatter plot of Fig.
2. Calibrated parameters for the GA-heath model (Table 2) behaved as follows: for 1-h fuels, loadings
were within the 50" percentile of inventoried values, and SAV and heat content were close to
intermediate values within the range found by experimental studies (Davies and Legg 2011; Santana
and Marrs 2014). Conversely, live woody fuels displayed a load higher than the 75" percentile of
inventoried values, and SAV and heat content close to the range maximum. Dead fuel moisture of
extinction assumed intermediate values of the experimental range (Davies and Legg 2011; Santana
and Marrs 2014). Fuel bed depth showed values close to the 95" percentile of the observed range.
The fuel bed bulk density was 1.96 kg m® and the relative packing ratio was 0.82.

The GA-heath model tested against the validation dataset displayed a MAPE equal to 32%. RMSE,
MAE and MBE were 1.81, 1.42 and 0.49 m min%, respectively. Two thirds of observed ROS values
in the calibration dataset were within £25% error of the predicted values, and 50% of these displayed
underprediction (Fig. 2).

2 http://cran.r-project.org
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Table 2. Parameters of the litter, grass, shrub, and heathland fuel models as determined by GA optimization
(GA-litter; GA-grass; GA-shrub; GA-heath), published studies (Pub-litter; Pub-grass; Pub-shrub; Stand-GS3),
and inventoried fuels (Cust-1; FCCS-1).

Fuel model Type Dead fuel load  Live fuel load SAV & M Heat o pb P/Po
(that) (that) (m? md) (cm) (%)  (kIkg')  (m?) (kg m?)
1h 10h 100h Herb Woody 1h Herb Woody Dead Live
GA-litter Static 578 111 3.76 - - 5258 - - 22 31 18622 — 4889 484 112
Pub-litter®  Static 7.93 0.99 3.06 - - 9186 - - 19 30 18622 - 9106 6.30 243
GA-grass Static 052 - - - - 12781 - - 22 14 18622 - 12781 0.24 0.12
Pub-grass®  Static 280 - - - - 9842 - - 31 15 18622 - 9842 0.90 0.37
GA-shrub  Static 3.72 067 0.15 361 283 6307 5353 4805 153 25 21848 18379 5595 0.72 0.19
Pub-shrub®  Static 400 095 0.12 500 224 6710 5490 4570 140 34 20000 20000 5822 0.88 0.23
GA-heath  Static 382 0 0 0 892 8921 - 10526 65 38 19533 21739 10098 1.96 0.82
Stand-GS3P Dynamic 0.67 056 0 325 280 5906 5249 5249 55 40 18622 18622 5294 133 0.33
Cust-1F Static 525 0 0 0 536 7385 — 10560 41 40 18912 22810 9269 259 1.01
FCCS-1F NA 118 0 0 460 490 5904 4920 5904 38 25 18622 18622 5522 2.81 0.72

Abbreviations of fuel model parameters follow Table 1. Fuel model characteristics: o: characteristic SAV; py: bulk
density; B/Bo: relative packing ratio.

Published fuel model parameters are reported in: A Grabner et al. 1997; B Sneeuwjagt 1976; © van Wilgen 1984, with
subsequent variation of the fuel bed depth from 91 cm to 140 cm in van Wilgen et al. (1985). P Standard fuel model GS3
from Scott and Burgan (2005). E Fuel model for heathland fuels customized using average values of fuel parameters from
all heath stands pooled. F FCCS fuel input for heathland fuels customized using median values of fuel parameters from
all heath stands pooled.

Table 3. Goodness-of-fit metrics of Rothermel model predictions obtained using GA-optimized and published
fuel models for litter, grass and shrub studies. Probability values follow a t-test between published and GA
optimized fuel model residuals means.

Fuel model RMSE MAE MAPE Percentage MBE p-Value
(m mint) (%) Within £25% (m min?)
error

GA-litter 3.02 2.02 54 22 0.05 0.045*
Pub-litter 4.95 3.91 128 11 3.15

GA-grass 4.32 2.91 126 19 0.55 0.029*
Pub-grass 5.35 4.09 252 16 2.73

GA-shrub 5.45 4.34 20 79 -0.38 0.147

Pub-shrub 7.18 6.17 30 57 2.10

RMSE: root mean square error; MAE: mean absolute error; MAPE: mean percentage error; MBE: mean bias error. All
fuel models parameters are reported in Table 2.

* Probability of mean separation p<0.05.
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Fig. 2. Predicted vs. observed rate of spread (m min™) in the calibration (black dots) and the validation dataset
(white triangles) calculated using the heathland fuel model optimized with Genetic Algorithms (GA-heath)
and the ros () function of the Rothermel Package for R. x-axis of the residual plot is the observed rate of
spread, y-axis is residual (predicted — observed) rate of spread.
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GA-heath had the best goodness-of-fit statistics of all the tested fuel models (Fig. 3). Among all
standard fuel models within the grass-shrub group (Scott and Burgan 2005), GS3 was selected by the
bestFM () function as producing the most accurate predictions, with a RMSE of 3.05 m min™ and a
MBE of -1.09 m min*. The custom fuel models parameterized with average values of observed fuel
characteristics produced a slightly better fit, but increased underprediction. The model for all stands
pooled produced a RMSE of 2.76 m min* and a MBE of -1.35 m min*; the model using site-specific
fuel data had a RMSE of 2.61 m min™ and a MBE of -1.32 m min™. Both custom fuel models
displayed a higher bulk density in comparison to GA-heath, as well as a higher relative packing ratio
(Table 2), which was 1.01 for the model customized by average values from the overall fuel inventory,
and ranged from 0.69 to 1.11 when using average values from each fire site.

An interesting result was obtained when simulating ROS using the Rothermel model reformulation
implemented in FCCS. When using median values from the overall fuel inventory, FCCS
overpredicted ROS and produced the worst fit statistics (Fig. 3) with a RMSE of 3.28 m mint and a
MBE of 2.58 m min. However, when using median values at the plot scale, FCCS performance
improved and approached the standard fuel model GS3 with a RMSE of 2.87 m min! and a MBE of
1.55 m min (Fig. 3).
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Fig. 3. Statistics of heathland fuel models performance against the validation dataset: (a) Root mean square
error (m mint); (b) Mean absolute error (m min); (c) Mean bias error (m min); (d) Mean absolute percent
error (%); (e) Percentage within +25% error; (f) Number of over and under predictions. GA-heath: heathland
fuel model calibrated by Genetic Algorithms; Stand-GS3:standard fuel model GS3; Cust-1: custom fuel model
for Calluna heaths, parameterized with average values from the overall fuel inventory; Cust-2: custom fuel
model parameterized with site-specific average values at each fire site; FCCS-1: FCCS parameterized with
median values from the overall fuel inventory; FCCS-2: FCCS parameterized with median values from each
fire site.
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ANOVA results showed significant differences among means of model residuals (Fis119=9.91,
P<0.001). The LSD test evidenced no differences between models with negative residuals (i.e., GS3 and
custom fuel models parameterized with average fuel characteristics), and between models with positive
residuals (FCCS models). GA-heath produced significantly different prediction from both groups, and
intermediate ROS values. The regression based equivalence test confirmed trends in fit statistics (Table
4). GA-heath had the highest proportion of bootstrap sample estimates falling within the intervals of
equivalence for both the slope and the intercept. Moreover, GA-heath was the only fuel model where the
null hypothesis of dissimilarity was rejected for both the intercept and the slope (Table 4).

Table 4. Summary of regression-based equivalence tests for the validation of alternative fuel models against
rate of spread observations. Fuel model names follow Figure 3.

Fuel Model n Boclo Prch Cpo” Cpo* Igo” Igo* Cpr” Cpi* Igi” Ig:*
GA-heath 20 1.000 0.986 7.19* 8.78* 6.30 1049 0.79* 115 075 1.25
Stand-GS3 20 0.931  0.089 6.97 8.89 520 867 110 1.89 075 125
Cust-1 20 0.808 0.207 709 8.82 501 834 1.00 1.58 075 125
Cust-2 20 0.826 0.281 709 880 503 838 097 150 075 1.25
FCCS-1 20 0497 0.933 6.99 8.87 7.95 13.26  0.68 1.16 0.75 1.25
FCCS-2 20 0.941 0.803 6.91 8.98 7.13 11.88 0.57 1.02 0.75 1.25

n, sample size; Bo clo and B1 cli,proportion of bootstrap sample estimates that fall into their intervals of equivalence of
the intercept (Igo7, Igo*) and the slope (lgi7, Igi™), respectively. The joint two one-sided 95% confidence intervals for the
intercept and slope are (Cgo, Cpo*) and (Cgp1, Cpi™), respectively. The former should fall within the intercept interval of
equivalence (lgo, Ipo™) = | £ 25%, and the latter within the slope interval of equivalence (lg", 1p1*) =1 % 0.25.

*Values for which the null hypothesis of dissimilarity has been rejected, at p <0.05.
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Discussion

The first objective of this research was to test if fuel model optimization by Genetic Algorithms
improves the accuracy of the Rothermel fire spread mode