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Abstract 

The process of carbon capture and sequestration has been proposed as a method of 

mitigating the build-up of greenhouse gases in the atmosphere. If implemented, the cost 

of electricity generated by a fossil fuel-burning power plant would rise substantially, 

owing to the expense of removing CO2 from the effluent stream. There is therefore an 

urgent need for more efficient gas separation technologies, such as those potentially 

offered by advanced solid adsorbents. Here we show that diamine-appended metal-

organic frameworks can behave as ‘phase-change’ adsorbents, with unusual step-shaped 

CO2 adsorption isotherms that shift markedly with temperature. Results from 

spectroscopic, diffraction and computational studies show that the origin of the sharp 

adsorption step is an unprecedented cooperative process in which, above a metal-

dependent threshold pressure, CO2 molecules insert into metal-amine bonds, inducing a 

reorganization of the amines into well-ordered chains of ammonium carbamate. As a 

consequence, large CO2 separation capacities can be achieved with small temperature 

swings, and regeneration energies appreciably lower than achievable with state-of-the-art 

aqueous amine solutions become feasible. The results provide a mechanistic framework 

for designing highly efficient adsorbents for removing CO2 from various gas mixtures, 

and yield insights into the conservation of Mg
2+

 within the ribulose-1,5-bisphosphate 

carboxylase/oxygenase family of enzymes. 



Introduction 

 
Exceeding 13 gigatonnes (Gt) annually

1
, carbon dioxide generated from the combustion 

of fossil fuels for the production of heat and electricity is a major contributor to climate 

change and ocean acidification
2, 3

. Implementation of carbon capture and sequestration 

technologies has been proposed as a means of enabling the continued use of fossil fuels 

in the short term, while renewable energy sources gradually replace our existing 

infrastructure
4
. The removal of CO2 from low-pressure flue gas mixtures is currently 

effected by aqueous amine solutions that are highly selective for acid gases
5
. As a result 

of the large energy penalty for desorbing CO2 from such liquids, solid adsorbents with 

appreciably lower heat capacities are frequently proposed as promising alternatives
6, 7

. In 

particular, as a result of their high surface areas and tunable pore chemistry, the 

separation capabilities of certain metal-organic frameworks have been shown to meet or 

exceed those achievable by zeolite or carbon adsorbents
8, 9, 10

. 

Recently, the attachment of alkyldiamines to coordinatively unsaturated metal sites lining 

the pores of selected metal-organic frameworks has been demonstrated as a simple 

methodology for increasing low-pressure CO2 adsorption selectivity and capacity
11, 12, 13, 

14
. Most notably, functionalization of Mg2(dobpdc) (dobpdc

4−
 = 4,4′-dioxidobiphenyl-

3,3′-dicarboxylate), an expanded variant of the well-studied metal-organic framework 

Mg2(dobdc) (dobdc
4− 

= 2,5-dioxidobenzene-1,4-dicarboxylate)
15, 16, 17, 18

, with N,N′-

dimethylethylenediamine (mmen) generated an adsorbent with exceptional CO2 capacity 

under flue gas conditions and unusual, unexplained step-shaped adsorption isotherms
13

. 

Here we elucidate the unprecedented mechanism giving rise to these step-shaped 

isotherms and demonstrate that replacing Mg
2+

 with other divalent metal ions enables the 

position of the CO2 adsorption step to be manipulated in accord with the metal-amine 

bond strength. As we will show, the resulting mmen-M2(dobpdc) (M = Mg, Mn, Fe, Co, 

Zn) compounds, here designated ‘phase-change’ adsorbents, can have highly desirable 

characteristics that make them superior to other solid or liquid sorbents for the efficient 

capture of CO2. 

Figure 1 illustrates the extraordinary advantages associated with using an adsorbent 

exhibiting step-shaped isotherms in a temperature swing adsorption process in 

comparison with the Langmuir-type isotherms observed for most microporous 

adsorbents. For carbon capture applications, a gas mixture containing CO2 at low 

pressure (Pads) and low temperature (Tlow) is contacted with the adsorbent, which 

selectively adsorbs a large amount of CO2. The adsorbent is heated to liberate pure CO2 

with a partial pressure of Pdes, and is then reused for subsequent adsorption–desorption 

cycles. For a classical adsorbent (Fig. 1a), including all previous amine-based sorbents, 

the steepness of the isotherm gradually diminishes as the temperature increases, 

necessitating a high desorption temperature to achieve a large working capacity for a 

separation. In contrast, for a phase-change adsorbent of the type investigated here (Fig. 

1b), the position of the isotherm step shifts markedly to higher pressures as the 

temperature increases, such that a large working capacity can be achieved with only a 

small increase in temperature. For an efficient carbon capture process, one would ideally 

create a phase-change adsorbent with a large vertical step positioned below the partial 

pressure of CO2 in the flue gas. 
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Figure 1: Idealized CO2 adsorption isotherms. Variation in the idealized adsorption isotherm behaviour 

with temperature for a classical microporous adsorbent (a), showing the usual Langmuir-type isotherm 

shape, compared with that of a phase-change adsorbent (b), showing step-shaped (sometimes referred to as 

‘S-shaped’) isotherms. The double-headed black arrow indicates the working capacity (that is, the amount 

of gas removed) for a separation performed using a temperature swing adsorption process in which 

selective adsorption occurs at Pads and Tlow and desorption is performed at Pdes and Thigh (a) or Tmedium (b). 

 

Cooperative insertion of CO2 into metal-amine bonds 

 
Spectroscopic and diffraction measurements were undertaken to determine the 

mechanism of CO2 uptake leading to a steep adsorption step for adsorbents such as 

mmen-Mg2(dobpdc). In particular, powder X-ray diffraction studies, which were 

performed on the isostructural compound mmen-Mn2(dobpdc) owing to the greater 

crystallinity of its base framework, provided detailed structural information on how CO2 

binds within the channels of the material. Diffraction data collected at 100 K before and 

after exposure of a sample to 5 mbar of CO2 showed the unit cell volume contracting by 

just 1.112(8)%, but revealed large changes in the relative intensity of selected diffraction 

peaks (Fig. 2a). Complete structural models were developed for both data sets using the 

simulated annealing method, as implemented in TOPAS-Academic
19

, followed by 

Rietveld refinement against the data (Fig. 3, Extended Data Fig. 1 and Supplementary 
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Tables 1–4). Before exposure to CO2, the mmen molecules were bound through one 

amine group to the Mn
2+

 sites with a Mn–N distance of 2.29(6) Å, whereas the other 

amine lay exposed on the surface of the framework (Fig. 3c). Counter to our initial 

assumption that the uncoordinated amine groups would serve to bind CO2 (refs 13, 20), 

CO2 adsorption instead occurred by means of full insertion into the Mn–N bond, resulting 

in a carbamate with one O atom bound to Mn at a distance of 2.10(2) Å (Fig. 3d). The 

second O atom of the carbamate had a close interaction of 2.61(9) Å with the N atom of a 

neighbouring mmen, resulting in chains of ammonium carbamate running along the 

crystallographic c axis of the structure (Fig. 3e). The observed ammonium carbamate 

N···O distance was similar to the distance of 2.66–2.72 Å in a single crystal of pure 

mmen-CO2 (methyl(2-(methylammonio)ethyl)carbamate)
21

. This well-ordered chain 

structure was maintained at 295 K, as determined from a full Rietveld refinement against 

data collected at this temperature. Thus, the adsorption of CO2 at ambient temperatures is 

associated with a structural transition to form an extended chain structure held together 

by ion pairing between the metal-bound carbamate units and the outstretched ammonium 

group of a neighbouring mmen molecule. 

 

Figure 2: Experimental characterization of the adsorption mechanism. a, Large intensity differences are 

apparent in the powder X-ray diffraction patterns (collected at 100 K) on exposure of mmen-Mn2(dobpdc) 

(blue) to 5 mbar CO2 (green). b, Infrared spectra on dosing an activated sample of mmen-Mg2(dobpdc) 

(black) with CO2 and cooling from 150 °C to 30 °C (red to blue) under 5% CO2 in N2. The three different 

regions show bands corresponding to N–H (left), C–O (centre) and C–N (right) stretching vibrations. 

Spectra in the left panel are artificially offset by 0.05 a.u. to aid in visualization. Those in the other two 

panels are not offset; there CO2 adsorption is responsible for the increase in the spectral baseline due to 

molecular charge delocalization of the ammonium carbamate chains. c, Experimental (left) and 

computational (right) NEXAFS spectra of mmen-Mg2(dobpdc) at the N K-edge, before (blue) and after 
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(green) CO2 adsorption; the three major spectral changes are reproduced. d, Solid-state 
15

N NMR spectra 

for mmen-Mg2(dobpdc) before (blue) and after (green) exposure to CO2 at 25 °C. 

 

Figure 3: Powder X-ray diffraction structures of mmen-Mn2(dobpdc). a, b, Space-filling models of the 

solid-state structures of mmen-Mn2(dobpdc) (a) and CO2-mmen-Mn2(dobpdc) (b) at 100 K. c, d, Portions 

of the crystal structures for mmen-Mn2(dobpdc) before (c) and after (d) CO2 adsorption, as determined 

from powder X-ray diffraction data. e, A portion of the crystal structure for the final configuration of CO2 

adsorbed within mmen-Mn2(dobpdc), depicting the formation of an ammonium carbamate chain along the 

pore surface. Green, grey, red, blue and white spheres represent Mn, C, O, N and H atoms, respectively; 

some H atoms are omitted for clarity. 

The foregoing structural information enabled the formulation of a detailed mechanism for 

the adsorption of CO2 in phase-change adsorbents of the type mmen-M2(dobpdc). As 

shown in Fig. 4, the uncoordinated amine of a mmen molecule acts as a strong base to 

remove the acidic proton from the metal-bound amine of a neighbouring mmen molecule. 

Deprotonation occurs only in the presence of CO2, such that simultaneous nucleophilic 

addition of CO2 results in the formation of a carbamate with an associated ammonium 

countercation. At suitable temperatures and pressures, rearrangement of the carbamate is 

possible such that the M–N bond is broken and a M–O bond is formed. Critically, the 

ion-pairing interaction causes the mmen molecule to stretch, destabilizing the M–N bond 

and facilitating insertion at the next metal site. This cooperative effect will propagate 

until a complete one-dimensional ammonium carbamate chain has formed. Indeed, it is 

http://www.nature.com/nature/journal/v519/n7543/full/nature14327.html#f4


this cooperativity that leads to the sudden uptake of a large amount of CO2 and a steep 

vertical step in the adsorption isotherm. 

 
 

Figure 4: A cooperative insertion mechanism for CO2 adsorption. Depiction of the mechanism for CO2 

adsorption at four neighbouring M–mmen sites within an infinite one-dimensional chain of such sites 

running along the crystallographic c axis of a mmen-M2(dobpdc) compound. Simultaneous proton transfer 

and nucleophilic attack of N on a CO2 molecule forms an ammonium carbamate species that destabilizes 

the amine coordinated at the next metal site, initiating the cooperative adsorption of CO2 by a chain 

reaction. 

 

Infrared spectroscopy measurements performed on mmen-Mg2(dobpdc) fully support the 

proposed mechanism. As shown in Fig. 2b, changes to the infrared spectrum were 

apparent when a sample of the compound was cooled isobarically from 150 °C to 30 °C 

at 1 °C min
−1

 under flowing 5% CO2 in a N2 atmosphere. At high temperatures, two 

distinct N–H vibrations arose at 3,258 and 3,334 cm
−1

, which were also present in the 

spectrum of mmen-Mg2(dobpdc) in the absence of CO2 and could be attributed to the 

coordinated and uncoordinated ends of mmen, respectively. On cooling, both of these N–

H resonances disappeared, indicating changes to both amines of mmen, while a new, 

extremely broad N–H band characteristic of ammonium formation appeared. From the 

weak but clearly discernible C = O vibration at 1,690 cm
−1

, carbamate formation between 

mmen and CO2 occurred under all conditions, even at high temperatures. However, an 

additional sharp band at 1,334 cm
−1

, corresponding to the C–N vibrational mode of a 

carbamate, was observed only on cooling below 110 °C. The delayed onset of this easily 

recognizable band, which is diagnostic of a phase-change adsorbent of the type 

investigated here, is attributable to changes in the resonance configuration of carbamate 

that occur on coordination of one of its O atoms. The normalized intensities of the C–N 

band and a second band at 658 cm
−1

 versus temperature demonstrate that their formation 

was directly related to the sharp step in the gravimetric adsorption isobar measured under 

identical experimental conditions. From the infrared spectra it is clear that although a 
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small amount of CO2 can be adsorbed by means of ammonium carbamate formation 

between pairs of adjacent amines, it is specifically the adsorption of CO2 to form 

ammonium carbamate chains that endows these materials with their step-change 

adsorption properties (see Extended Data Fig. 2 for additional infrared spectra). 

To better understand the stepwise pathway by which the amines initially adsorb CO2, 

density functional theory (DFT) calculations were paired with in situ near-edge X-ray 

absorption fine structure (NEXAFS) measurements of the nitrogen K-edge of mmen-

Mg2(dobpdc) collected under increasing CO2 pressure (Fig. 2c and Extended Data Fig. 

3)
22

, and all observed spectral changes were accurately reproduced by computed spectra. 

From the NEXAFS spectra, the new pre-edge peak at 402.3 eV arose solely from the 

carbamate nitrogen and was a clear signature of carbamate insertion into the metal–

nitrogen bond. As in infrared spectroscopy, this feature is attributable to resonance of the 

nitrogen lone pair into the π system of the carbamate after the breaking of the coordinate 

bond using the same electron pair with the Mg metal centre. A second new, broad feature 

between 411 and 419 eV also arose solely from the carbamate nitrogen and was a 

signature of the new N–C bond formed on adsorption of CO2. This feature appeared 

before insertion and was general to both terminal-bound and inserted carbamate moieties. 

Finally, the ~1 eV blueshift of the main edge peak at 405.4 eV was characteristic of 

ammonium formation. 

Solid-state NMR spectra indicated that CO2 adsorption affected the manner in which 

diamines were coordinated to the metal sites of the framework (Fig. 2d). On exposure of 

mmen-Mg2(dobpdc) to CO2, 
15

N chemical shifts consistent with ammonium and 

carbamate were observed at 31 and 72 p.p.m., respectively. Yet only a single 
15

N 

resonance was apparent for mmen-Mg2(dobpdc) in the absence of CO2. This indicates 

that the coordinated and uncoordinated ends of the mmen molecules were capable of 

interconverting on the timescale of the NMR experiment, although, as discussed above, 

they were distinguishable on the much faster timescale of infrared spectroscopy. Despite 

being labile, the amines were stable to evacuation under vacuum at high temperatures. 

This unexpected lability seems to allow substitution, but not elimination, reactions to 

occur rapidly under conditions relevant to carbon capture. Furthermore, the sudden 

adsorption of CO2 in this compound is thus associated with a transition from a dynamic 

surface state to a well-ordered extended surface structure. Accordingly, the reaction with 

CO2 can be considered to be thermodynamically non-spontaneous at low pressures 

because of the large decrease in entropy associated with this transition. Indeed, the molar 

entropy of gas-phase CO2 was found to be the primary determinant of the step pressure 

for phase-change adsorbents. As shown in Extended Data Fig. 4, step pressures for all 

five phase-change metal organic frameworks were linearly correlated with the gas-phase 

entropy of CO2 as a function of temperature. 

 

Understanding and manipulating the isotherm steps 

 
The mechanism of CO2 adsorption suggests that variation of the metal-amine bond 

strength should provide a method of manipulating the isotherm step position. The series 

of isostructural compounds mmen-M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn) were 

therefore synthesized, and the CO2 adsorption isotherms for each were measured at 25, 
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40, 50 and 75 °C (Fig. 5). With the exception of the Ni compound, which showed normal 

Langmuir-type adsorption behaviour (Fig. 5e), all of the materials showed sharp isotherm 

steps that shifted to higher pressure with increasing temperature. Analysis of the isotherm 

steps at 25 °C yielded Hill coefficients
23

 of 10.6, 5.6, 7.5, 11.5 and 6.0 for M = Mg, Mn, 

Fe, Co and Zn, respectively, reflecting the cooperative nature of the CO2 adsorption 

mechanism. Simulated isotherms generated from grand-canonical Monte Carlo 

simulations using a simple lattice model captured the experimentally observed isotherm 

step only when all mmen groups reacted with CO2 and aligned down the crystallographic 

c axis (see Extended Data Fig. 5). 

 

 

 
Figure 5: CO2 adsorption isotherms. Carbon dioxide adsorption isotherms at 25 °C (blue), 40 °C (blue-

violet), 50 °C (red-violet) and 75 °C (red) for mmen-Mg2(dobpdc) (a), mmen-Mn2(dobpdc) (b), mmen-

Fe2(dobpdc) (c), mmen-Co2(dobpdc) (d), mmen-Ni2(dobpdc) (e) and mmen-Zn2(dobpdc) (f). Despite the 

use of aliphatic amine groups as the CO2 reactive species, the metal-organic framework has an essential 

role in determining isotherm shape, owing to the importance of metal–ligand reorganization reactions in the 

mechanism. 

 

For a given temperature, the step position varies in the order Mg < Mn < Fe < Zn < Co, in 

good agreement with the published series for octahedral metal complex stabilities
24

. The 

lack of a step for the Ni compound, even at very high pressures (Extended Data Fig. 6) is 

attributable to the exceptional stability of the Ni–mmen bond, which prevents carbamate 
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insertion from taking place under the conditions surveyed. Geometry optimizations 

performed with periodic DFT calculations
25

 using various functionals were in good 

agreement with experimentally calculated values, and the trend in the calculated 

adsorption energies was directly correlated with the calculated metal-amine bond length 

(Extended Data Fig. 5). Thus, we predict that similar variations in tuning step position 

will be possible for the M2(dobpdc) series by altering the sterics of the amine bound to 

the metal, as well as the spacer between the two amine groups. Hence, depending on the 

concentration of CO2 present in a gas mixture, an adsorbent can be rationally designed to 

match the optimum process conditions depicted in Fig. 1. 

Although stepped adsorption isotherms
26

 have been observed previously in solid 

adsorbents, the origin of the step reported here is unique and distinct from all previously 

reported mechanisms. First, in contrast to most metal-organic frameworks showing such 

behaviour, the isotherm steps reported here are not attributable to pore-opening, gate-

opening or pore-closing processes
27, 28, 29

. For mmen-Mn2(dobpdc), only a ~1% decrease 

in the unit cell volume was observed on CO2 adsorption, and from Fig. 3a, b it is apparent 

that the entire pore surface was accessible to CO2 throughout the adsorption isotherm. A 

gate-opening mechanism attributable to the rearrangement of flexible hydrogen-bonding 

functional groups, which function by preventing CO2 diffusion into the pores at low 

partial pressures
30

, cannot explain the presence of distinct adsorption steps when the 

material is slowly cooled from high to low temperatures under isobaric adsorption 

conditions (see below). Second, in contrast to adsorbed-layer phase transitions on highly 

homogeneous surfaces, the adsorbed phase reported here was stable at temperatures well 

above the critical temperature of CO2 (ref. 31). Third, the phase transition was a metal 

cation-dependent, solid-to-solid transformation, in contrast to liquid-to-liquid or liquid-

to-solid phase change reactions typically reported for amine–CO2 systems
32, 33, 34

. Last, 

under conditions relevant to CO2 capture, desorption hysteresis was minimal, because the 

sharp steps occurred over a narrow pressure regime and the adsorption and desorption 

onset points were at about the same temperature and pressure (see Extended Data Fig. 7). 

Several features unique to the mmen-M2(dobpdc) series permitted phase transitions of 

this type to be observed. First, for solid ammonium carbamate chains to form, the metal-

amine coordinate bond must be capable of rearrangement. Thus, only amines tethered to 

the solid surface through coordinate bonds rather than covalent bonds can undergo the 

mechanism reported here. Second, a homogeneous surface with appropriately positioned 

adsorption sites, which is dictated by the location of open metal sites within the pores of 

the metal-organic framework, is necessary. Thus, a very limited number of metal-organic 

framework materials would be able to mimic the adsorption behaviour reported here, and 

it is likely that no amine-functionalized mesoporous silica sorbent could be engineered 

precisely enough to meet these requirements. Notably, in contrast to the pore expanded 

derivatives of M2(dobdc) reported here, amine functionalization of the parent Mg2(dobdc) 

compound was not reported to result in stepped adsorption isotherms
35

. 

Low-energy carbon capture applications 
 
Effective adsorbents for carbon capture must possess large working capacities for 

processes occurring at temperatures above 40 °C and at CO2 partial pressures near 

0.15 bar for coal flue gas or near 0.05 bar for a natural gas flue stream. On this basis, the 
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location of the isotherm steps for the Mg and Mn compounds makes them better suited 

for this application than the Fe, Co or Zn compounds, which are better suited for 

separations from gas mixtures with higher CO2 concentrations. To assess the utility of 

these phase-change adsorbents for capturing CO2 in a pure temperature swing adsorption 

process, adsorption isobars were collected under dynamic gas flow. Samples of mmen-

Mg2(dobpdc) and mmen-Mn2(dobpdc) were activated, saturated with 100% CO2 and then 

cooled isobarically to room temperature under three different CO2-containing gas 

mixtures: 100%, 15% and 5%. The resulting isobars, shown in Fig. 6a, b, reveal how 

small changes in temperature induced large changes in the quantity of CO2 adsorbed. As 

shown in Fig. 6c, d, phase-change adsorbents showed very large working capacities when 

used in temperature swing adsorption processes. For mmen-Mg2(dobpdc) to give a 

working capacity in excess of 13 wt%, the material must simply swing between 100 and 

150 °C. Similarly, the working capacity of mmen-Mn2(dobpdc) was in excess of 10 wt% 

when cycled between 70 and 120 °C. In particular, to simulate a pure temperature swing 

adsorption process accurately, 15% CO2 in N2 was flowed over the samples during the 

cooling phase, whereas 100% CO2 was used during heating phases. In contrast to 

experiments that use a purge gas to assist CO2 desorption, no inert gases were used to 

regenerate the samples. 

 

Figure 6: Isobaric CO2 adsorption and cycling experiments. a, b, Variable-temperature adsorption isobars 

of 100% (red), 15% (green) and 5% (blue) CO2 (in N2) for mmen-Mg2(dobpdc) (a) and mmen-

Mn2(dobpdc) (b), showing that under dynamic conditions the sharp transition region allows phase-change 

adsorbents to achieve very large working capacities under a wide range of adsorption conditions. For each 

material, the phase-transition temperature is dependent on the pressure of CO2 in the gas mixture, with 

higher phase-transition temperatures being observed at higher CO2 partial pressures. c, d, Cycling data for a 

pure temperature swing process involving adsorption from a simulated coal flue gas (15% CO2 in N2) at 

100 °C in mmen-Mg2(dobpdc) (c) and 70 °C in mmen-Mn2(dobpdc) (d), followed by desorption at 150 and 

120 °C, respectively, using a flow of 100% CO2. Respective working capacities of 13% and 10% are 

attained, with no loss in capacity over the course of ten cycles. 
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Estimations based on differential scanning calorimetry, thermogravimetric analysis and 

isosteric heat determinations indicate that mmen-Mg2(dobpdc) and mmen-Mn2(dobpdc) 

can achieve regeneration energies of about 2.2–2.3 MJ per kg of CO2 captured. This 

value is appreciably lower than the regeneration energies attainable using 

monoethanolamine (3.5 MJ kg
−1

) or even state-of-the-art amines, such as piperazine and 

KS-1 (2.6 MJ kg
−1

)
5, 36

. In contrast to aqueous amine absorbents that use heat exchangers 

to save sensible energy costs, the greater working capacities and smaller temperature 

swings of phase-change adsorbents allow more economical processes to be developed for 

a high-enthalpy adsorbent without the use of a heat exchanger. Because phase-change 

adsorbents saturate with CO2 at their transition point, it is not necessary for adsorption to 

occur at the lowest possible temperature. Whereas we previously showed that mmen-

Mg2(dobpdc) can operate effectively under standard flue gas adsorption conditions 

(40 °C)
13

, Fig. 6 shows that phase-change adsorbents operated more efficiently at higher 

adsorption temperatures than at lower temperatures. Because classical adsorbents must 

operate at the lowest possible adsorption temperature to maximize working capacity, only 

phase-change adsorbents can enable high-temperature adsorption processes to be 

considered. 

Adsorbing CO2 at elevated temperatures affords several additional process benefits 

besides directly decreasing sorbent regeneration energy. In particular, overcoming the 

competitive adsorption of water vapour, which is present in flue gas at high 

concentrations, presents a serious challenge for solid adsorbents. Amine-based solid 

adsorbents fare better than those using a purely physical adsorption mechanism, because 

they are known to retain their affinity for CO2 under humid conditions
37

, as also shown 

here for mmen-Mg2(dobpdc) (see Extended Data Fig. 7 for additional dynamic gas 

adsorption experiments). However, even for systems where the amine reactivity with CO2 

is unaffected by the presence of water, the physical adsorption of water on non-amine 

binding sites increases the overall regeneration energy of the material
38

. As shown in 

Extended Data Fig. 6b, mmen-Mg2(dobpdc) adsorbed nearly 90% less water at 100 °C 

than at 40 °C. Thus, the energy penalty associated with desorbing co-adsorbed water can 

be substantially decreased by performing CO2 adsorption at a high temperature, obviating 

the need for strict flue gas dehumidification. No changes to the CO2 adsorption isotherm 

were apparent after exposure to water at 40 or 100 °C, indicating the stability of the 

mmen-Mg2(dobpdc) in the presence of water vapour even at high temperatures. 

The high effective operating temperatures of mmen-Mg2(dobpdc) and mmen-

Mn2(dobpdc) offer opportunities for cost savings beyond just decreases in the 

regeneration energy. Because of the exothermic nature of all adsorption processes, the 

incorporation of labour and material intensive coolant pipes into an adsorbent bed (a 

component of the considerable infrastructure cost for carbon capture) is necessary to 

maintain isothermal adsorption conditions. The rate of heat transfer from a sorbent bed to 

the coolant pipes, which contain surface temperature water at ~25 °C, is primarily 

dependent on the heat transfer coefficient of the sorbent, the total contact area between 

the sorbent and the coolant pipes, and the temperature differential between the sorbent 

and the coolant
39

. The physical size of adsorption units is dictated, to a great extent, by 

the need to provide sufficient contact area between the coolant and sorbent for effective 

heat removal. For processes that are limited by heat transfer rather than mass transfer, 

which is likely for many CO2 capture processes using solid adsorbents, the use of high 
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temperatures will maximize the temperature differential between the coolant and the 

sorbent, substantially reducing the overall bed size by reducing the size of the necessary 

contact area. By increasing the coolant–sorbent temperature differential from about 15 °C 

to nearly 75 °C, adsorption bed size could potentially be reduced fivefold. In turn, smaller 

adsorbent beds would reduce the pressure drop across the adsorbent, reduce the size and 

cost of the required capital equipment, and allow as little as one-fifth as much adsorbent 

to be used. By decreasing these other system costs, new classes of adsorbents have the 

ability to reduce the cost of carbon capture substantially beyond simply decreasing the 

sorbent regeneration energy. 

A functional model for Rubisco 

The reactivity trends of the M2(dobpdc) series may help to clarify the evolutionary 

conservation of Mg
2+

 within the active site of most photosynthetic enzymes. Biological 

fixation of atmospheric CO2 is effected primarily by the ribulose-1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) enzyme. Striking structural similarities exist between 

mmen-Mg2(dobpdc) and the enzymatic pocket of Rubisco, which in its active form also 

contains an octahedral Mg
2+

 ion ligated by five oxygen donor ligands and a reactive 

aliphatic amine ligand that adsorbs gas-phase CO2 to form an O-bound carbamate ligand 

(Extended Data Fig. 1f)
40, 41

. Although other divalent metal ions can be incorporated into 

either structure, in each case the presence of Mg
2+

 greatly enhances the reactivity for CO2 

fixation at very low CO2 concentrations
42

. Although further study is necessary, the trends 

that we observed suggest that the inclusion of Mg
2+

 within the active site of Rubisco may 

be necessary to endow the lysine residue that forms the enzymatically competent 

carbamate-ligated metal with sufficient reactivity at low partial pressures of CO2. 

Methods 
 

General synthesis and characterization methods 

All reagents and solvents were obtained from commercial sources at reagent-grade purity 

or higher. The compound H4(dobpdc) was synthesized as reported previously
13

. No 

statistical methods were used to predetermine sample size. 

Laboratory powder X-ray diffraction patterns were collected on a Bruker AXS D8 

Advance diffractometer equipped with Cu Kα radiation (λ = 1.5418 Å), a Göbel mirror, a 

Lynxeye linear position-sensitive detector, and mounting the following optics: fixed 

divergence slit (0.6 mm), receiving slit (3 mm) and secondary-beam Soller slits (2.5°). 

The generator was set at 40 kV and 40 mA. Owing to the oxygen sensitivity of 

Fe2(dobpdc) and mmen-Fe2(dobpdc), X-ray diffraction patterns were collected in sealed 

glass capillaries placed on the powder stage. Thermogravimetric analysis was carried out 

at a ramp rate of 2 °C min
−1

 in a nitrogen flow with a TA Instruments Q5000. Elemental 

analyses for C, H and N were performed at the Microanalytical Laboratory of the 

University of California, Berkeley. 
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Synthesis of Mg2(dobpdc) 

To a 20 ml glass scintillation vial, H4dobpdc (27.4 mg, 0.10 mmol), Mg(NO3)2·6H2O 

(64.0 mg, 0.25 mmol) and 10 ml of mixed solvent (55:45 methanol/dimethylformamide 

(DMF)) were added. The vial was sealed with a polytetrafluoroethylene (PTFE)-lined cap 

and placed in a well plate 2 cm deep on a 393 K hot plate. After 12 h a white powder 

formed on the bottom and walls of the vial. The reaction mixture was then decanted and 

the remaining powder was soaked three times in DMF and then three times in methanol. 

The solid was then collected by filtration and fully desolvated by heating under dynamic 

vacuum (<10 μbar) at 523 K for 24 h to afford 23.3 mg (0.073 mmol), 73% of 

Mg2(dobpdc). Combustion elemental analysis calculated (Anal. Calcd) for C14H6O6Mg2: 

C, 52.74; H, 1.90. Found: C, 52.47; H, 1.64. 

 

Synthesis of Mn2(dobpdc) 

To a 20 ml glass scintillation vial, H4dobpdc (27.4 mg, 0.10 mmol), MnCl2·4H2O 

(49.5 mg, 0.25 mmol), and 10 ml of mixed solvent (1:1 ethanol/DMF) were added. The 

vial was sealed with a PTFE-lined cap and placed in a well plate 2 cm deep on a 393 K 

hot plate. After 12 h a yellow powder formed on the bottom and walls of the vial. The 

reaction mixture was then decanted and the remaining powder was soaked three times in 

DMF and then three times in methanol. The solid was then collected by filtration and 

fully desolvated by heating under dynamic vacuum (<10 μbar) at 523 K for 24 h to afford 

33.8 mg (0.0889 mmol), 89% of Mn2(dobpdc). Anal. Calcd for C14H6O6Mn2: C, 44.24; 

H, 1.59. Found: C, 44.32; H, 1.23. 

 

Synthesis of Fe2(dobpdc) 

Anhydrous FeCl2 (2.85 g, 22.4 mmol), H4dobpdc (1.85 g, 6.75 mmol), anhydrous DMF 

(400 ml) and anhydrous methanol (50 ml) were added to a 500 ml Shlenck flask under an 

argon atmosphere. The reaction mixture was heated to 393 K and stirred for 24 h to 

afford a dark yellow-green precipitate. The solvent was then removed by cannula transfer 

and replaced with fresh anhydrous DMF. The reaction mixture was soaked three times in 

DMF and then three times in methanol. The solid was then fully desolvated by heating 

under dynamic vacuum (<10 μbar) at 523 K for 24 h to afford 2.395 g (6.28 mmol), 93% 

of Fe2(dobpdc). Anal. Calcd for C14H6O6Fe2: C, 44.03; H, 1.58. Found: C, 43.72; H, 1.48. 

 

Synthesis of Co2(dobpdc) 

To a 20 ml glass scintillation vial, H4dobpdc (41.1 mg, 0.15 mmol), Co(NO3)2·6H2O 

(109 mg, 0.375 mmol) and 15 ml of mixed solvent (1:1:1 water/DMF/ethanol) were 

added. The vial was sealed with a PTFE-lined cap and placed in a well plate 2 cm deep 

on a 393 K hot plate. After 36 h a pink powder formed on the bottom of the vial. The 

reaction mixture was then decanted and the remaining powder was soaked three times in 

DMF and then three times in methanol. The solid was then collected by filtration and 

fully desolvated by heating under dynamic vacuum (<10 μbar) at 523 K for 24 h to afford 

54.1 mg (0.139 mmol), 93% of Co2(dobpdc). Anal. Calcd for C14H6O6Co2: C, 43.33; H, 

1.56. Found: C, 42.92; H, 1.38. 

 



Synthesis of Zn2(dobpdc) 

To a 20 ml glass scintillation vial, H4dobpdc (27.4 mg, 0.10 mmol), ZnBr2·2H2O 

(83.5 mg, 0.32 mmol) and 10 ml of mixed solvent (1:1 ethanol/DMF) were added. The 

vial was sealed with a PTFE-lined cap and placed in a well plate 2 cm deep on a 393 K 

hot plate. After 12 h a pale yellow powder formed on the bottom and walls of the vial. 

The reaction mixture was then decanted and the remaining powder was soaked three 

times in DMF and then three times in methanol. The solid was then collected by filtration 

and fully desolvated by heating under dynamic vacuum (<10 μbar) at 523 K for 24 h to 

afford 21.4 mg (0.0534 mmol), 53% of Zn2(dobpdc). Anal. Calcd for C14H6O6Zn2: C, 

41.94; H, 1.51. Found: C, 41.26; H, 1.57. 

 

Synthesis of Ni2(dobpdc) 

To a 20 ml glass scintillation vial, H4dobpdc (41.1 mg, 0.150 mmol), Ni(NO3)2·6H2O 

(109 mg, 0.375 mmol) and 15 ml of mixed solvent (1:1:1 water/DMF/ethanol) were 

added. The vial was sealed with a PTFE-lined cap and placed in a well plate 2 cm deep 

on a 393 K hot plate. After 36 h, a green powder formed on the bottom of the vial. The 

reaction mixture was then decanted and the remaining powder was soaked three times in 

in DMF and then three times in methanol. The solid was then collected by filtration and 

fully desolvated by heating under dynamic vacuum (<10 μbar) at 523 K for 24 h to afford 

39.3 mg (0.101 mmol), 68% of Ni2(dobpdc). Anal. Calcd for C14H6O6Ni2: C, 43.39; H, 

1.56. Found: C, 43.09; H, 1.24. 

 

General synthesis of mmen-M2(dobpdc) 

In a plastic glovebag with positive N2 pressure, 10 ml of 10% mmen solution in hexanes 

was added to ~100 mg of activated M2(dobpdc) in a glass Micromeritics adsorption tube. 

The tube was sealed with a rubber septum and left to sit undisturbed for 4 h in the 

glovebag. In the glovebag, the sample was collected by vacuum filtration and rinsed with 

five 10 ml portions of dry hexanes. The hexanes-solvated sample was desolvated under 

dynamic vacuum (<10 μbar) at 348 K (for Zn) or 373 K (for Mg, Mn, Fe, Co and Ni) for 

4 h. 

 

Elemental analysis of mmen-M2(dobpdc) series 

Mg: Anal. Calcd for C22H30N4O6Mg2: C, 53.37; H, 6.11; N, 11.32. Found: C, 52.39; H, 

5.52; N, 10.36. Mn: C22H30N4O6Mn2: C, 47.47; H, 5.43; N, 10.07. Found: C, 47.26; H, 

5.20; N, 10.24. Fe: Anal. Calcd for C22H30N4O6Fe2: C, 47.34; H, 5.42; N, 10.04. Found: 

C, 47.; H, 4.95; N, 9.71. Co: Anal. Calcd for C22H30N4O6Co2: C, 46.82; H, 5.36; N, 9.93. 

Found: C, 46.27; H, 4.94; N, 9.61. Zn: Anal. Calcd for C22H26N4O6Zn2: C, 45.78; H, 

5.24; N, 9.71. Found: C, 45.46; H, 4.75; N, 9.78. Ni: Anal. Calcd for C22H30N4O6Ni2: C, 

46.86; H, 5.36; N, 9.94. Found: C, 46.68; H, 5.33; N, 10.28. 

 

Low-pressure gas adsorption measurements 

For all low-pressure (0–1.1 bar) gas adsorption measurements, 60–130 mg of adsorbent 

was transferred to a pre-weighed glass sample tube under an atmosphere of nitrogen gas 

and capped with a Transeal. Samples were then transferred manually to a Micromeritics 

ASAP 2020 gas adsorption analyser and heated to the activation temperatures previously 

specified, under vacuum. The sample was considered activated when the outgas rate was 



less than 2 μbar min
−1

. The evacuated tube containing the activated sample was then 

transferred to a balance and weighed to determine the mass of the desolvated sample. The 

tube was then placed manually on the analysis port of the aforementioned instrument, 

where the outgas rate was once again confirmed to be less than 2 μbar min
−1

. Isothermal 

conditions were maintained at 77 K with liquid N2, at 25, 40, 50 and 75 °C with a Julabo 

F32 water circulator, and at 100 °C with a heated sand bath controlled by a 

programmable temperature controller. 

 

High-pressure gas adsorption measurements 

The high-pressure CO2 adsorption isotherm for mmen-Ni2(dobpdc) was measured on a 

HPVA-II-100 from Particulate Systems, a Micromeritics company. Here, 0.27 g of 

activated mmen-Ni2(dobpdc) was loaded into a tared 2 ml stainless steel sample holder 

inside a glovebox under a N2 atmosphere. Before the sample holder was connected to the 

variable compression ratio fittings of the high-pressure assembly inside the glovebox, the 

sample holder was weighed to determine the sample mass. 

Before mmen-Ni2(dobpdc) was measured, 25 °C CO2 background measurements were 

performed on a sample holder containing nonporous glass beads that occupied a similar 

volume as a typical sample. A small negative background was observed at higher 

pressures, which may have been due to errors in volume calibrations, temperature 

calibrations and/or the equation of state used to perform the nonideality corrections. 

Nevertheless, the background CO2 adsorption was consistent across several 

measurements and was well described by fitting to a polynomial equation. This 

polynomial was then used to perform a background subtraction on the raw high-pressure 

CO2 data for mmen-Ni2(dobpdc). 

 

In situ infrared spectroscopy 

A powdered sample of mmen-Mg2(dobpdc) (~15 mg) was pelletized, shaped in a self-

supported wafer and placed inside a commercial Fourier-transform infrared reactor cell 

(2000-A multimode; AABSPEC), which allowed infrared spectra to be recorded under 

flow conditions at a wide range of temperatures. Before CO2 was flowed across the 

sample, the sample was first activated at 150 °C for 15 min while flowing 30 ml min
−1

 of 

pure nitrogen (heating ramp rate of 1 °C min
−1

). Next, the gas flow was switched to 5% 

CO2 in N2 at a flow rate of 30 ml min
−1

, and the system was cooled from 150 °C to 30 °C 

at a rate of 1 °C min
−1

. Before cooling, the sample was conditioned for 15 min at 150 °C 

with the 5% CO2 in N2 gas mixture. After cooling to 30 °C, the sample was heated again 

to 150 °C at a rate of 5 °C min
−1

 under N2, to check the reversibility of the process. 

Spectra were collected every 5 °C with a resolution of 2 cm
−1

 (number of scans equal to 

32) on a Perkin-Elmer System 2000 infrared spectrophotometer equipped with a HgCdTe 

detector. For Extended Data Fig. 2c, curve-fitting analysis was performed with the 

Levenberg–Maquardt method by using the OPUS software (Bruker Optik); 100% Gauss 

functions were used. 

For Extended Data Fig. 2b, the attenuated total reflectance (ATR) accessory of a Perkin-

Elmer Spectrum 400 was enclosed within a plastic glovebag filled with positive gas 

pressure. Spectra of activated adsorbent were collected first under a N2 atmosphere. After 

32 scans at a resolution of 4 cm
−1

, the glovebag was allowed to fill with CO2 for 5 min 

and infrared spectra of the sample were collected again under an atmosphere of CO2. For 
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Extended Data Fig. 2e, a gas mixture of 20 mbar H2O, 150 mbar CO2 and 600 mbar N2 

was dosed onto an activated sample of mmen-Mg2(dobpdc) and was left to equilibrate for 

6 h before being placed on the ATR stage of a glovebag-encased Spectrum 400 

instrument. 

 

Solid-state NMR spectroscopy 

Solid-state NMR experiments were performed on a 7.05 T magnet with a Tecmag 

Discovery spectrometer, using a Doty 5 mm triple-resonance magic angle spinning probe. 

The frequency of 
15

N was 30.4 MHz. 
15

N chemical shifts were referenced to 
15

N-labelled 

glycine at 33 p.p.m. relative to liquid ammonia. The experiments were performed at 

ambient temperature. Magic angle spinning was used to collect high-resolution NMR 

spectra with a spinning rate ranging from 5 to 6 kHz. The 90° pulses for 
1
H, 

13
C and 

15
N 

were 3.8, 4.7 and 7 μs, respectively. Ramped cross-polarization with variable contact 

times from 1 to 10 ms was used to generate 
15

N signals. Recycle delays were set to be 

fivefold longer than the T1 of protons. Two-pulse phase-modulated 
1
H decoupling of 

100 kHz was applied during 
15

N signal acquisition. 

 

Isobaric CO2 adsorption methods 

Isobaric gravimetric adsorption experiments were collected using a TA Instruments 

Q5000 analyser using premixed gas cylinders (Praxair). A flow rate of 25 ml min
−1

 was 

employed for all gases. Before each experiment, the samples (~5 mg) were desolvated by 

heating under N2 for 1 h. To simulate temperature swing adsorption processes accurately, 

samples were activated and reactivated with only 100% CO2. Sample masses were 

normalized to be 0% under a 100% CO2 atmosphere ~10 s before the onset of each 

cooling cycle. Thus, the base mass corresponds to the weight of the metal-organic 

framework and any CO2 adsorbed under the activation conditions: 150 °C for mmen-

Mg2(dobpdc) and 120 °C for mmen-Mn2(dobpdc). Masses were uncorrected for 

buoyancy effects. 

For Fig. 6a, b, ramp rates of 1 °C min
−1

 were used; samples were reactivated at the 

appropriate regeneration temperature under 100% CO2 for 15 min between gases. 

Switching from 100% CO2 to a lower concentration of CO2 occurred at the onset of 

cooling, ensuring that the lower-concentration gas would not simulate a purge gas for 

regeneration. 

For Fig. 6c, d, ramp rates of 10 °C min
−1

 were used. Samples were heated between the 

adsorption and regeneration conditions under 100% CO2; the regeneration time was 

5 min. Samples were cooled under low-concentration CO2; the adsorption time was 

5 min. Total cycle time was ~20 min. 

 

High-resolution powder X-ray diffraction 

Samples of fully activated mmen-Mn2(dobpdc) microcrystalline powders (~10 mg) were 

loaded into 1.0 mm boron-rich glass capillaries inside a glovebox under an N2 

atmosphere. The capillaries were attached to a gas cell, which was connected to the 

analysis port of a Micromeritics ASAP-2020 gas adsorption instrument. The capillaries 

were fully evacuated at room temperature for 30 min, dosed with 5 mbar of He [mmen-

Mn2(dobpdc)], 5 mbar of CO2 (100K-CO2-mmen-Mn2(dobpdc)) or 100 mbar of CO2 

(295K-CO2-mmen-Mn2(dobpdc)) and then equilibrated at room temperature for 15 min, 
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8 h or 4 h, respectively. After equilibration, the capillaries were flame-sealed and placed 

inside a Kapton tube that was sealed on both ends with epoxy. 

High-resolution synchrotron X-ray powder diffraction data were subsequently collected 

at beamline 11-BM at the Advanced Photon Source (APS), Argonne National 

Laboratory, with an average wavelength of ~0.4137 Å. Diffraction patterns were 

collected at 100 K, 100 K and 295 K for mmen-Mn2(dobpdc), 100K-CO2-mmen-

Mn2(dobpdc) and 295K-CO2-mmen-Mn2(dobpdc), respectively. Discrete detectors 

covering an angular range from −6 to 16° 2θ were scanned over a 34° 2θ range, with data 

points collected every 0.001° 2θ and a scan speed of 0.01° s
−1

. Owing to the large number 

of collected data points, all diffraction patterns were rebinned to a step size of 0.005° 2θ 

before structure solution and Rietveld refinement. Additionally, all diffraction patterns 

showed a high-intensity peak at ~1.25° that was ~500% more intense than any other 

diffraction peak. Because this high d-spacing peak does not contribute important 

structural information and was heavily biasing all structure solution attempts, all data 

analysis was performed with a minimum 2θ of 2°. 

A standard peak search, followed by indexing through the Single Value Decomposition 

approach
43

, as implemented in TOPAS-Academic
44

, allowed the determination of 

approximate unit-cell parameters. Tentatively, the space groups for both mmen-

Mn2(dobpdc) and CO2-mmen-Mn2(dobpdc) were assigned as P3221 because the 

framework was expected to be isostructural to Zn2(dobpdc), which was previously 

characterized by single crystal X-ray diffraction
13

. Precise unit-cell dimensions were 

determined by structureless Le Bail refinements (Supplementary Table 1). Here, the 

background was modelled by a polynomial function of the Chebyshev type, and 

anisotropic peak broadening was described using parameters appropriate for a hexagonal 

crystal system
45

. Successful structure solution and Rietveld refinement confirmed that 

P3221 was indeed the correct space group for all compounds. 

 

Breakthrough adsorption measurements 

Into a glass U-tube with an interior diameter of 4 mm, 203 mg of activated mmen-

Mg2(dobpdc) powder was added. The column was placed inside a furnace with a 

programmable temperature controller. Gas flow rates of 10 ml min
−1

 were used. Column 

effluent was analysed using a Hy-Energy/Setaram RGAPro-2500 with continuous 

sampling capability. Argon (99.999%; Praxair) was used as a purge gas for sample 

activation at 100 °C for 30 min. For measurements at 25 °C, ~1.5% H2O was added to the 

gas stream by bubbling a premixed gas cylinder of 15% CO2, 4% O2 and balance N2 

(Praxair) through a glass bubbler containing distilled water. 

 

NEXAFS measurements 

In situ NEXAFS measurements were performed with a gas cell instrument previously 

described in detail elsewhere
22, 46

. Transmission–absorption samples were prepared by 

suspending and sonicating ~10 mg of mmen-Mg2(dobpdc) powder in ~1 ml of hexanes, 

and drop casting onto SiC membranes (300 nm thickness). The metal-organic framework-

coated membranes were then loaded into a glass evacuation chamber that was slowly 

evacuated to 50 mTorr. The chamber was then heated to 100 °C for 4 h to remove all 

guest species from the pores. After heating, the chamber was cooled to ambient 

temperature and refilled with dry nitrogen gas. Samples were transferred from the 
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evacuation chamber to the gas cell in a dry nitrogen glovebox to prevent exposure to any 

unwanted species. N K-edge spectra of mmen-Mg2(dobpdc) were collected at beamline 

6.3.2 (10
11

 photons s
−1

) at the Advanced Light Source at Lawrence Berkeley National 

Laboratory, under vacuum and increasing pressures of CO2 gas. The experimental 

procedure was the same as in earlier studies. The full pressure series of N K-edge spectra 

are shown in Extended Data Fig. 3. 

 

AIMD simulations 

The equilibrium structure of mmen-Mg2(dobpdc) is obtained by performing constant-

pressure (NPT) ab initio molecular dynamics simulations at room temperature. The 

system is equilibrated using a Parrinello–Rahman barostat and a Langevin thermostat 

with a time step of 0.5 fs (refs 47, 48). A plane-wave basis set that is truncated at 400 eV 

is used to represent the electronic wavefunctions within the projector-augmented wave 

(PAW) approximation
49, 50

, as realized in the Vienna Ab initio Simulation Package 

(VASP)
51, 52

. vdW-DF2 functional is used to approximate the long-range dispersion 

forces
53

, which is potentially important to capture the weak intermolecular interactions 

between the metal-organic framework and the absorbed molecules. Here, the vdW-DF2 

correlation is computed with the use of a 1 × 1 × 3 k-point grid to ensure that the electron 

density is converged for a 22 Å × 21 Å × 7 Å supercell. On equilibration, eight time-

separated (that is, uncorrelated) snapshots are taken from the molecular dynamics 

trajectory to establish an average spectrum from NEXAFS simulations. 

 

XAS simulations 

DFT calculations used for X-ray absorption spectroscopy (XAS) simulations employ the 

PBE GGA functional
25

. Plane-wave pseudopotential calculations using ultrasoft 

pseudopotentials
54

 and a kinetic energy cutoff for electronic wavefunctions (density) of 

25 (200) Rydberg (Ry) were performed using the PWSCF code within the Quantum-

ESPRESSO package
55

. The core-excited Kohn–Sham eigenspectrum was generated using 

the eXcited electron and Core Hole (XCH) approach. On the basis of a numerically 

converged self-consistent charge density, we generated the unoccupied states for our 

XAS calculations non-self-consistently, sufficiently sampling the first Brillouin zone with 

a 2 × 2 × 2 uniform k-point grid, employing an efficient implementation of the Shirley 

interpolation scheme
56

 generalized to handle ultrasoft pseudopotentials
57

. Matrix 

elements were evaluated within the PAW frozen-core approximation
58

. Core-excited 

ultrasoft pseudopotentials and corresponding atomic orbitals were generated with the 

Vanderbilt code
54

. Each computed transition was convoluted with a 0.2 eV Gaussian 

function to produce continuous spectra. 

 

Periodic DFT calculations 

Periodic DFT calculations in this work were performed with the VASP 5.3.3 package
51, 

59
. The energetics of CO2 capture by the alkylamine moieties chemisorbed in the channels 

of M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn) were computed with the PBE and M06L 

functionals
25, 60

. The electron–ion interactions in these calculations were described with 

the PAW method
49

 with an energy cutoff of 550 eV. Atomic positions and lattice 

parameters were optimized until the forces on all atoms were smaller than 0.02 eV A
−1

 at 

the Γ-point. On-site Hubbard U corrections were employed for metal d electrons for 
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M2(dobpdc) (M = Mn, Fe, Co, Ni)
61

. The U values are determined to reproduce oxidation 

energies in the respective metal oxides
62

. 

 

Modelled adsorption isotherms 

To study the differences in adsorption behaviour between the pair and chain models, we 

used a lattice model to predict the adsorption isotherms. The lattice models are illustrated 

in Extended Data Fig. 5. The energy at each lattice point is determined by the state of the 

lattice point and the state of the surrounding lattice points. For both the pair and the chain 

model the interaction energies, yellow and red, respectively, are taken directly from the 

DFT calculations. The end of a chain (shown in blue) is 80% of the chain model, whereas 

a single adsorbed CO2 (shown in green) is 10% of the energy of a chain. Similarly, 

interactions between two rows (cross-channel) are set to the pair energy (or 75% of a 

chain). An amine without CO2 was not given an energy contribution. The effect of having 

different metals was taken into account by varying the energy of the chain in accordance 

with the DFT energies. To compute the isotherms we performed standard grand-

canonical Monte Carlo simulations. To compare the lattice model chemical potential 

directly with the chemical potential of CO2 we used a shift of the pressure, which was 

fitted to the steps of the isotherms at the highest and lowest temperatures. 
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Extended data figures and tables 
 

 

 

 
 
 

 

 

 

Extended Data Figure 1  Powder X-ray diffraction. a-c, Rietveld refinement of mmen-Mn2(dobpdc) at 

100 K (a), CO2-mmen-Mn2(dobpdc) at 100 K (b), and CO2-mmen-Mn2(dobpdc) at 295 K (c). The blue and 

red lines represent the experimental and calculated diffraction patterns, respectively; the gray line 

represents the difference between experimental and calculated patterns; the green tick marks represent the 

calculated Bragg peak positions. d, Plot of the diffraction data for CO2-mmen-Mn2(dobpdc) at 100 K 

(blue), where the calculated pattern (red) is based on the mmen-Mn2(dobpdc) structural model. The gray 

line represents the difference between the experimental and calculated patterns. Note that the significant 

intensity differences indicate a structural transition upon the adsorption of CO2. e, Fourier difference map 

for mmen-Mn2(dobpdc) at 100 K. Purple, brown, and red spheres represent Mn, C, and O atoms, 

respectively; yellow blobs represent excess electron density that is not accounted for in the Mn2(dobpdc) 

structural model and that is due to the mmen bound to each Mn
2+

 site. f, The coordination environment 

around Mg
2+

 in the active form of ribulose-1,5-bisphosphate carboxylase/ oxygenase (RuBisCO) enzyme is 

structurally similar to the coordination environment around the metal cations of mmen-Mg2(dobpdc) after 

CO2 adsorption. 
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Extended Data Figure 2  Infrared spectroscopy. a, Upon cooling mmen-Mg2(dobpdc), from 150 °C 

(red) to 30 °C (blue) under 5% CO2, changes to the aliphatic C-H vibrations of mmen are apparent upon 

CO2 adsorption. Furthermore, ammonium formation from neutral secondary amines is indicated by the 

appearance of a new, broad feature centered around 3000 cm
–1

. b, Room temperature, in situ infrared 

spectroscopy measurements of mmen-M2(dobpdc) (M = Mg, Mn, Fe, Co, Zn, and Ni) under N2 (blue) and 

CO2 (green) atmospheres. Gray lines mark diagnostic carbamate bands at 1690 cm
-1

 and 1334 cm
-1

. c, 

Cooling under flowing 5% CO2 in N2 from 150 °C to 30 °C, the normalized mass increase of mmen-

Mg2(dobpdc) measured via thermogravimetric analysis (black line) can be compared to the normalized 

integrated area of the infrared active bands at 1330 cm
-1

 and 660 cm
-1

. The bands at 1330 and 660 cm
-1

 can 

be assigned to ν(C-N) and [β(OCO) + β(NCO)] modes that are characteristic of the highly ordered 

ammonium carbamate chains. d, In contrast to carbamate that is coordinated to a metal site through a 

nitrogen atom (top), changes in electron resonance configurations give rise to a feature at 1334 cm
–1

 

characteristic of CO2 insertion into the metal–nitrogen bond (bottom). 

  



 
Extended Data Figure 3  X-ray adsorption spectroscopy. Experimental N K-edge NEXAFS spectra of 

mmen-Mg2(dobpdc) in vacuum and under increasing pressures of CO2 gas.  The broad feature between 411 

and 419 eV, a signature of N-C bond formation, appears before the pre-edge peak at 402.3 eV, which is 

characteristic of CO2 insertion. 

  



Extended Data Figure 4  Thermodynamics of CO2 adsorption. a, Isosteric heat of CO2 adsorption 

plots for the mmen-M2(dopbdc) series. b, The entropy of gaseous CO2 versus pressure at 298 K is plotted. 

c, A linear correlation was found to exist for each mmen-M2(dobpdc) material between the step pressure at 

any temperature and the gas phase entropy of CO2, for mmen-Mg2(dobpdc) (green, R
2
 = 0.99946), mmen-

Mn2(dobpdc) (blue, R
2
 = 0.99918), mmen-Fe2(dobpdc) (black, R

2
 = 0.99934), mmen- mmen-Co2(dobpdc) 

(purple, R
2
 = 0.99244), and mmen-Zn2(dobpdc) (yellow, R

2
 = 0.99932). 

 



Extended Data Figure 5  Theoretical calculations. a, Representation of the mapping of the hexagonal 

channel to a 2D lattice where each site consists of an amine that can interact with six neighboring sites. 

Each amine can have one or zero CO2 molecules adsorbed. A single site with a CO2 adsorbed is shown in 

green. Pairs are allowed to form in both the crystallographic c-direction and in the ab-plane (yellow); to 

model the chain mechanism, an amine in the middle of the chain is shown in red while the amine at the end 

of the chain is in blue. b, Calculated CO2 adsorption isotherms indicate that only a chain model of 

interactions rather than pair wise adsorption interactions can give rise to the experimentally stepped 

isotherm shape. c, Based upon calculated adsorption enthalpies, the relative position of adsorption 

isotherms can be predicted based upon the chain model. d-e, DFT calculations reflect the experimentally 

observed trend that CO2 adsorption enthalpy (d) is related to the strength of the nitrogen-amine bond, as 

reflected by the calculated metal-amine bond length (e). 

 

  



 

 

Extended Data Figure 6  Volumetric gas adsorption. a, High-pressure excess CO2 adsorption isotherm 

at 25 °C for mmen-Ni2(dobpdc) indicates that Langmuir-type adsorption behavior is maintained even at 

high pressures. b, Isothermal adsorption measurements of H2O onto a sample of mmen-Mg2(dobpdc) at 40, 

75, and 100 °C. c, Four isothermal adsorption measurements of CO2 at 75 °C onto a sample of mmen-

Mg2(dobpdc) before H2O exposure and after H2O isotherms at 40 °C, 75 °C, and 100 °C. No changes in the 

CO2 adsorption isotherms were apparent from exposure of the sample to H2O. 

  



 
Extended Data Figure 7  Dynamic gas adsorption and regeneration energy. a, Isobaric, variable 

temperature (ramp rate of 1 °C/min) gravimetric adsorption experiments for mmen-Mg2(dobpdc) under 

100% CO2. Cooling from 150 to 30 °C is shown as the blue line. Heating from 30 to 150 °C is shown as the 

red line. Desorption hysteresis was minimal because the phase transition temperature and pressure is 

unchanged between adsorption and desorption. b, Regeneration energies calculations for mmen-

Mg2(dobpdc) (green) and mmen-Mn2(dobpdc) (blue) indicate that effecting adsorption at high temperatures 

can be significantly more efficient than adsorption at 40 °C. c, Transient breakthrough of 15% CO2 (green), 

4% O2 (red), 1.5% H2O (black) and balance N2 (blue) through an adsorbent bed packed with mmen-

Mg2(dobdc) at 25 °C. The adsorbent bed was under Ar (purple) prior to adsorption; a breakthrough CO2 

capacity of 2.7 mmol/g was calculated. 


