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Hudson Theorem for τ−Wigner Transforms

P. Boggiatto, G. De Donno, A. Oliaro

Department of Mathematics

University of Torino

Via Carlo Alberto, 10

10123 Torino (TO) - Italy

Abstract

In this paper, after introducing a natural generalization of the classical
Wigner transform, namely the τ−Wigner transforms, depending on the param-
eter τ ∈ [0, 1], we study the problem of its positivity. In particular we prove two
theorems of Hudson type considering the action of the τ−Wigner transforms
on functions and on distributions respectively. We give then an application of
our results concerning Weyl and localization pseudo-differential operators.

1 Introduction

The Wigner transform

Wig(f)(x, ω) =

∫
Rd
e−2πitωf(x+ t/2)f(x− t/2) dt, f ∈ L2(Rd), (1.1)

was proposed in 1932 by Wigner [16] in the context of quantum mechanics as quasi-
probability distribution on the phase-space and subsequently introduced by Ville as
a time-frequency representation of the energy of a signal f . Since then it has become
one of the most used tools of harmonic analysis in quantum mechanics and in signal
theory.

For what signal processing is concerned, it satisfies many of the properties one
expects to be fulfilled by an energy distribution with respect to time and frequency.
However one main drawbacks is that it fails to be positive. More precisely a famous
theorem of Hudson [9] asserts that it is positive only on functions of gaussian type
(Theorem 2.1 (ii) below, see also [7] and [6]). Many other quadratic (and some non
quadratic) forms have been defined in the attempt to obtain satisfying represen-
tations of energy distribution of signals. In this context the Cohen class, defined
as the class of time-frequency representations of the form Q(f) = σ ∗Wig(f), for
σ ∈ S ′(R2d), covers essentially all most used representations, see for instance [4],
[5]. The question of positivity within the Cohen class is highly non trivial and far
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from having found a general characterization. Interesting condition for positivity of
bilinear forms can be found in [10], in [11] the results on the Wigner are deduced
from Lp estimates, and in [15] a direct proof of the positivity and applications to
rank one operator are presented.

The associated sesquilinear form

(f, g) −→Wig(f, g)(x, ω) =

∫
Rd
e−2πitωf(x+ t/2)g(x− t/2) dt

defines a continuous map in many different functional settings, for example its acts
continuously from S(Rd) × S(Rd) to S(R2d), and is extendable to tempered distri-
butions. Moreover the Paserval relation

‖Wig(f, g)‖L2 = ‖f‖L2‖g‖L2 .

yields a bounded map Wig : L2(Rd)× L2(Rd) −→ L2(R2d). For further properties
see e.g. [6], [1].

In this paper we consider a subclass of the Cohen class, namely the τ -Wigner
representations Wigτ , with τ ∈ [0, 1] (see Def. (2.1)), which were introduced in [10]
and have been studied in [3] in connection with pseudodifferential operators and the
problem of interferences. The effect of the parameter τ is shown in [3] to consist
in a shift of the so-called “ghost frequencies” and it is proved that the Born-Jordan
representation is actually an integral of τ−Wigner representations over the interval
[0, 1], a fact that explains the better behavior of the Born-Jordan representation
with respect to interferences.

In view of their use in signal analysis, the question of the positivity of the Wigτ
representations becomes then of considerable interest.

Besides this, it was proved in [3] that the Wigτ sesquilinear form is related to
the τ−Weyl pseudo-differential quantization (see Shubin [12]) in a way which is
analogous to the connection between Wigner form and Weyl operators.

This paper is dedicated to the study of the positivity of the Wigτ representations
and, as application, some consequences on τ−Weyl pseudo-differential operators are
presented in the last section. More precisely the paper is organized as follows. In
section 2 we give the exact definitions and we state our results about positivity. More
precisely they consist of an extension to the τ -Wigner forms of Hudson theorem at
first in the case of L2 functions (Thm. 2.1). Considering then the action on S ′(Rd),
we give a suitable characterization of positivity also extended to this distributional
setting (Thm. 2.3).

Preliminarily to the proof of our results we need some lemmas presented in
section 3. The proof of the two main results of positivity, obtained with techniques
similar to those in [15] and [6], are presented in section 4. In section 5 we give some
applications of our previous results presenting how they produce counter-examples
which show the absence of connections between positivity of an operator and that
of its τ−Weyl symbols.
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2 Positivity of τ−Wigner forms

For τ ∈ [0, 1] and f, g ∈ S(Rd), the τ -Wigner transform is defined as

Wigτ (f, g)(x, ω) =

∫
Rd
e−2πitωf(x+ τt)g(x− (1− τ)t) dt. (2.1)

It is therefore a natural generalization of the Wigner transform and it has revealed
to be a useful tool in various aspects of time-frequency analysis (see [10] and [3]).

By standard density arguments the domain of (2.1) can be extended to more
general spaces, for example the Lebesgue spaces. Moreover, given a function F (x, t)
let us define the linear change of variables Sτ as:

Sτ (F (x, t)) := F (x+ τt, x− (1− τ)t);

then, for f, g ∈ S(Rd), we can re-write Wigτ (f, g)(x, ω) as composition of three
operators, namely:

Wigτ (f, g) = F2Sτ (f ⊗ g), (2.2)

where F2 stands for the Fourier transform with respect to the second variable. In
this way the τ -Wigner transform makes sense for f, g ∈ S ′(Rd) defining a continuous
map:

Wigτ : S ′(Rd)× S ′(Rd)→ S ′(R2d).

We state now the two main results of positivity of Wigτ (f, g) in the settings of
square integrable functions and tempered distributions respectively.

Theorem 2.1. Let us suppose that f, g ∈ L2(Rd). Then, for every τ ∈ [0, 1],
Wigτ (f, g) ∈ L2(R2d), and moreover:

(i) For τ ∈ (0, 1), τ 6= 1
2 , we have that Wigτ (f, g)(x, ω) > 0 a.e. in R2d if and only

if there exists a positive definite matrix A ∈ GL(d,R), two vectors α, β ∈ Rd
and constants c, d, a ∈ R such that

f(t) = e−t
trAt+αt+iβt+c+ia

g(t) = e−
τ

1−τ t
trAt+ τ

1−τ αt+iβt+d+ia
(2.3)

where as usual

ttrAt = ( t1 · · · tn )

 a11 · · · a1n
...

. . .
...

an1 · · · ann


 t1

...
tn


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(ii) (Hudson Theorem) For τ = 1
2 , we have Wig 1

2
(f, g)(x, ω) = Wig(f, g)(x, ω) > 0

a.e. in R2d if and only if there exists a complex d × d matrix A with positive
definite real part, a vector γ ∈ Cd and a constant c ∈ C such that

f(t) = e−t
trAt+γt+c, g(t) = λf(t)

for an arbitrary positive real constant λ.

Remark 2.2. The new result in Theorem 2.1 is the case τ 6= 1
2 ; for completeness

we have stated also the case τ = 1
2 , (cf. [9]). Note that the matrix A, which has

generally complex entries for τ = 1/2, is real in the case τ 6= 1/2.

In order to state the Hudson’s theorem for the τ -Wigner transform in the frame
of tempered distributions let us define, for f ∈ S(Rd), x, ω ∈ Rd and B ∈ GL(d,R),
the following operators:

Txf(f) = f(t− x)

Mωf(t) = e2πiωtf(t)

UBf(t) = | detB|1/2f(Bt)

(2.4)

with obvious extensions to the case f ∈ S ′(Rd).

Theorem 2.3. Let us suppose that f, g ∈ S ′(Rd). We consider the “splitting”
of variable t =

(
t[1], t[2], t[3]

)
with t[1] = (t1, . . . , th), t[2] = (th+1, . . . , tk), t[3] =

(tk+1, . . . , td) with 0 ≤ h ≤ k ≤ d (in the cases h = 0, h = k and k = d we
respectively mean that t[1], t[2] and t[3] are empty). We then have:

(i) For τ ∈ (0, 1), τ 6= 1
2 , we have that Wigτ (f, g)(x, ω) ∈ S ′(R2d) is a positive

distribution if and only if there exist cf , cg, a ∈ R, θ, σ ∈ Rd, D ∈ GL(d,R)
and a splitting of variables of the kind described above such that

f(t) = ecf+iaUD TθMσ

(
e
−t2

[1] ⊗ δt[2] ⊗ 1t[3]
)

(2.5)

and
g(t) = ecg+iaUD TθMσ

(
e
− τ

1−τ t
2
[1] ⊗ δt[2] ⊗ 1t[3]

)
, (2.6)

where δt[2] is the Dirac distribution in the t[2]-variable and 1t[3] stands for the
function identically 1 in the t[3]-variable.

(ii) Wig(f, g) = Wig 1
2
(f, g) is a positive distribution if and only if there exist c, a ∈

R, θ, σ ∈ Rd, D ∈ GL(d,R), A ∈ GL(h,C) with <A positive definite, and a
splitting of variables as before such that

f(t) = ec+iaUD TθMσ

(
e
−ttr

[1]
At[1] ⊗ δt[2] ⊗ 1t[3]

)
, g(t) = λf(t) (2.7)

for a positive constant λ.
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3 Some properties of the τ-Wigner representation

In this section we study some important properties of the τ -Wigner representation
and prove some technical results that will be used in the proof of the generalized
Hudson’s Theorems 2.1 and 2.3. We begin by proving the orthogonality relation for
the τ -Wigner transform.

Proposition 3.1. Let f1, f2, g1, g2 ∈ L2(Rd), and τ ∈ [0, 1]. Then we have that
Wigτ (fj , gj)(x, ω) ∈ L2(R2d) for j = 1, 2 and moreover(

Wigτ (f1, g1),Wigτ (f2, g2)
)
L2(R2d)

= (f1, f2)L2(Rd)(g1, g2)L2(Rd) (3.1)

Proof. By (2.2) and the Parseval formula we have(
Wigτ (f1, g1),Wigτ (f2, g2)

)
L2(R2d)

=
(
Sτ (f1 ⊗ g1), Sτ (f2 ⊗ g2)

)
L2(R2d)

;

we can then apply S−1τ , and since Sτ is a unitary linear change of variables and

(f1 ⊗ g1, f2 ⊗ g2)L2(R2d) = (f1, f2)L2(Rd)(g1, g2)L2(Rd),

the proof is complete.

Remark 3.2. This means that every Wigτ preserves the energy of a signal. In
particular, for every τ, σ ∈ [0, 1] and f1, f2, g1, g2 ∈ L2(Rd) we have(

Wigτ (f1, g1),Wigτ (f2, g2)
)
L2(R2d)

=
(
Wigσ(f1, g1),Wigσ(f2, g2)

)
L2(R2d)

.

Next we analyze how the τ -Wigner behaves with respect to translation, modu-
lation and linear change of variables, cf. (2.4).

Proposition 3.3. Let us fix f, g ∈ S ′(Rd); for every τ ∈ [0, 1], y, z, β, γ ∈ Rd and
B ∈ GL(d,R) we have:

Wigτ (Tyf, Tzg) = e−2πi(y−z)ωWigτ (f, g)(x− (1− τ)y − τz, ω) (3.2)

Wigτ (Mβf,Mγg) = e2πi(β−γ)xWigτ (f, g)(x, ω − τβ − (1− τ)γ) (3.3)

Wigτ (UBf,UBg) = Wigτ (f, g)(Bx, (B−1)trω), (3.4)

where Btr is the transposed of the matrix B.

Proof. It is enough to prove the statement for f, g ∈ S(Rd); the case when f and
g are tempered distributions shall follow by density. By the change of variables
t− y + z = s we have

Wigτ (Tyf, Tzg)(x, ω) =

∫
Rd
e−2πitωf(x− y + τt)g(x− z − (1− τ)t) dt

=

∫
Rd
e−2πi(s+y−z)ωf(x− (1− τ)y − τz + τs)g(x− (1− τ)y − τz − (1− τ)s) ds

= e−2πi(y−z)ωWigτ (f, g)(x− (1− τ)y − τz, ω).
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The relation concerning modulation is trivial; regarding the linear change of vari-
ables, we have:

Wigτ (UBf,UBg) =

∫
Rd
e−2πitω| detB|

1
2 f(Bx+ τBt)| detB|

1
2 g(Bx− (1− τ)Bt) dt

=

∫
Rd
e−2πi(B

−1s)ωf(Bx+ τs)g(Bx− (1− τ)s) ds

= Wigτ (f, g)(Bx, (B−1)trω),

since (B−1s)ω = s[(B−1)trω].

We specify now the relation between Wigτ and the Fourier transform.

Proposition 3.4. For every f, g ∈ S ′(Rd) and τ ∈ [0, 1] we have

Wigτ (f̂ , ĝ)(x, ω) = Wig1−τ (f, g)(−ω, x). (3.5)

Proof. The conclusion is obvious for τ = 0 and τ = 1, since we have Wig0(f, g) =
e−2πixωf(x)ĝ(ω) and Wig1(f, g) = e2πixωf̂(ω)g(x). For τ ∈ (0, 1) we shall prove the
following formula, that is equivalent to (3.5):

Wigτ (f, g)(x, ω) = Wigτ (ĝ, f̂)(ω, x). (3.6)

As in the proof of Proposition 3.3 we can limit our attention to f, g ∈ S(Rd). Since
g(x− (1− τ)t) =

∫
e2πi(x−(1−τ)t)η ĝ(η) dη, we have by a change of variables that

Wigτ (f, g)(x, ω) =

∫
Rd
e−2πitωf(x+ τt)g(x− (1− τ)t) dt

=

∫
e−2πitω−2πixη+2πi(1−τ)tηf(x+ τt)ĝ(η) dη dt

= τ−d
∫
e−2πis

ω−(1−τ)η
τ e2πix

ω−η
τ f(s)ĝ(η) dη ds;

by interchanging the order of integration and by a linear change of variables we then
get

Wigτ (f, g)(x, ω) = τ−d
∫
e2πix

ω−η
τ f̂

(
ω − (1− τ)η

τ

)
ĝ(η) dη

=

∫
e−2πixtf̂(ω − (1− τ)t)ĝ(ω + τt) dt

= Wigτ (ĝ, f̂)(ω, x)

and so the proof is complete.
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For the proof of the generalized Hudson’s Theorem in the frame of tempered
distributions we need the following technical lemma.

Lemma 3.5. Let %(x) and κ(ω) be real positive definite quadratic forms on Rd, and
let us define, for φ ∈ S ′(Rd),

φ%,κ(x) = e−%(x)e−κ(D)φ(x), (3.7)

where e−κ(D)φ(x) = F−1ω→x
(
e−κ(ω)φ̂(ω)

)
. For every f, g ∈ S ′(Rd) we then have

Wigτ (f%, τ
1−τ κ

, g τ
1−τ %,κ

) = e−
1

1−τ [%(x)+κ(ω)]−τ [%(Dω)+κ(Dx)]Wigτ (f, g)(x, ω). (3.8)

Proof. It is enough to prove (3.8) for f, g ∈ S(Rd), since the case when f and g
are tempered distributions shall follow by standard density arguments. We start by
considering the case κ = 0; writing φ%(x) = e−%(x)φ(x), we have:

Wigτ (f%, g τ
1−τ %

) =

∫
e−2πitωe−%(x+τt)f(x+ τt)e−

τ
1−τ %(x−(1−τ)t)g(x− (1− τ)t) dt;

by simple computations we obtain

e−%(x+τt)e−
τ

1−τ %(x−(1−τ)t) = e
1

1−τ %(x)+τ%(t).

We then have, by the change of variables s = −t, that

Wigτ (f%, g τ
1−τ %

) = e−
1

1−τ %(x)
∫
e2πisωe−τ%(−s)f(x− τs)g(x+ (1− τ)s) ds.

We now observe that f(x−τs)g(x+ (1− τ)s) = Fη→s (Wigτ (f, g)(x, η)); then, since
%(−s) = %(s) we get:

Wigτ (f%, g τ
1−τ %

) = e−
1

1−τ %(x)
∫
e2πisωe−τ%(s)Fη→s (Wigτ (f, g)(x, η)) ds

= e−
1

1−τ %(x)e−τ%(Dω)Wigτ (f, g)(x, ω).

(3.9)

We consider nowWigτ
(
e−

τ
1−τ κ(D)f, e−κ(D)g

)
(x, ω); by (3.6), since F

(
e−

τ
1−τ κ(D)f

)
=

e−
τ

1−τ κ(y)f̂(y) and F
(
e−κ(D)g

)
= e−κ(y)ĝ(y), we have that

Wigτ
(
e−

τ
1−τ κ(D)f, e−κ(D)g

)
(x, ω) = Wigτ

(
ĝκ, f̂ τ

1−τ κ

)
(ω, x);

by (3.9) and (3.6) we obtain

Wigτ
(
e−

τ
1−τ κ(D)f, e−κ(D)g

)
(x, ω) = e−

1
1−τ κ(ω)e−τκ(Dx)Wigτ (ĝ, f̂)(ω, x)

= e−
1

1−τ κ(ω)e−τκ(Dx)Wigτ (f, g)(x, ω).
(3.10)

Then (3.8) follows immediately from (3.9) and (3.10).
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Finally we shall need the τ -Wigner transform of some particular functions.

Lemma 3.6. Let us consider

ϕ(t) = e−t
trAt+αt, ψ(t) = e−

τ
1−τ t

trAt+ τ
1−τ αt, (3.11)

where A is a real d × d positive definite matrix, and α ∈ Rd. Then, there exists
C ∈ GL(d,R) such that

Wigτ (ϕ,ψ)(x, ω) = |detC|πd/2e−
1

1−τ (x
trAx)+ 1

1−τ αxe−π
2(Cω)2

where by (Cω)2 we mean the inner product between Cω and itself. In particular, the
τ -Wigner transform Wigτ (ϕ,ψ)(x, ω) is positive for every (x, ω) ∈ R2d.

Proof. By definition of τ -Wigner we have that

Wigτ (ϕ,ψ)(x, ω) =

=

∫
e−2πitωe−(x+τt)

trA(x+τt)eα(x+τt)e−
τ

1−τ (x−(1−τ)t)
trA(x−(1−τ)t)e

τ
1−τ α(x−(1−τ)t) dt;

since (x+ τt)trA(x+ τt) + τ
1−τ (x− (1− τ)t)trA(x− (1− τ)t) = 1

1−τ x
trAx+ τ ttrAt

and α(x+ τt) + τ
1−τ α(x− (1− τ)t) = 1

1−τ αx we then get:

Wigτ (ϕ,ψ)(x, ω) = e−
1

1−τ x
trAx+ 1

1−τ αx
∫
e−2πitωe−τ t

trAt dt. (3.12)

Now, since A is positive definite we can diagonalize it, finding A = V tr diag(λj)V
for a matrix V ∈ GL(d,R), where λj > 0 are the eigenvalues of A. We then get

A = (diag(
√
λj)V )tr · (diag(

√
λj)V )

and so
ttrAt = (diag(

√
λj)V t)

tr · (diag(
√
λj)V t).

Now we make the change of variables s =
√
τ diag(

√
λj)V t in the integral appearing

in (3.12); setting for convenience B =
√
τ diag(

√
λj)V we have

Wigτ (ϕ,ψ)(x, ω) = e−
1

1−τ x
trAx+ 1

1−τ αx
1

|detB|

∫
e−2πiB

−1sωe−s
2
ds

=
1

|detB|
e−

1
1−τ x

trAx+ 1
1−τ αxπd/2e−π

2((B−1)trω)2 ;

the conclusion follows just by setting C = (B−1)tr.
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4 Proof of Hudson’s Theorems for τ-Wigner representations

In this section we give the proof of Theorems 2.1 and 2.3. We start by considering
the L2 frame. We are just interested in the case τ 6= 1

2 , since the result on the
positivity of Wig(f, g) is known; we remark however that the same proof remains
valid also in the case τ = 1

2 .

Proof of Theorem 2.1. We start by proving that if the τ -Wigner is positive then f
and g must be as in (2.3). We observe at first that

Wigτ (e−πt
2
, e−π

τ
1−τ t

2

) > 0,

as we can deduce from Lemma 3.6 with A = πI and β = 0, where I ∈ GL(d,R) is
the identity. Moreover, from (3.2) with z = y we have that

Wigτ (e−π(t−y)
2
, e−π

τ
1−τ (t−y)

2

)(x, ω) = Wigτ (e−πt
2
, e−π

τ
1−τ t

2

)(x− y, ω) > 0 (4.1)

for every y ∈ Rd, (x, ω) ∈ R2d. On the other hand, we have

Wigτ (e−π(t−y)
2
, e−π

τ
1−τ (t−y)

2

)(x, ω) = e−π
1

1−τ y
2

Wigτ (e−πt
2+2πty, e−π

τ
1−τ t

2+2π τ
1−τ ty),

and then by (4.1) we get

Wigτ (e−πt
2+2πty, e−π

τ
1−τ t

2+2π τ
1−τ ty) > 0

for every y ∈ Rd, (x, ω) ∈ R2d. Now, by (3.3) with β = γ := y′ we obtain immediately
that

Wigτ
(
M−y′(e

−πt2+2πty),M−y′(e
−π τ

1−τ t
2+2π τ

1−τ ty)
)

(4.2)

is positive for every y, y′, x, ω. Observe that

M−y′(e
−πt2+2πty) = e−πt

2−2πitz1 and M−y′(e
−π τ

1−τ t
2+2π τ

1−τ ty)e−π
τ

1−τ t
2−2πitz2

for z1, z2 ∈ Cd with the relation

z1 = y′ + iy, z2 = y′ + i
τ

1− τ
y; (4.3)

we can then rewrite (4.2) in the following way:

Wigτ (e−πt
2−2πitz1 , e−π

τ
1−τ t

2−2πitz2)(x, ω) > 0 (4.4)

for every (x, ω) ∈ R2d and z1, z2 ∈ Cd as in (4.3). Since Wigτ (f, g)(x, ω) > 0 for
every (x, ω) ∈ R2d by hypothesis, we get from (4.4)(

Wigτ (f, g),Wigτ (e−πt
2−2πitz1 , e−π

τ
1−τ t

2−2πitz2)
)
L2(R2d)

> 0; (4.5)

9



then from the orthogonality relation (3.1) we get

(f, e−πt
2−2πitz1)(g, e−π

τ
1−τ t

2−2πitz2) > 0 (4.6)

for every z1, z2 as in (4.3). Now we observe that by a simple change of variables we
have

‖e−πt2−2πitz1‖2
L2(Rdt )

=

∫
Rd
e−2πt

2+4πt=z1 dt = e2π(=z1)
2

∫
Rd
e−2πs

2
ds =

e2π(=z1)
2

2d/2
.

Let us consider now the function

G(z1) = (f, e−πt
2−2πitz1);

we have

|G(z1)| ≤ ‖f‖L2‖e−πt2−2πitz1‖L2 = ‖f‖L2

eπ(=z1)
2

2d/4
≤ ceπ|z1|2

for a constant c > 0. Moreover, G(z1) is an entire function and it never vanishes, as
we can deduce from (4.6); then, reasoning as in [6] we obtain that G is of the form

G(z1) = ez
tr
1 Az1+bz1+c. (4.7)

We observe now that we can write

G(z1) =

∫
Rd
e2πit<z1e−πt

2+2πt=z1f(t) dt,

and so F<z1→t
(
G(z1)|=z1=0

)
= e−πt

2
f(t); then, by (4.7) we have that e−πt

2
f(t) is

a generalized Gaussian, i.e. an exponential whose exponent is a a polynomial of
degree 2, cf. [6], [7, Lemma 4.4.2]. This implies that f(t) is of the same form, i.e.
there exist a d× d complex matrix A′, β′ ∈ Cd and c′ ∈ C such that

f(t) = e−t
trA′t+β′t+c′ . (4.8)

Reasoning in the same way on the expression

(g, e−π
τ

1−τ t
2−2πitz2),

cf. (4.6), we obtain that g(t) must be of the same form as f(t), so

g(t) = e−t
trA′′t+β′′t+c′′ (4.9)

for a d×d complex matrix A′′, β′′ ∈ Cd and c′′ ∈ C. Now we want to find the relations
that must occur between A′, β′, c′, A′′, β′′, c′′. To this aim let us first observe that

Wigτ (f, g) = Ft→ω
(
f(x+ τt)g(x− (1− τ)t)

)
,
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and recall that by hypothesis Wigτ (f, g) > 0; then, since f and g are of the form
(4.8)-(4.9) (in particular they are continuous) we have that the function

t 7→ f(x+ τt)g(x− (1− τ)t)

is positive definite, as we can deduce for example from [15, Lemma 1.4]. Then

f(x+ τt)g(x− (1− τ)t) = f(x− τt)g(x+ (1− τ)t). (4.10)

Since we already have an explicit expression for f and g, we simply substitute (4.8)
and (4.9) in (4.10), obtaining

A′ +A′′ = A′ +A′′

(1− τ)A′′ − τA′ = τA′ − (1− τ)A′′

τ2A′ + (1− τ)2A′′ = τ2A′ + (1− τ)2A′′

β′ + β′′ = β′ + β′′

τβ′ − (1− τ)β′′ = −τβ′ + (1− τ)β′′

c′ + c′′ = c′ + c′′ + 2kπi, for every k ∈ Z

The conditions above are equivalent to

=A′′ = =A′
<A′′ = τ

1−τ<A
′

=A′′ =
(

τ
1−τ
)2=A′

=β′′ = =β′
<β′′ = τ

1−τ<β
′

=c′′ = =c′

(4.11)

where we forgot about 2kπi in the condition on c′, c′′ because of the particular form
of f and g. We then have different conclusions depending on τ . If τ 6= 1

2 we must
have =A′ = =A′′ = 0, and so by (4.11) and (4.8)-(4.9) we deduce that the functions
f and g are of the form stated in Theorem 2.1, where the matrix A in (2.3) must
be positive definite because f and g are supposed to be in L2(Rd). If τ = 1

2 the
conditions (4.11) become A′ = A′′, β′ = β′′, =c′ = =c′′, and so we have the point
(ii) of Theorem 2.1, where as before the condition <A positive definite is required
in order to ensure that f and g are in L2(Rd).
Now we have to prove the converse: let us suppose that f and g are of the form (2.3),
and prove that the corresponding Wigτ (f, g) is positive (we consider only the case
τ 6= 1

2 since for the usual Wigner transform it is already known). Let us consider
the functions (3.11), and observe that

f(t) = eceiaM β
2π
ϕ(t), g(t) = edeiaM β

2π
ψ(t),
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with the notations (2.4); then, by the skew-linearity of the τ -Wigner transform and
by Proposition 3.3 we have

Wigτ (f, g)(x, ω) = ec+dWigτ (ϕ,ψ)
(
x, ω − β

2π

)
;

then, from Lemma 3.6, Wigτ (f, g)(x, ω) > 0 for every (x, ω) ∈ R2d. The proof is
then complete.

Remark 4.1. We observe that for f, g ∈ L2(Rd), f, g 6≡ 0, and τ ∈ (0, 1) we have

Wigτ (f, g)(x, ω) > 0 ⇔Wigτ (f, g)(x, ω) ≥ 0;

in fact, if Wigτ (f, g)(x, ω) ≥ 0 we still have strict inequality in (4.5), and so the
same proof of Theorem 2.1 works in the case Wigτ (f, g)(x, ω) ≥ 0.

Now we want to prove the characterization of Theorem 2.3 on tempered distri-
butions that make the τ -Wigner transform positive.

Proof of Theorem 2.3. Let τ 6= 1
2 ; we suppose at first that Wigτ (f, g) is a positive

distribution, and we want to prove that the tempered distributions f and g are as
in the statement of the theorem. We consider two real quadratic form %(t) and κ(t)
on Rd:

%(t) = ttrBt, κ(t) = ttrCt, (4.12)

with two real d × d matrices B and C; we suppose that %(t) and κ(t) are positive
definite. Now we observe that f%, τ

1−τ κ
and g τ

1−τ %,κ
, cf. (3.7), belong to L2(Rd) (they

are in fact C∞ functions with good decay at infinity); indeed, since F−1
(
e−κ(t)

)
is

still a gaussian, for any φ ∈ S ′(Rd) we have that e−κ(D)φ = F−1
(
e−κ(t)

)
∗φ is a C∞

slowly increasing function, in particular it is dominated at infinity by a polynomial;
then for any positive definite quadratic form %(t) we have e−%(t)e−κ(D)φ = φ%,κ ∈
L2(Rd). Now, since by hypothesis Wigτ (f, g)(x, ω) is a positive distribution, by
Lemma 3.5 we have that

Wigτ
(
f%, τ

1−τ κ
, g τ

1−τ %,κ

)
(x, ω) > 0

for every (x, ω) ∈ R2d (observe that Wigτ
(
f%, τ

1−τ κ
, g τ

1−τ %,κ

)
is a smooth function

with exponential decay at infinity, cf. (3.8)). Then, since f%, τ
1−τ κ

and g τ
1−τ %,κ

belong to L2(Rd) we can apply Theorem 2.1 and deduce that

f%, τ
1−τ κ

(t) = e−t
trAt+αt+iβt+c+ia (4.13)

g τ
1−τ %,κ

(t) = e−
τ

1−τ t
trAt+ τ

1−τ αt+iβt+d+ia (4.14)
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where A is a real positive definite d × d matrix, α, β ∈ Rd and c, d, a ∈ R. Now we
want to compute f and g. For every φ ∈ S ′(Rd) and for all real positive definite
quadratic forms %(t) and κ(t) we have

φ = eκ(D)
(
e%(t)φ%,κ(t)

)
;

then by (4.13) we obtain

f(t) = e
τ

1−τ κ(D)(e%(t)−ttrAt+αt+iβt+c+ia)
= ec+iaF−1ω→t

(
e

τ
1−τ κ(ω)Fy→ω

(
e−y

tr(A−B)y+αy+iβy
))
.

(4.15)

We start by computing Fy→ω
(
e−y

tr(A−B)y+αy+iβy
)
. As we have already remarked,

since f ∈ S ′(Rd), we have that e−y
tr(A−B)y+αy+iβy = e−c−iae−

τ
1−τ κ(D)f(y) is a C∞

slowly increasing function; then A − B must be positive semidefinite. So we can
diagonalize it, obtaining A − B = V tr diag(λj)V , where λj ≥ 0 are the eigenvalues
of A−B. Then, by the change of variables s = V y we obtain:

Fy→ω
(
e−y

tr(A−B)y+αy+iβy
)

=

∫
e−2πiyωe−(V y)

tr diag(λj)(V y)+αy+iβy dy

=
1

| detV |

∫
e−2πis(V ω)e−s

tr diag(λj)s+µs+iνs ds,

(4.16)

where µ = αV −1 and ν = βV −1, with µ, ν ∈ Rd. Now let us observe that
str diag(λj)s = λ1s

2
1 + · · · + λds

2
d; we can suppose without loss of regularity that

λj = 0 implies that λn = 0 for every n ≥ j, otherwise it is enough to make a change
of variables in the integral in (4.16). Then there exists k ∈ N, 0 ≤ k ≤ d, such that
λj > 0 for every j = 1, . . . , k and λk+1 = · · · = λd = 0 (where we mean that all λj
vanish if k = 0 and all λj are strictly positive if k = d). Now, since the left-hand
side in (4.16) is a tempered distribution we must have µk+1 = · · · = µd = 0, too; we
then obtain

Fy→ω
(
e−y

tr(A−B)y+αy+iβy
)

=

=
1

|detV |

∫
e−2πis(V ω−

ν
2π

)e−(λ1s
2
1+···+λks2k)+µ1s1+···+µksk ds.

We now introduce the following notation: for ω = (ω1, . . . , ωd) ∈ Rd we split

ω =
(
ω(1), ω(2)

)
with ω(1) = (ω1, . . . , ωk) and ω(2) = (ωk+1, . . . , ωd). (4.17)

Then, since
∫
e−2πitωe−t

2
dt = πd/2e−π

2ω2
, we obtain (with the notations (2.4))

Fy→ω
(
e−y

tr(A−B)y+αy+iβy
)

= c1 UV T ν
2π

(
F (ω(1))⊗ δω(2)

)
, (4.18)
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where

F (ω(1)) = e
−πi(µ1

λ1
ω1+···+

µk
λk
ωk)e

−π2(
ω21
λ1

+···+ω2k
λk

)
,

δω(2)
is the Dirac distribution in the ω(2)-variable and c1 is a real positive constant

given by c1 = 1
| detV |3/2

πk/2√
λ1...λk

e
1
4
(
µ21
λ1

+···+µ2k
λk

)
. We then have by (4.15) and (4.18) that

f(t) = c2

∫
e2πitωe

τ
1−τ κ(ω)

[
UV T ν

2π

(
F (ω(1))⊗ δω(2)

)]
dω,

where c2 = c1e
c+ia. We now make the change of variables V ω − ν

2π = ζ in the
integral; since F (ω) · δω(2)

= F (ω(1), 0)⊗ δω(2)
for every C∞ function F (ω) we then

obtain

f(t) = c3e
2πiγt

∫
e2πiV tζ

[
e
−ζtr

(1)
Rζ(1)+µ̃ζ(1)e−2πiν̃ζ(1) ⊗ δζ(2)

]
dζ, (4.19)

where γ ∈ Rd, µ̃, ν̃ ∈ Rk, c3 is a constant of the kind c3 = c4e
ia with c4 > 0, and R

is a k × k matrix which depends on the quadratic form κ(ω) in (4.15). Now, since
f ∈ S ′(Rd), R in (4.19) must be positive semidefinite. Then we can diagonalize R,
finding R = Str diag(λ̃j)S, where λ̃j , j = 1, . . . , k are the eigenvalues of R, with
λ̃j ≥ 0 for every j = 1, . . . , k. Then we can proceed as in the computation of
(4.16); assuming that λ̃1, . . . , λ̃h > 0, λ̃h+1, . . . , λ̃k = 0 we then split the variable ζ(1)
similarly as in (4.17). By convenience we then consider the following notation: for
t ∈ Rd we split

t =
(
t[1], t[2], t[3]

)
with t[1] = (t1, . . . , th), t[2] = (th+1, . . . , tk), t[3] = (tk+1, . . . , td),

where we have just renamed t(2) as t[3] and we have split t(1) =
(
t[1], t[2]

)
. From

(4.19) and the same computations as before we then get

f(t) = c5 UD Tθ
[
e2πiσt

(
e
−t2

[1] ⊗ δt[2] ⊗ 1t[3]
)]

(4.20)

where D ∈ GL(d,R), θ, σ ∈ Rd and c5 = cfe
ia with cf ≥ 0 and a ∈ R; the

notation 1t[3] stands for the function identically 1 in the t[3]-variable. Then we have
proved that f is of the form (2.5). As for the function g, by (4.14) and the same
computations as above we get (2.6).

In order to complete the proof of Theorem 2.3 it remains to show that if f and g
are of the form (2.5)-(2.6) then the corresponding τ -Wigner transform Wigτ (f, g) is
a positive distribution. By Proposition 3.3 it is enough to prove that

Wigτ
(
ecf+iae

−t2
[1] ⊗ δt[2] ⊗ 1t[3] , e

cg+iae
− τ

1−τ t
2
[1] ⊗ δt[2] ⊗ 1t[3]

)
(4.21)
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is a positive distribution. We have:

Wigτ
(
ecf+iae

−t2
[1] ⊗ δt[2] ⊗ 1t[3] , e

cg+iae
− τ

1−τ t
2
[1] ⊗ δt[2] ⊗ 1t[3]

)
=

= ecf+cgWigτ
(
e
−t2

[1] , e
− τ

1−τ t
2
[1]
)
⊗Wigτ

(
δt[2] , δt[2]

)
⊗Wigτ

(
1t[3] ,1t[3]

)
,

where the Wigτ are intended as distributions in the (x[j], ω[j]) variables, j = 1, 2, 3,
respectively. Now by (2.2) we have immediately

Wigτ
(
1t[3] ,1t[3]

)
= 1x[3] ⊗ δω[3]

; (4.22)

moreover, from Proposition 3.4 and (4.22) it follows that

Wigτ
(
δt[2] , δt[2]

)
(x[2], ω[2]) = Wig1−τ

(
1t[2] ,1t[2]

)
(−ω[2], x[2]) = δx[2] ⊗ 1ω[2]

.

By Lemma 3.6 we finally have

Wigτ
(
ecf+iae

−t2
[1] ⊗ δt[2] ⊗ 1t[3] , e

cg+iae
− τ

1−τ t
2
[1] ⊗ δt[2] ⊗ 1t[3]

)
=

= ecf+cg | detC|πh/2e−
1

1−τ x
2
[1]e−π

2(Cω[1])
2 ⊗ δx[2] ⊗ 1ω[2]

⊗ 1x[3] ⊗ δω[3]
,

(4.23)

and so (4.21) is a positive distribution.

By Proposition 3.3 we have that Wigτ (f, g), for f, g as in (2.5), (2.6), is obtained
by applying translation and linear change of variables to the expression appearing
in (4.23). This observation, together with (2.5), (2.6) and (2.7), gives rise to the
following corollaries of Theorem 2.3.

Corollary 4.2. Let us suppose that f, g ∈ S ′(Rd). We have:

(a) Wigτ (f, g) belongs to Lp(R2d), p ∈ [1,∞], and satisfies Wigτ (f, g)(x, ω) ≥ 0 in
R2d, if and only if f and g are as in Theorem 2.3 with h = k = d (which means
that t[2] and t[3] are empty, i.e. f and g are as in Theorem 2.1).

(b) The same conclusion as in (a) holds if we require that Wigτ (f, g) belongs to
L1
loc(R2d) and satisfies Wigτ (f, g)(x, ω) ≥ 0.

Corollary 4.3. If f, g ∈ Lp(Rd), 1 ≤ p <∞, we have that Wigτ (f, g) is a positive
distribution if and only if f and g are as in Theorem 2.3 with h = k = d (which
means, as before, that f and g are in fact as in Theorem 2.1).

Corollary 4.4. If f, g ∈ L∞(Rd), or f, g ∈ L1
loc(Rd) ∩ S ′(Rd), we have that the

corresponding Wigτ (f, g) is a positive distribution if and only if f and g are as in
Theorem 2.3 with h = k (which means that t[2] is empty, while both t[1] and t[3] may
be non empty).
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Corollary 4.5. Let us consider again f, g ∈ S ′(Rd). Then Wigτ (f, g) is a strictly
positive distribution if and only if f and g are as in Theorem 2.3 with h = k = d.

Observe in particular that, in the case of tempered distributions, Wigτ (f, g)
positive is not any more equivalent to Wigτ (f, g) strictly positive, as it was in the
case of L2, cf. Remark 4.1; in particular the only tempered distributions f, g that
make the τ -Wigner transform strictly positive are the gaussians (2.3).

5 Applications to Pseudo-differential Operators

The connections between the Wigner form and the pseudo-differential calculus, in
particular the Weyl operators, have their roots in two basic formulas which shall be
the starting point of our observations. The first of them is the equality

(W af, g) = (a,Wig(g, f)), (5.1)

(for simplicity suppose f, g ∈ S(Rd), a ∈ S(R2d) but many generalizations are
possible) where W a is the pseudo-differential operator with Weyl symbol σW = a
defined by

f ∈ S(Rd) −→W af(x) =

∫
R2d

e2πi(x−y)ωa

(
x+ y

2
, ω

)
f(y) dy dω ∈ S(Rd),

(The literature related to this subject is very vast, see e.g. [8], [12], [13], [14], [17]).
In [2] it is showed how equality (5.1) is actually a particular case of a more general

correspondence between sesquilinear forms and pseudo-differential quantizations,
involving many well-known types of time-frequency representations and classes of
pseudo-differential operators.

The second basic formula is a link between rank one operators and their Weyl
symbol. Namely suppose that P : L2(Rd) −→ L2(Rd) is a rank one operator, i.e.
there exist φ, ψ ∈ L2(Rd) such that Pf = (f, φ)ψ ∈ L2(Rd), then its Weyl symbol
σW (P ) is the Wigner transform of ψ and φ, i.e.

σW (P ) = Wig(ψ, φ). (5.2)

This formula gives a reason of the fact that localization operators (see e.g. [18]),
which are “means” of rank one operators weighted with respect to a symbol a(x, ω),
i.e. maps of the type

f ∈ S(Rd) −→ Laφ,ψf(t) =

∫
R2d

a(x, ω)(f, φx,ω)ψx,ω(t) dt ∈ S(Rd), (5.3)

with φx,ω = e2πix,ωφ(t − x), ψx,ω = e2πix,ωψ(t − x), have as Weyl symbol the
convolution

σW (Laφ,ψ) = a ∗Wig(ψ, φ). (5.4)
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These operators are used as filters in signal analysis and are a particular type of
pseudo-differetial operator of Weyl type, see e.g. [2] for more details.

We shall rely on (5.1), (5.2) and (5.4) for our observations. We start however with
an immediate consequence of Theorem 2.1, which does not have a correspondence
for the classical Wigner form:

Corollary 5.1. If τ 6= 1/2 then there exist no functions f ∈ L2(Rd) for which
Wigτ (f) is everywhere positive.

Proof. If we assume that Wigτ (f) is positive, then, setting f = g in (2.3) for every
t ∈ Rd, it implies τ = 1/2.

We examine now some applications of the results of section 2 to pseudo-dif-
ferential operators. We begin by recalling a natural generalization of the Weyl
quantization, namely the τ−Weyl quantization, which associates the operator

W a
τ : f ∈ S(Rd)→W a

τ f(x) =

∫
R2d

e2πi(x−y)ωa (τx+ (1− τ)y, ω) f(y) dy dω ∈ S(Rd)

with a “τ−symbol” a ∈ S(R2d). Extensions to more general domains and symbol
classes are defined as usual (see [12] for a standard reference).

Consider now operators of rank one in L2(Rd), i.e. operators of the form Pφ,ψu =
(u, φ)ψ for fixed φ, ψ ∈ L2(Rd). A straightforward computation and the use of the
orthogonality formula (3.1) for τ−Wigner forms leads to the equality:

(Pφ,ψf, g) = (Wigτ (ψ, φ),Wigτ (g, f)), f, g ∈ L2(Rd). (5.5)

This formula, generalizing (5.2), shows that the τ−symbol of a rank one operator
Pφ,ψ is the τ−Wigner transform of φ and ψ, i.e.

στ (Pφ,ψ) = Wigτ (ψ, φ).

We use this fact in a few considerations about positivity of operators and sym-
bols. Namely, for the τ−Weyl quantization, just as for the classical Weyl quanti-
zation, there are no connections between positivity of the symbol and positivity of
the operator. We point out this fact even with rank one operator in the following
proposition whose proof is an immediate consequence of our results on the positivity
of the τ−Wigner. We recall that some complementary consequence of Hudson type
theorems for rank one operators in the case of Weyl quantization τ = 1/2 can be
found in [15].

Proposition 5.2. i) For f, g ∈ L2(Rd) as in (2.3), let Pf,gu = (u, f)g be the
corresponding rank one operator. As f and g are linearly independent, the operator
P is not positive, however for every τ 6= 1/2 we have στ (Pf,g) > 0 everywhere on
R2d.
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ii) Let φ ∈ L2(Rd), ‖φ‖2 = 1, then Pφ,φ is an orthogonal projection and therefore
a positive operator, however for every τ 6= 1/2 there does not exits φ ∈ L2(Rd) for
which στ (Pφ,φ) is everywhere positive on R2d.

We consider next localization operators defined as in (5.3). As usual the spaces of
symbols and windows, and the domain of the operators can be suitably generalized.
It is not our aim to present here the most general setting but we observe that if
symbol and windows are square integrable then we have bounded operators on L2.

The connection between the localization operators and the τ−Weyl quantization,
well-known for τ = 1/2, is generalized as follows (for simplicity we suppose that every
function is in L2).

Proposition 5.3. A localization operator Laφ,ψ with symbol a and windows φ, ψ can
be expressed as τ -Weyl operator according to the formula

Laφ,ψ = W b
τ

where b = a ∗Wigτ (ψ, φ).

Proof. First of all remark that, as Wigτ is L2−bounded, b is well-defined as a
function of L∞(R2d). We use now some results from [2] and [3] connecting pseudo-
differential operators and time-frequency representations, namely we have that for
u, v ∈ L2(Rd) the following equalities hold

(W b
τ u, v) = (b,Wigτ (v, u)),

(Laφ,ψu, v) = (a, Spψ,φ(v, u))

where the the double-window spectrogram Spψ,φ(v, u)(x, ω) = (v, ψx,ω)(u, φx,ω) can
be expressed as element of the Cohen class by

Spψ,φ(v, u) = Wig1−τ (ψ̃, φ̃) ∗Wigτ (v, u)

(with F̃ (x) = F (−x)), see [2], Prop. 2.5 (iii).
We have then

(W b
τ u, v) = (a, W̃ igτ (ψ, φ) ∗Wigτ (v, u))

= (a, W̃ ig1−τ (φ, ψ) ∗Wigτ (v, u))

= (a,Wig1−τ (φ̃, ψ̃) ∗Wigτ (v, u))
= (a, Spψ,φ(v, u)) = (Laφ,ψu, v).

which proves the thesis.

We conclude by showing how suitable localization operators yield examples of
positive operators with non positive τ−Weyl symbols.
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Proposition 5.4. For every τ 6= 1/2 and every φ ∈ L2(Rd)\{0} there exists a
positive localization operators Laφ := Laφ,φ, with window φ and suitable symbol a ∈
L2(R2d), such that the τ−Weyl symbol στ of Laφ is not everywhere positive.

Proof. It is well-known and easy to verify that localization operators with one win-
dow

Laφu =

∫
R2d

a(z)(f, φz)L2 φz dz

are positive if a(z) ≥ 0 a.e.
Let φ ∈ L2(Rd), φ 6= 0, then from Theorem 2.1 we have that Wigτ (φ) is not

everywhere positive. Suppose that z0 = (x0, ω0) is a point such that Wigτ (φ)(z0) is
not positive. Then, as Wigτ (φ) is a continuous function, either

<(Wigτ (φ))(z) < 0, or =(Wigτ (φ))(z) 6= 0 (5.6)

in a neighborhood z0+Bε
0 of z0, (Bε ball of radius ε). Suppose that a ∈ L2(R2d)\{0}

satisfies a ≥ 0 and supp a ⊆ −Bε
0. From Proposition 5.3 the operator Laφ has τ−Weyl

symbol b = a ∗Wigτ (φ) and we have

(a ∗Wigτ (φ))(z) =

∫
Bε0

Wigτ (φ)(z + w)a(−w) dw

and therefore condition (5.6) holds for b, which proves the assertion.

(From the proof it is clear that the same happens with the Weyl symbol with
the unique exclusion of the case where φ is of gaussian type as specified in Theorem
2.1, (ii) )
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