PREVISIONE E MITIGAZIONE DEI FENOMENI DI DISSESTO IDROGEOLOGICO IN ITALIA

Il contributo delle Sistemazioni idraulico-forestali

a cura di
V. Bagarello, V. Ferro
OSSERVAZIONI SPERIMENTALI IN AREE ACCLIVI BOSCATE COLLINARI E MONTANE DEL TORINESE: IL RIO SERRALUNGA (COLLINA DI SUPERGA) E LA BORGATA GROS (VALLE DI SUSA)

Experimental monitoring in Torinese steep woody hilly and mountain areas: the Rio Serralunga (Superga Hill) and the Borgata Gros (Susa Valley) sites

S. Ferraris*, D. Genovese**, D. Canone*, M. Previati***, D. Pognant*

Sommario

Si presentano due casi esemplificativi di piccoli bacini a forte pendenza con fitta copertura forestale: il primo facente parte del sistema di drenaggio collinare di Torino, il secondo nelle montagne della media Valle di Susa. Infatti in entrambi i casi le instabilità, rispettivamente d’alveo e di versante, sono notevoli, nonostante la copertura forestale ne nasconda la vista dalle vie di comunicazione e dagli abitati.

Il bacino del Rio Serralunga presenta un’estensione di 1,45 km² e presenta un corso d’acqua fortemente inciso su marne compatte. Ai fini della ricerca in oggetto è stato posizionato un pluviografo sulla cresta spartiacque in testata di bacino a quota 610 m, mentre per la misura della portata è stato individuato un sito idoneo alla quota di 360 m, con sezione d’alveo stabile. La stazione è stata realizzata con la posa di fogli di laminato d’acciaio zinato, per il rivestimento del fondo, al fine di avere una sezione d’alveo con geometria nota. Difficoltà tecniche riconducibili agli alti valori di portata al colmo e di trasporto solido non hanno permesso di ottenere un monitoraggio duraturo e i dati di portata utili sono stati raccolti nel periodo gennaio-settembre 2008 e nell’aprile 2009, quando il Rio Serralunga è stato ancora monitorato per un periodo breve ma molto interessante per i valori di portata.

Il secondo bacino in Borgata Gros (Bussoleto, Torino) presenta invece prevalentemente instabilità di versante. L’innesto dell’instabilità è avvenuto in occasione degli eventi dell’autunno 2000. L’area interessata è di circa 0,1 km². Allo scopo di comprendere e modellare l’instabilità sono stati determinati alcuni parametri fisici del suolo (densità, porosità e distribuzione granulometrica), effettuate quindi prove di infiltrazione e realizzate misure di contenuto idrico prima e dopo eventi di pioggia prolungati che si sono verificati tra la primavera e l’autunno 2009.

* Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio (DIST) - Università degli Studi di Torino.
** Ente di gestione delle Aree Protette del Po e della Collina Torinese Cascina Le Vallere, Moncalieri (TO).
*** EnviCons s.r.l., via Lessolo 3, Torino, Italy.

© EdiBios
Idronomia montana 30 207
Summary

Two examples are presented to show the cases of small steep watersheds with dense forest vegetation: the first belongs to the hill drainage system of Torino, the second in the Susa Valley mountains. The objective is to evaluate the behaviour during heavy rainfall events in order to gather data useful for the safety of downstream areas. In fact, in both cases the instabilities are important, respectively in the stream and in the hillslope, even if the canopies hide them from the roads and villages.

The Serralunga watershed has a 1.45 km² area and it is deeply channelled in the compact clay marl. A rain gage has been placed on the top at 610 m asl. The discharge measurements are taken in a stream section at 360 m asl in a stable site. Steel sheets have been placed in order to obtain a regular geometry section. Problems arose due to the high values of liquid and solid discharges. So the data were only taken between January and September 2008 (and in April 2009 during a short but high discharges duration time interval).

The second watershed is located in Borgata Gros (Bussoleno, Torino) and it is characterized by slope instabilities. The landslide originated during the rainfall occurred in Northern Italy in the autumn 2000. The area is about 0.1 km². Field infiltration tests with cylinder infiltrometers were performed on 15 plots. Soil samples from each plot were collected for the determination of the physical properties (bulk density, porosity and particle size). Soil water content data were collected before and after some rainfall events between spring and autumn 2009.

1. Introduzione

La maggior parte dei comuni italiani, a causa della natura montuoso-collinare del nostro paese, possiede all’interno dei propri confini una o più zone caratterizzate da significativi rischi idrologici. Tuttavia, le dinamiche complesse tipiche di ciascun territorio rendono univoca e singolare la risposta caratteristica di ciascun bacino idrografico agli eventi meteorici, specie quelli estremi (Lenzi, 1999), generando criticità previsionali tanto a livello di formazione dei deflussi quanto per la valutazione dell’ennesco di fenomeni franosi.

La stessa copertura vegetale e forestale, nota per il suo effetto mitigante, stabilizzante ed antierosivo, può talvolta tradursi, soprattutto negli impulvi lasciati da decenni ad evoluzione naturale, in un aggravio del rischio, sia per l’interazione con i deflussi (deviazioni, ostruzioni, intasamenti etc.) sia per il mero effetto coprente di eventuali indicatori macroscopici.

In tale contesto risulta quindi d’importanza strategica recuperare quella conoscenza del territorio diventata, purtroppo, sempre meno capillare. D’altra parte oggi sono disponibili strumenti per la valutazione modellistica dei processi di trasferimento dell’acqua nel suolo, spesso alla base di ogni singolo caso d’instabilità (e.g.: Canone et al., 2008; Scalenghe e Ferraris, 2009; Ferraris et al., 2012; Whalley et al., 2012; Baudena et al., 2012). Inoltre le tecniche sperimentali consentono oggi di ottenere misure puntuali di parametri e variabili essenziali per lo studio del suolo (Previati et al., 2010) e di altri mezzi porosi che sono fondamentali per la risposta del bacino e delle sistemazioni, quali torbe (Camporese et al., 2006), lettiere vegetali (Canone et al., 2009), neve (Previati et al., 2011), legno (Previati et al., 2012).
2. Materiali e metodi

2.1 I siti di indagine

Rio Serralunga. Bacino idrografico collocato all'interno del complesso collinare di Torino (quota massima 715 m - Colle della Maddalena), il cui sviluppo lungo la linea principale di cresta da Moncalieri a Chivasso è di circa 30 km con direzione SW – NE e con andamento pressoché parallelo al corso del fiume Po che scorre ai piedi del suo versante settentrionale (Fig.1). Sulla parte sommitale della cresta di dislivello del bacino si erge la Basilica di Superga, capolavoro architettonico del barocco settecentesco, per la cui realizzazione fu necessario decapitare il colle della sua parte apicale con uno scavo realizzato nel 1716 che causò l'abbassamento della cima di circa 40 metri. In antitesi con quanto sopracitato, però, a partire dagli anni '90 vennero istituiti, dapprima, il Parco Naturale Regionale della Collina di Superga e, successivamente, la stessa area, venne contraddistinta come Sito d’ Importanza Comunitaria per la posizione biogeografica di cerniera tra ambienti continentali e submediterranei, la cui complessa morfologia e le differenti esposizioni originano microclimi tali da consentire una copertura vegetazionale molto eterogenea e, di conseguenza, una fauna altrettanto ricca (Sindaco et al., 2009).

In questo contesto il bacino idrografico del rio Serralunga, oggi per lo più inaccessibile e di difficile fruizione per qualsivoglia attività di utilizzo del bosco, risulta a cavallo dei comuni di Torino, Pino Torinese e di Baldissero Torinese ed è quasi completamente inserito all'interno dei confini dell'area Parco, fatta eccezione per la parte terminale prossima alla confluenza con il Rio Cartman, ubicato, però, oltre la sezione di chiusura presa in esame. Il bacino così individuato, delimitato dalla cresta spartiacque collinare e le cui principali sommità sono il Colle di Superga (670 m), il Bric del Duca (669 m) e il Monte Aman (600 m).

Fig. 1 - Ubicazione del bacino del Rio Serralunga rispetto al centro abitato di Torino (A) e relativo inquadramento di dettaglio (B). I segni rotondi rappresentano le stazioni meteorologiche considerate, mentre con il quadrato è rappresentata la stazione di misura della portata, con in cima al bacino il pluviografo installato per la presente ricerca.
m), ha una superficie di 1,45 km² e un’altezza media di 525 m, mentre l’asta principale ha una lunghezza di 1,66 km.

Borgata Gros. Il versante oggetto del dissesto è ubicato nel territorio del comune di Bussoleno (Bassa Valle di Susa), sul lato orografico destro del fiume Dora Riparia, inscritto all’interno del bacino imbrifero del rio Bonomo (circa 22 ha), compreso tra quota 710 m s.l.m. (in corrispondenza di borgata Ballai), e quota 1250 m s.l.m. poco a valle della borgata Pian Cervetto. L’idrografia del versante è impostata su corsi d’acqua quasi paralleli con orientamento sud-nord, dei quali il Rio Pissaglio e il Rio Bonomo sono i principali esponenti. Quest’ultimo presenta una lunghezza dell’asta torrentizia (prima di confluire nel Rio delle Boine e dopo ancora nel rio Pissaglio) di circa 1,5 km con morfologia, per lo più, incassata nella montagna.

Per quanto concerne la vegetazione, la parte superiore del corpo di frana presenta una ricolonizzazione in atto da parte di specie arboree pioniere quali Ontano e Larice, mentre nelle parti più basse le piante non riescono ancora ad affermarsi a causa di fenomeni erosivi e franosi tutt’ora in corso. Occorre tuttavia precisare come la ri-vegetazione della parte alta del corpo di frana possa essere attribuita (almeno parzialmente) agli interventi di ingegneria naturalistica eseguiti nel 2003.

L’area oggetto di indagine coincide con i margini del dissesto ed include sia la frana vera e propria, sia i fenomeni franoso-erosivi ad essa associati, coprendo, quindi, una superficie complessiva di circa 10 ha ed un perimetro di circa 2 km.

![Fig. 2 - Ubicazione dell’area del dissesto (bacino del Rio Bonomo) rispetto al centro abitato di Torino e relativo inquadramento di dettaglio su CTR. In grigio l’area di frana, mentre i segni rotondi indicano le 15 stazioni di monitoraggio allestite lungo il corpo di frana (visibile nell’immagine di destra)](image-url)
2.2 Strumentazione, monitoraggi e presupposti metodologici

Nell'intento di fornire una conoscenza sempre più capillare del territorio entrambi i bacini sopra considerati sono stati attrezzati con strumenti per il monitoraggio idrologico - idraulico al fine di ottenere misure puntuali di parametri e/o variabili identificabili come significative per lo studio di fattori di rischio.

Rio Serralunga. Sono state effettuate indagini di tipo morfologico conoscitive finalizzate all'analisi dei principali parametri descrittivi del bacino e sono stati realizzati monitoraggi di afflusso e di deflusso attraverso l'installazione di:

- un pluviografo elettronico Hobo Data Logging Rain Gauge (a bascula da 0.2 mm, alimentato a batteria e dotato di data logger per la memorizzazione dei dati), all'interno dell'area verde pertinenziale della Casa Cantoniera, sede operativa dell'Ente Parco, collocata lungo la Strada Panoramica dei Colli nel comune di Pino Torinese (TO), alla quota di 610 m. La collocazione dello strumento è stata fatta sulla parte sommitale della linea di dislivello del bacino del Rio Serralunga (Fig. 1);

- una struttura in fogli di laminato di 1,5 mm, a rivestimento dell'alveo del corso d'acqua, fissata su una costolatura di barre metalliche di tipo "scatolato" (progettata per l'irrobustimento dell'intero apparato) e modellata in modo da prevedere una canaletta centrale, sempre in laminato 1,5 mm, capace di conglobare il flusso delle piccole portate (Fig. 3). A monte della struttura metallica, all'interno di un pozzetto di calma ricavato nella marna, è stato collocato un trasduttore di pressione differenziale a batteria collegato ad un datalogger con l'obiettivo di misurare "in continuo" i livelli della colonna d'acqua soprastante e restituire il dato di portata mediante interpolazione con la relativa scala delle portate (appositamente realizzata per la sezione di chiusura).

Borgata Gros. Il lavoro si è prevalentemente concentrato sulla caratterizzazione fisica del corpo di frana e sul reperimento e dati idrologici in campo attraverso, rispettivamente:

- il prelievo di campioni di suolo, al fine di ottenere i valori di porosità (attraverso il rapporto tra densità reale ed apparente) e la distribuzione granulometrica (utilizzando la "metodologia dell' Idrometro di Bouyoucos"- ASTM 1524H);

- l'esecuzione di test d’infiltrazione con il metodo del cilindro unico (Lassabatè et al., 2006; Bagarello e Iovino, 2010);

- una campagna di rilevamento del contenuto idrico tramite tecnologia TDR (Time Domain Reflectometry), svoltesi con cadenza bisettimanale da fine Maggio 2008 a fine Ottobre 2008 e riguardante 15 stazioni di misura allineate lungo il corpo di frana da quota 938 m slm ognuna comprensiva, un set di 3 sponde rispettivamente collocate tra la superficie e 150, 300 e 600 mm di profondità. L'uso della strumentazione TDR consente la misura dell’umidità di un mezzo poroso (suolo) attraverso la valutazione del tempo che impiega un impulso elettromagnetico a percorrere interamente un conduttore (sonda) posto nel mezzo stesso. L'intervallo di tempo così misurato viene utilizzato in primis per la determinazione della permeabilità apparente e, quindi, del contenuto idrico.
Fig. 3 - Rilievo trasversale dell'area di intervento e relativo dettaglio fotografico delle operazioni di costruzione della struttura metallica (visibile nella sua versione ultimata nell'immagine di destra).

3. Risultati

Rio Serralunga. In tabella 1 sono schematizzati i principali parametri descrittivi del bacino oggetto di studio.

Per tutto l'anno oggetto di analisi il Rio Serralunga ha mantenuto una portata minima nell'ordine di 11 l/s, dato di scarso interesse idraulico, ma che permette considerazioni di interesse biologico su specie floricole e faunistiche legate alla disponibilità idrica. L'analisi dei singoli eventi meteorecici hanno evidenziato come il bacino oggetto di analisi sia caratterizzato da tempi di ritardo (tra massima intensità istantanea della precipitazione e momento di portata massima) compresi tra i 25 e 78 minuti.

<table>
<thead>
<tr>
<th>PARAMETRO</th>
<th>Valore</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendenza media</td>
<td>0,47 [-]</td>
<td>Metodo di Alvarad-Horton</td>
</tr>
<tr>
<td>Fattore di forma</td>
<td>1,32 [-]</td>
<td>(F = 0,89 \frac{L}{\sqrt{A}})</td>
</tr>
<tr>
<td>Densità di drenaggio</td>
<td>2,93 [km(^1)]</td>
<td>(D = \sum \frac{l}{A})</td>
</tr>
<tr>
<td>Tempo di corruzione</td>
<td>43' 42''</td>
<td>Formula di Giandotti</td>
</tr>
<tr>
<td></td>
<td>40' 45''</td>
<td>Formula di Tournon</td>
</tr>
<tr>
<td></td>
<td>43' 16''</td>
<td>Formula di Aronica-Paltrinieri</td>
</tr>
</tbody>
</table>

Tab. 1 - Alcuni parametri fisici e morfologici caratteristici del Bacino del rio Serralunga
Interessante sottolineare anche come il picco di portata, massima registrata, sia stato di 1550 l/s alle 15:08 del 29/5/2008 (Fig. 4A) con 18,9 mm di pioggia concentrati nell’ora precedente (24,3 mm in 5 ore). In un evento meteorico con

Fig. 4 - Picchi di portata calcolati a partire dai dati di livello rilevati dal misuratore installato sul Rio Serralunga in corrispondenza degli eventi pluviometrici del 29-31 maggio 2008 e del 31 marzo - 5 aprile 2009.
tipologia differente una portata di simile entità è stata raggiunta per 75 minuti tra le 5.45 e le 7.00 del 2/4/2009 (Fig. 4) a seguito di una pioggia di minor intensità, con 59,8 mm in 36 ore.

Borgata Gros. In passato si sono manifestati fenomeni di dilavamento, dovuto per lo più alla mancata regimazione delle acque e al cattivo stato mantentivo del bosco adiacente; nel corso dell’evento alluvionale dell’ottobre 2000, però, le notevoli precipitazioni hanno provocato l’erosione di una consistente parte dello strato superficiale e il distacco di una frana in corrispondenza del cambio di pendenza dei prati prospercanti la frazione Gros (1070 m s.l.m.). Dai rilievi effettuati si ricava una superficie interessata dal fenomeno di ca. 10000 m² con un volume movimentato stimabile in 8000 – 9000 m³ (solo nella parte terminale del rio Bonomo, in corrispondenza del guado per la frazione Ballai, si stima circa 1200 m³ di materiale depositato). La colata si è incanalata nel sottostante rio, movimentando verso valle massi di notevoli dimensioni (nell’ordine del metro cubo di volume). Allo stato attuale, le acque del Rio Bonomo, quando presenti a causa di precipitazioni medie ed intense, si presentano sempre torbide, a riprova dell’esistenza di fenomeni di erosione superficiale tuttora in corso.

In tabella 2 sono schematizzati i principali parametri fisici descrittivi delle stazioni oggetto di monitoraggio. Interessante notare come i suoli siano per lo più a matrice sabbiosa ma con porosità variabili tra il 22 e il 55%.

In figura 5 sono rappresentati i dati del monitoraggio dei contenuti idrici della stazione 14 ritenuta rappresentativa dell’intero corpo di frana. L’aspetto più interessante sembra essere proprio la stabilità dei valori di contenuto idrico che sembrano non risentire di grandi variazioni nemmeno durante i mesi estivi, probabilmente grazie anche all’effetto tampone esercitato dai suoli forestali tipici della zona. I fenomeni franosi avvenuti a maggio e giugno 2008 hanno portato alla distruzione o alla spostamento di quasi due terzi delle postazioni

<table>
<thead>
<tr>
<th>Stazione (cod.)</th>
<th>Schiocco (%)</th>
<th>Densità apparente (kg/dm³)</th>
<th>Peso Specifico (kN/m³)</th>
<th>Porosità (%)</th>
<th>Sabbia (%)</th>
<th>Limo (%)</th>
<th>Argilla (%)</th>
<th>Tessitura</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>17.2</td>
<td>1.4</td>
<td>13.5</td>
<td>40.3</td>
<td>89.0</td>
<td>6.7</td>
<td>4.3</td>
<td>Sabbioso</td>
</tr>
<tr>
<td>P2</td>
<td>17.8</td>
<td>1.7</td>
<td>16.4</td>
<td>32.5</td>
<td>87.0</td>
<td>8.6</td>
<td>4.4</td>
<td>Sabbioso-Franco</td>
</tr>
<tr>
<td>P3</td>
<td>32.2</td>
<td>1.6</td>
<td>15.7</td>
<td>36.9</td>
<td>82.8</td>
<td>11.2</td>
<td>6.0</td>
<td>Sabbioso-Franco</td>
</tr>
<tr>
<td>P4</td>
<td>29.2</td>
<td>1.6</td>
<td>15.3</td>
<td>34.6</td>
<td>81.8</td>
<td>14.5</td>
<td>3.6</td>
<td>Sabbioso-Franco</td>
</tr>
<tr>
<td>P5</td>
<td>20.7</td>
<td>1.4</td>
<td>13.3</td>
<td>39.9</td>
<td>82.8</td>
<td>11.9</td>
<td>5.3</td>
<td>Sabbioso-Franco</td>
</tr>
<tr>
<td>P6</td>
<td>35.1</td>
<td>1.7</td>
<td>16.4</td>
<td>28.5</td>
<td>80.6</td>
<td>13.4</td>
<td>6.0</td>
<td>Sabbioso-Franco</td>
</tr>
<tr>
<td>P7</td>
<td>25.8</td>
<td>1.2</td>
<td>11.4</td>
<td>44.0</td>
<td>80.9</td>
<td>10.2</td>
<td>9.0</td>
<td>Sabbioso-Franco</td>
</tr>
<tr>
<td>P8</td>
<td>23.4</td>
<td>1.8</td>
<td>17.8</td>
<td>26.0</td>
<td>88.9</td>
<td>18.7</td>
<td>12.4</td>
<td>Sabbioso-Franco</td>
</tr>
<tr>
<td>P9</td>
<td>43.6</td>
<td>1.8</td>
<td>17.1</td>
<td>27.0</td>
<td>88.6</td>
<td>8.6</td>
<td>2.8</td>
<td>Sabbioso</td>
</tr>
<tr>
<td>P10</td>
<td>25.7</td>
<td>1.6</td>
<td>15.3</td>
<td>32.4</td>
<td>94.2</td>
<td>2.7</td>
<td>3.2</td>
<td>Sabbioso</td>
</tr>
<tr>
<td>P11</td>
<td>37.9</td>
<td>1.9</td>
<td>18.3</td>
<td>22.7</td>
<td>82.4</td>
<td>10.7</td>
<td>6.9</td>
<td>Sabbioso-Franco</td>
</tr>
<tr>
<td>P12</td>
<td>32.9</td>
<td>1.4</td>
<td>13.9</td>
<td>43.6</td>
<td>88.7</td>
<td>7.6</td>
<td>3.8</td>
<td>Sabbioso</td>
</tr>
<tr>
<td>P13</td>
<td>33.3</td>
<td>1.7</td>
<td>16.4</td>
<td>32.5</td>
<td>93.2</td>
<td>3.6</td>
<td>3.2</td>
<td>Sabbioso</td>
</tr>
<tr>
<td>P14</td>
<td>25.5</td>
<td>1.0</td>
<td>9.7</td>
<td>55.0</td>
<td>79.7</td>
<td>13.7</td>
<td>6.6</td>
<td>Sabbioso-Franco</td>
</tr>
<tr>
<td>P15</td>
<td>27.6</td>
<td>1.1</td>
<td>10.8</td>
<td>51.2</td>
<td>81.4</td>
<td>12.6</td>
<td>6.0</td>
<td>Sabbioso-Franco</td>
</tr>
</tbody>
</table>

Tab. 2 - Parametri fisici del materiale caratterizzante il corpo di frana in corrispondenza delle 15 stazioni di monitoraggio

214
TDR (successivamente ripristinate) con conseguente mancanza di alcuni dati nelle prime misurazioni TDR.
Infine, in figura 6 sono rappresentati i valori delle prove di infiltrazione ad anello semplice ed i relativi contenuti idrici prima e dopo i test di infiltrazione.

4. Conclusioni

In entrambi i casi descritti le metodologie sperimentali proposte hanno consentito di raccogliere dati indispensabili per una corretta valutazione modellistico-
ca dei fenomeni osservati. In particolare il contenuto idrico del suolo è un'importante variabile di stato, a cui è legata la relazione afflussi-deflussi nel caso del Rio Serralunga e la stabilità del pendio nel caso di Borgata Gros.

Inoltre una corretta misura della forte variabilità spaziale della conducibilità idraulica del suolo ha permesso di caratterizzare le proprietà idrauliche superficiali del versante di Borgata Gros, mentre nel Rio Serralunga occorrerà inferire sia il contenuto idrico che la conducibilità a partire dalla risposta idrologica, viste le difficoltà sperimentali legate alla presenza di marne compatte.

Bibliografia