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Abstract 

A method to build and calibrate custom fuel models was developed by linking Genetic Algorithms 

(GA) to the Rothermel fire spread model. GA randomly generates solutions of fuel model parameters 

to form an initial population. Solutions are validated against observations of fire rate of spread via a 

goodness-of-fit metric. The population is selected for its best members, crossed over, and mutated 

within a range of model parameters values, until a satisfactory fitness is reached. We showed that GA 

improved the performance of Rothermel model in three published custom fuel models for litter, grass, 

and shrub fuels (RMSE decreased by 39%, 19% and 26%). We applied GA to calibrate a mixed grass-

shrub fuel model, using fuel and fire behaviour data from fire experiments in dry heathlands of 

Southern Europe. The new model had significantly lower prediction error against a validation dataset 

than either standard or custom fuel models built using average values of inventoried fuels, and 

predictions of the Fuel Characteristics Classification System. GA proved a useful tool to calibrate 

fuel models and improve Rothermel model predictions. GA allows exploration of a continuous space 

of fuel parameters, making fuel model calibration computational effective and easily reproducible, 

and does not require fuel sampling. We suggest GA as a viable method to calibrate custom fuel models 

in fire modelling systems based on the Rothermel model. 

 

Running head: Optimization of fuel models by Genetic Algorithms 

Brief summary 

Calibration of Rothermel fuel models by Genetic Algorithms improves simulation of fire behaviour 

in both published and newly measured fire experiments. Genetic Algorithms are computational 

effective, make calibration reproducible, and do not require fuel sampling. A fuel model for European 

heathlands was calibrated using the gaRoth ( ) function of the Rothermel package for R. 
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Introduction 

The Rothermel (1972) fire spread model is one of the most used models to simulate the forward rate 

of spread (ROS) at the head of a surface fire (Sullivan 2009), and is the primary fire spread model of 

many fire prediction systems (Lopes et al. 2002; Ferragut et al. 2008; Sullivan 2009; Finney et al. 

2011; Andrews 2013). 

In the Rothermel model, ROS is simulated as a function of topography, weather and a "fire behaviour 

fuel model” (hereafter: fuel model) that consists of a number of fuel parameters for a given fuel 

complex (Albini 1976; Burgan and Rothermel 1984), including fuel load (kg m-2) and surface area-

to-volume (SAV) ratio (m2 m-3) for different fuel categories and size classes; fuel bed depth (cm); 

dead fuel moisture of extinction (%); heat content (kj kg-1) of dead and live fuels (see Table 1). 

“Standard” stylized fuel models have been built for most areas in North America (Rothermel 1972; 

Anderson 1982; Scott and Burgan 2005) to facilitate ROS simulation. However, standard fuel models 

are often inappropriate for some situations, such as simulating the effects of fuel treatments on 

potential fire behaviour (Sandberg et al. 2007; Cruz and Alexander 2010), and many studies have 

identified the need to build custom fuel models to represent local conditions (e.g., Davies 2006; Cruz 

and Fernandes 2008; Cai et al. 2014). 

Several methods have been used to build custom fuel models (Hough and Albini 1978; Rothermel 

and Rinehart 1983; Burgan 1987; Cruz and Fernandes 2008; Wu et al. 2011). Generally, fuel models 

are built using inventoried average characteristics of fuelbeds, but often without testing their 

performance (e.g., Wu et al. 2011). A more rigorous approach is that of fuel model calibration (Hough 

and Albini 1978; Burgan 1987; Cruz and Alexander 2010), which iteratively adjusts fuel model 

parameters based on their performance against observed ROS or flame length (Rothermel and 

Rinehart 1983; Burgan and Rothermel 1984; van Wilgen et al. 1985; Cai et al. 2014). This was usually 

done by starting from either standard fuel models, or mean or median characteristics of sampled 

fuelbeds, followed by subjective adjustments until a satisfactory match between predictions and 

observations is achieved (Hough and Albini 1978; Burgan 1987; Cruz and Alexander 2010). These 

empirical adjustments usually target first those parameters to which the Rothermel model is more 

sensitive, such as fuel bed depth (Catchpole et al. 1998), and 1-h fine fuel load and SAV (Burgan 

1987), and only then dead fuel moisture of extinction, 10-h and 100-h parameters, and heat content 

(Burgan and Rothermel 1984).  

However, empirical calibration suffers from several shortcomings. First, the process is highly 

subjective and hardly reproducible. Second, due to non-linearities in the relationships between fuel 

model parameters in Rothermel system of equations, it is difficult to determine how adjustments will 

affect the ROS output (Burgan 1987; Jolly 2007). For example, an increase in fuel load can increase 

the reaction intensity but also decrease the wind factor, which are both directly proportional to ROS 

in Rothermel equation (Rothermel 1972). Therefore, an increase in fuel load can either increase or 

decrease ROS predictions (Burgan 1987). Third, empirical calibration may underestimate the fire 

spread because of the difficulty in quantifying the proportion and packing ratio of the fine fuel that is 

actually carrying the fire (Cruz and Fernandes 2008). 

To overcome problems related to the calibration of stylized fuel models, two solutions were adopted. 

Sandberg et al. (2007) proposed a reformulation of the Rothermel model that allows the direct use of 

mean or median fuel parameter values measured in the field. However, this reformulation has yet to 

be fully tested (Schaaf et al. 2007; Prichard et al. 2013). Using the original Rothermel model coupled 

with mathematical optimization of fuel models is considered more effective (Cruz and Alexander 

2010). 

In previous studies, mathematical optimization of fuel models was obtained by systematically 
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perturbing their parameters by discrete increments within a predefined range (“search space”), and 

choosing the values that maximize the fit between predicted and observed fire behaviour (Hough and 

Albini  1978; Cruz and Fernandes 2008). However, this approach can result in high computational 

load and incomplete exploration of the search space. 

Genetic Algorithms (Holland 1975) are a method for solving optimization problems which have been 

successfully used to calibrate multi-dimensional and nonlinear models in several fields of ecology 

and natural resource management (e.g., Stockwell and Noble 1991; Wang 1991), including fire 

science (Finney 2004; Lautenberger et al. 2006; Wendt et al. 2013). They use stochastic search rules 

and explore a continuous search space, which make them suitable to calibrate fuel model parameters 

in a computationally effective way. 

In order to propose an objective, reproducible, and effective method to build Rothermel fuel model, 

this paper aims to: (1) test if optimization by Genetic Algorithms (GA) improves the accuracy of 

custom fuel models for the Rothermel system of equations, (2) calibrate a custom fuel model for dry 

heathlands dominated by the dwarf shrub Calluna vulgaris (L.) and the perennial grass Molinia 

arundinacea Shrank by GA optimization, using fuel, weather, and fire behaviour data measured under 

experimental conditions to demonstrate GA procedures, and (3) evaluate the performance of the GA-

optimized fuel model for dry heathlands against standard fuel models, custom fuel models using mean 

values from the field, and predictions of the reformulation of Rothermel model by Sandberg et al. 

(2007). 

 

Methods 

GA optimization settings 

When applying GA to fuel model calibration, the first step is to generate the initial set of fuel model 

parameters. This is done via random sampling within a user-defined range for each of the parameters 

(Fig. 1). More than one set of parameters are generated at the same time to explore the largest part of 

the search space. Then, Rothermel model is run using all sets of parameters, and the fitness of each 

(i.e., the agreement between predicted and observed ROS) is evaluated. Several iterations are carried 

out, where the fittest parameter sets from one iteration are retained for inclusion in the next one 

(“selection”), recombined (“crossing over”), and randomly perturbed (“mutation”) (Fig. 1). A 

successful variant of the process is to allow some of the best parameter sets to carry over unaltered 

through selection (“elitism”). The process is iterated until a maximum number of iterations has been 

produced, or a given fitness has been reached (Goldberg 1989). 

We ran GA calibration by using the GA package (Scrucca 2013) for the R statistical framework, 

version 3.0 (R Core Team 2013). This package allows the users to customize GA rules for selection, 

crossing over, mutation and elitism. Several studies evidenced how GA performs differently with 

different problems, so rules for one GA does not generalise to all cases (Eiben et al. 1999). Much 

research has been devoted to find rules that avoid premature convergence to non-optimal solutions 

(Grefenstette 1986). As a first application of GA to fuel model calibration, we decided to adopt default 

settings of the GA package (Scrucca 2013): population size =50, probability of crossing over =80%, 

probability of mutation =10%, elitism =5%, selection operator = fitness proportional, crossover 

operator = local arithmetic, mutation operator = uniform random value replacement. The maximum 

number of iterations was set to 9999. 

The fitness function to be minimized was Root Mean Square Error (RMSE) between predicted and 

observed ROS. RMSE has already been used to optimize fuel models (Cruz and Fernandes 2008). 

Since it is expressed in units homogenous to the dependent variable, under the assumption of 

homoscedasticity, it is directly proportional to values of the modeled variable, which makes it apt to 

correct for the common underprediction bias in the Rothermel model (Catchpole et al. 1993; Cruz 
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and Alexander 2013). To simulate ROS, we used the system of equations implemented in the ros ( ) 

function of the Rothermel package for R (Vacchiano and Ascoli 2014). This function uses the 

imperial version of the Rothermel model (Rothermel 1972), includes corrections to the original model 

by Frandsen (1973) and Albini (1976), the dynamic fuel load transfer function (Scott and Burgan 

2005), and has removed the maximum wind factor limit (Andrews et al. 2013). 

 

Fig. 1. Flowchart for the optimization of fire behaviour fuel model parameters by Genetic Algorithms (GA). 

As example, we used a population size = 3 and a fuel model of five parameters: load, surface area-to-volume 

ratio (SAV), fuel depth, moisture of extinction (Mx), heat content. GA rules for selection, crossing-over, 

mutation, and elitism are described in the Methods section. 
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GA optimization testing 

First, we searched the wildland fire science literature for studies testing the Rothermel model 

(reviewed by Cruz and Alexander 2013), and reporting the following information: (i) a dataset of 

observed ROS; (ii) measures of fuel moisture, wind speed and slope steepness associated to each 

ROS observation; (iii) a custom fuel model calibrated using published ROS observations; (iv) a 

dataset of inventory or laboratory fuel characteristics, from which to infer ranges of fuel model 

parameters to force GA optimization. Following these criteria, we selected test-run studies for litter 

(Grabner et al. 1997; 2001), grass (Sneeuwjagt 1974; Sneeuwjagt and Frandsen 1977) and shrub fuels 

(van Wilgen 1984; van Wilgen et al. 1985), with the following modifications: 

(a) for the litter study, as several fires in Grabner et al. (1997) did not present alignment of wind 

and slope vectors, we retained only ROS observations with a difference between aspect and 

wind direction <30°, indicative of better alignment of vectors; 

(b) for the grass study, we used a unique fuel model as calibrated in Sneeuwjagt (1974) using 

ROS observations reported by Sneeuwjagt and Frandsen (1977) – who, by contrast, averaged 

fuel input parameters measured at each fire site; 

(c) for the shrub study, to be consistent with van Wilgen et al. (1985) we considered the fuel 

model as “static”, despite the presence of live herb fuels would require a “dynamic” model. 

A total of 10, 42 and 14 ROS observations were used, together with associated wind speed, slope and 

fuel moisture, for the litter, grass and shrub study, respectively. We constrained GA optimization of 

fuel model parameters using ranges of fuel characteristics specified in each study (Table 1). For each 

test study we ran one GA optimization. Then, we computed the goodness-of-fit of observed vs. 

predicted ROS using either custom fuel models from the test studies, or GA optimization. Goodness-

of-fit metrics for Rothermel predictions were: root mean square error (RMSE), mean absolute error 

(MAE), mean absolute percent error (MAPE), and mean bias error (MBE) (Cruz and Alexander 

2013). Finally, we did a t-test to identify significant differences (p<0.05) between means of residuals 

of published and GA-optimized models under the hypothesis that the latter would produce a lower 

prediction error. 

 

Heathland fuel model data  

We used GA optimization to calibrate a mixed grass-shrub fuel model (GA-heath) for dry heathlands 

of Southern Europe, which are lowland heaths on mineral soil dominated by Calluna and Molinia 

(Lonati et al. 2009). We selected this vegetation for the following reasons: 

(i) heathlands satisfy Rothermel model assumptions, i.e., fuel is homogenous, well mixed, 

continuous, contiguous to the ground, vertically oriented (Rothermel 1972); 

(ii) the flammability of heath fuels is well documented (e.g., Davies and Legg 2011; Santana and 

Marrs 2014); 

(iii) management of European heathlands by prescribed burning (Davies et al. 2009; Fernandes et 

al. 2013) could benefit from a custom fuel model targeted to dry heaths. 
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Table 1. Ranges of fuel model parameters used to constrain GA optimization in test-run fuelbeds (litter, grass 

and shrub fuels) and for the heathland fuel model (GA-heath) calibration. Single values indicate that no range 

was applied. Dashes indicate absence of the parameter from the fuel model. 

Variables Litter fuelA Grass fuelB Shrub fuelC GA-heathD 

Fuel model parameters     

Model Type Static Static Static Static 

Load 1-h (t ha-1) 5.24 – 8.65 0.5 – 4.9 1.56 – 6.24 1.50 – 7.24 

Load 10-h (t ha-1) 0.36 – 1.51 – 0.4 – 1.2 – 

Load 100-h (t ha-1) 0.57 – 6.49 – 0.06 – 0.18 – 

Load Live Herb (t ha-1) – – 1 – 6 – 

Load Live Woody (t ha-1) – – 0.64 – 6.72 2.90 – 10.40 

SAV 1-h (m2 m-3)  4921–11423 4600 – 14800 4200 – 8000 6640 – 10036 

SAV 10-h (m2 m-3) 358 – 358 – 

SAV 100-h (m2 m-3) 98 – 98 – 

SAV Live Herb (m2 m-3) – – 4200 – 6500 – 

SAV Live Woody (m2 m-3) – – 4200 – 5500 8810 – 10560 

δ (cm) 6–76 9 – 53 100 – 200 19 – 70 

Mx (%)  12–40 12 – 25 20 – 40 25 – 50 

Heat content 1-h (kJ kg-1) 18622 18622 18000 – 22000 18719 – 19919 

Heat content 10-h (kJ kg-1) 18622 – 18000 – 22000 – 

Heat content 100-h (kJ kg-1) 18622 – 18000 – 22000 – 

Heat content Live Woody (kJ kg-1) – 18622 18000 – 22000 20000 – 22504 

Fire variables     

Rate of spread (m min-1) 0.3 – 10.1 0.2 – 61.0 2.4 – 53.4 0.9 – 26.3 

Wind speed (km h-1) 0 – 8 3.1 – 11.3 3.7 – 12.8 0.4 – 7.9 

Dead fuel moisture (%) 4 – 20 8 – 15 2 – 13 10 – 27 

Live fuel moisture (%) – 55 – 170 91 – 147 50 – 70 

Slope (%) 1 – 24 0 – 7 0 0 

Fuel model parameters: 1-h: dead fuels below 6 mm in diameter; 10-h: dead fuels between 6 and 25 mm in diameter; 100-

h: dead fuels between 25 and 75 mm in diameter; SAV: surface area to volume ratio;  δ: fuel bed depth; Mx: dead fuel 

moisture of extinction; Heat: high heat content of combustion. 

A Fuel load after Table 6 in Grabner et al. (2001); SAV, δ, Mx and Heat content after standard fuel models tested in 

Grabner et al. (2001). 

B Fuel load, SAV, δ, and Heat content after Sneeuwjagt and Frandsen (1977); Mx after group “Grass” of standard fuel 

models (Scott and Burgan 2005). 

C Fuel load after Table 1 in van Wilgen et al. (1985); SAV and Heat content after Table 2 and Table 3 in van Wilgen 

(1984); δ after van Wilgen et al. (1985); Mx after group “Shrub” of standard fuel models (Scott and Burgan 2005). 

D Fuel load and δ from field measures; SAV, Mx and Heat content after Fernandes and Rego (1998), Spielmann (2009), 

Davies and Legg (2011), Santana and Marrs (2014). 
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The GA-heath model was optimized against ROS observations recorded in nine wind-driven field 

fire experiments in Northwest Italy (Ascoli et al. 2013; Vacchiano et al. 2014). Fire experiments were 

carried out on a flat terrain in Calluna stands in the “building” phase, i.e., a growth stage 8 to 15 years 

old, characterized by a dense uniform canopy and many slender stems (Davies et al. 2009). Eight fire 

experiments were conducted under moderate to dry weather on four different burn days during the 

winter dry season (two fires per day) when grass fuel is fully cured. Two burn days were in the early 

dry season (January-February), during the legal prescribed burning season, and others two burn days 

were in the late dry season (March), when wildfires usually occur in heathlands of NW Italy (Ascoli 

and Bovio 2010). The ninth fire experiment was conducted at a fifth burn day under marginal burning 

conditions (i.e., high fuel moisture and low wind speed). To let the fire front reach a pseudo-steady 

state, each fire experiment was ignited upwind by line ignitions ranging from 25 to 50 m in length, 

and the fire was allowed to spread for 50 to 80 m before being suppressed along a fuel break. 

Fine fuel (<6 mm in diameter) moisture was assessed at each fire experiment by collecting five 

samples of dead and live Calluna crowns and dead Molinia leaves. Fresh samples were weighed in 

the field using a portable scale, and then oven-dried in laboratory at 90°C to constant weight. Fuel 

moisture was computed on a dry weight basis. 

During each fire experiment, the spread rate was assessed at a microplot scale (Fernandes et al. 2001) 

by measuring the arrival time of the fire front at the vertices of a triangle and computing ROS 

according to the trigonometric method developed by Simard et al. (1984). At each fire experiment 

site (hereafter: fire site), 10 equilateral triangles (10 m side) were visualized using 2 m rods placed at 

each triangle vertex. During fire progression, six observers recorded the time of arrival of the fire 

front at each rod. Wind speed and direction were assessed every 30 seconds by two anemometers 

positioned at a height of 2 m above ground, upwind to the experimental plot. In a few cases, marked 

changes in wind direction occurred during the burn. However, the microplot approach allowed data 

recorded during backfire and flank fire phases to be discarded. Acceleration phases (<10 m from the 

ignition) were also excluded. A total of 40 ROS observations were retained. 

We used data from both a fuel inventory and the literature to populate the initial ranges of fuel 

parameters for the GA-heath model (Table 1). Fuel characteristics were measured on all nine fire 

sites, plus three additional Calluna stands in the building phase. In total, twelve heath stands were 

assessed. At each stand, fuels were harvested in six 1 m2 quadrats and oven-dried in the laboratory at 

90°C to determine the load range of 1-h (dead Calluna and fully cured Molinia) and live woody 

(Calluna live foliage with a diameter <6 mm). Large dead fuels (10-h and 100-h parameters) were 

not present, while live stems with a diameter >6 mm were not considered, since they largely remain 

unburned (Davies et al. 2009). Presence-absence and depth of shrub and grass fuels were measured 

every 0.5 m along six linear transects (length =10 m) at each stand. Shrub and grass cover were then 

computed as 1/20 times the respective presence counts along the transect. Ranges of flammability 

parameters (SAV, moisture of extinction, heat content) for heath fuels were derived from published 

studies (Fernandes and Rego 1998; Spielmann 2009; Davies and Legg 2011; Santana and Marrs 

2014). The fuel model was conceived as static, consequently the load of cured grass was added to the 

1-h class whose SAV and moisture were weighted using the method described in Burgan and 

Rothermel (1984, Appendix E). 

 

Calibration and validation of the heathland fuel model 

ROS observations were divided into a calibration and a validation set. The calibration set included 

the fire experiment with the highest ROS recorded on each burn day, and the ninth fire experiment 

burnt under marginal conditions. Following these criteria, 20 ROS observations were assigned to the 

calibration set and 20 to the validation set, producing a balanced design. We carried out optimization 

of GA-heath by one Genetic Algorithm run using ROS and environmental conditions from the 
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calibration set, and fuel parameters ranges reported in Table 1. 

Using the validation set and the ros ( ) function of the Rothermel package for R (Vacchiano and 

Ascoli 2014), we computed goodness-of-fit metrics (RMSE; MAE; MAPE; MBE) for model 

predictions obtained using the following alternative fuel models: 

- GA-heath: the heathland fuel model calibrated using GA optimization; 

- Stand-GS: the standard fuel model selected among the grass-shrub group (Scott and Burgan 

2005) which produced Rothermel predictions with the least RMSE against observations, as 

determined by the function bestFM ( ) from the Rothermel package for R (Vacchiano and 

Ascoli 2014). Since the grass-shrub group is described by dynamic fuel models, we activated 

the fuel load transfer function (Scott and Burgan 2005) implemented in the R package, and 

set live herb fuel moisture at 30%, i.e., complete transfer of fully cured herbaceous fuels to 

the 1-h class; 

- Cust-1: a custom fuel model for Calluna heaths, parameterized by averaging fuel 

characteristics sampled in all 12 heath stands (72 observations); 

- Cust-2: a site-specific custom fuel model parameterized by averaging fuel loadings and 

structure measured at each fire site (six observations per site). 

 

We also computed the fitness metrics for ROS predicted by the Rothermel model reformulation that 

is implemented in the Fuel Characteristics Classification System (FCCS), version 2.2 (Sandberg et 

al. 2007; Prichard et al. 2013). We instructed FCCS to calculate fuel model parameters by selecting 

Calluna in the shrub layer, and Andropogon gerardii Vitman in the non-woody layer (grass fuels in 

FCCS), i.e., a species with a SAV of 4920 m2 m-3 which is adequate for Molinia (source: FCCS 

Inferred variables)1. Shrub loads in FCCS are a function of shrub cover and height, therefore we 

entered median fuel load of Calluna (both for all stands pooled – FCCS-1, and for each fire site – 

FCCS-2) by adjusting the cover of the shrub layer in FCCS until the desired load at the given median 

depth was reached. Median values of grass fuel loads, fuel bed height and cover (both for all stands 

pooled, and for each fire site) were entered directly in the non-woody layer (Table 2). Custom fuel 

moisture scenarios recorded at each fire experiment were used, and the non-woody moisture was set 

at 30%. 

Finally, we assessed the accuracy of each fuel model, including FCCS, by running an analysis of 

variance (ANOVA) of model residuals and a bootstrapped regression-based equivalence test 

(Robinson et al. 2005). After successfully testing for ANOVA assumptions, we used a least-square 

difference (LSD) post-hoc test to identify significant differences (p<0.05) between means of model 

residuals. The equivalence tests were carried out on the validation set of experiments by using the 

function equiv.boot ( ) of the package “equivalence” version 0.5.6 (Robinson 2013) for the statistical 

software R. The amplitude of the equivalence intervals for the intercept and slope of the 

predicted:observed regression line was set to ±25%. If the two one-sided confidence intervals for the 

intercept and slope was within the equivalence interval, we could reject the null hypothesis of 

dissimilarity against a zero intercept and a 1:1 slope, therefore ascertaining the absence of bias and 

trends in model predictions. 

 

  

                                                           
1http://www.fs.fed.us/pnw/fera/fccs/inferred_variables/table2_metric/table2_metric.htm 
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Results 

GA optimization testing 

GA optimization produced fuel models for the litter, grass and shrub test studies which markedly 

differed from those published (Table 2). GA-optimized fuel models displayed a lower bulk density, 

i.e., 23%, 73% and 18% lower than the published value for the litter, grass and shrub models, 

respectively. The relative packing ratio (ratio of actual to optimum packing ratio for combustion 

efficiency) (Rothermel 1972) was also reduced by GA optimization (Table 2). However, while the 

relative packing ratio in the litter model declined from 2.43 to 1.12 (i.e., closer to the optimum) in 

both the grass and shrub models it diverged from optimum, showing a decrease from 0.37 to 0.12, 

and from 0.23 to 0.19, respectively. 

All goodness-of-fit statistics improved after GA optimization. RMSE decreased by 39%, 19% and 

26% for the litter, grass and shrub models, respectively (Table 3). Other statistics also showed a 

substantial contribution by GA optimization in improving performance relative to the published fuel 

models. The t-test evidenced that GA optimization significantly reduced the mean of residuals for 

both the litter and grass fuel model, but not for the shrub one (Table 3). 

 

The heathland fuel model 

Fire experiments in heath fuels were carried out under a relatively broad range of weather and fuel 

moisture conditions: days since last rain, air temperature and humidity, and wind speed ranged 

between 3 to 24 days, 90 to 25%, 2 to 20°C, and 0.4 to 7.9 km h-1, respectively; fuel moisture ranges 

were 10-27% for dead fuels (dead Calluna and cured Molinia), and 50-70% for live fuels (Calluna 

foliage). Notably, in most experiments live Calluna had a moisture <60%, i.e., a value close to the 

lower edge of physiological activity, indicative of winter desiccation, and thus of high flammability 

(Davies et al. 2010). Therefore, even though experiments were carried out under prescribed burning 

conditions due to safety reasons (Ascoli and Bovio 2013), experiments from the late dry winter season 

approached wildfire conditions under moderate fire weather. Consequently, we observed a relatively 

broad array of fire behaviour with ROS ranging from 0.9 to 26.3 m min-1. The complete dataset of 

ROS observations and environmental conditions during fire experiments is available on 

Comprehensive R Archive Network 2  as example data (firexp) in the Rothermel Package for R 

(Vacchiano and Ascoli 2014). 

GA-heath optimization against the calibration data resulted in a RMSE of 1.67 m min-1 and a MAPE 

of 20%. Three quarters of observed ROS values were predicted with less than ±25% error. Half of 

these values displayed underprediction, as showed by the predicted vs. observed scatter plot of Fig. 

2. Calibrated parameters for the GA-heath model (Table 2) behaved as follows: for 1-h fuels, loadings 

were within the 50th percentile of inventoried values, and SAV and heat content were close to 

intermediate values within the range found by experimental studies (Davies and Legg 2011; Santana 

and Marrs 2014). Conversely, live woody fuels displayed a load higher than the 75th percentile of 

inventoried values, and SAV and heat content close to the range maximum. Dead fuel moisture of 

extinction assumed intermediate values of the experimental range (Davies and Legg 2011; Santana 

and Marrs 2014). Fuel bed depth showed values close to the 95th percentile of the observed range. 

The fuel bed bulk density was 1.96 kg m3 and the relative packing ratio was 0.82. 

The GA-heath model tested against the validation dataset displayed a MAPE equal to 32%. RMSE, 

MAE and MBE were 1.81, 1.42 and 0.49 m min-1, respectively. Two thirds of observed ROS values 

in the calibration dataset were within ±25% error of the predicted values, and 50% of these displayed 

underprediction (Fig. 2). 

                                                           
2 http://cran.r-project.org 
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Table 2. Parameters of the litter, grass, shrub, and heathland fuel models as determined by GA optimization 

(GA-litter; GA-grass; GA-shrub; GA-heath), published studies (Pub-litter; Pub-grass; Pub-shrub; Stand-GS3), 

and inventoried fuels (Cust-1; FCCS-1). 

Fuel model Type Dead fuel load Live fuel load SAV δ Mx Heat σ ρb β/βo 

   (t ha-1) (t ha-1) (m2 m-3) (cm) (%) (kJ kg-1) (m-1) (kg m-3)  

   1 h 10 h 100 h Herb Woody 1 h Herb Woody   Dead Live    

GA-litter Static 5.78 1.11 3.76 – – 5258 – – 22 31 18622 – 4889 4.84 1.12 

Pub-litterA Static 7.93 0.99 3.06 – – 9186 – – 19 30 18622 – 9106 6.30 2.43 

GA-grass Static 0.52 – – – – 12781 – – 22 14 18622 – 12781 0.24 0.12 

Pub-grassB Static 2.80 – – – – 9842 – – 31 15 18622 – 9842 0.90 0.37 

GA-shrub Static 3.72 0.67 0.15 3.61 2.83 6307 5353 4805 153 25 21848 18379 5595 0.72 0.19 

Pub-shrubC Static 4.00 0.95 0.12 5.00 2.24 6710 5490 4570 140 34 20000 20000 5822 0.88 0.23 

GA-heath Static 3.82 0 0 0 8.92 8921 – 10526 65 38 19533 21739 10098 1.96 0.82 

Stand-GS3 D Dynamic 0.67 0.56 0 3.25 2.80 5906 5249 5249 55 40 18622 18622 5294 1.33 0.33 

Cust-1E Static 5.25 0 0 0 5.36 7385 – 10560 41 40 18912 22810 9269 2.59 1.01 

FCCS-1F NA 1.18 0 0 4.60 4.90 5904 4920 5904 38 25 18622 18622 5522 2.81 0.72 

Abbreviations of fuel model parameters follow Table 1. Fuel model characteristics: σ: characteristic SAV; ρb: bulk 

density; β/βo: relative packing ratio. 

Published fuel model parameters are reported in: A Grabner et al. 1997; B Sneeuwjagt 1976;  C van Wilgen 1984, with 

subsequent variation of the fuel bed depth from 91 cm to 140 cm in van Wilgen et al. (1985). D Standard fuel model GS3 

from Scott and Burgan (2005). E Fuel model for heathland fuels customized using average values of fuel parameters from 

all heath stands pooled. F FCCS fuel input for heathland fuels customized using median values of fuel parameters from 

all heath stands pooled.  

 

 

Table 3. Goodness-of-fit metrics of Rothermel model predictions obtained using GA-optimized and published 

fuel models for litter, grass and shrub studies. Probability values follow a t-test between published and GA 

optimized fuel model residuals means. 

Fuel model RMSE MAE MAPE Percentage MBE p-Value 

  
 (m min-1) (%) Within ±25% 

error 

(m min-1)  

GA-litter 3.02 2.02 54 22 0.05 0.045* 

Pub-litter 4.95 3.91 128 11 3.15  

GA-grass 4.32 2.91 126 19 0.55 0.029* 

Pub-grass 5.35 4.09 252 16 2.73  

GA-shrub 5.45 4.34 20 79 -0.38 0.147 

Pub-shrub 7.18 6.17 30 57 2.10  

RMSE: root mean square error; MAE: mean absolute error; MAPE: mean percentage error; MBE: mean bias error. All 

fuel models parameters are reported in Table 2. 

* Probability of mean separation p<0.05. 
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Fig. 2. Predicted vs. observed rate of spread (m min-1) in the calibration (black dots) and the validation dataset 

(white triangles) calculated using the heathland fuel model optimized with Genetic Algorithms (GA-heath) 

and the ros ( ) function of the Rothermel Package for R. x-axis of the residual plot is the observed rate of 

spread, y-axis is residual (predicted – observed) rate of spread. 

 

 

GA-heath had the best goodness-of-fit statistics of all the tested fuel models (Fig. 3). Among all 

standard fuel models within the grass-shrub group (Scott and Burgan 2005), GS3 was selected by the 

bestFM ( ) function as producing the most accurate predictions, with a RMSE of 3.05 m min-1 and a 

MBE of -1.09 m min-1. The custom fuel models parameterized with average values of observed fuel 

characteristics produced a slightly better fit, but increased underprediction. The model for all stands 

pooled produced a RMSE of 2.76 m min-1 and a MBE of -1.35 m min-1; the model using site-specific 

fuel data had a RMSE of 2.61 m min-1 and a MBE of -1.32 m min-1. Both custom fuel models 

displayed a higher bulk density in comparison to GA-heath, as well as a higher relative packing ratio 

(Table 2), which was 1.01 for the model customized by average values from the overall fuel inventory, 

and ranged from 0.69 to 1.11 when using average values from each fire site. 

An interesting result was obtained when simulating ROS using the Rothermel model reformulation 

implemented in FCCS. When using median values from the overall fuel inventory, FCCS 

overpredicted ROS and produced the worst fit statistics (Fig. 3) with a RMSE of 3.28 m min-1 and a 

MBE of 2.58 m min-1. However, when using median values at the plot scale, FCCS performance 

improved and approached the standard fuel model GS3 with a RMSE of 2.87 m min-1 and a MBE of 

1.55 m min-1 (Fig. 3). 

 

 



Publisher: CSIRO; Journal: International Journal of Wildland Fire 
 Article Type: research-article; DOI: 10.1071/WF14097 

 

12 
 

Fig. 3. Statistics of heathland fuel models performance against the validation dataset: (a) Root mean square 

error (m min-1);  (b) Mean absolute error (m min-1); (c) Mean bias error (m min-1); (d) Mean absolute percent 

error (%); (e) Percentage within ±25% error; (f) Number of over and under predictions. GA-heath: heathland 

fuel model calibrated by Genetic Algorithms; Stand-GS3:standard fuel model GS3; Cust-1: custom fuel model 

for Calluna heaths, parameterized with average values from the overall fuel inventory; Cust-2: custom fuel 

model parameterized with site-specific average values at each fire site; FCCS-1: FCCS parameterized with 

median values from the overall fuel inventory; FCCS-2: FCCS parameterized with median values from each 

fire site. 

 

ANOVA results showed significant differences among means of model residuals (F[5,119]=9.91, 

P<0.001). The LSD test evidenced no differences between models with negative residuals (i.e., GS3 and 

custom fuel models parameterized with average fuel characteristics), and between models with positive 

residuals (FCCS models). GA-heath produced significantly different prediction from both groups, and 

intermediate ROS values. The regression based equivalence test confirmed trends in fit statistics (Table 

4). GA-heath had the highest proportion of bootstrap sample estimates falling within the intervals of 

equivalence for both the slope and the intercept. Moreover, GA-heath was the only fuel model where the 

null hypothesis of dissimilarity was rejected for both the intercept and the slope (Table 4). 

 

Table 4. Summary of regression-based equivalence tests for the validation of alternative fuel models against 

rate of spread observations. Fuel model names follow Figure 3. 

Fuel Model n β0 I0 β1 I1 Cβ0
-
 Cβ0

+ Iβ0
-
 Iβ0

+ Cβ1
-
 Cβ1

+ Iβ1
-
 Iβ1

+ 

GA-heath 20 1.000 0.986 7.19* 8.78* 6.30 10.49 0.79* 1.15* 0.75 1.25 

Stand-GS3 20 0.931 0.089 6.97 8.89 5.20 8.67 1.10 1.89 0.75 1.25 

Cust-1 20 0.808 0.207 7.09 8.82 5.01 8.34 1.00 1.58 0.75 1.25 

Cust-2 20 0.826 0.281 7.09 8.80 5.03 8.38 0.97 1.50 0.75 1.25 

FCCS-1 20 0.497 0.933 6.99 8.87 7.95 13.26 0.68 1.16 0.75 1.25 

FCCS-2 20 0.941 0.803 6.91 8.98 7.13 11.88 0.57 1.02 0.75 1.25 

n, sample size; β0 I0 and β1 I1,proportion of bootstrap sample estimates that fall into their intervals of equivalence of 

the intercept (Iβ0
-, Iβ0

+) and the slope (Iβ1
-, Iβ1

+), respectively. The joint two one-sided 95% confidence intervals for the 

intercept and slope are (Cβ0
-, Cβ0

+) and (Cβ1
-, Cβ1

+), respectively. The former should fall within the intercept interval of 

equivalence (Iβ0
-, Iβ0

+) = I ± 25%, and the latter within the slope interval of equivalence (Iβ1
-, Iβ1

+)  = 1 ± 0.25.  

*Values for which the null hypothesis of dissimilarity has been rejected, at p <0.05. 
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Discussion 

The first objective of this research was to test if fuel model optimization by Genetic Algorithms 

improves the accuracy of the Rothermel fire spread model. We showed that GA are effective 

algorithm for building and calibrating custom fuel models. When tested on published data of fuels 

and ROS recorded in litter, grass and shrub fuels, predictions of GA-optimized fuel models had the 

highest goodness-of-fit, least prediction bias and lower model error. Only in the grass case, MAPE 

remained higher than 75%, i.e., the worst class of model performance in Cruz and Alexander (2013). 

However, grass fuels in Sneeuwjagt (1974) and Sneeuwjagt and Frandsen (1977) were highly variable 

in 1-h load and SAV (Table 1), and could hardly be described by a unique fuel model. This is probably 

the reason why, in their second study, Sneeuwjagt and Frandsen (1977) built separate fuel models for 

each of their fire experiments. 

Compared to previous approaches to build fuel models (Hough and Albini 1978; Cruz and Fernandes 

2008), GA optimization has the advantage of exploring a continuous rather than discrete search space 

for each fuel model parameter, being computationally effective thanks to stochastic rather than 

deterministic search rules, and being reproducible in terms of both algorithm setting and its 

implementation. Moreover, it does not require site-specific inventories: ranges for fuel model 

parameters can be set after literature data, which makes the parameterization process easier and more 

cost-effective. 

The purpose of calibrating a fuel model is to provide the best combination of model parameters that 

maximizes the fit between observed and predicted fire behaviour, and not to exactly reproduce fuel 

characteristics observed in nature (Burgan 1987; Scott and Burgan 2005; Cruz and Fernandes 2008). 

Following previous studies (Hough and Albini 1978; Burgan and Rothermel 1984; Cruz and 

Fernandes 2008), we assumed that fuel model parameters are not necessarily set to mean or median 

values measured in the field, as required by other fire behaviour modelling systems (e.g., Sandberg 

et al. 2007). In fact, fire is not driven by average fuel conditions because it follows the path of least 

resistance, i.e., the combustion wave spreads on the finest and driest of the fine fuels (Rothermel 

1972; Cheney 1990; Cruz and Fernandes 2008). On the other hand, in GA the solution depends on 

the initial population which is randomly generated from a defined search space. A wider search space 

leads to a better fitness (Chen et al. 2012), but care must be taken that the optimal parameter set is 

physically meaningful (Ohenoja and Leiviskä 2010). In fact, highly stylized fuel models that differ 

from reality not only for the raw parameter values but also for their ratios, e.g., the proportion of live 

to dead fuels, or that include fuel parameters not observed in the field, have been criticized (Sandberg 

et al. 2007). For these reasons, we decided to constrain the search space of each fuel model parameter 

to their minimum and maximum values reported in the literature. 

The second aim of our research was to apply GA optimization to dry heathlands characterized by a 

mixed grass-shrub fuel complex. Studies that validate fire spread models almost always incur in a 

fundamental scale mismatch. The Rothermel spread model is a 1-dimensional model that simulates 

the spread of a fire as it burns by a point, whereas fire behaviour observations are usually taken at a 

stand or unit level, thereby representing the average ROS across the sequence of instantaneous flame 

front velocities. Our study reduced the difference between scales by measuring ROS at the microplot 

scale, rather than averaging the rate of spread from the ignition to the endpoint of the fire experiment. 

The Rothermel model initialized with GA-heath produced a satisfactory goodness-of-fit against the 

validation dataset. In particular, MAPE was 32%, i.e., lower than what is considered an acceptable 

error for ROS simulation (Cruz and Alexander 2013). GA-heath produced a better goodness-of-fit 

than both the GS3 standard fuel model, and custom fuel models built using mean values from the 

field inventory. Interestingly, the GA-heath model slightly overestimated ROS, while both standard 

and custom fuel models were affected by the characteristic underestimation bias attributed to the 

Rothermel model (Cruz and Alexander 2013).  
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The original Rothermel model was reported to produce better predictions when fuel models are 

customized with site-specific fuel values (Sneeuwjagt and Frandsen 1977; Davies 2006). However, 

when comparing custom fuel models built from site-specific fuel parameters rather than means for 

all stands pooled, we found only slight improvements. On the contrary, the performance of FCCS 

improved markedly when using site-specific fuel models. This supported the intent of the Rothermel 

model reformulation implemented in the FCCS modelling system, which is to simulate surface fire 

behaviour for any wildland fuelbed using site-specific properties (Sandberg et al. 2007).  However, 

the accuracy of FCCS was comparable to the standard fuel model GS3, and did not match that of GA-

heath. Finally, GA-heath was the only model where equivalence testing of predicted vs. observed 

ROS was successful for both the intercept and the slope (i.e., the null hypothesis of dissimilarity from 

0 and 1, respectively, was rejected).  

We constrained the search space for GA optimization using fuel characteristics (e.g., SAV, moisture 

of extinction, heat content) for Calluna heathlands throughout their range of distribution (Fernandes 

and Rego 1998; Spielmann 2009; Davies and Legg 2011; Santana and Marrs 2014). However, GA-

heath differed substantially from a fuel model built by Davies (2006) for Atlantic heathland 

dominated by Calluna. The main difference between the two fuel models regards the relative packing 

ratio, which was 1.46 in Davies (2006) and 0.82 in GA-heath. Besides the methods used to build the 

custom fuel model, we believe this result is due to a difference in the experimental conditions under 

which ROS datasets were built. In Davies (2006), experiments were carried out under faster winds 

up to 27 km h-1 at midflame height, with a mean of 11 km h-1 (Davies et al. 2009), as opposed to less 

than 8 km h-1 in this study. Conversely, measured ROS was higher in the present study (mean: 10.4 

m min-1; range: 0.9-26.3 m min-1) in comparison to Davies et al. (2009) observations (mean: 4.4 m 

min-1; range: 0.5-12.6 m min-1). These conditions led GA optimization to calibrate a fuel model with 

a lower relative packing ratio than the one in Davies (2006) model, i.e., more sensitive to wind speed 

(Rothermel 1972). 

This raises the question about the applicability of fuel models calibrated using site-specific parameters 

outside their domain of calibration. Rather than going through the effort of calibration to obtain a fuel 

model valid only locally, some authors have modelled fire behaviour by regression against the set of 

locally observed fuel and site parameters (e.g., Fernandes et al. 2001; Davies et al. 2009). However, 

using Rothermel’s set of equation is preferable for a number of reasons: (1) as a semi-empirical 

model, Rothermel’s has a higher realism and generality than empirical models, which are only valid 

for the fuel complexes on which they are calibrated; (2) Rothermel’s model is run with a standard set 

of physical descriptors of the fuel complex, as opposed to empirical regressions that are fitted against 

as few fuel descriptors as possible. Consequently, as opposed to Rothermel model, regression fuel 

parameters may change from case to case, making it difficult to use these models within fire 

prediction systems. To reach a compromise between generality and accuracy of a fuel model, one 

should design the calibration dataset by including the widest range of experimental conditions. 

In this study, optimization focused on fitting fuel models against ROS estimates. On the other hand, 

in wildland and prescribed burning planning, analysts must select a fuel model that provides the most 

accurate estimates for both ROS and flame length (van Wilgen et al. 1985; Alexander and Cruz 2012; 

Vacchiano et al. 2014). A possible shortcoming of this approach is that the most accurate fuel model 

for both ROS and flame length may not be the best for either one individually. This raises the question 

whether the fitness function for GA optimization should be computed against ROS, flame length, or 

both simultaneously. In our opinion, calibration against ROS should be prioritized, because: (i) flame 

length measurements are usually less precise than ROS (Alexander and Cruz 2012), and therefore are 

responsible for a higher uncertainty in fire behaviour simulation (Cruz and Alexander 2013); (ii) for 

surface fire, flame length is usually computed from fireline intensity according to the empirical 

relationship of Byram (1959). In turn, fireline intensity is a function of ROS and reaction intensity 

computed by the Rothermel model (Rothermel 1972), and flame front residence time estimated 
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according to Anderson (1969). This would introduce a recursive structure in the model to be 

optimized; (iii) the parameters of Byram’s equation may be inappropriate in several fuel conditions 

(Alexander and Cruz 2012) and thus lead to unrealistic fuel models. However, Byram’s equation 

parameters can be customized (Cheney 1990; Alexander and Crux 2012). A promising approach 

could be first to fit a fuel model by GA optimization against ROS measurements, and then use it to 

model flame length by optimizing the parameters of Byram’s  equation against observations. The 

result is a fuel model that provides accurate ROS simulations associated to a custom flame length-

fireline intensity relationship. 

 

Conclusion 

GA optimization proved a useful and practical tool to calibrate fuel models and improve Rothermel 

model predictions. The fuel model calibrated by GA optimization for heathland vegetation produced 

accurate fire behaviour predictions and can be used to simulate surface fire rate of spread for winter 

prescribed burning planning in Calluna stands in the building phase. However, it is not appropriate 

for pure Calluna stands, typical of Atlantic European heathlands (Davies et al. 2009); rather, it applies 

to mixed Calluna and grass stands typical of dry heathlands of both Central and Southern Europe. 

Moreover, it does not apply to very dry conditions (dead fuel moisture <10%) and wind speed at 

midflame height >10 km h-1. 

Compared to previous fuel model optimization methods (e.g., Hough and Albini 1978; Cruz and 

Fernandes 2008) GA explores a continuous rather than a discrete space of fuel parameters, is 

reproducible, and is more computationally effective because it uses stochastic rather than 

deterministic search rules. Moreover, GA optimization has the advantage of not requiring field 

sampling of fuel characteristics, as long as the search space for fuel model parameters can be inferred 

from the existing literature. 

We propose GA optimization as a viable method to calibrate custom fuel models in fire modelling 

systems based on the Rothermel fuel model concept, which simulate ROS both at the stand scale (e.g., 

Reinhardt and Crookston 2003; Andrews 2013), and at the landscape scale (Ferragut et al. 2008; 

Finney et al. 2011). However, additional research is needed to test how alternative settings of GA 

rules (e.g., population size, mutation rate) may influence the calibration of fuel models in both 

reducing premature convergence to non-optimal solutions, and computational efficiency. To test GA 

optimization, we designed the gaRoth ( ) function in the Rothermel Package for R (Vacchiano and 

Ascoli 2014), which requires a minimum of two ROS observations and searches the set of fuel model 

parameters that minimizes root mean square error of forward fire rate of spread simulated by 

Rothermel (1972) model against observed data. 
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