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A two level Metaheuristic for the Operating Room
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Abstract

Given a surgery department comprising several specialties that share a
fixed number of operating rooms and post-surgery beds, we study the joint
operating room (OR) planning and advanced scheduling problem. More
specifically, we consider the problem of determining, over a one week plan-
ning horizon, the allocation of OR time blocks to specialties together with
the subsets of patients to be scheduled within each time block. The aim of
this paper is to extend and generalize existing approaches for the joint OR
planning and scheduling problem. First, by allowing schedules that include
patients requiring weekend stay beds which was not the case previously. Sec-
ond, by tackling simultaneously both the OR planning and patient scheduling
decision levels, instead of taking them into account in successive phases. To
achieve this, we exploit the inherent hierarchy between the two decision lev-
els, i.e., the fact that the assignment decisions of OR time blocks to surgical
specialties directly affect those regarding the scheduling of patients, but not
the reverse. The objective function used in this study is an extension of an
existing one. It seeks to optimize both patient utility (by reducing waiting
time costs) and hospital utility (by reducing production costs measured in
terms of the number of weekend stay beds required by the surgery planning).
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0 − 1 linear programming formulations exploiting the stated hierarchy are
proposed and used to derive a formal proof that the problem is NP-hard. A
two level metaheuristic is then developed for solving the problem and its ef-
fectiveness is demonstrated through extensive numerical experiments carried
out on a large set of instances based on real data.

Keywords: Operating Room planning, advanced scheduling, 0− 1 model,
Metaheuristic
2000 MSC: 90C11, 90C27, 90C59

1. Introduction and literature review

Operating Rooms (ORs) planning is a critical activity with important
financial impacts for most hospital setting. In addition, demand for surgery
very often overwhelms supply therefore causing long waiting times for pa-
tients and reducing their quality of life [1]. This is particularly true in pub-
licly funded health care systems such as those found in Italy, in the province
of Québec in Canada and many other settings. One of the main questions
health care system planners and administrators are faced with when plan-
ning ORs is how can demand and supply meet, i.e., how should the available
OR capacity be allocated in order to improve efficiency and productivity
and how can efficiency be attained and measured. The review of the oper-
ations research and management science scientific literature clearly reveals
an increasing interest of researchers towards OR planning and scheduling
problems [2, 3].

Researchers frequently distinguish between strategic (long term), tactical
(medium term) and operational (short term) decisions in order to better
characterize their planning or scheduling problem even if there are no clear
and universally accepted definitions of these three decision levels [2]. In the
following, we concentrate our analysis on the OR planning and scheduling
problem at both the tactical and operational levels under the block scheduling
or closed block planning paradigm. When planning with this paradigm, each
specialty is assigned a number of OR time blocks (usually with homogeneous
block lengths of half-day or full day) for each planning period, typically a
week to two weeks. Each specialty then schedules their surgical cases within
these time blocks [4].

The OR planning and scheduling problem under the block scheduling
approach can be viewed as being made up of three phases corresponding to
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three decision levels [5]. In the first phase, the problem addressed is that of
determining, at a strategic level, the number and type of ORs available, the
hours of operation of the ORs and how overall OR capacity is to be divided
among surgical specialties, individual surgeons or groups [6, 7, 8, 9, 10]. Then,
a cyclic timetable, often referred to as the “Master Surgical Schedule” (MSS),
is constructed on a medium term horizon to define the specific assignment of
OR blocks to specialties. The MSS must of course be updated whenever the
total amount of OR time changes or when the make up of some specialties
change. This can occur not only as a response to long term changes in
the overall OR capacity or fluctuations in staffing, but also in response to
seasonal fluctuations in demand [11, 12, 13, 14, 15, 16, 17]. The last phase,
which may be called “surgery process scheduling”, is generally separated
into two sub-problems referred to as “advance scheduling” and “allocation
scheduling” [18]. The first sub-problem consists in assigning a specific surgery
and OR time block to each patient over the planning horizon, which can range
from one week to one month [19, 20, 21, 22, 23, 24, 25]. Given this advanced
schedule, the second sub-problem then determines the precise sequence of
surgical procedures and the allocation of resources for each OR time block
and day combination [26, 27, 28, 29, 30, 31] in order to implement it as
efficiently as possible.

As evidenced by the references listed here-above, the vast majority of
papers found in the literature only consider one decision level at a time.
Approaches dealing with more than one planning level simultaneously are
quite rare. Among these, Jebali et al. [32] use a two-phase approach to deal
with both the advance scheduling and allocation scheduling problems and
propose a 0-1 linear programming model aimed at minimizing OR overtime
and under-time costs as well as hospitalization costs related to the number of
days patients are kept in the hospital waiting for an operation or procedure.
Testi et al. [5] present a hierarchical three-phase approach to determine op-
erating theater schedules. First, integer programming models are developed
in order to divide the available OR time among the different surgical special-
ties. Then they formulate a master surgery scheduling problem in order to
assign a specific operating room and day of the planning horizon to the OR
time blocks of each specialty. Finally, a discrete-event simulation model is
used to evaluate the decisions concerning patients date, OR and time assign-
ments. Tànfani and Testi [33] propose a 0-1 linear programming model to
simultaneously address the decisions involved in the three phases of the OR
planning and scheduling problem described above, excluding only the most
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strategic ones dealing with the number and type of the ORs and their oper-
ating hours. The objective of the model consists in minimizing a societal cost
function that combines the patients’ waiting time since referral and urgency
status. The solution approach is based on a sequential heuristic. First, a
subset of suitable patients is selected using heuristic rules. Then OR time
blocks to which the selected subset of patients could be assigned considering
their expected length of stay (LOS) are identified (i.e., time blocks in the
schedule such that the patient would not require to stay hospitalized during
the weekend). Finally, a reduced version of the 0 − 1 linear programming
model is solved. In that version, the patients and the OR blocks not se-
lected in the previous two steps are excluded from consideration. The main
limitation of this approach is that the decisions taken in the first two steps
are not re-evaluated and therefore no interaction between them is considered
nor any tradeoff investigated. In Choi and Wilhelm [34], they include in the
analysis the problem of determining the the duration of time blocks reserved
to each surgery sub-specialty and their sequencing, referred as Block Surgical
Schedule (BSS). A newsvendor-based model has been developed to solve the
BSS with the aim of minimizing the total expected lateness and earliness
costs. Agnetis et al. [35] proposed a decomposition approach to solve MSS
and assigning patients to available OR blocks. The solution of the two prob-
lems being done in sequence. The performance of the approach has been
evaluated on a large set of real based instances and the solutions compared
with those obtained by an exact integrated approach.

In this paper, we deal with the joint master surgical schedule and ad-
vanced scheduling problem but with the aim of extending and generalizing
existing approaches as well as proposing more efficient solution methodolo-
gies. We assume that all strategic level decisions are given as input data, in-
cluding the number of OR time blocks assigned to each specialty weekly. This
responds to a real practical issue faced by surgery departments since these
strategic decisions are generally the result of a long and complex negotiation
process involving the different surgical specialties and the hospital adminis-
tration. They are therefore not easily changed on a short term horizon. The
first generalization consists in developing a modeling and solution approach
which simultaneously considers both the OR planning and patient scheduling
decision levels instead of taking them into account separately. This increases
significantly the potential quality of the resulting schedules but, of course, at
the expense of a significant increase in the difficulty for solving the problem.
To achieve this generalization, we exploit the inherent hierarchy between the

4



two decision levels, i.e., the fact that the assignment decisions of OR time
blocks to surgical specialties directly affect those regarding the scheduling
of patients, but not the reverse. The type of schedules considered here is
also more general with respect to the tactical and operational level decisions
than the ones produced in Tànfani and Testi [33] because it allows schedules
in which patients may require weekend stay beds. Here, weekend stay beds
are modeled as an additional limited resource that can be used but not ex-
ceeded. Finally, we adopt the idea proposed in [33] of using societal costs
as the objective function but extending it to incorporate both patient utility
(by reducing waiting time costs) and hospital utility (by reducing produc-
tion costs measured in terms of the number of weekend stay beds required
by the surgery planning). 0− 1 linear programming formulations exploiting
the stated hierarchy are proposed and used to derive a formal proof that the
problem is NP-hard.

As reported in [36], health care optimization problems are challenging,
often requiring the adoption of unconventional solution methodologies. The
solution approach proposed herein belongs to this family. It is a tabu search
algorithm (see, e.g., [37, 38]) in which the main idea is to iterate the search
between the two decision levels in such a way as to globally improve the
solution. Its effectiveness is demonstrated through extensive numerical ex-
periments carried out on a large set of instances based on real data.

The paper is organized as follows. Section 2 describes in more details the
problem under investigation. Section 3 introduces 0 − 1 formulations and
presents a formal proof of complexity. The proposed solution algorithm is
described in Section 4. Computational results highlighting the effectiveness of
the two level approach as well as comparisons between the solutions produced
by the metaheuristic and optimal ones are reported in Section 5. Concluding
remarks and further research directions close the paper.

2. Problem definition and notation

Given a set of surgical specialties, a list of patients waiting to be operated
on for each specialty and a number of OR time blocks to be assigned to each
specialty, we face the problem of determining for a given planning horizon
of one week: 1) the cyclic timetable that gives for each day of the planning
horizon the assignment of specific OR time blocks to specialties, referred to as
the Master Surgical Schedule Problem (MSSP); and 2) the surgery date and
operating room assigned to each patient selected to be operated on, referred
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as Surgical Case Assignment Problem (SCAP). In the following, we will refer
to this joint problem as the Operating Room Planning Problem (ORPP).
Note that we assume as input data the strategic decisions pertaining to the
number and length of OR time blocks available for surgery each day as well
as the number of blocks assigned to each specialty. In accordance with the
block scheduling paradigm, only a single specialty may be assigned to a given
OR time block, i.e., OR blocks cannot be split among different specialties.

The subset of patients to be operated on among the waiting list and their
order of admission is based on the prioritization system already introduced
and validated in [39, 40] which is based on both the waiting time of the patient
since its referral and its urgency status. A similar approach is also used
in [41]. The objective pursued here is to minimize the total societal cost which
includes both patient and hospital costs. Patient costs which depend on
delays in meeting their clinical needs are explicitly included in the objective
function which seeks to minimize the total priority score. Hospital costs, on
the other hand, are treated indirectly by introducing capacity constraints
controlling the number of beds that can be used over the weekend days
(i.e., similar to a budget constraint), as will be described in more detail in
Section 3.

The planning decisions have to satisfy many resource constraints related
to OR time blocks (session) length, number of OR time blocks assigned to
each surgical specialty, number of surgical teams available for each specialty
and day, number of weekend stay beds available.

We assume that, as is the case in many publicly funded health systems,
the number of patients on the waiting lists is greater than the maximum
number of patients that can be operated on during the planning horizon
considered. This means that we are concerned with the problem of selecting
a subset of patients to be operated on among all the available patients. Note
that in the specific setting of the partner hospital considered here, which is
the same as in [33], emergency patients and outpatients (day surgery) are
not considered as part of the elective patients to be scheduled since they
use extra ORs dedicated for that purpose. Moreover, hospitalization beds
on normal working days of the week (i.e., Monday to Friday) are considered
as unlimited. Finally, like the majority of papers in this field (as discussed
in [2]) we do not consider in the present analysis the uncertainty associated
to effective surgery times and lengths of stay.
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Notation. Let us introduce some necessary notation. Let I, J , and K be
respectively the sets of patients, surgical specialties, and operating rooms,
each indexed by the corresponding lower cased letter, i, j, and k. For sim-
plicity, we will assume in the following that the surgery days within the
week to be planned are from Monday to Friday, inclusively, and therefore
T = {b1, b2, b3, b4, b5} will denote the set of dates corresponding to the surgery
days to be scheduled and index t ∈ T = {1, ..., 5} will denote the index as-
sociated with each specific element of T . Each OR time block within the
planning horizon is then uniquely defined by a pair of indices (k, t) and will
be referred to in this manner from here on.

For each patient i ∈ I, we are given the date of referral di, the expected
duration of the surgery pi, the urgency coefficient ρi, and the expected Length
of Stay (LOS) μi, expressed in days. Let us also define function Φ(bt, di)
which returns the number of days elapsed between two dates bt and di.

In addition, let Ij be the subset of patients that belong to specialty j,
j ∈ J , and Ih the subset of patients having LOS μi = h, h = 1, ..., μmax,
where μmax represents the longest LOS. Clearly, subsets Ij define a partition
of I as do subsets Ih.

Let Oj be the number of OR time blocks available for each specialty j ∈ J .
Let us also define Th as the subset of T corresponding to the dates in the
current planning horizon T for which patients with μi = h will necessarily
require a bed for the weekend if scheduled on any of those dates. For instance,
for a patient having a LOS of 3, scheduling him on Monday, Tuesday or
Wednesday will not require a weekend bed, but will in fact do require one if
scheduled either on the Thursday or the Friday. Therefore, T3 will include
both the Thursday and Friday of the planning week considered. Note however
that for values of h ≥ 6, Th will include all the working days of the week
since scheduling a patient having such a LOS on any of those days will
necessarily require a weekend stay bed. For the sake of completeness, if a
scheduled patient should require hospitalization for more than one weekend
this (extremely rare) situation would be treated by reducing accordingly the
availability of weekend stay beds for the future planning periods affected by
this decision.

Finally, we will denote by skt the time available for surgery in operating
room k ∈ K on day t ∈ T ; ejt the number of surgical teams available for
specialty j ∈ J on day t ∈ T ; and χ the number of stay beds available during
the weekend. Note that the weekend stay beds are managed as a common
resource accessible to patients belonging to all surgical specialties.
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3. 0− 1 linear programming formulations

In this section, we introduce 0 − 1 linear programming formulations for
both the SCAP and the ORPP in order to clearly highlight the hierarchy
between the two decision levels present in the ORPP. These models are then
used to derive a formal proof of the complexity of ORPP.
To formulate the SCAP, we assume as input data the cyclic timetable that
gives, for each day of the planning horizon, the assignment of surgical spe-
cialties to OR time blocks (i.e., the master surgical schedule). Therefore, the
SCAP can be considered as a particular instance of the ORPP, one in which
the MSS is given. We denote this assignment with the parameter τ jkt which is
equal to 1 if specialty j ∈ J is assigned to OR time block (k, t), 0 otherwise.

Defining the following decision variables:

xikt =

{
1 if patient i ∈ I is assigned to OR k ∈ K on day t ∈ T ;

0 otherwise.

the SCAP can be formulated as:

min z =
∑

i∈I,k∈K,t∈T

(
xiktΦ(bt, di)ρi + (1− xikt)(Φ(b5, di) + 1)ρi

)
(1)

s.t.
∑

k∈K,t∈T
xikt ≤ 1 ∀i ∈ I (2)

∑
i∈Ij

xikt ≤Mτ jkt ∀j ∈ J, k ∈ K, t ∈ T (3)

∑
i∈I

pixikt ≤ skt ∀k ∈ K, t ∈ T (4)

μmax∑
h=1

∑
i∈Ih

∑
t∈Th

∑
k∈K

xikt ≤ χ (5)

xikt ∈ {0, 1} ∀i ∈ I, k ∈ K, t ∈ T. (6)

The objective function (1) seeks to minimize the total cost of all the
patients waiting time at the end of the planning horizon as in [33]. The
cost of waiting for a given patient is expressed in Need Adjusted Waiting
Days (NAWDs) and is computed as the urgency coefficient of that patient at
the time of planning multiplied by the elapsed waiting time of that patient
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since its referral date. In the objective, the first part of the inner expression
computes the cost of patients included in the schedule, while the second deals
with the patients that will still be waiting after the current planning period,
i.e., those that are not scheduled.

Constraints (2) are the assignment constraints stating that a patient can
be scheduled at most once. Constraints (3) ensure that each patient i ∈ Ij,
i.e., belonging to a given specialty j ∈ J , can only be assigned to a compatible
OR time block, that is one for which τ jkt = 1. Note that M represents
a suitably defined integer value large enough to make the constraint non
binding whenever τ jkt = 1. For instance M can be set to the maximum
number of surgeries that could be performed in the longest OR time block
across all specialties and all days of the planning horizon. For example, in
a context where the shortest surgery would be 30 minutes and the longest
time block 7 hours so 420 minutes, a suitable value would be M = 14.
Constraints (4) impose that the sum of the surgery times for all the patients
scheduled in any given OR time block (k, t) may not exceed that time block
duration skt. The weekend stay bed availability constraint (5) ensures that
the number of patients requiring a bed for the weekend is below χ, the
maximum number of beds available for the weekend. Finally, constraints (6)
restrict the decision variables to be binary.

To formulate the Operating Room Planning Problem (ORPP), that is the
integrated model for the joint MSSP and SCAP, one needs to transform the
predetermined OR time block assignment decisions τ jkt that were considered
as input for the SCAP into effective decision variables. We therefore define
the following family of binary variables:

yjkt =

{
1 if specialty j ∈ J is assigned to OR k ∈ K on day t ∈ T ;

0 otherwise.

Adding these new variables and starting from model (1)–(6), a formula-
tion for the ORPP is obtained by replacing constraints (3) by the following
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four sets of contraints:∑
i∈Ij

xikt ≤Myjkt ∀j ∈ J, k ∈ K, t ∈ T (7)

∑
j∈J

yjkt ≤ 1 ∀k ∈ K, t ∈ T (8)

∑
k∈K,t∈T

yjkt ≤ Oj ∀j ∈ J (9)

∑
k∈K

yjkt ≤ ejt ∀j ∈ J, t ∈ T . (10)

Constraints (7) take on the role of the τ jkt values and will force binary
variable yjtk to take value 1 if any patient belonging to specialty j ∈ J is
scheduled in time block (k, t) therefore assigning that specific time block to
specialty j and 0 otherwise, while (8) ensure that each OR time block (k, t) is
assigned to only one specialty j ∈ J . Constant M takes on the same role as
in the SCAP model and is set in a similar manner. Demand constraints (9)
force the number of time blocks assigned to each specialty to be equal to
the number of blocks it is alloted a priori Oj (i.e., input from strategic level
planning). Finally, constraints (10) limit the number of OR blocks assigned
to specialty j ∈ J on day t ∈ T to the number of surgical teams available for
that specialty on that day, ejt.

The ORPP model is therefore the following:

min z =
∑

i∈I,k∈K,t∈T

(
xiktΦ(bt, di)ρi + (1− xikt)(Φ(b5, di) + 1)ρi

)
s.t. (2), (4), (5), (7)− (10), (6)

yjkt ∈ {0, 1} ∀j ∈ J, k ∈ K, t ∈ T. (11)

As can be seen from the these formulations, there exists a clear hierarchy
between decision levels and therefore between model variables: variables y
(which determine the assignment of OR time blocks to surgery specialties)
have a strong impact on variables x (which assign individual patients to
particular OR time blocks) but not the reverse.

3.1. Complexity analysis

To the best of our knowledge, determining the complexity of ORPP has
not been clearly addressed in the literature (see [23, 42]). As far as we know,
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no formal proof of its complexity has been published to date even though
some papers, e.g., [43], have hinted that ORPP should be NP-hard given its
resemblance to bin-packing, often referring to the discussion reported in [44].
The only formal proof reported is the one in [27] for the multi objective
sequencing problem. Hereafter, we propose a formal proof that SCAP is NP-
hard in the case of the closed block scheduling paradigm through a reduction
to the 0− 1 Multiple Knapsack problem [45].

Let us consider a particular type of SCAP instance having the following
characteristics: (a) the number of specialties is equal to 1, that is J = {1},
(b) the number of OR time blocks assigned to the specialty each day is
equal to 1, (c) the number of stay beds is set to χ = ∞. By consequence,
the mathematical formulation (1)–(6) can be simplified as follows: due to
assumptions (a) and (b), one can remove constraints (3), while assumption
(c) makes constraint (5) unnecessary; furthermore, index k can be omitted
due to assumption (b). The model (1)–(6) therefore reduces to:

min z =
∑

i∈I,t∈T

(
xitΦ(bt, di)ρi + (1− xit)(Φ(b5, di) + 1)ρi

)

s.t.
∑
t∈T

xit ≤ 1 ∀i ∈ I

∑
i∈I

pixit ≤ st ∀t ∈ T

xit ∈ {0, 1}.

Let us denote with zw =
∑

i∈I(Φ(b5, di) + 1)ρi the value of the worst SCAP
solution, that is the solution in which no patient is scheduled for surgery.
The objective function z can then be rewritten as follows:

z = zw − z′ where z′ =
∑

i∈I,t∈T
xit(Φ(bt, di) + 1)ρi.

For each patient i ∈ I, z′ accounts for the contribution to the objective
function given by the urgency coefficient ρi times the number of days in the
waiting list that were avoided because of the decision to schedule the patient
on day t ∈ T (i.e., setting xit = 1). Taking advantage of the fact that zw is
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a constant, we can reformulate the model as the following equivalent model:

max z′ =
∑

i∈I,t∈T
xit(Φ(bt, di) + 1)ρi

s.t.
∑
t∈T

xit ≤ 1 ∀i ∈ I

∑
i∈I

pixit ≤ st ∀t ∈ T

xit ∈ {0, 1}.
This problem corresponds in fact to the 0 − 1 Multiple Knapsack Problem
(MKP) which shows that it is possible to transform any MKP instance into
a particular SCAP instance. In other words, this is a reduction from MKP
to SCAP. Since MKP is NP-hard [45], then SCAP is also NP-hard. The NP-
hardness of ORPP therefore follows from the fact that SCAP is a particular
instance of ORPP as stated earlier.

Let us point out that the use of the closed block scheduling paradigm
induces a partition of the patients with respect to the surgical specialty they
are assigned to. This is no longer true when planning OR blocks under the
open block scheduling paradigm since any patient can then be assigned to
any OR block. In other words, the open block scheduling paradigm can be
seen as a setting where there is a single global specialty that includes all
patients. As a consequence, the complexity proof provided here above also
holds in the open block scheduling context.

4. A two level metaheuristic

The proposed solution algorithm specifically exploits the hierarchy be-
tween the two scheduling levels composing the ORPP. The main idea of the
approach is to iterate the search process between the two decision levels in
such a way as to address each one while trying to globally improve the current
solution. The solution procedure is based on the tabu search methodology.
It uses a greedy constructive heuristic to build an initial solution from which
a basic search procedure is launched. This basic search explores different
neighbourhoods in order to search for improved solutions until some stop-
ping criterion is satisfied.

The overall approach is strengthened by the inclusion of an intensification
procedure that is called into play whenever the basic search appears to stag-
nate, that is when it is unable to improve upon the best solution it has found
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for a predetermined number of iterations. When this situation is identified,
the search process is interrupted and a specialized local search procedure is
initiated from the best solution found during the basic search phase that just
ended.

The robustness of the approach is further enhanced by periodically re-
sorting to a diversification mechanism that partially deconstructs the current
solution and then reconstructs a new and different one from which the search
process is resumed.

The details of the different neighborhoods explored by the algorithm and
its components are discussed and justified in the following subsections. The
pseudo-code describing the two level metaheuristic is reported in Algorithm 1.

4.1. Neighbourhoods

As mentioned above, the approach developed here uses a variety of dif-
ferent neighbourhoods which together deal with the different hierarchical
levels found within the ORPP structure. To deal with the patient assign-
ment decisions, we define three different neighbourhoods. The first one,
p-swap(in,in), considers the exchanges of two patients that belong to two
OR blocks assigned to the same specialty. The second, p-swap(in,out),
explores the swap of a patient included in the current schedule with one that
is not. The last neighbourhood, p-add(out,in), tries to add patients not
currently scheduled in order to fill as much as possible the OR time blocks
without exceeding their capacity and respecting their assigned surgical spe-
cialty.

With respect to the OR time block to surgical specialty assignment level,
we define a fourth neighbourhood s-swap(in,in), which considers the switch
of surgical specialty assignments between two OR time blocks currently as-
signed to different specialties on different days.

Clearly, the first three neighbourhoods operate directly on the xikt deci-
sion variables and therefore do not affect the yjkt variables, while the last one
through its direct action on the yjkt will also affect the xikt variables, which
is in tune with the hierarchy of these decisions.

The complexity of p-swap(in,in) and p-swap(in,out) are quadratic
in the number of patients while p-add(out,in) is linear. Similarly, the
complexity of s-swap(in,in) is quadratic with respect to the number of
OR time blocks.
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Algorithm 1: Two level metaheuristic algorithm
Input : Empty solution {xikt = 0, yjkt = 0}, problem data.
Output: The best feasible solution found for ORPP s∗ and its cost z∗.

1 begin /* Initialization */

2 GreedyInitialization(s0);
3 � = 1; �NI = 0; isDiv = 0; s∗ = s0; z

∗ = z(s0); s
∗
BS = s0; z

∗
BS = z(s0);

4 while � ≤ N do
5 if �NI ≤ NI then /* Basic Search */

6 s� = BestImpr( s�−1, p-swap(in,in), p-swap(in,out), p-add(out,in) );
7 �NI = �NI + 1 ;
8 updateTabuList();
9 if z(s�) < z(s∗BS) then

10 s∗BS = s�; z
∗
BS = z(s�); �NI = 0;

11 if z(s�) < z∗ then s∗ = s�; z
∗ = z(s�);

12 ;

13 else /* Intensification */

14 s� = LocalSearch( s�−1, s-swap(in,in) ) ;
15 if z(s�) < z∗ then s∗ = s�; z

∗ = z(s�) ;
16 ;
17 isDiv = 1 ;

18 � = �+ 1 ;
19 if isDiv > 0 then /* Diversification */

20 if isDiv = 1 then
21 s = p-drop( s�−1 );
22 s�−1 = s;
23 isDiv = 2 ;

24 sDiv = BestImpr( s�−1, p-swap(in,in), p-swap(in,out) ) ;
25 if z(sDiv) < z(s�−1) then
26 s� = sDiv;
27 updateTabuList();
28 � = �+ 1 ;
29 if z(s�) < z∗ then s∗ = s�; z

∗ = z(s�);
30 ;

31 else
32 isDiv = 0 ;
33 s∗BS = s�−1;
34 z∗BS = z(s�−1) ;

4.2. Greedy initialization
The basic idea of the greedy initialization procedure is to start from an

empty schedule, i.e., where all xikt and yjkt are set to 0, and to fill it progres-
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sively by trying to assign patients as late as possible within the week but still
in time for them to be discharged from hospital without requiring a weekend
stay bed. The aim of this backward filling strategy is to keep as much flexi-
bility as possible for not yet scheduled patients by filling as tightly as possible
the end portion of the planning horizon first and gradually working towards
the beginning of the week where most patients can be scheduled without the
need for weekend beds. Of course, the order in which patients are included in
the schedule reflects their potential contribution to the societal cost function
in case they are not included in the schedule, i.e., higher cost patients will
therefore be considered before lower cost ones.

The procedure works as follows. Let vi be the maximal potential con-
tribution of patient i to the objective function (1) if not scheduled, i.e.,
vi = (Φ(bf , di) + 1)ρi, where T = {b1, b2, . . . , bf} is the set of dates of the
planning horizon and b0 the date of the day that precedes the first day in
T . The algorithm first sorts all patients by increasing value of vi such that
v1 ≥ v2 ≥ . . . ≥ v|I|. Then starting form an empty schedule, the procedure
selects the first unassigned patient i in the list. Given the specialty j to
which patient i belongs, the procedure then tries to insert the patient on day
t = 6−μi, i.e., the last day of the week such that patient i may be discharged
before requiring a weekend stay bed given its LOS of μi, in the first OR time
block assigned to that specialty in which there remains enough time left to
perform the surgery (line 7). If no such block exists on day t, the procedure
will then check whether it is possible to assign a new OR block to specialty j
on day t, i.e if there are still unassigned OR blocks on day t and the number
of OR blocks already assigned to specialty j is less than its maximum value
Oj (see constraints (9)). If it is, a new OR block is assigned to specialty j and
patient i is assigned to that block (line 10). If the assignment of patient i to
day t is not possible, the procedure then considers the previous day (line 12)
and the search for a suitable OR block to insert i is then repeated for that
day unless there are no more dates available within the planning horizon (i.e.,
t = 0). In this case, patient i is left unassigned, the next patient in the list is
selected, and the same steps are carried out to insert this new patient in the
schedule under construction. The procedure stops when all patients in the
list have been treated. The pseudo-code of the greedy algorithm is reported
in Algorithm 2.

Sorting the patients is O(|I| log |I|) while the patient assignment com-
plexity is O(|I|) since both the number of days t and the number k of OR
time blocks assigned to a specialty j are limited by a constant value. The
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Algorithm 2: Greedy initialization
Input : Empty {xikt = 0, yjkt = 0} solution, problem data.
Output: A feasible initial solution for ORPP.

1 begin
2 sort patients in such a way that v1 ≥ v2 ≥ . . . ≥ v|I|;
3 for i = 1, . . . , |I| do
4 t = bf + 1− μi; j = specialty of patient i; patientIsNotAssigned = true;
5 while t > b0 and patientIsNotAssigned do
6 if ∃ yj,k,t = 1 s.t.

∑
�:x�kt=1 p� + pi ≤ skt then

7 xikt = 1; patientIsNotAssigned = false;
8 else
9 if OR block available and

∑
k,t yjkt < Oj then

10 yjkt = xikt = 1; patientIsNotAssigned = false;
11 else
12 t = previousDay( t );

overall complexity of the greedy initialization is therefore O(|I| log |I|).

4.3. Algorithm components

Basic search

The basic search (BS) consists in the selection of the best improvement
among those that can be obtained by a complete exploration of the three
patient-level neighbourhoods described in Section 4.1: at each iteration �,
we first search for the best improvement among the neighbours defined by
p-swap(in,in) moves and store this candidate solution as s�; then, we com-
pute the best improvement reachable with p-swap(in,out) moves and, if
it is better than the previous value, s� is updated accordingly; and finally,
these steps are repeated for p-add(out,in). Once the best candidate so-
lution within the three neighbourhoods has been identified, the procedure
checks wether this new schedule improves the best solution found since the
beginning of the procedure (s∗) and/or the best solution found since the start
of the current phase of BS (s∗BS), and updates these stored values accordingly
as well as the corresponding objective function values (cf. lines 5–11).

In order to prevent the search from cycling over already visited solutions,
BS uses two tabu lists having fixed lengths �1 and �2, respectively, and both
implemented using tabu tags [46]. The first tabu list forbids a patient that
has just been moved from being involved in any future move for the next �1
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iterations while the second one forbids a patient that was just moved from
an OR time block to be assigned back to the same OR block over the next
�2 iterations. Obviously, it is required that �1 < �2. The rationale here is to
prevent patient i that has recently been moved from moving again before the
procedure has had a chance to adjust the schedule following that change. This
type of tabu mechanism is particularly efficient in contexts where there is a
high level of symmetry and where different sequences of moves may produce
the same end result as is the case here (the reader is referred to [47, 48] for
a more detailed discussion). Finally, the classical aspiration mechanism is
used to lift tabu restrictions whenever the forbidden move leads to a solution
better than the best solution found so far in the current BS phase.

The basic search phase is continued until a kind of stagnation criterion is
met, more precisely until the number of iterations without improving upon
s∗BS reaches a predetermined value NI.

Intensification step

When the BS reaches the end of its current cycle, it means that the search
is unable to improve the current best schedule s∗BS even if at least NI patients
are moved or added. We hence consider that the search has reached a sort
of local minimum with respect to the patient level decisions. The algorithm
will then consider moves that deal with the block assignment to specialty
decisions in order to try to further improve this solution. This intensification
step is done by initiating a simple local search based on the s-swap(in,in)
neighbourhood from s∗BS. Once the local search stops (i.e., when no improv-
ing neighbours can be found), the solution at hand is compared to the best
solution s∗ and updates are done accordingly (cf. lines 14–17).

Diversification step

In order to diversify the exploration of the solution space and thus improve
the robustness of the overall solution procedure, we periodically restart the
search from a new starting solution. This diversification step is performed
after the end of a BS phase and the conclusion of the Intensification step
that follows it.

The new solution from which to pursue the search, is obtained by ap-
plying procedure p-drop(Solution) to the last solution visited during the
preceding BS phase, s�−1. This procedure removes, from each OR time block
in the schedule, the patient having the longest operating time (cf. lines 20–
23). The motivation here is to free a significant amount of time in each OR
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block in order to facilitate a rearrangement of the remaining patients among
the now partially filled blocks and the insertion of new patients in the modi-
fied schedule afterwards. A simple local search based on the p-swap(in,in)
and p-swap(in,out) neighbourhoods only is then initiated from the par-
tial schedule at hand. However, to avoid their immediate re-insertion in
the solution, the patients that were just removed are declared tabu and not
considered for these swaps (cf. lines 24–28).

The justification for applying this diversification step from s�−1 and not
to s∗BS stems from the fact that s�−1 is already distant from s∗BS by at least
NI moves. Applying the diversification step from it should therefore result
in a restarting solution that is more significantly different than the one that
would have been obtained from s∗BS. Furthermore, when performing succes-
sive diversification steps during the course of the overall search, the restarting
solutions generated will tend to be more widely dispersed than if the diver-
sification used s∗BS since this schedule might very well stay unchanged over
several BS phases or cycle between a limited number of local optima.

The overall procedure then returns to the full version of the BS with this
new rearranged partial schedule unless the global termination criterion has
been met (cf. lines 32–34).

In the following section we will refer to the two level metaheuristic de-
scribed above (Algorithm 1) as AORPP. A reduced version of AORPP, denoted
as ASCAP, can also be defined to adapt it to the surgical case assignment
problem. ASCAP is obtained by modifying both the greedy initialization and
the algorithm structure as follows. Since in the SCAP context, the master
schedule is an input, i.e., the assignment of OR blocks to specialties is known
and fixed, therefore the greedy initialization will only try to insert a patient
in the first available OR block assigned to the corresponding specialty and
will never need to assign OR blocks to specialties. With respect to the rest of
the algorithm, the only difference is that the intensification phase no longer
exists given the fact that the assignment of blocks to specialties is fixed.

5. Computational results

In this section we report and analyze the computational results obtained
when testing algorithms AORPP and ASCAP. First, we describe the compu-
tational environment and the benchmark instances in Section 5.1. In Sec-
tion 5.2 we briefly discuss some remarks regarding the objective function (1).
The two-level approach, that is the idea of using the concept of local optimum
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and the use of s-swap(in,in) as intensification strategy are numerically
tested and validated in Section 5.3 while Section 5.4 provides some insights
about the characteristics that render the instances of this problem harder.
Finally, Section 5.5 investigates the quality of the solutions with regards to
the operating room management.

5.1. Computational environment and tuning of the parameters

ASCAP and AORPP were programmed in standard C++ and compiled with
gcc 4.4.3. For both algorithms, all tests were performed on a 1.73 GHz
Intel core i7 processor, with 4 GB of RAM running under Linux Ubuntu.
Computational tests with Cplex were all done with the 12.1.0 release with
the default configuration and were performed on an HP ProLiant DL585 G6
server with two 2.1 GHz AMD Opteron 8425HE processors and 16 GB of
RAM. Even if comparing running times is not a crucial aspect of the present
analysis, it should nevertheless be noted that our algorithms were run on a
machine with slightly slower CPU than the one used for Cplex.

In order to generate realistic instances on which to test our approach,
we used real data provided by the Department of General Surgery of the
San Martino University Hospital, Genova, Italy. In particular, this database
contains all the relevant information regarding a waiting list of 400 patients:
for each patient i in this list, we know the date of referral di, the expected
duration of the surgery pi, the urgency coefficient ρi, and the expected LOS
μi.

From these informations, we generated 3 different benchmark sets, each
composed of 8 instances but having a varying number of operating rooms |K|,
length of OR block time skt and maximum number of available weekend stay
beds χ. All instances however have the same number of surgical specialties
|J | = 6 since they all were built with the same set of real surgical cases
(belonging to those 6 specialties of the San Martino University Hospital) and
are composed of the whole 400 patient waiting list. The characteristics of
the benchmark sets are summarized in table 1.

A preliminary phase of computational experiments was carried out in
order to determine adequate values for the different parameters of AORPP.
Table 2 lists these values. The same parameter settings were used for all
benchmark sets, no recalibration was performed when changing set. Note
that these values were the ones that provided the best average computa-
tional results in terms of solution value and running time, though on some
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B1 B2 B3

Id |J | |K| skt χ Id |J | |K| skt χ Id |J | |K| skt χ

1 6 6 6 14 9 6 4 6 14 17 6 6 6 10
2 6 6 7 14 10 6 4 7 14 18 6 6 7 10
3 6 7 6 14 11 6 4 6 16 19 6 6 6 15
4 6 7 7 14 12 6 4 7 16 20 6 6 7 15
5 6 6 6 16 13 6 8 6 14 21 6 6 6 20
6 6 6 7 16 14 6 8 7 14 22 6 6 7 20
7 6 7 6 16 15 6 8 6 16 23 6 6 6 25
8 6 7 7 16 16 6 8 7 16 24 6 6 7 25

Table 1: Characteristics of the benchmark sets B1–B3.

instances slightly different parameter settings did produce better individ-
ual performances. As for algorithm ASCAP, since it is a reduced version of
AORPP, it inherits the same parameter settings as those chosen for the com-
plete method.

Parameter Identifier Value

Total number of iterations N 20000
Number of iterations w/o improvement NI 40
Length of tabu list 1 �1 32
Length of tabu list 2 �2 38

Table 2: Parameter settings for AORPP and ASCAP.

5.2. Understanding the numerical behaviour of the objective function

Clearly, objective function (1) introduced in Section 3 can be separated
with respect to b0, the date of the day just preceding the first day of the
schedule, as follows:

z =
∑
i,k,t

(
xiktΦ(bt, di)ρi + (1− xikt)(Φ(b5, di) + 1)ρi

)

=
∑
i,k,t

xikt

[
Φ(bt, b0)ρi + Φ(b0, di)ρi

]
+

+
∑
i,k,t

(1− xikt)
[
(Φ(b5, b0) + 1)ρi + Φ(b0, di)ρi

]
.
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It is evident, from the above reformulation, that this expression comprises
an invariant part, with respect to the decision to include a patient in the
schedule or not, and a variable one. The constant component is denoted as:

C =
∑
i,k,t

(
xiktΦ(b0, di)ρi + (1− xikt)Φ(b0, di)ρi

)
=

∑
i,k,t

Φ(b0, di)ρi;

while the remaining variable part is expressed as:

V =
∑
i,k,t

(
xiktΦ(bt, b0)ρi + (1− xikt)(Φ(b5, b0) + 1)ρi

)
.

V represents the social costs resulting from the choices made for the
current planning period while term C accounts for those due to past planning
and scheduling decisions. It would be tempting to eliminate C form the
formulation since it is a constant and the decisions taken by the algorithm
for the current planning period will only affect V . However, both terms
need to be considered in order to adequately take into account the waiting
time portion of the global societal costs. Indeed, when considering a specific
patient i for inclusion in the current schedule, his portion of term C will
influence the decision to schedule him/her in the current planning period by
enabling a patient having a relatively low priority but that has spent a long
time waiting in the list (i.e., earlier referral date di) to be scheduled ahead
of another patient j that has a higher priority but whose waiting time is
shorter (i.e., smaller value of Φ(b0, dj)). It is through the changes in these
terms when passing from one planning period to the next that the effective
priority in which patients are included in the surgery schedule evolves (as
well as with the reappraisal of the patients medical condition, of course).
Both ways of defining the objective function are equivalent with respect to
total cost, but keeping both terms induces a sort of equity with respect to
the patients access to surgery.

An illustration of this phenomenon is described in table 3, where several
patients belonging to the waiting list of the same specialty are considered.
For each, we have computed their contribution to global societal cost as
given in terms of the full objective function z and of V alone, setting the
date of surgery to the last day of the current schedule (t = bf ) to compute
both values. The patients were then ranked by decreasing values of z and
V to reflect the order in which they would be considered for inclusion in the
schedule (since one wants to eliminate from the list those that will contribute
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more in coming periods if left on it). The table reports the first 10 patients
according to each criteria. As can be seen, the rankings obtained using z
or V are quite different thus highlighting the importance of accounting for
the patient’s history in the waiting list as well as their medical priority (see
patients 35− 38).

Rank i di ρi z i di ρi V

1 6 199 12 1872 4 338 45 270
2 7 226 12 1548 5 339 45 270
3 35 159 6 1176 3 344 45 270
4 8 258 12 1164 2 345 45 270
5 36 172 6 1098 1 347 45 270
6 37 193 6 972 6 199 12 72
7 9 276 12 948 7 226 12 72
8 38 202 6 918 8 258 12 72
9 10 290 12 780 9 276 12 72
10 4 338 45 765 10 290 12 72

Table 3: Comparing individual patients’ contribution to z and V (values computed setting
bf = 355).

From a numerical standpoint, C is generally one order of magnitude larger
than V (e.g., in our benchmarks, C is equal to 139 537). This of course
affects the value of relative gaps and therefore must be taken into account
when using such measures to compare the quality of solutions produced by
any method. Consequently, in order to provide more meaningful results and
to allow the reader a more complete algorithm evaluation, we provide not
only the usual gaps on z but also those with respect to V .

Finally, note that the values of the worst solution, introduced in Sec-
tion 3.1, can be easily computed and, for our benchmarks, are zw = 158 905
and V w = 19 368.

5.3. Validating the two level approach

Recall that the algorithm proposed here is based on a two level search
strategy, one level focusing on the assignment of patients to OR time blocks
and the other on the assignment of OR blocks to surgical specialties. Fur-
thermore, it uses an intensification strategy – local search for the OR block
assignment level – which takes as input the best solution computed during
the previous basic search (BS) phase. The rationale of this intensification
strategy is based on the claim that the set of best solutions computed by BS
can be seen as local optima when considering only the patient assignment
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level (given a master surgical schedule). In other words, such solutions are
good approximations of the optimal assignment of patients. Here, we provide
computational results providing some proof (albeit only numerically) of the
validity of this claim and of the effectiveness of the proposed intensification
strategy.

Note that when one considers only the patient assignment level, one is
dealing with the SCAP. Our first test therefore consists in comparing the
results of ASCAP with those obtained by using Cplex to solve model (1)–(6)
using the MSS found by the procedure of [33].

For these tests, we consider the instances in B1. We have set a time limit
of 12 hours of CPU (i.e., 43200 seconds) for Cplex and ASCAP is run using
the parameters reported in table 2.

z V Time (sec.)
Id Cplex ASCAP Gap Cplex ASCAP Gap Cplex ASCAP

1 153766 153895 0.08% 14229 14358 0.91% 2063.68 27.16
2 153307 153394 0.06% 13770 13857 0.63% 43200.01 29.05
3 153343 153469 0.08% 13806 13932 0.91% 34.56 37.33
4 152854 152992 0.09% 13317 13455 1.04% 197.02 46.05
5 153761 153829 0.04% 14224 14292 0.48% 2206.34 36.74
6 153301 153433 0.09% 13764 13896 0.96% 43200.03 39.48
7 153338 153444 0.07% 13801 13907 0.77% 419.8 47.13
8 152846 153037 0.12% 13309 13500 1.44% 43200.04 37.54

0.08% 0.89% 16815.19 37.56

Table 4: Comparison between Cplex (time limit 43200 seconds) and ASCAP on benchmark
B1.

Table 4 reports the objective values of the best integer solutions found
by Cplex and ASCAP, the relative gaps between them, considering either the
z or V values and computed as (ASCAP Best− Cplex Best)/Cplex Best, as
well as the overall running times. The last row corresponds to the averages
of the corresponding columns. As can be seen, Cplex succeeds in proving
optimality within the imposed time limit on only 5 out of the 8 instances
of B1. For instances 2, 6 and 8, Cplex could not completely close the gap
but the solutions returned are within 0.07%, 0.07%, and 0.03% of optimality,
respectively.

On the other hand, ASCAP is able to find very good quality solutions with
gaps relative to the Cplex solution of 0.89% on average with respect to the V
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values and of 1.44% in the worst case, all in very short times, 37.56 seconds
on average, so roughly three orders of magnitude less than Cplex. These
results clearly demonstrate the capability of ASCAP to compute very good
solutions fast.

In table 4, only the best local optimum found for each instance is reported
of course. However, ASCAP generates a whole sequence of local optima, each
one resulting from a BS execution. To illustrate the behaviour of the search
process, we have plotted in Figure 1 the values of the best solutions found by
the successive BS phases with respect to the iteration count for instance 5.
The figure also plots the evolution of the overall best solution found during
the search (i.e., solid line). The values reported along the y-axis are the
values of the V component of the objective function. Note that the origin of
the y-axis refers to the optimal solution value for instance 5 as computed by
Cplex.
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Figure 1: ASCAP: local optima and best solution (instance 5).

Figure 1 shows that the local optima have an objective value that is usu-
ally quite close to the best value returned by the algorithm in the end: hence,
BS is generally able to compute good solutions whenever a master schedule is
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given to it. Through detailed analysis of the colletion of local optima found by
the BS phases on this instance, we have computed that: 1) the gap between
the average objective value across all local optima and the best one found by
ASCAP was 1.03%; 2) 51.28% of the local optima encoutered have a gap lower
or equal to this average gap; and 3) the worst of the local optima produced
by the BS phases had a gap of 3.31%. These observations strengthen the
previous conclusion regarding the efficacy of ASCAP in computing very good
solutions.

z V Time (sec.)
Id Cplex AORPP Gap Cplex Opt G AORPP Gap Best Tot.

1 153754 153853 0.06% 14217 0.86% 14316 0.70% 2.38 31.52
2 153289 153391 0.07% 13752 0.53% 13854 0.74% 20.73 33.73
3 153315 153517 0.13% 13778 1.19% 13980 1.47% 13.52 37.10
4 152804 153088 0.19% 13267 0.72% 13551 2.14% 1.02 41.54
5 153748 153844 0.06% 14211 0.88% 14307 0.68% 10.36 29.30
6 153283 153361 0.05% 13746 0.51% 13824 0.57% 22.72 36.20
7 153311 153493 0.12% 13774 1.04% 13956 1.32% 14.77 38.69
8 152794 152947 0.10% 13257 0.79% 13410 1.15% 1.79 43.35

0.10% 0.82% 1.10% 10.91 36.43

Table 5: Comparison between Cplex (best integer solution computed in 43200 seconds)
and AORPP on benchmark B1, times of AORPP in cpu seconds.

To strengthen this validation we now report in table 5 the solution values
found on the same benchmark B1 but considering now the full version of
the ORPP (and not just the SCAP anymore). The table also reports for
each instance the relative gaps observed between Cplex and AORPP as well
as the running times required by AORPP to find the best solution and its
overall running time. Finally, the last row reports the average values of the
corresponding columns. The first thing that should be observed when solving
the ORPP version of the instances of B1 is that Cplex now fails to prove the
optimality of any of the solutions it finds, reaching the 43200 seconds time
limit for every instance. The objective function values reported are therefore
those of the best integer solution found by Cplex. The final optimality gaps
corresponding to these solutions (listed under column Opt G) are quite small,
ranging from 0.51% to 1.19% for an average of 0.82%. The time column Cplex
has been omitted since it does not provide any information.
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When analyzing the performance of AORPP, one can observe that the av-
erage computing time is almost the same as that of ASCAP. Regarding the
quality of the solutions found, again the analysis of the gaps between the
best integer solution found by Cplex and the one found by AORPP clearly
demonstrates the quality of the solution computed by the proposed algo-
rithm, recording an impressive average gap of 0.1% with respect to z and of
1.1% with respect to the V component only.

Table 6 adds more details regarding the use of the two level strategy
by providing the following information about benchmark B1. The second
column reports the phase of the algorithm during which the best solution
was found (either the basic search BS or the intensification phase s-swap).
Columns 3 to 6 report various measures of the improvement in solution qual-
ity as they relate to the different phases of the procedure, each time measured
as a percentage of improvement and computed in a similar fashion as the gaps
reported previously. More precisely, column 3 headed s-swap* reports the
improvement resulting from the application of s-swap when it finds the best
solution (if it effectively is s-swap that finds it); column 4 reports the best im-
provement resulting from the application of any s-swap intensification phase
during the whole search; column 5 reports the gap between the best local
optimum returned by the different BS phases and the best solution found
by the complete AORPP algorithm (thus measuring the contribution of the
intensification phases over the whole search process); and column 6 reports
the total improvement achieved when comparing with the worst solution V w

(cf. section 5.2). Finally, the last 2 columns give the number of BS phases
performed and the number of s-swap iterations done during the execution
of the algorithm while the last row reports the average of the corresponding
columns.

The results reported in table 6 highlight the positive impact of the pro-
posed intensification strategy. Indeed, the idea of using s-swap to perform
a local search at OR block level in order to improve on solutions found after
using only patient based neighbourhoods is clearly justified by the fact that
for every instance in B1, the best solution was always found by an intensifica-
tion phase (see column 2). In fact the presence of the s-swap intensification
phase accounts for an additional improvement of 0.38%, on average, with
respect to the best solutions obtained when using BS only (see column 5).
Note also that in 2 cases out of 8 (instances 4 and 8) the best solution found
is reached when s-swap records its best improvement. The usefulness of
this intensification phase is further justified by the improvements reported
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Improvements on V BS s-swap

Id Best in s-swap* s-swap BS V w phases iter

1 s-swap 0.87% 1.09% 0.23% 36.23% 25 31
2 s-swap 0.71% 1.47% 0.19% 40.84% 129 95
3 s-swap 1.46% 1.95% 0.34% 40.57% 118 213
4 s-swap 1.48% 1.48% 0.46% 45.99% 124 151
5 s-swap 0.71% 2.24% 0.04% 36.29% 114 146
6 s-swap 0.90% 1.32% 0.28% 40.90% 127 109
7 s-swap 1.32% 2.35% 0.13% 40.61% 113 169
8 s-swap 2.15% 2.15% 1.39% 46.10% 119 152

1.20% 1.76% 0.38% 40.94% 108.6 133.3

Table 6: Details about AORPP execution on benchmark B1.

in columns 3 and 4, i.e., 1.20% on average when computing the best solution
found, and 1.76% on average for the largest improvement generated by the
different intensification phases over the overall search process.

Note that column 6, under the subheading V w, gives the gaps between the
value of the trivially bad solution V w and the best solution found by Cplex.
This measure gives an idea of the range of possible values of V over which the
solution returned by AORPP could vary. The fact that the remaining gaps
of the solutions obtained are extremely small illustrates that most of the
possible improvement has already been achieved and that additional gains
would probably be quite hard to get.

Finally, the benefits of the proposed approach are also highlighted by the
comparison of the results reported in [33] with those appearing in table 5.
In that paper, the instances tackled were significantly smaller than the ones
studied here, with the larger ones having 200 patients and 3 ORs, but they
were based on the same 400 patient database used here. The best solutions
computed in that work, in the most favourable case, had an average gap on
z equal to 0.52% (as opposed to 0.10% here) whith average running times
ranging between 30 and 37 seconds. Even if these results cannot be compared
directly, there seems to be a significant improvement in solution quality be-
tween the two approaches both in terms of average gap and running times.
This impression will be confirmed by the analyses that follow.
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5.4. Characterizing harder to solve instances

Following various discussions with OR managers working in different ad-
ministrative contexts and given our own analysis of the problem, we decided
to study the impact of the number of ORs and of the availability of weekend
beds on the difficulty to solve ORPP instances since these two characteristics
seemed to be crucial in several of the environments we knew. Benchmarks
B2 and B3 were generated for this purpose.

Let us recall that the instances in B2 differ from those in B1 by the number
of operating rooms available with |K| = 4 and 8 instead of |K| = 6 and 7. As
for the instances in B3, the number of weekend beds available changes from
χ ∈ {14, 16} to χ ∈ {10, 15, 20, 25} while the number of operating rooms
available is fixed to |K| = 6 (see table 1).

z V Time (sec.)
Id Cplex AORPP Gap Cplex Opt G AORPP Gap Best Tot.

9 154774 154879 0.07% 15237 0.61% 15342 0.69% 4.06 24.16
10 154399 154555 0.10% 14862 0.20% 15018 1.05% 4.95 24.65
11 154774 154867 0.06% 15237 0.70% 15330 0.61% 15.9 28.77
12 154399 154495 0.06% 14862 0.11% 14958 0.65% 11.9 31.16
13 152906 153154 0.16% 13369 1.24% 13617 1.86% 8.25 47.63
14 152369 152581 0.14% 12832 0.92% 13044 1.65% 22.61 52.1
15 152900 153151 0.16% 13363 1.27% 13614 1.88% 24.67 49.84
16 152359 152602 0.16% 12822 0.86% 13065 1.90% 39.78 52.79

0.11% 0.74% 1.28% 16.52 38.89

Table 7: Comparison between Cplex (best integer solution computed in 43200 seconds)
and AORPP on benchmark B2, times of AORPP in cpu seconds.

Tables 7 and 8 are organized like table 5. They provide for each instance
in benchmarks B2 and B3 respectively, the objective function value of the
best solutions found by Cplex and AORPP in terms of z and V values, as well
as the relative gaps between them. The tables also report the time at which
AORPP found the best solution and it’s total running time. As was the case
with B1, Cplex could not solve optimally any of these new instances within
the 12 hours time limit alotted. The solutions reported are therefore the best
integer solutions found by Cplex and the final optimality gap associated with
them is given under the heading Opt G. Finally, the bottom row reports the
average of the corresponding columns.
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z V Time (sec.)
Id Cplex AORPP Gap Cplex Opt G AORPP Gap Best Tot.

17 153778 153853 0.05% 14241 0.94% 14316 0.53% 28.06 38.81
18 153305 153430 0.08% 13768 0.57% 13893 0.91% 38.51 43.63
19 153752 153854 0.07% 14215 0.87% 14317 0.72% 24.23 36.09
20 153287 153391 0.07% 13750 0.57% 13854 0.76% 45.79 47.30
21 153742 153874 0.09% 14205 0.81% 14337 0.93% 2.98 49.21
22 153277 153364 0.06% 13740 0.58% 13827 0.63% 17.15 48.45
23 153742 153827 0.06% 14205 0.72% 14290 0.60% 23.28 48.11
24 153271 153325 0.04% 13734 0.30% 13788 0.39% 10.28 53.64

0.06% 0.67% 0.68% 23.79 45.66

Table 8: Comparison between Cplex (best integer solution computed in 43200 seconds)
and AORPP on benchmark B3, times of AORPP in cpu seconds.

Results for B3, as reported in table 8, show that the number of week-
end beds available does not seem to significantly affect the hardness of the
instances: the average gaps obtained here are smaller than those for B1 how-
ever running times are larger, but all in all the differences are rather limited
and do not seem to indicate a significant change in difficulty.

With respect to B2, the results in table 7 are more interesting since they
seem to show that the hardness of the instances increases somewhat as the
number of operating rooms increases. Recall that instances 9 to 12 have 4
operating rooms while instances 13 to 16 have 8. The former have smaller
gaps than their equivalents in B1, with an average gap of 0.75% as opposed
to 1.26%, while the latter have larger ones with an average gap of 1.82% as
opposed to 0.93%. As for running times, one can observe a similar behaviour,
with smaller values of both the time to find the best solution and the total
time for the first four instances of B2 when compared to the corresponding
ones in B1 (i.e., averages of 9.20 and 27.19 seconds, respectively, compared
to 9.41 and 35.97) and longer times in both cases for the secong group of
four instances (i.e., averages of 23.83 seconds for time to best solution and
50.59 seconds total running time compared to 12.41 and 36.89, respectively).
Although the increase in difficulty as the number of ORs grows seems clear
from these results, the performance of AORPP does not seem to be jeopardized
by it and remains very convincing over all instances solved.

Finally, table 9 provides additional details about the usefulness of the
s-swap intensification phase for both benchmarks B2 and B3. For each of
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Improvements on V Improvements on V
Id Best in s-swap* s-swap BS Id Best in s-swap* s-swap BS

9 s-swap 1.69% 2.20% 0.65% 17 BS – 2.25% 0.00%
10 s-swap 0.75% 0.99% 0.14% 18 s-swap 0.90% 1.50% 0.13%
11 s-swap 1.54% 2.51% 0.76% 19 s-swap 0.89% 1.88% 0.08%
12 s-swap 0.53% 1.57% 0.36% 20 s-swap 0.90% 2.03% 0.19%
13 s-swap 0.26% 1.71% 0.04% 21 s-swap 0.79% 1.74% 0.38%
14 BS – 0.91% 0.00% 22 s-swap 0.69% 1.26% 0.09%
15 s-swap 1.64% 1.64% 0.09% 23 s-swap 0.78% 2.24% 0.09%
16 BS – 1.35% 0.00% 24 s-swap 0.73% 1.56% 0.11%

1.07% 1.61% 0.34% 0.81% 1.81% 0.15%

Table 9: Details about AORPP execution on benchmarks B2 and B3.

them, we list: the instance “Id” number; the phase of the algorithm during
which the best solution was found; the improvement resulting from the ap-
plication of s-swap when it finds the best solution under heading s-swap*;
and the best improvement resulting from the application of any s-swap in-
tensification phase during the whole search under heading s-swap.

As can be seen from this table, in 13 out of 16 cases, the best solution is
found through the use of the s-swap intensification phase. As was the case
for benchmark B1, the improvement produced by the intensification phases
is significant and confirms the positive impact of using the local search at
the OR block level as intensification strategy as was previously discussed.

5.5. Operating room management considerations

In the following, we analyze the solutions produced by AORPP from an
operating room management perspective by considering the total number of
patients planned for surgery according to the schedules produced, the average
utilization rate of the operating rooms resulting from those schedules, and
the number of post surgery beds required over the planning week.

We first report in table 10, for each instance over the three benchmarks,
the number of surgery patients scheduled and the average OR utilization
rates. As can be seen form the table, the schedules produced by AORPP

exhibit very reasonable utilization rates being always higher than 90%, apart
from instance 16 which is just barely under that level at 89.82%. In fact, for
17 instances out of the 24 solved, the utilization rate is higher than 95% with
a 100% for instance 11, which shows that the schedules produced are using
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B1 B2 B3

Id Patients % Util. Id Patients % Util. Id Patients % Util.

1 83 97.22% 9 57 97.08% 17 85 99.72%
2 92 97.38% 10 66 97.86% 18 92 96.90%
3 89 92.86% 11 58 100.00% 19 83 98.61%
4 101 93.27% 12 66 98.93% 20 92 98.57%
5 83 96.94% 13 101 91.88% 21 81 98.06%
6 94 98.81% 14 110 90.36% 22 93 98.10%
7 92 95.00% 15 99 92.08% 23 82 97.50%
8 101 93.67% 16 108 89.82% 24 92 98.10%

91.88 95.64% 83.13 94.75% 87.50 98.19%

Table 10: Number of patients operated and utilization rate, benchmarks B1–B3.

efficiently the surgical capacity with respect to the available surgery time.
This is confirmed by the average values for each benchmark which stand at
approximately 95% for B1 and B2, and just over 98% for B3. Note however,
that the utilization rate is somewhat lower for the instances that have the
largest number of operating rooms available (i.e., instances 13–16).

The number of scheduled patients during the planning week represents
approximately 25% of the patients on the waiting list. When concentrating
on the instances in B1 and B2, one can see that the number of patients is
fairly proportional to the number of operating rooms |K| available and the
length of OR blocks skt. Indeed, recalling that odd numbered instances in
all three benchmarks correspond to OR block durations of skt = 6 hours
while even numbered ones have skt = 7 hours, one can clearly see that the
former present approximately 1/7 less patients than the latter. Likewise,
when only 4 ORs are available (i.e., instances 9–12 of B2) the number of
patients is almost cut in half when compared to the equivalent instances
having 8 ORs (i.e., instances 13–16). Recalling that benchmark B3 is char-
acterized by an increasing number of stay beds available during the weekend
χ ∈ {10, 15, 20, 25} with each consecutive pair of instances taking these val-
ues in order (see table 1) and considering the previous remark, the results
of table 10 show that the number of scheduled patients is almost the same
even when the number of weekend stay beds increases. Indeed, for the odd
numbered instances this value stays between 81 and 85 patients whatever
the value of χ, while for the even numbered instances it stays between 92
and 93 patients. This seems to indicate that, at least in the specific context
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of our partner hospital, the bottleneck of the admission process for surgery
resides with the surgery time availability (in terms of number of operating
room available and OR block duration) and not really with the number of
weekend beds available.

We evaluated the maximum overtime required resulting from the solution
obtained through a Monte Carlo Simulation over a set of 300000 scenarios for
each instance in B1. These computational results showed that the maximum
overtime required was 22.05 minutes over all scenarios of all instances. In
our setting the minimum duration of a surgery is 90 minutes. Considering
the case in which overtime is not available then the best strategy would be
to postpone the shortest surgery which would result in an utilization rate of
82.16% for the specific overtime value reported here above. This is in line
with the results presented in the literature (see, e.g., [49]). Similar results
are obtained for benchmark B2 and B3.

weekend stay planning horizon weekend
id beds availability 1 2 3 4 5 6 7

17 10 17 28 38 42 42 10 8
18 10 19 33 38 44 47 10 5
19 15 18 29 37 42 42 15 11
20 15 18 30 40 50 44 15 12
21 20 18 27 35 40 36 20 15
22 20 19 30 41 47 51 20 13
23 25 17 28 36 32 40 25 20
24 25 18 32 40 47 48 24 18

18.0 29.7 38.1 43.0 43.8 17.4 12.8

Table 11: Number of occupied beds for each day of the planning horizon and the weekend,
benchmark B3.

In table 11, the impact of increasing the number of weekend stay beds is
analyzed in more detail for the instances in B3. We report the number of
beds required by the surgery schedule for each day of the planning horizon
including the weekend (columns 3 − 9) with the bottom row showing the
average of the corresponding column. One can observe that weekend stay
beds have a high level of utilization even when their number is increased.
Indeed, for the first day of the weekend (i.e., day 6), in every instance the
full quantity of weekend beds available is used, except for instance 24 in which
one of the 25 beds available is not. Even for the second day of the weekend,
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the average utilization remains very high with 12.8 days with respect to a
maximum possible value of 17.5. This shows that the algorithm really does
exploit the weekend stay bed availability when selecting the patients to be
operated on in order to try to further minimize the objective function.

Finally, one can also observe that the bed utilization over the days of the
week resulting from the surgery schedules produced by AORPP does not seem
balanced: the average utilization increases as the week proceeds. However, no
strong conclusion should be drawn from this since the schedules are built for
one week planning horizons and therefore, in the context of a rolling horizon
planning approach, the patients that need to stay over the weekend after their
surgery will likely increase the number of beds required at the beginning of
the next week. Whether this would result in a relatively balanced usage of
beds over the days of the week remains to be seen. However, even if this
aspect of the problem was not considered in this study, we want to stress
that the topic of bed leveling and, more generally of workload balancing, is
a very challenging aspect of operating room management (see, e.g., [13]).

6. Conclusion

In this paper we have presented a two level metaheuristic algorithm that
solves the joint master surgical schedule and advance scheduling problem tak-
ing into account many resource and operative constraints while minimizing
the total social cost of the resulting surgery schedule.

The proposed solution approach exploits the inherent hierarchy between
the two decision levels present within the problem, i.e., the assignment of
OR time blocks to surgical specialties and the assignment of patients to OR
time blocks. Following this hierarchical approach, 0− 1 linear programming
models were introduced and exploited in order to prove that the problem is
NP-hard.

The algorithm was numerically tested and validated using real data col-
lected at the Department of General Surgery of a public hospital located in
Genova (Italy). Results show that the proposed method exhibits very good
performances both in terms of solution quality and computational times.
The intensification strategy included in the algorithm, which is based on a
local search at the OR block level, is an essential ingredient of the overall
method since it was shown to contribute directly to the identification of the
best solution in 21 out of the 24 instances solved. Furthermore, the proposed
algorithm records an impressive average gap over the three sets of benchmark
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instances tested, ranging from 0.06% to 0.11%. The average gap computed
on the variable component of the objective function only is likewise very im-
pressive ranging from 0.68% to 1.28% over the three benchmark sets. Finally,
from an OR management point of view, the schedules produced by the pro-
posed algorithm exhibit very good qualities in terms of number of patients
scheduled for surgery, operating room utilization rates and number of stay
beds used during the weekend.

Future research avenues could consider the evaluation of different objec-
tive functions in order to directly include hospital costs. Another avenue
could be to include considerations regarding the balancing of post surgery
bed utilization. Finally, extentions of the modeling and solution approaches
could be explored in order to deal with the uncertainty of surgery durations,
for instance by including the sequencing of patients within OR time blocks,
and that of patients’ LOS.
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