ARTICLE

Crocodylian diversity peak and extinction in the late Cenozoic of the northern Neotropics

T. M. Scheyer ${ }^{1}$, O. A. Aguilera², M. Delfino ${ }^{3,4}$, D. C. Fortier ${ }^{5}$, A. A. Carlini ${ }^{6}$, R. Sánchez ${ }^{7}$, J. D. Carrillo-Briceño ${ }^{8}$, L Quiroz 9 \& M. R. Sánchez-Villagra ${ }^{1}$

Northern South America and South East Asia are today's hotspots of crocodylian diversity with up to six (mainly alligatorid) and four (mainly crocodylid) living species respectively, of which usually no more than two or three occur sympatrically. In contrast, during the late Miocene, 14 species existed in South America. Here we show a diversity peak in sympatric occurrence of at least seven species, based on detailed stratigraphic sequence sampling and correlation, involving four geological formations from the middle Miocene to the Pliocene, and on the discovery of two new species and a new occurrence. This degree of crocodylian sympatry is unique in the world and shows that at least several members of Alligatoroidea and Gavialoidea coexisted. By the Pliocene, all these species became extinct, and their extinction was probably related to hydrographic changes linked to the Andean uplift. The extant fauna is first recorded with the oldest Crocodylus species from South America.

[^0]The late Cenozoic of South America included a singular array of animals that lived in isolation from other continents until the formation of the Panamanian Isthmus. This fauna included endemic forms resulting from either vicariance or dispersal events from other continents, such as gavialoid crocodilians now found only in South East Asia ${ }^{1}$. From the Paleogene and Neogene, 26 crocodyliform species are recorded ${ }^{1}$. The high diversity of species in the Miocene of the Amazon region ${ }^{1,2}$, the origins of which are yet poorly understood ${ }^{3-5}$, is documented largely in sedimentary basins in Colombia (La Venta), Brazil and Peru (Acre) and Venezuela (Urumaco). In contrast, in modern day ecosystems, overall crocodylian diversity is generally declining and no more than two or three species occur sympatrically ${ }^{6,7}$.

To be able to ascertain the nature of the crocodylian communities that actually existed requires revisionary taxonomic and stratigraphic work, which has been conducted for the Urumaco sequence ${ }^{8,9}$. But how many species lived together and how did these species differ ecologically?

Here, we document >50 records of crocodylian remains from 14 localities and show a diversity peak in sympatric occurrence of at least seven species. This degree of crocodylian sympatry is unique in the world and shows that at least several members of Alligatoroidea and Gavialoidea coexisted.

Results

Geological context. The 50 records of crocodylian remains from 14 localities (Supplementary Tables S1, S2), include two new species, ranging from the middle Miocene Socorro Formation to the early Pliocene ${ }^{10}$ San Gregorio Formation (Supplementary Notes 1 and 2). The identification of samples is based solely on cranial material preserving diagnostic features. The stratigraphic sequence correlation of the geological formations (Fig. 1, Supplementary Fig. S1-S4 (ref. 10)) serves to place the localities into a geographic and temporal context.

Systematic section. Crocodylia Gmelin, 1789
Crocodylidae Cuvier, 1807
Crocodylinae Cuvier, 1807 Crocodylus falconensis sp. nov.

Etymology. After Falcón State, northwestern Venezuela, in which the town Urumaco is situated.
Holotype. AMU-CURS-300, an almost complete skull with mandibles (Fig. 2a-e, Supplementary Fig. S5).
Locality and horizon. Northeastern part of Urumaco, from the early Pliocene San Gregorio Formation (Vergel Member; Norte Casa Chiguaje, locality 'No. 8' in Fig. 1, Supplementary Fig. S2), Falcón State.
Diagnosis. Medium-sized Crocodylus species with a flattened, broad and robust skull and dentition differing from all other crocodylids in the supraoccipital reaching or almost reaching

Figure 1 | Simplified stratigraphic profile of the Miocene and Pliocene of Urumaco. Profile is modified from ${ }^{10}$, with new data added on San Gregorio Formation. Faunal ecomorphotypes ${ }^{4}$ and number of species are presented for each locality (number above or below gray boxes; note that for locality numbers 6 and 7, two species counts are given; see also Supplementary Figs 1-4). Type localities, as well as sites of recovery of referred material, are indicated by black and gray skull outlines respectively. Isolated teeth collected 1 km from type locality (AMU-CURS-302; Supplementary
Fig. S10) of C. falconensis mark the earliest re-occurrence of crocodylians in the early Pliocene of Falcón State so far. Gray, mudstone/siltstone/shale; blue, coquinoid limestone; yellow, sandstone; orange, mottled mudstone; white, non-exposure/cover interval.
foramen magnum; orbits and supratemporal fenestrae smaller than in other Crocodylus species at the same ontogenetic stage; premaxillary rostrum expanded, with relatively small external naris, but larger comparatively; premaxillae meet posterior to

external naris; nasals excluded from external naris, at least externally; orbits circular and slightly larger than external naris; skull table with shallow depression, extending to the frontal; concave posterior margin of skull roof, no posterior convexity; dorsal surface of rostrum bearing medial dorsal boss; rostrum with dorsoventral constriction posterior to external naris; lateral edges of the palatines between the suborbital fenestrae nearly parallel; anterior-most width of intersuborbital bar wider than posterior-most width.

The skull shows obliterated sutures (Supplementary Fig. S5). Size and mass in life was estimated as 4.12 m and 307 kg respectively (Supplementary Tables S3-S5). A medial dorsal boss, a feature shared with other Neotropical Crocodylus species, is well developed.

Alligatoridae Gray, 1844

Caimaninae Brochu, 2003 (following Norell, 1988)
Globidentosuchus brachyrostris gen. et sp. nov.
Etymology. Generic name referring to spherical teeth in posterior part of skull ('globi' from Latin globus for sphere; 'dento' from Latin dens for tooth; 'suchus' after Greek Suchos, in reference to the Egyptian crocodile-headed God Sobek). Specific name referring to short and wide snout ('brachy' from Greek brachys for short; 'rostris' from Latin rostrum for snout, in reference to beak-shaped curved prows of Roman ships).
Holotype. AMU-CURS-222, an almost complete skull with associated mandibles (Fig. 2f-n).
Paratype. AMU-CURS-224, fragmentary skull remains associated with mandibles (Supplementary Fig. S6).
Referred material. AMU-CURS-223, associated fragmentary cranial and mandibular remains; AMU-CURS-301, posterior part of right mandible with four crushing teeth preserved; AMU-CURS-383 cranium; AMU-CURS-450 isolated mandibular remains (See also Supplementary Fig. S7-S9).

Locality and horizon. The holotype was collected from El Picache locality ('No. 6' in Fig. 1, Supplementary Fig. S2), Cerro José la Paz site, Urumaco Formation (Upper Member), the paratype from Sorongo site at El Picache, the referred material AMU-CURS-223 from an unnamed site at El Picache, AMU-CURS-301 and AMU-CURS-450 from the Domo de Agua Blanca locality ('No. 3'), Urumaco Formation (Middle Member), and AMU-CURS-383 northwest of San Rafael ('No. 6'), Urumaco Formation (Upper Member).
Diagnosis. Small caimanine species differing from all other crocodylians in having a U-shaped, short and wide skull and deep, robust mandibles; external naris not bisected by nasals; smooth skull surface with weak preorbital ridges but lacking rostral or interorbital ridges; frontal lacks anterior processes and articulates in V-shaped suture with prefrontals rostrally; prefrontals rectangular-shaped, meeting in midline; supraoccipital excludes parietal from posterior skull table edge; dentary and splenial participate in symphysis, which reaches back caudally until seventh mandibular alveolus. Each mandible with 18 teeth; short conical teeth but posterior eight teeth complanate, subspherical and tightly spaced, forming crushing unit; fourth mandibular alveolus is largest, with the largest following dentary alveoli immediately caudal being the whole series from thirteenth alveolus onward; mandible with foramen aërum set in from margin of retroarticular process; articular with laminae both above and below lingual foramen; lingual foramen for articular artery and alveolar nerve perforates surangular/angular suture; surangular pinched off anterior to tip of retroarticular process; surangular-articular suture bowed strongly laterally within glenoid fossa; superior edge of coronoid slopes almost horizontally; splenial forming massive shelf lingual to tooth row; mandibular fenestra large; medial jugal foramen large; margin of orbit flush with skull surface. A strong crushing dentition is developed in a variety of fossil and extant crocodylians, including Caiman brevirostris,

Figure 2 | Holotypes of new species. (a-e) C. falconensis sp. nov. (AMU-CURS-300). f-n) G. brachyrostris gen. et sp. nov. (AMU-CURS-222).
(\mathbf{b}, \mathbf{g}) Interpretative drawings of skulls. (i-k) Left mandible. Note inset of fourth dentary tooth in (i). (I-n) Right mandible, initially attached to skull. Note that two vertebrae (vert) are fused to the left mandible, and parts of the skull (mx, pt-ec) are fused to the right one. ($\mathbf{a}, \mathbf{f}, \mathbf{k}, \mathbf{n}$) Dorsal, (\mathbf{c}, \mathbf{h}) ventral, (d) left lateral, (e) right lateral, (i, I) lateral, (j, m) medial views; (f) and (g) were mirror-imaged for clarity. f, frontal; j, jugal; I, lacrimal; mx, maxilla; n, nasal; p, parietal; pmx, premaxilla; po, postorbital; prf, prefrontal; pt-ec, pterygoid and ectopterygoid, q, quadrate; qj, quadratojugal; so, supraoccipital; sq, squamosal; vert, vertebral remains. Scale bar $=10.0 \mathrm{~cm}$ in ($\mathbf{a}-\mathbf{e}$) and 5.0 cm in ($\mathbf{f}-\mathbf{n}$).

Allognathosuchus spp. and Caiman latirostris. None of those taxa, however, develops a crushing unit of the eight posteriormost teeth as is found in G. brachyrostris. The whole series from the thirteenth alveolus (or fourteenth) onward being the largest immediately caudal to the fourth (character 51-1) is unknown in other caimanines, but a feature that G. brachyrostris shares with some globidontan and non-globidontan alligatoroids. G. brachyrostris also shares an angular not extending dorsally beyond the anterior end of foramen intermandibularis caudalis (character 65-1) and the surangular-angular suture lingually meeting the articular dorsal to tip (character 66-1) with most derived caimanines; however, the former occurs independently also in the globidontan Stangerochampsa mccabei. G. brachyrostris shares with Thecachampsa antiqua only an articular bone in which laminae are present both above and below the lingual foramen (character 68-3). A foramen aërum being set in from the margin of retroarticular process (character 70-1) is shared by all Alligatoroidea for which this character is known, but is also present in the crocodyloid Voay robustus. The maxilla broadly separating the ectopterygoid from the maxillary tooth row (character 103-1) is a typical feature of Alligatoroidea (including the new caimanine taxon), but is also found in the outgroup Bernissartia fagesii. Posteriorly flaring lateral edges of the palatine bones that produce a shelf (character 119-1) was found to be shared by most Alligatoroidea with the exception of the basal-most alligatoroid Leidyosuchus canadensis and the globidontan Ceratosuchus burdoshi. A large exposure of the supraoccipital on the dorsal skull table which excludes the parietal from reaching the posterior edge of the table (character 158-3) appears to be plesiomorphic for Caimaninae. Among caimanines, the absence of an anterior process of the frontal, prefrontals contacting medially and a V-shaped frontalprefrontal suture are features seen also in the fossil and extant Melanosuchus spp. and in the extant Caiman crocodilus. G. brachyrostris differs from Culebrasuchus mesoamericanus in having a curved instead of a linear dentary from d 4 to the posterior-most alveolus, a splenial participating in the symphysis, narrower and smaller supratemporal fenestrae with a more pronounced overhang along the medial wall, and a wider more crescent-shaped supraoccipital exposure in dorsal view. It further differs from Centenariosuchus gilmorei in lacking upturned medial orbital margins and in having a larger external mandibular foramen (a smaller foramen is indicated in an angular referred to cf. C. gilmorei). Caiman brevirostris, another caimanine with crushing dentition ${ }^{11}$, is superficially similar to G. brachyrostris. However, the sutural configuration and shape of the frontals and prefrontals, and the symphyseal participation of the splenial separate both species. The splenial symphysis might be shared with Tsoabichi greenriverensis ${ }^{12}$. The cranial proportions of G. brachyrostris indicate a mean overall size of 1.72 m and body mass of 16.7 kg (Supplementary Tables S3-S5).

Alligatoridae Gray, 1844 Caimaninae Brochu ${ }^{4}$ (following Norell, 1988) Mourasuchus nativus (Gasparini, 1985)

Referred material. AMU-CURS-212, a posterior skull roof and braincase (Fig. 3); AMU-CURS-218, additional cranial material.
Locality and horizon. AMU-CURS-212 was collected from El Mamón locality, Upper Member of the Urumaco Formation ('No. 5' in Fig. 1, Supplementary Fig. S2) and AMU-CURS-218 from Puente Río Urumaco locality, Middle Member of the Urumaco Formation ('No. 2' in Fig. 1, Supplementary Fig. S2).

Figure 3 | Posterior skull roof and braincase of \boldsymbol{M}. nativus. Specimen (AMU-CURS-212) in (a) dorsal view, (b) occipital view and (c) left lateral view. Note that sutures are generally difficult to trace in occipital and lateral views and that the elements of the braincase floor (for example, basioccipital) shifted laterally towards right. bo, basioccipital; eo/op, exoccipital/opisthotic; f, frontal; fm, foramen magnum; j, jugal; I, lacrimal; mx , maxilla; n , nasal; p, parietal; pmx, premaxilla; po, postorbital; prf, prefrontal; pt-ec, pterygoid and ectopterygoid, q, quadrate; qj, quadratojugal; so, supraoccipital; sq, squamosal; vert, vertebral remains. utf, upper temporal fenestra. Scale bar $=5.0 \mathrm{~cm}$.

Diagnosis. M. nativus is the second species of duck-snouted ('nettosuchid') caimanines, besides M. arends i^{13}, and is the fourteenth crocodylian recognized from the Neogene (that is, Urumaco Formation) of Urumaco (Fig. 4). Especially AMU-CURS-212 preserves enough of the diagnostic features (that is, small crest in midline of parietal; entire posterior part of skull table raised; squamosals particularly high and strongly developed forming transverse ridge) for species recognition ${ }^{14,15}$. Previously recognized from the Ituzaingó fauna in Argentina, and Acre in Brazil ${ }^{1,15,16 \text {, the }}$ palaeogeographic occurrence of the species was thus

Figure 4 | Taxic crocodylian diversity and locality data. New described taxa are indicated by asterisk and images scaled to same size. Locality numbers in circles correspond to locality names given in Fig. 1. Notice that the total number of species does not count reconstructed records in the middle of stratigraphic extremes of distribution.
spanning $>4000 \mathrm{~km}$ from the Buenos Aires region in the South to the Caribbean Sea in the North, which is more than any of the living crocodylians does in South America today.

Phylogenetic analysis. The phylogenetic analysis including the new Crocodylus species recovered only one most parsimonious tree (MPT; length $=59, C I=0.6$ and $R I=0.7$; see Fig. 5 a). As in previous analyses ${ }^{17,18}$, the crown Crocodylus was monophyletic. C. palaeindicus is sister taxon of the crown clade, but support is weak. The New World assemblage represents a monophyletic and well-supported clade, having C. falconensis sp. nov. as the basalmost representative species and the sister group of a clade comprising the extant species (see also Supplementary Fig. S10 for additional crocodylian teeth from the San Gregorio Formation). The New World crocodiles are supported by two unambiguous synapomorphies: the dorsal surface of rostrum bears medial dorsal boss (15-1) and the palatine-pterygoid suture lies nearly at the posterior angle of suborbital fenestra (20-0). These characters seem to have evolved shortly after the dispersion event from the Old World to the New World ${ }^{19}$, as they are present in C. falconensis sp. nov. already early in the Pliocene. Some features are present in all extant species of the clade, but due to the incompleteness of C. falconensis sp. nov., they could not be traced back to the early evolution of the group: ventral tubercle of proatlas more than one-half the width of the dorsal crest (1-0), and the pterygoid surface lateral and anterior to internal choana is pushed inward around choana to form the "neck" surrounding aperture (22-2). These are unknown in C. falconensis sp. nov., and may represent synapomorphies of the New World crocodiles or only of the extant species. Nevertheless, some features were recovered as unambiguous synapomorphies of the extant group: the posterior margin of the skull roof with a posterior process, forming a distinct convexity (30-1), and the
posterior process of palatines have nearly parallel sides (31-1). C. acutus and C. intermedius share an anterior process of palatines wider than the posterior process (32-2). Although only one feature groups them together, the sister-group relationship between C. acutus and C. intermedius has been already proposed by molecular phylogenies ${ }^{7,19-21}$. The New World clade is a wellsupported group and has accumulated distinctive differences from its sister taxon, C. niloticus, and other extant and extinct crocodile species (Fig. 5a).

The phylogenetic analysis including G. brachyrostris gen. et sp. nov. resulted in a total of 20,160 most parsimonious trees (minimum length $=650$; Fig. 5b). The computed strict consensus was overall in accordance with the one recovered by Brochu et al. ${ }^{22}$, including all major monophyletic groups, but differing slightly in relationships among highly nested gavialids and tomistomine crocodyloids (Supplementary Fig. S11, S12). Relationships within Caimaninae are also as in Brochu et al. ${ }^{22}$, with G. brachyrostris gen. et sp. nov. being sister to all remaining caimanine species. Character (66-1; surangular-angular suture lingually meets articular dorsal to tip) was revealed as a potential unambiguous and unequivocal synapomorphy of Caimaninae.

Discussion

The phylogenetic analysis recovered C. falconensis sp. nov. as sister taxon to all remaining New World Crocodylus species (Fig. 5a), suggesting that tropical South America was probably the center of origin of the Crocodylus neotropical radiation, after transatlantic dispersal either across the Atlantic from Africa or across the Pacific from Asia ${ }^{23}$. All living species of Crocodylus last shared a common ancestor within the past 15 million years, with the group first appearing in the Old World ${ }^{17}$. The monophyly of the New World clade (C. falconensis + extant neotropical species) and its minimal early Pliocene age is supported, which has been

"Crocodylus" megarhinus \dagger

Figure 5 | Simplified phylogenetic hypotheses and stratigraphic occurrences of new taxa. The occurrence and placement ${ }^{22,24}$ of the two new species is indicated based on analyses outlined in Supplementary notes.
estimated from both the fossil record and molecular markers ${ }^{7,17,24}$.
The analysis with G. brachyrostris gen. et sp. nov. supports the monophyly of Caimaninae ${ }^{12}$ (Fig. 5b) and a close relation between Tsoabichi greenriverensis and extant dwarf caimans (Supplementary Fig. S11). Globidentosuchus is at the stem of the
caiman lineage, representing the sister taxon to all remaining caimanines, including the hitherto basal-most Eocaiman cavernensis (Paleogene, South America) ${ }^{12}$. Adding one of the oldest caimanines known, Necrosuchus ionensis (early Paleocene, Argentina), did not change the basal-most position of Globidentosuchus, but reduced overall resolution among basal
caimanines (Supplementary Fig. S12). As such, Globidentosuchus provides insights into character evolution and polarity (for example, symphyseal shortening that led to exclusion of splenial; large exposure of supraoccipital on skull table), and represents an example of the preservation of basal species in the tropics ${ }^{25}$.

Recently, a report of two new caimanines, one basal form from the early Miocene Culebra Formation (C. mesoamericanus) and a more highly nested form from the early or middle Miocene Cucaracha Formation (Centenariosuchus gilmorei) of Panama was presented ${ }^{25}$. C. mesoamericanus shares with Globidentosuchus, for example, a large exposure of the supraoccipital on the posterior skull roof, but differs in the anterior extent of the splenial, with a termination before the symphysis and larger supratemporal fenestrae without a large overhang being present in the Panamanian taxon. The presence of yet another basal form greatly underscores the importance of the Central American and Northern South American region for the evolution of the whole clade.
The extreme ecomorphological breadth among the Urumaco crocodylians with at least seven sympatric species (Fig. 4), ranging from small, blunt-snouted 'crushers' with body sizes and masses ranging from $1.5-2 \mathrm{~m}$ and $10-820 \mathrm{~kg}$ (for example, Globidentosuchus, Supplementary Tables S3-S5) to several giant-sized forms, clearly suggests niche partitioning ${ }^{5,26}$. The duck-snouted Mourasuchus is represented by two species, with our discovery of M. nativus for Urumaco. The gavialoid Gryposuchus and the 'generalist' Purussaurus reached $8-11.5 \mathrm{~m}$ and $1.7-3.5 \mathrm{t}^{8,9}$ and overlap with or exceed some of the other largest crocodyliforms known, such as the pholidosaurid Sarcosuchus (Cretaceous, Africa) and alligatoroid Deinosuchus (Cretaceous, North America), the tomistomine Rhamphosuchus (Miocene, Indian subcontinent), and C. thorbjarnarsoni (Plio-Pleistocene, Kenya) ${ }^{24,27,28}$. The crocodylian disparity is indicative also of food web complexity, with the smaller to medium size species acting as meso-predators and the giant Gryposuchus and Purussaurus as apex predators in the system ${ }^{2,9}$. In modern South American assemblages the lower size spectrum is covered by dwarf caimans (Paleosuchus), whereas the upper end remains devoid, with the largest living South American crocodylian, the black caiman (Melanosuchus niger), reaching usually no more than 4.5 m (ref. 6).

The disparity encountered among Urumaco crocodylians appears to be rivaled by fossil crocodylomorph faunas from Eocene localities (for example, middle Eocene Bridger and lower Eocene Green River Formations in Wyoming; the World Heritage site of Messel, a Konservatlagerstätte near Darmstadt, Germany) and the Late Cretaceous crocodyliform assemblage from the Maevarano Formation of Madagascar ${ }^{29}$. The North American formations however crop out over huge areas and although morphological and dietary disparity is apparently high ${ }^{30}$, the actual level of sympatry of taxa, was not ${ }^{31,32}$. In the Maevarano Formation, which crops out in northern Madagascar yielding an astounding array of vertebrates including dinosaurs, levels of sympatry are also high, although including largely crocodylomorph taxa ${ }^{26}$ rather than members of crown Crocodylia. In contrast, the European Messel locality is fairly restricted in exposure. Of the seven taxa currently recognized in Messel only Asiatosuchus and Diplocynodon species are common, indicating that they were true lake inhabitants-the other taxa were washed in only occasionally from adjacent habitats ${ }^{33}$. In general, the size and mass spectrum of the Eocene taxa from Messel is also more restricted compared with that of the Urumaco fauna, ranging between 0.8 and 5.0 m in length.
In contrast, the sampling of the Miocene crocodylians in Urumaco was done mainly by surface collecting in relatively restricted localities (Supplementary Fig. S1). The lithology and depositional environment of the fossil-bearing sediments in each
locality is interpreted as preserving fossils in situ or with very little transport. It is thus reasonable to assume sympatry of the species, which were recovered in each of the localities.

The new stratigraphical and geographical information presented, together with specific references to numerous specimens in collections and their identifications, leaves no doubt about the sympatry of species reported in this paper. The disarticulated nature of the fossils we find in the field in Urumaco, does not preclude the same stratigraphical origin and contemporaneity, from strata well documented in the new or synthesized geological information presented in this paper. Furthermore, in most cases, many skeletal materials of the same individual are found in association, and never together with remains of other individuals, showing thus that post-mortem transport does not result in spurious associations of species in a site.

Representatives of Alligatoroidea, especially Caimaninae, and Gavialoidea, constitute the highest percentage of species in the Urumaco Formation (and the underlying Socorro Formation; Fig. 4). In the case of the material tentatively referred to Thecachampsa and Charactosuchus ('Brasilosuchus') mendesi, a systematic assignment is less clear. Previous works have identified the former pertaining to Crocodylidae ${ }^{34,35}$ or Crocodyloidea ${ }^{2}$, and the latter to either Crocodylidae ${ }^{1}$, Gavialoidea 2 or Gavialidae ${ }^{34-36}$. In the case of C. mendesi, although no 'non-crocodylian' taxa have been so far recovered from post-Middle Miocene rocks, incompleteness of the fossil material currently restricts an assignment beyond Crocodyliformes incertae sedis ${ }^{37}$. On the other hand the Thecachampsa material is regarded as belonging to Tomistominae, which according to anatomical, fossil and developmental data (but contra molecular data) are within Crocodylidae ${ }^{38}$ (see Supplementary Note 3). Our results further revealed that disparity is high (for example, indicated by the presence of ecomorphotypes, Fig. 1) throughout most localities studied and at least in three out of the seven localities within the Urumaco Formation (nos. 4, 6 and 7), all four ecomorphotypes are present prior to the drastic faunal turnover.

Palaeoenvironmental reconstructions based on palynofloras from the Urumaco Formation suggest a continuation of the Amazonian forest into northwestern Venezuela during the Miocene ${ }^{39}$, with the faunal context including marginal marine, freshwater and continental vertebrates ${ }^{40}$. The latest Mioceneearly Pliocene Codore Formation flora replaced the Amazonian palynoflora with xerophyte-dominated vegetations during the major environmental change related to the collapse of the Urumaco delta in the late Miocene, which correlates with a major uplift of the northern Andes ${ }^{41}$ and the eastward changing hydrograph course of a paleo-Orinoco River ${ }^{10,42}$. From the El Jebe Member, Codore Formation, faunal elements such as glyptodontids ${ }^{43}$ and grassy wetlands ciconiid birds ${ }^{44}$ were recovered. These discoveries suggest that the absence of crocodylians from the Codore Formation (Fig. 4) is not a sampling bias. Temperature is usually one of the main parameters limiting crocodylian distribution patterns ${ }^{3}$. The overlying Pliocene San Gregorio Formation, however, represents sedimentary accumulation in alluvial fans (Fig. 1 and Supplementary Fig. S4 $)^{10}$, and the aquatic paleoenvironment is reconstructed as a tropical wetland with meandering channels and inundate savanna ${ }^{25}$. Therefore, the turnover was clearly not driven by temperature changes, as the mean annual range values in the Caribbean did not vary significantly until the upper Pliocene ${ }^{45}$. Instead, the lack of the diverse crocodylian fauna previously present in the region during the Miocene clearly shows the turnover to a new community was most likely coupled with the documented climatic and hydrographic changes linked to the Andean uplift ${ }^{10,41,42}$.

Methods

Phylogenetic framework. To elucidate the phylogenetic position of the new described species within Crocodylia, two separate maximum parsimony analyses were performed using TNT v. 1.1 (ref. 46) (see Supplementary Fig. S11 and S12; Supplementary Note 3). The first analysis including C. falconensis sp. nov. is based on a matrix of 32 morphological characters, coding 29 characters that vary inside Crocodylinae, and adding two new characters. An exhaustive branch-and-bound search strategy was conducted performing the "implicit enumeration" option. For the second analysis G. brachyrostris gen. et sp. nov. and Necrosuchus ionensis were added to the 179 -characters matrix of Brochu et al. ${ }^{22}$, which included 95 ingroup taxa and Bernissartia fagesii as outgroup. For these analyses, a heuristic search (traditional search; space for 50,000 trees in memory, random seed $=1$) with 1,000 random additional sequence replicates with 100 trees saved per replication and tree-bisection reconnection option was performed. In all analyses, characters were set as non-additive.

Length and mass estimation. Estimating the length and mass of the newly described taxa (Supplementary Tables S3-S5) followed previously published linear regression formulas of Webb and Messel ${ }^{47}$, which have been used also on fossil $\operatorname{taxa}^{27,48}$, as well as those used by Hurlburt et al. ${ }^{49}$ and Platt et al. ${ }^{50,51}$. Hall et al. ${ }^{52}$ indicated that there is a discrepancy of 4% among dorsal cranial length measurements between freshly killed animals and dried and cleaned skulls of C. novaeguineae ${ }^{53}$. As such, the size and mass estimates herein are treated as conservative underestimates of real size. In the case of applying the regressions of Hurlburt et al. ${ }^{49}$ to Globidentosuchus, the orbito-cranial length-based value led to an estimated total length of more than 3 m , which we treat here as a strong overestimation. We nevertheless kept the values in addition to the other results in Supplementary Table S3 and the body mass estimates in Supplementary Table S5, but marked them with an asterisk and put them in square brackets. Note that in-depth osteological description of both new species is in preparation elsewhere.

Nomenclatural acts. This published work and the nomenclatural act it contains have been registered in ZooBank, the proposed online registration system for the International Code of Zoological Nomenclature (ICZN). The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix 'http://zoobank.org/'. The LSID for this publication is: urn:lsid:zoobank.org:pub:E4D47A14-9D74-40B9-8B19-ABA141C8AE1E.

References

1. Riff, D., Romano, P. S. R., Oliveira, G. R. \& Aguilera, O. A. in Amazonia, Landscape and Species Evolution 1st Edn (eds Hoorn, C. \& Wesselingh, F. P.) 259-280 (Blackwell Publishing, London, 2010).
2. Scheyer, T. M. \& Moreno-Bernal, J. W. Urumaco and Venezuelan Palaeontology-The Fossil Record of the Northern Neotropics (eds SánchezVillagra, M. R., Aguilera, O. A. \& Carlini, A. A.) 192-213 (Indiana University Press, Bloomington, 2010).
3. Markwick, P. J. Crocodilian diversity in space and time: the role of climate in paleoecology and its implication for understanding K/T extinctions. Paleobiology 24, 470-497 (1998).
4. Brochu, C. A. Phylogenetic approaches toward crocodylian history. Annu. Rev. Earth Planet. Sci. 31, 357-397 (2003).
5. Pierce, S. E., Angielczyk, K. D. \& Rayfield, E. J. Patterns of morphospace occupation and mechanical performance in extant crocodilian skulls: a combined geometric morphometric and finite element modeling approach. J. Morphol 269, 840-864 (2008).
6. Trutnau, L. \& Sommerlad, R. Crocodylians. Their Natural History \& Captive Husbandary (Edition Chimaira, Frankfurt am Main, 2006).
7. Oaks, J. R. A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution 65, 3285-3297 (2011).
8. Aguilera, O. A., Riff, D. \& Bocquentin-Villanueva, J. A new giant Purussaurus (Crocodyliformes, Alligatoridae) from the Upper Miocene Urumaco Formation, Venezuela. J. Syst. Palaeontol. 4, 221-232 (2006).
9. Riff, D. \& Aguilera, O. A. The world's largest gharials Gryposuchus: description of G. croizati n. sp. (Crocodylia, Gavialidae) from the Upper Miocene Urumaco Formation, Venezuela. Paläontol. Zeitschr 82, 178-195 (2008).
10. Quiroz, L. I. \& Jaramillo, C. A. Urumaco and Venezuelan Palaeontology-The Fossil Record of the Northern Neotropics (eds Sánchez-Villagra, M. R., Aguilera, O. A. \& Carlini, A. A.) 153-172 (Indiana University Press, Bloomington, 2010).
11. Souza Filho, J. P. Caiman brevirostris sp., nov., um novo Alligatoridae da Formação Solimões (Pleistoceno) do Estado do Acre, Brasil. Anais X Congr. Brasil. Paleontol., Rio de Janeiro, 25 July 1987 19, 173-180 (1987).
12. Brochu, C. A. A new alligatorid from the lower Eocene Green River Formation of Wyoming and the origin of caimans. J. Vertebr. Paleontol. 30, 1109-1126 (2010).
13. Bocquetin, J. -C. Un nuevo Nettosuchidae (Crocodylia, Eusuchia) proveniente da la Formación Urumaco (Mioceno Superior), Venezuela. Ameghiniana 21, 3-8 (1984).
14. Bocquentin, J. -C. \& Souza Filho, J. P. d. e. O crogodiliano Sul-Americano Carandaisuchus como sinonímia de Mourasuchus (Nettosuchidae). Rev. Bras. Geociênc. 20, 230-233 (1990).
15. Bona, P., Degrange, F. J. \& Fernández, M. S. Skull anatomy of the bizarre crocodylian Mourasuchus nativus (Alligatoridae, Caimaninae). Anat. Rec. 296, 227-239 (2013).
16. Cione, A. L. et al. Miocene vertebrates from Entre Ríos province, eastern Argentina. INSUGEO Série de Correlación Geológica 14, 191-237 (2000).
17. Brochu, C. A. Phylogenetic relationships and divergence timing of Crocodylus based on morphology and the fossil record. Copeia 2000, 657-673 (2000).
18. Brochu, C. A., Njau, J., Blumenschine, R. J. \& Densmore, L. D. A new horned crocodile from the Plio-Pleistocene hominid sites at Olduvai Gorge, Tanzania. PLoS ONE 5, e9333 (2010).
19. Meredith, R. W., Hekkala, E. R., Amato, G. \& Gatesy, J. A phylogenetic hypothesis for Crocodylus (Crocodylia) based on mitochondrial DNA: evidence for a trans-Atlantic voyage from Africa to the New World. Mol. Phylog. Evol. 60, 183-191 (2011).
20. Meganathan, P. R., Dubey, B., Batzer, M. A., Ray, D. A. \& Haque, I. Molecular phylogenetic analyses of genus Crocodylus (Eusuchia, Crocodylia,
Crocodylidae) and the taxonomic position of Crocodylus porosus. Mol. Phylog. Evol. 57, 393-402 (2010).
21. White, P. S. \& Densmore, III L. D. DNA sequence alignment and data analysis methods: their effect on the recovery of crocodylian relationships in Crocodilian Biology and Evolution (eds Grigg, G. C., Seebacher, F. \& Franklin, C. E.) 29-37 (Surrey Beatty and Sons Pty. Limited, Chipping Norton, NSW, Australia, 2001).
22. Brochu, C. A., Parris, D. C., Grandstaff, B. S., Denton, Jr R. K. \& Gallagher, W. B. A new species of Borealosuchus (Crocodyliformes, Eusuchia) from the Late Cretaceous-early Paleogene of New Jersey. J. Vertebr. Paleontol. 32, 105-116 (2012).
23. Brochu, C. A., Nieves-Rivera, Á. M., Vélez-Juarbe, J., Daza-Vaca, J. D. \& Santos, H. Tertiary crocodylians from Puerto Rico: evidence for Late Tertiary endemic crocodylians in the West Indies? Geobios. 40, 51-59 (2007).
24. Brochu, C. A. \& Storrs, G. W. A giant crocodile from the Plio-Pleistocene of Kenya, the phylogenetic relationships of Neogene African crocodylines, and the antiquity of Crocodylus in Africa. J. Vertebr. Paleontol. 32, 587-602 (2012).
25. Vucetich, M. G., Carlini, A. A., Aguilera, O. \& Sánchez-Villagra, M. R. The Tropics as reservoir of otherwise extinct mammals: the case of rodents from a new Pliocene faunal assemblage from northern Venezuela. J. Mammal. Evol. 17, 265-273 (2010).
26. Turner, A. H. \& Buckley, G. A. Mahajangasuchus insignis (Crocodyliformes: Mesoeucrocodylia) cranial anatomy and new data on the origin of the eusuchian-style palate. J. Vertebr. Paleontol. 28, 382-408 (2008).
27. Erickson, G. M. \& Brochu, C. A. How the 'terror crocodile' grew so big. Nature 398, 205-206 (1999).
28. Sereno, P. C., Larsson, H. C. E., Sidor, C. A. \& Gado, B. The giant crocodyliform Sarcosuchus from the Cretaceous of Africa. Science. 294, 1516-1519 (2001).
29. Hastings, A. K., Bloch, J. I., Jaramillo, C. A., Rincón, A. F. \& MacFadden, B. J. Systematics and biogeography of crocodylians from the Miocene of Panama. J. Vertebr. Paleontol. 33, 239-263 (2013).
30. Stout, J. B. New material of Borealosuchus from the Bridger Formation, with notes on the paleoecology of Wyoming's Eocene crocodylians. PalArch. J. Vertebr. Palaeontol. 9, 1-7 (2012).
31. Gunnell, G. F. \& Bartels, W. S. Middle Eocene vertebrates from the Uinta Basin, Utah, and their relationship with faunas from the southern Green River basin, Wyoming. Vertebrate Paleontology in Utah 99-1, 429-442 (Utah Geological Survey, Miscellaneous Publication, 1999).
32. Grande, L. Paleontology of the Green River Formation, with a review of the fish fauna. The Geological Survey of Wyoming Bull 63, 1-333 (1984).
33. Micklich, N. Crocodiles in Messel-Treasures of the Eocene. Book to the exhibition 'Messel on Tour'. (eds Gruber, G. \& Micklich, N.) 72-76 (Hessisches Landesmuseum, Darmstadt, 2007)).
34. Aguilera, O. A. Tesoros Paleontológicos de Venezuela: Urumaco, patrimonio natural de la humanidad (Editorial Arte, Caracas, 2004).
35. Sánchez-Villagra, M. R. \& Aguilera, O. A. Neogene vertebrates from Urumaco, Falcón State, Venezuela: diversity and significance. J. Syst. Palaeontol. 4, 213-220 (2006).
36. Souza Filho, J. P. \& Bocquentin-Villanueva, J. Brasilosuchus mendesi, n. g., n. sp., um novo representante da família Gavialidae do Neógeno do Acre, Brasil. Anais XI Congr.o Brasil. de Paleontologia, Curitiba 1, 457-463 (1989).
37. Vélez-Juarbe, J. \& Brochu, C. A. Eocene crocodyliforms from Seven Rivers, Jamaica: Implications for Neotropical crocodyliform biogeography and the status of Charactosuchus Langston. in The Eocene Fossil Site of Seven Rivers, Jamaica: Paleontology, and Evolutionary and Biogeographic Implications. (eds Portell, R. W. \& Domning, D. P.) (Springer, Berlin, (in press), 1965).
38. Piras, P. et al. The Gavialis-Tomistoma debate: the contribution of skull ontogenetic allometry and growth trajectories to the study of crocodylian relationships. Evol. Dev. 12, 568-579 (2010).
39. Jaramillo, C. et al. The origin of the modern Amazon rainforest: implications of the palynological and palaeobotanical record in Amazonia, Landscape and Species Evolution. 1st Edn (eds Hoorn, C. \& Wesselingh, F. P.) 317-334 (Blackwell Publishing, London, 2010).
40. Sánchez-Villagra, M. R., Aguilera, O. A. \& Carlini, A. A. (eds). Urumaco and Venezuelan Palaeontology: the Fossil Record of the Northern Neotropics (Indiana University Press, Bloomington, 2010).
41. Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927-931 (2010).
42. Díaz de Gamero, M. L. The changing course of the Orinoco River during the Neogene: a review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 385-402 (1996).
43. Carlini, A. A., Zurita, A. E., Scillato-Yané, G. J., Sánchez, R. \& Aguilera, O. A. New glyptodont from the Codore Formation (Pliocene), Falcón State, Venezuela, its relationship with the Asterostemma problem, and the paleobiogeography of the Glyptodontinae. Paläontol. Zeitschr. 82, 139-152 (2008).
44. Walsh, S. \& Sánchez, R. The first Cenozoic fossil bird from Venezuela. Paläontol. Zeitschr 82, 105-112 (2008).
45. O'Dea, A. et al. Environmental change preceded Caribbean extinction by 2 million years. PNAS 104, 5501-5506 (2007).
46. Goloboff, P. A., Farris, J. S. \& Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774-786 (2008).
47. Webb, G. J. W. \& Messel, H. Morphometric analysis of Crocodylus porosus from the north coast of Arnhem Land, northern Australia. Austr. J. Zool. 26, 1-27 (1978).
48. Farlow, J. O., Hurlburt, G. R., Elsey, R. M., Britton, A. R. C. \& Langston, Jr W. Femoral dimensions and body size of Alligator mississippiensis: estimating the size of extinct mesoeucrocodylians. J. Vertebr. Paleontol. 25, 354-369 (2005).
49. Hurlburt, G. R., Heckert, A. B. \& Farlow, J. O. Body mass estimates of phytosaurs (Archosauria: Parasuchidae) from the Petrified Forest Formation (Chinle Group: Revueltian) based on skull and limb bone measurements. New Mexico Mus. Nat. Hist. Sci. Bull 24, 105-114 (2003).
50. Platt, S. G. et al. Size estimation, morphometrics, sex ratio, sexual size dimorphism, and biomass of Morelet's crocodile in northern Belize. Caribb. J. Sci. 45, 80-93 (2009).
51. Platt, S. G., Rainwater, T. R., Thorbjarnarson, J. B. \& Martin, D. Size estimation, morphometrics, sex ratio, sexual size dimorphism, and biomass of Crocodylus acutus in the coastal zone of Belize. Salamandra 47, 179-192 (2011).
52. Hall, P. M. \& Portier, K. M. Cranial morphometry of New Guinea crocodiles (Crocodylus novaeguineae): ontogeneticvariation in relative growth of the skull and an assessment of its utility as a predictor of the sex and size of individuals. Herpetological Monographs 8, 203-225 (1994).
53. Schmidt, K. P. A new crocodile from New Guinea. Field Mus. Nat. Hist. Zool. Ser. 12, 175-181 (1928).

Acknowledgements

Specimens are deposited at The Alcaldía del Municipio Urumaco (AMU), Falcón, Venezuela. J. Hernández provided access to the specimens. We thank the authorities at the Instituto del Patrimonio Cultural of the República Bolivariana de Venezuela for generous support to conduct this research. M. Reisser (ETHZ) and C. Colucci (UZH) are thanked for preparation and discussions. This work was funded by the Swiss National Science Foundation (grant 31003 A 127053 and 146440 to TMS; and Sinergia CRSII3136293 to MRS-V) and Spanish Ministerio de Economía y Competitividad (CGL201128681 to MD). Collections visits to DCF funded by The Florida Museum of the Natural History and Brazilian agencies CAPES and CNPq.

Author contributions

T.M.S., M.R.S.-V. and O.A.A. wrote the manuscript and devised the study. M.D., D.C.F., and T.M.S. conducted the morphological descriptions and performed the phylogenetic analyses. L.Q., J.C.-B., R.S., and A.A.C. provided stratigraphic and GIS-data.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/ naturecommunications

Competing financial interests: The authors declare no competing financial interests.
Reprints and permission information is available online at http://npg.nature.com/ reprintsandpermissions/

How to cite this article: Scheyer, T. M. et al. Crocodylian diversity peak and extinction in the late Cenozoic of the northern Neotropics. Nat. Commun. 4:1907 doi: 10.1038/ ncomms2940 (2013).

Supplementary Information for:

Crocodylian diversity peak and extinction in the late Cenozoic of the northern Neotropics

Scheyer, T. M., Aguilera, O. A., Delfino, M., Fortier, D. C., Carlini, A. A., Sánchez, R., Carrillo-Briceño, J. D., Quiroz, L. \& Sánchez-Villagra, M. R.

Supplementary Figures

Supplementary Figure S1. Satellite image of Urumaco region with localities.

Supplementary Figure S2. Detailed stratigraphic log showing the localities in the
Urumaco and San Gregorio Formations used herein.

Modified from Quiroz and Jaramillo ${ }^{54}$. Locality names and coordinates are compiled in Supplementary Table 1. For legend see Supplementary Figure 2.

Supplementary Figure S3. Legend accompanying stratigraphic log in Figure S2.

Modified from Quiroz and Jaramillo ${ }^{54}$.

Supplementary Figure S4. Detailed stratigraphic log of the Vergel Member of the San Gregorio Formation and its accompanying legend.

Note that the horizons where the holotype (black skull outline, adapted from Brochu ${ }^{55}$) and referred material (teeth in grey skull outline) were found in, are marked by black arrows.

Supplementary Figure S5. Series of isolated teeth from the early Pliocene Vergel Member of the San Gregorio Formation.

The specimens (AMU-CURS-302) were collected 1 km from the holotype ($11^{\circ} 17^{\prime} 56.4^{\prime \prime} \mathrm{N}$, $70^{\circ} 13^{\prime} 52.8^{\prime \prime}$ W) of Crocodylus falconensis sp. nov. Scale bar $=1.0 \mathrm{~cm}$.

Supplementary Figure S6. Holotype skull AMU-CURS-300 of Crocodylus falconensis sp. nov.

(a) Rostral view of skull. (b) Left lateral view of rostrum. (c) Occipital view of skull. Note that even though the skull is damaged, the ventral extension of the supraoccipital (so) is visible, reaching or almost reaching the foramen magnum (fm). Scale bars $=5.0 \mathrm{~cm}$.

Supplementary Figure S7. Paratype material AMU-CURS-224 of Globidentosuchus brachyrostris gen. et sp. nov.

(a) Skull table/braincase, frontals and tooth-bearing elements and their assumed position in palatal view. (b) Skull table and braincase in occipital view. (c) Skull table and braincase in dorsal view. (d) Frontals in dorsal view. (e) Left jugal in lateral view. (f) Left jugal in medial view. (g) Left ectopterygoid in lateral view. (h) Left ectopterygoid in medial view. (i) Assembled right mandible in lateral view. (j) Assembled left mandible in lateral view. (k)

Assembled left mandible in medial view. Scale bars $=5.0 \mathrm{~cm}$.

Supplementary Figure S8. Selected holotype and paratype material of Globidentosuchus brachyrostris gen. et sp. nov.

(a) Holotype skull (AMU-CURS-222, not mirror-imaged) in dorsal view. (b) Holotype skull in ventral view. (c) Left mandible of paratype (AMU-CURS-224) in which the extension of the splenial scar and the symphyseal area is indicated (compare to Supplementary Figure S7k). Scale bars $=5.0 \mathrm{~cm}$.

Supplementary Figure S9. Referred material of Globidentosuchus brachyrostris gen. et sp. nov.

(a-h) Associated fragmentary cranial and mandibular remains (AMU-CURS-223). (i, \mathbf{j})
Posterior part of right mandible showing four bulbous crushing teeth (AMU-CURS-301) in (i) lateral and (\mathbf{j}) dorsal view. Part of skull roof and anterior part of left mandible in a) lateral view and (b) medial view. (c) Left surangular in lateral view. (d) Left angular in lateral view. (e) Maxillary fragment showing alveoli in palatal view. (f) Maxillary fragment with bulbous tooth in lateral view. (g) Assembled right mandible fragment in medial view. (h) Series of teeth associated with the cranial remains. Scale bars $=5.0 \mathrm{~cm}$ in $(\mathbf{a}-\mathbf{f}), 1.0 \mathrm{~cm}$ in (\mathbf{h}) and 2.0 cm in (\mathbf{i}, \mathbf{j}).

Supplementary Figure S10. Referred material of Globidentosuchus brachyrostris gen. et sp. nov.

(a) Distorted skull (AMU-CURS-383) in dorsal view. Note that size of specimen is comparable to paratype specimen AMU-CURS 224 (based on skull table proportions). The rostrum is dislocated from the skull table and most of the tip of the snout and left side of rostrum has been folded and displaced ventrally. Due to strong weathering of the skull, most sutures are not traceable. (b) Left side of skull in oblique ventral view. The lateral walls of 13 alveoli of the anterior part of the left maxilla (maybe including also posterior end of premaxilla?) are visible. In the posterior part of the maxilla four closely spaced crushing teeth are still partly preserved (black arrows). Abbreviations: eo/op: exoccipital/opisthotic; f, frontal; fm, foramen magnum; j, jugal; mx, maxilla; o, orbit; oc, occipital condyle; pmx, premaxilla; prf, prefrontal; ec/pt, ectopterygoid and pterygoid; q, quadrate; qj, quadratojugal. Scale bars $=5.0 \mathrm{~cm}$ in (a) and 2.0 cm in (b).

Supplementary Figure S11. Phylogenetic analysis including the new caimanine taxon.

Strict consensus tree of 20160 most parsimonious trees (tree length=650 steps) recovered by TNT analysis. The new taxon is marked in bold.

Supplementary Figure S12. Phylogenetic analysis including the new caimanine taxon and Necrosuchus ionensis.

Strict consensus tree of 24100 most parsimonious trees (tree length=650 steps) recovered by TNT analysis. The new taxon is marked in bold. Note loss of resolution within Caimaninae.

Supplementary Table S1. Locality coordinates.

Socorro Formation localities
Quebrada Honda (Llano Largo) $11^{\circ} 11^{\prime} 35.00^{\prime \prime} \mathrm{N} ; 70^{\circ} 10^{\prime} 49.00^{\prime \prime} \mathrm{W}$
Quebrada Honda (Cerro Maniaero) $11^{\circ} 11^{\prime} 00.90^{\prime \prime} \mathrm{N}, 70^{\circ} 09^{\prime} 44.00^{\prime \prime} \mathrm{W}$
Quebrada Honda (Cerro Alto) $11^{\circ} 12^{\prime} 30.00^{\prime \prime} \mathrm{N} ; 70^{\circ} 08^{\prime} 12.00^{\prime \prime} \mathrm{W}$
Urumaco Formation localities

Sur Quebrada Bejucal (1)	$11^{\circ} 11^{\prime} 18.46{ }^{\prime \prime} \mathrm{N} ; 70^{\circ} 15^{\prime} 03.00^{\prime \prime} \mathrm{W}$
Puente Río Urumaco (2)	$11^{\circ} 12^{\prime} 24.66{ }^{\prime \prime} \mathrm{N} ; 70^{\circ} 14^{\prime} 59.27{ }^{\prime \prime} \mathrm{W}$
Playa Larga (2)	$11^{\circ} 10^{\prime} 58.00{ }^{\prime \prime} \mathrm{N}, 70^{\circ} 20^{\prime} 50.00{ }^{\prime \prime} \mathrm{W}$
Domo de Agua Blanca (3)	$11^{\circ} 13^{\prime} 25.00{ }^{\prime \prime} \mathrm{N} ; 70^{\circ} 14^{\prime} 50.00^{\prime \prime} \mathrm{W}$
El Hatillo (4)	$11^{\circ} 14^{\prime} 34.00{ }^{\prime \prime} \mathrm{N} ; 70^{\circ} 14^{\prime} 20.00^{\prime \prime} \mathrm{W}$
El Mamón (5)	$11^{\circ} 13^{\prime} 60.00{ }^{\prime \prime} \mathrm{N} ; 70^{\circ} 16^{\prime} 06.00{ }^{\prime \prime} \mathrm{W}$
El Picache (6)	$11^{\circ} 14^{\prime} 25.00 " \mathrm{~N} ; 70^{\circ} 13^{\prime} 27.00^{\prime \prime} \mathrm{W}$
Noroeste (NW) San Rafael (6)	$11^{\circ} 14^{\prime} 52.00{ }^{\prime \prime} \mathrm{N} ; 70^{\circ} 14^{\prime} 06.00^{\prime \prime} \mathrm{W}$
Corralito (7)	$11^{\circ} 14^{\prime} 40.00{ }^{\prime \prime} \mathrm{N} ; 70^{\circ} 16^{\prime} 26.00^{\prime \prime} \mathrm{W}$
Tío Gregorio (7)	$11^{\circ} 14^{\prime} 33.13 " \mathrm{~N} ; 70^{\circ} 18^{\prime} 38.00^{\prime \prime} \mathrm{W}$

San Gregorio Formation localities
Norte Casa Chiguaje (8)
$11^{\circ} 17^{\prime} 52.00$ " N; 70º 14' 07.80" W

Numbers in brackets behind location names correspond to the number system used for the study (see locality numbers in Supplementary Figure 2). In the case of Puente Río Urumaco/Playa Larga, El Picache/ Noroeste (NW) San Rafael and Tío Gregorio/Corralito, the localities have been combined under numbers (2), (6) and (7) respectively, because of their close proximity in the stratigraphic column. Coordinates of Urumaco town for reference: 11° $17^{\prime} 53.9^{\prime \prime} \mathrm{N}, 70^{\circ} 14^{\prime} 33.7^{\prime \prime} \mathrm{W}$.

Supplementary Table S2. List of fossil material examined.

Formation/Locality	Specimen Number	Taxon	Material present
Socorro Formation (pooled localities)			
	AMU-CURS-031	Purussaurus sp.	Right mandible
	AMU-CURS-034	?cf. Thecachampsa sp. 1	Cranium and rostrum
	AMU-CURS-095	Mourasuchus sp.	Partial rostrum
	AMU-CURS-141	Mourasuchus sp.	Mandible
	AMU-CURS-151	Caiman sp.	Cranium
	AMU-CURS-433	Ikanogavialis gameroi	Rostrum
Urumaco Formation			
Sur Quebrada Bejucal (1)			
	AMU-CURS-018	Caiman sp.	Mandible
	AMU-CURS-020	Purussaurus sp.	Cranial and postcranial remains
	AMU-CURSunnumbered	Mourasuchus sp.	Partial cranial remains
Puente Río Urumaco/ Playa Larga (2)			
	AMU-CURS-001	Hesperogavialis cruxenti	Cranium and rostrum
	AMU-CURS-113	Caiman sp.	Cranium
	AMU-CURS-217	Melanosuchus fisheri	Cranium
	AMU-CURS-218	Mourasuchus nativus	Cranium
	MCN-URU-2002unnumbered	Ikanogavialis gameroi	Cranium and rostrum
Domo de Agua Blanca (3)			
	AMU-CURS-012	?cf. Thecachampsa sp. 2	Cranium and mandible
	AMU-CURS-132	Hesperogavialis cruxenti	Rostrum
	AMU-CURS-301	Globidentosuchus brachyrostris (referred material)	Posterior part of right mandible with four crushing teeth
	AMU-CURS-450	Globidentosuchus brachyrostris (referred material)	partial mandibular remains
El Hatillo (4)			
	AMU-CURS-134	Gryposuchus croizati	Rostrum
	AMU-CURS-135	Purussaurus mirandai (paratype)	Cranium with associated mandibles
	AMU-CURS-234	Melanosuchus fisheri	Cranium and mandibles (also postcranium)
	AMU-CURS-	Charactosuchus mendesi	partial cranial remains

	AMU-CURSunnumbered	Mourasuchus arendsi	partial cranial remains
El Mamón (5)			
	AMU-CURS-212	Mourasuchus nativus	Cranial fragment
	AMU-CURS-429	Caiman brevirostris	Cranial/mandibular fragments
	UNEFM-CIAPP-319	Hesperogavialis cruxenti	Rostrum
	UNEFM-CIAPP-320	Hesperogavialis cruxenti (holotype)	Partial cranium and rostrum
El Picache (6)			
	AMU-CURS-222	Globidentosuchus brachyrostris (holotype)	Cranium and mandibles
	AMU-CURS-223	Globidentosuchus brachyrostris (referred material)	Associated fragmentary cranial and mandibular remains
	AMU-CURS-224	Globidentosuchus brachyrostris (paratype)	Fragmentary cranial remains associated with mandibles
	AMU-CURSunnumbered	Purussaurus sp.	Cranium and mandibular remains
	MCN- unnumbered	Caiman brevirostris	Cranium with associated mandibles
NW San Rafael (6)			
	AMU-CURS-383	Globidentosuchus brachyrostris (referred material)	Cranium and mandibles
	AMU-CURS-384	Purussaurus sp.	Left mandible
	AMU-CURS-390	Mourasuchus sp.	Mandibular fragment
	AMU-CURS-395	Mourasuchus sp.	Cranial fragments
	AMU-CURS-396	Mourasuchus sp.	Cranial fragments
	AMU-CURS-399	Gryposuchus sp.	Cranial fragments
Corralito (7)			
	AMU-CURS-049	Caiman lutescens	Partial rostrum
	AMU-CURS-090	Caiman sp.	Cranium and rostrum
	AMU-CURSunnumbered	Purussaurus sp.	Cranial remains
	MCN-243	Melanosuchus fisheri (holotype)	Cranium and rostrum
	UNEFM-CIAPP-617	Gryposuchus jessei	Rostrum
	UNEFM-CIAPP-1297	Mourasuchus arendsi (holotype)	Skull and mandible
	UNEFM-CIAAP-1440	Gryposuchus croizati (paratype)	Mandible
Tío Gregorio (7) Pis			
	AMU-CURS-057 AMU-CURS-058	Purussaurus sp. Gryposuchus croizati (paratype)	
	$\begin{aligned} & \text { AMU-CURS-058 } \\ & \text { AMU-CURS-073 } \end{aligned}$	Gryposuchus croizati (paratype) Mourasuchus sp.	Cranium and rostrum and postcranial material Right mandible and incomplete rostrum and

		postcranial material
AMU-CURS-105	Caiman brevirostris	Cranium
AMU-CURS-106	Caiman brevirostris	Mandible
AMU-CURS-	Purussaurus sp.	partial cranial remains
unnumbered	Cranium and rostrum	
MCN-URU-2002-143	Ikanogavialis gameroi	Cranium
UCV-VF-1165	Ikanogavialis gameroi (holotype)	Mandible
UCVE-1166	Ikanogavialis gameroi (holotype)	
Sorte Casa Chiguaje (8) locality		
AMU-CURS-300	Crocodylus falconensis (holotype)	Almost complete skull with mandibles
AMU-CURS-302	Crocodylia indet.	Series of isolated teeth

Abbreviations: UNEFM-CIAAP, Universidad Nacional Experimental Francisco de Miranda, Coro, Venezuela; MCN, Museo de Ciencias Naturales de Caracas, Venezuela; AMU-CURS, Colección de Paleontología de Vertebrados de la Alcaldía de Urumaco, Estado Falcón, Venezuela; UCV, Universidad Central de Venezuela, Maracay, Venezuela.

Supplementary Table S3. Length estimations I.

New Crocodylus species	DCL $=59.0$ [cm], SL = 42.5 [cm], ODCL = 165.0 [mm]	
Gavialis gangeticus formula	(modif. from Sereno et al. ${ }^{56}$)	
TL $=(7.4 *$ DCL $)-69.369$	$\mathrm{TL}=(7.4 * 59.0)-69.369$	$\mathrm{TL}=367.23$
Crocodylus porosus formula	(modif. from Sereno et al. ${ }^{56}$)	
TL = (7.717 * DCL) - 20.224	$\mathrm{TL}=(7.717 * 59.0)-20.224$	$\mathrm{TL}=435.08$
Crocodylus moreletii formula	(modif. from Platt et al. ${ }^{57}$)	
TL $=(10.48$ * SL) +6.20	$\mathrm{TL}=(10.48$ * 42.5) +6.20	$\mathrm{TL}=451.60$
Crocodylus acutus formula	(modif. from Platt et al. ${ }^{58}$)	
TL $=(9.01$ * SL) +10.80	$\mathrm{TL}=(9.01 * 42.5)+10.80$	$\mathrm{TL}=393.73$
Alligator mississippiensis formula	(modif. from Hurlburt et al. ${ }^{59}$)	
Log TL = (log ODCL * 1.259)	Log TL $=(\log 165.0$ * 1.259) +	$\mathrm{TL}=384.43$
+ 0.793	0.793	
Log TL $=(\log \mathrm{DCL} * 0.970)+$	Log TL $=(\log 590.0$ * 0.970) +	$\mathrm{TL}=438.25$
0.954	0.954	

Mean $=411.72$

New caimanine species
DCL $=29.0$ [cm], SL = 14.0 [cm] ODCL = 150.0 [mm]
Gavialis gangeticus formula
TL = (7.4 * DCL) - 69.369
(modif. from Sereno et al. ${ }^{56}$)

Crocodylus porosus formula
TL = (7.717 * DCL) - 20.224
TL $=(7.4 * 29.0)-69.369$
$\mathrm{TL}=145.23$

Crocodylus moreletii formula
TL $=(10.48$ * SL) +6.20
Crocodylus acutus formula
TL $=(9.01 *$ SL $)+10.80$
Alligator mississippiensis formula
Log TL = (log ODCL * 1.259)
$\log \mathrm{TL}=(\log 150.0$ * 1.259 $)+$
[TL = 340.96*]
$+0.793$
0.793
$\log \mathrm{TL}=(\log \mathrm{DCL} * 0.970)+$ 0.954
$\log \mathrm{TL}=(\log 290.0 * 0.970)+\quad \mathrm{TL}=220.05$ 0.954
[199.95*]

Total body length (TL) estimations in [cm] using dorsal cranial length (DCL), snout length (SL) and orbito-cranial length (ODCL). Note that for the Alligator-based formula ${ }^{59}$, values have to be entered in millimeters. Results are rounded to the nearest [mm].

Supplementary Table S4. Length estimations II.

New Crocodylus species \quad DCL $=59.0$, SL $=42.5$

Crocodylus porosus formula	(modif. from Webb and Messel ${ }^{60}$)	
SVL $=(3.60 *$ DCL $)-4.30$	SVL $=(3.60 * 59.0)-4.30$	SVL $=208.10$
Crocodylus moreletii formula	(modif. from Platt et al. $\left.{ }^{57}\right)$	
SVL $=(5.32 *$ SL $)+1.61$	SVL $=(5.32 * 42.5)+1.61$	SVL $=227.71$
Crocodylus acutus formula	(modif. from Platt et al. $\left.{ }^{58}\right)$	
SVL $=(4.68 *$ SL $)+4.57$	SVL $=(4.68 * 42.5)+4.57$	SVL $=203.47$
		Mean $=213.09$

New caimanine species \quad DCL $=29.0$, SL $=14.0$
Crocodylus porosus formula (modif. from Webb and Messel ${ }^{60}$)
SVL $=(3.60 *$ DCL $)-4.30 \quad$ SVL $=(3.60 * 29.0)-4.30 \quad$ SVL $=100.10$
Crocodylus moreletii formula (modif. from Platt et al. ${ }^{57}$)
SVL $=(5.32 * \mathrm{SL})+1.61 \quad \mathrm{SVL}=(5.32 * 14.0)+1.61 \quad \mathrm{SVL}=76.09$
Crocodylus acutus formula
(modif. from Platt et al. ${ }^{58}$)
SVL $=(4.68 *$ SL $)+4.57 \quad$ SVL $=(4.68 * 14.0)+4.57 \quad$ SVL $=70.09$
Mean $=82.09$

Snout-vent length (SVL) estimations in [cm] using dorsal cranial length (CL) and snout length (SL); results are rounded to the nearest [mm].

Supplementary Table S5. Mass estimations.

New Crocodylus species	mean SVL $=213.09$, mean TL=	
Crocodylus porosus formula	(modif. from Webb and Messel ${ }^{60}$)	
$\operatorname{log~BM~}=(3.2613 * \log$ SVL $)-$	$\log \mathrm{BM}=(3.2613 * \log 213.09)$ -	$B M=319.70$
2.0894	2.0894	
Crocodylus moreletii formula	(modif. from Platt et al. ${ }^{57}$)	
$\ln \mathrm{BM}=(\ln \mathrm{TL}-2.05) / 0.32$	$\ln \mathrm{BM}=(\ln 411.72-2.05) / 0.32$	$B M=244.58$
$\ln \mathrm{BM}=(\ln \mathrm{SVL}-1.25) / 0.33$	$\ln \mathrm{BM}=(\ln 213.09-1.25) / 0.33$	$B M=257.75$
Crocodylus acutus formula	(modif. from Platt et al. ${ }^{58}$)	
$\ln \mathrm{BM}=(\ln \mathrm{TL}-2.06) / 0.31$	$\ln \mathrm{BM}=(\ln 411.72-2.06) / 0.31$	$\mathrm{BM}=353.38$
$\ln \mathrm{BM}=(\ln \mathrm{SVL}-1.27) / 0.32$	$\ln \mathrm{BM}=(\ln 213.09-1.27) / 0.32$	$\mathrm{BM}=357.40$

New caimanine species	mean $\mathrm{SVL}=82.09$, mean $\mathrm{TL}=171.74$ [mean $\mathrm{TL}=$ 199.95*]	
Crocodylus porosus formula	(modif. from Webb and Messel ${ }^{60}$)	
$\log \mathrm{BM}=(3.2613 * \log \mathrm{SVL})-$	$\log \mathrm{BM}=(3.2613 * \log 82.09)-$	$B M=14.25$
2.0894	2.0894	
Crocodylus moreletii formula	(modif. from Platt et al. ${ }^{57}$)	
$\ln \mathrm{BM}=(\ln \mathrm{TL}-2.05) / 0.32$	$\ln \mathrm{BM}=(\ln 171.74-2.05) / 0.32$	$B M=15.91$
		[25.59*]
$\ln \mathrm{BM}=(\ln \mathrm{SVL}-1.25) / 0.33$	$\ln \mathrm{BM}=(\ln 82.09-1.25) / 0.33$	$B M=14.32$
Crocodylus acutus formula	(modif. from Platt et al. ${ }^{58}$)	
$\ln \mathrm{BM}=(\ln \mathrm{TL}-2.06) / 0.31$	$\ln \mathrm{BM}=(\ln 171.74-2.06) / 0.31$	$\mathrm{BM}=21.05$
		[34.39*]
$\ln \mathrm{BM}=(\ln \mathrm{SVL}-1.27) / 0.32$	$\ln \mathrm{BM}=(\ln 82.09-1.27) / 0.32$	$B M=18.14$
		Mean $=16.73$
		[21.34*]

Body Mass (BM) estimations in [kg] using total length (TL) and snout-vent length (SVL) in [cm]; results are rounded to the nearest [mm].

Supplementary Notes

Supplementary Note 1: Stratigraphic and Palaeoenvironmental Context of New Taxa New Crocodylus species

The new Crocodylus species comes from outcrops that have only recently been discovered to be fossiliferous and described, so we provide here a context for future reference in explorations, or in stratigraphical, taphonomical or palaeoecological studies. The San Gregorio Formation is the upper-most part of the large Urumaco sequence ${ }^{54}$. The contact between the Codore and San Gregorio Formations is transitional near the Urumaco River area, and the age is early Pliocene. It is exposed in the north-central area of the Falcon State coastal plain, 10 km north of the Urumaco Town. The fossiliferous outcrops are of the lower part of the Vergel Member of the San Gregorio Formation (Supplementary Figure 4), consisting of brown to dark gray, massive mudstone and mottled muddy sandstone, interbedded with massive to cross-bedded conglomeratic sandstone with lenticular geometry and erosive base, grading to parallel-stratified, fine to medium grained sandstone. This succession represents flood plain deposits and associated crevasse splays, with low sinuosity ephemeral channels mostly filled during river flooding, in an alluvial fan setting. The lateral outflow of the channels during inundate events form a sub-aerial savannas, such as, wetlands. The results of these inundate soils are palaeosols over sandy deposits, characterized by the presence of a terrestrial and semi-aquatic fossil assemblage, including mammals ${ }^{61}$. The faunal assemblage represents the last testimonies of the hydrographic and climate change around the Miocene/Pliocene boundary.

New caimanine species

The type and most of the referred material of the new caimanine come from the El Picache locality, Upper Member of the Urumaco Formation, whereas the isolated mandible (AMU-CURS-223) was recovered from the Middle Member of the Urumaco Formation. The sedimentary environments of the Urumaco Formation have been described in Quiroz and Jaramillo ${ }^{54}$ (see stratigraphic logs in Fig. 1 and Supplementary Figures 2-4). According to the authors, both the Middle and Upper Member are composed of siliciclastic sequences and intercalated limestone beds deposited in a prograding delta and strand plain environment.

Supplementary Note 2: Major Expeditions to the Fossiliferous Outcrops around Urumaco

Expeditions to the Urumaco region were conducted by Royo y Gómez from Universidad Central de Venezuela in Caracas (1958-1959), C. González de Juana at Universidad Central de Venezuela together with Bryan Patterson from Harvard University (1972), Jean Bocquentin-Villanueva (1982 and following years in the 1980s) and by Orangel Aguilera (1992-2012) at the Universidad Francisco de Miranda in Coro, R. Sánchez at Alcaldía de Urumaco and Smithonian Tropical Research Institute (1990-2012), M. Sánchez-Villagra from University of Tübingen (2002-2004), The Natural History Museum in London (2004-2006), and from University of Zürich (2007-2012).

Supplementary Note 3: Phylogenetic Analyses

New Crocodylus species

The dataset for the testing the position of the new Crocodylus species comprised 32 characters in total (coding 29 characters that vary inside Crocodylinae ${ }^{62}$ plus two new characters), 14 ingroup taxa and the outgroup consisting of the basal crocodiline "Crocodylus" megarhinus and the three osteolaemines "Crocodylus" pigotti, Rimasuchus lloydi and Voay robustus.

Character description

1. Ventral tubercle of proatlas more than one-half (0) or no more than one half (1) the width of the dorsal crest. (Brochu et al. ${ }^{62}$, character 1)
2. Fused proatlas boomerang-shaped (0), strap-shaped (1), or massive and block-shaped (2). (Brochu et al. ${ }^{62}$, character 2)
3. Anterior half of axis neural spine oriented horizontally (0) or slopes anteriorly (1). (Brochu et al. ${ }^{62}$, character 6)
4. Axis neural spine crested (0) or not crested (1). (Brochu et al. ${ }^{62}$, character 7)
5. Posterior half of axis neural spine wide (0) or narrow (1). (Brochu et al. ${ }^{62}$, character 8)
6. Hypapophyseal keels present on eleventh vertebra behind atlas (0), twelfth vertebra behind atlas (1), or tenth vertebra behind atlas (2). (Brochu et al. ${ }^{62}$, character 9)
7. Third cervical vertebra (first postaxial) with prominent hypapophysis (0) or lacks prominent hypapophysis (1). (Brochu et al. ${ }^{62}$, character 10)
8. Neural spine on third cervical long, dorsal tip at least half the length of the centrum without the cotyle (0) or short, dorsal tip acute and less than half the length of the centrum without the cotyle (1). (Brochu et al. ${ }^{62}$, character 11)
9. Scapulocoracoid facet anterior to glenoid fossa uniformly narrow (0) or broad immediately anterior to glenoid fossa, and tapering anteriorly (1). (Brochu et al. ${ }^{62}$, character 14)
10. Proximal edge of deltopectoral crest emerges smoothly from proximal end of humerus and is not obviously concave (0) or emerges abruptly from proximal end of humerus and is obviously concave (1). (Brochu et al. ${ }^{62}$, character 15)
11. Dorsal margin of iliac blade rounded with smooth border (0) or rounded, with modest dorsal indentation (1) or rounded, with strong dorsal indentation ("wasp-waisted;" 2) or narrow, with dorsal indentation (3) or rounded with smooth border; posterior tip of blade very deep (4). (Brochu et al. ${ }^{62}$, character 19)
12. Supraacetabular crest narrow (0) or broad (1). (Brochu et al. ${ }^{62}$, character 20)
13. Dentary symphysis extends to fourth or fifth alveolus (0) or sixth through eighth alveolus (1) or behind eighth alveolus (2.) (Brochu et al. ${ }^{62}$, character 28)
14. Angular-surangular suture contacts external mandibular fenestra at posterior angle at maturity (0) or passes broadly along ventral margin of external mandibular fenestra late in ontogeny (1). (Brochu et al. ${ }^{62}$, character 34)
15. Dorsal surface of rostrum curves smoothly (0) or bears medial dorsal boss (1). (Brochu et al. ${ }^{62}$, character 52)
16. Preorbital ridges absent or very modest (0) or very prominent (1) at maturity. (Brochu et al. ${ }^{62}$, character 53)
17. Surface of maxilla within narial canal imperforate (0) or with a linear array of pits (1.) (Brochu et al. ${ }^{62}$, character 55)
18. Anterior ectopterygoid process tapers to a point (0) or forked (1). (Brochu et al. ${ }^{62}$, character 63)
19. Palatine process generally broad anteriorly (0) or in form of thin wedge (1). (Brochu et al. ${ }^{62}$, character 65)
20. Palatine-pterygoid suture nearly at (0) or far from (1) posterior angle of suborbital fenestra. (Brochu et al. ${ }^{62}$, character 67)
21. Pterygoid surface lateral and anterior to internal choana flush with choanal margin (0) or pushed inward anterolateral to choanal aperture (1) or pushed inward around choana to form "neck" surrounding aperture (2) or everted from flat surface to form "neck" surrounding aperture (3). (Brochu et al. ${ }^{62}$, character 69)
22. Lacrimal makes broad contact with nasal; no posterior process of maxilla (0) or maxilla with posterior process within lacrimal (1) or maxilla with posterior process between lacrimal and prefrontal (2). (Brochu et al. ${ }^{62}$, character 71)
23. Quadratojugal extends to superior angle of infratemporal fenestra (0) or does not extend to superior angle of infratemporal fenestra; quadrate participates in fenestra (1). (Brochu et al. ${ }^{62}$, character 80; adapted from Buscalioni et al. ${ }^{63}$ according to Brochu et al. ${ }^{64}$)
24. Posterolateral margin of squamosal horizontal or nearly so (0) or upturned to form a discrete "horn" (1.) (Brochu et al. ${ }^{62}$, character 86)
25. Squamosal does not extend (0) or extends (1) ventrolaterally to lateral extent of paraoccipital process. (Brochu et al. ${ }^{62}$, character 87)
26. Supraoccipital exposure on dorsal skull table small (0), absent (1), large (2), or large such that parietal is excluded from posterior edge of table (3). (Brochu et al. ${ }^{62}$, character 88)
27. Sulcus on anterior braincase wall lateral to basisphenoid rostrum (0) or braincase wall lateral to basisphenoid rostrum smooth; no sulcus (1). (Brochu et al. ${ }^{62}$, character 89)
28. Extensive exposure of prootic on external braincase wall (0) or prootic largely obscured by quadrate and laterosphenoid externally (1). (Brochu et al. ${ }^{62}$, character 91 ; adapted from Norell ${ }^{65}$ according to Brochu et al. ${ }^{64}$)
29. Lateral eustachian canals open dorsal (0) or lateral (1) to medial eustachian canal. (Brochu et al. ${ }^{62}$, character 96; adapted from Norell ${ }^{66}$ according to Brochu et al. ${ }^{64}$)
30. Posterior process of palatines with nearly parallel sides (0) or expands posteriorly (1).
(This character was not used by Brochu et al. ${ }^{62}$, it is adapted, however, from character 2 of Norell ${ }^{66}$ according to Brochu ${ }^{67}$)
31. Posterior margin of skull roof concave (0) or with a developed medial convexity (1) late in ontogeny. (NEW)
32. Anteriormost width of the intersuborbital bar wider than (0) or as wide as (1) the posteriormost width. (NEW)

Character codings

Unknown or non-applicable characters were coded as question marks. Polymorphisms are noted in brackets.
"Crocodylus" megarhinus
????? ??0?? ?? 1000000102100 ? 100 ? 00
"Crocodylus" pigotti
Rimasuchus lloydi
Voay robustus
Mecistops cataphractus
Crocodylus palaeindicus
??00? ?0011 ??1?0 101111 ??01 0 ? 10011
????? ????? ????0 1?00? ?1101 0110? 00
????? ????? 1110010001101111 ?100 01
10000000112011000011001000110010
????? ????? ??010 0010000100 1011? 1?
Crocodylus porosus
Crocodylus palustris
Crocodylus siamensis
Crocodylus johnstoni
Crocodylus mindorensis
Crocodylus novaeguineae
Crocodylus niloticus
Crocodylus falconensis sp. nov.
Crocodylus acutus
Crocodylus intermedius

Apomorphy List

The apomorphy list was constructed based on the tree shown in Figure 5a. ACCTRAN optimization in bold and DELTRAN optimization underlined.
Osteolaeminae: 12(1), 16(1), 22(1), 26(1)
Rimasuchus lloydi: 23(1)
"Crocodylus" pigotti + Voay robustus: 21(1), 32(1)
"C". pigotti: 18(1), 19(1), 30(1)
Voay robustus: 12(1), 24(1), 26(1)
Mecistops cataphractus + Crocodylus: 11(2), 14(1), 30(1)
Mecistops cataphractus: 19(1), $\underline{\text { 30(1) }}$
C. palaeindicus + Crown Crocodylus: 5(1), 8(1), 13(0), 29(1)
C. palaeindicus: 18(1), 20(0), 26(1), 26(0), 30(1)

Crown Crocodylus: 5(1), 8(1), 17(1), 30(0)
Indopacific Crocodylus: 16(1), 31(1)
C. palustris: 7(1), 12(1), 30(1), 32(1)
C. siamensis + C. porosus + C. mindorensis + C. johnstoni + C. novaeguineae: $2(1)$
C. siamensis: 3(1), 4(1), 8(0), 10(0), 24(1)
C. porosus + C. mindorensis + C. johnstoni + C. novaeguineae: 6(1), 9(0)
C. porosus: 32(1)
C. mindorensis: 30(1)
C. johnstoni + C. novaeguineae: 31(0)
C. johnstoni: 19(1)
C. novaeguineae: 23(0), 28(0)
C. niloticus + New World Crocodylus: 3(1), 22(1)
C. niloticus: no autapomorphies

New world Crocodylus: 1(0), 15(1), 20(0), 21(2)
C. falconensis: no autapomorphies
C. moreletii + C. rhombifer + C. acutus + C. intermedius: $\underline{1(0)}, \underline{21(2)}, 30(1), 31(1)$
C. moreletii: no autapomorphies
C. rhombifer: 11(1), 24(1)
C. acutus + C. intermedius: 32(1)
C. acutus: no autapomorphies
C. intermedius: 13(1), 22(0)

New caimanine species

The phylogenetic analysis including Globidentosuchus brachyrostris gen. et sp. nov. resulted in a total of 20160 most parsimonious trees (minimum length=650; Fig. 5b; Supplementary Figure S11). Note that character (97) for Alligator thomsoni (=althom in matrix file) in the original matrix of Brochu et al. ${ }^{64}$ was incorrectly scored with " 9 " instead of " 0 " and character (156) was scored with (2) in Piscogavialis jugaliperforatus and Gryposuchus colombianus, although (0) or (1) should have been the only possible character states following the character description. Both taxa are scored with (1) herein based on personal observation of holotypes by one of us (DCF). The original score (0) for character (150) and (3) for character (158) in Eocaiman cavernensis (=eocai in matrix file) by Brochu et al. ${ }^{64}$ were changed to (?), based on the poor preservation of that region of the skull in the holotype specimen.
The results of the TNT analysis could be verified by a second analysis using the heuristic search option in PAUP v. 4.0b10 for Microsoft Windows ${ }^{68}$. For the latter, a setting of MaxTrees=15000 was enforced as previous tries with an open, step-wise automated increase of the number of trees retained led to a critical termination of the analysis. The statistics of this analysis were: tree length $=650$; consistency index $(\mathrm{CI})=0.3477$; homoplasy index (HI) $=0.6523$; CI excluding uninformative characters $=0.3426$; HI excluding uninformative characters $=0.6574$; retention index $(R I)=0.8110$; rescaled consistency index $(R C)=0.2820$. The strict consensus of the first 1000 MPTs shows exactly the same topology and tree length (650 steps) as in the TNT analysis.
Re-running the analysis after incorporating Necrosuchus ionensis ${ }^{69}$ in the matrix basically recovered the same results as the previous analysis (tree length remained at 650; total number of MPTs = 24100), but with less resolution among basal caimanines (see Supplementary Figure S12). The previous sister group relationship between Tsoabichi and Paleosuchus was not recovered in this second run and the tree configuration with the polytomy among caimanines resembles that of the strict consensus shown in figure 9B in Brochu ${ }^{70}$. Following that previous work, we thus tentatively treat Tsoabichi as a caimanine herein as well.
Note that fundamental differences exist between the morphology-based matrices like the one from Brochu et al. ${ }^{64}$ used herein and molecular analyses ${ }^{71-74}$, especially pertaining to the hotly debated relationship between true and false gharials and crocodylines. However, assuming that tomistomines (the material tentatively assigned to ?Thecachampsa) are included in the

Crocodylidae as suggested by anatomy and the palaeontological record ${ }^{62}$, as well as developmental data ${ }^{75}$, it is possible to include the latter clade in the crocodilian fauna of Urumaco as well.

Character codings

The following coding based on and modified from the matrix of Brochu et al. ${ }^{64}$ was used (unknown or non-applicable characters were coded as question marks; the coding of Necrosuchus ionensis follows Brochu ${ }^{69}$):

Bernissartia fragesii
??????0???0111102100?00?0?000???0000?100010???0010?000???????10?0?00?001?1????0 00?0?0000?00030?00?????1000????1?0000?000??0100?0??000100?0?0??0?0?0010?0??00?? 0????????000?0000?000

Allodaposuchus precedens

??00010? 000000123000000?100000????00000001010300011000101100???0100000001100010000?? ???1??01?010001?000

Acynodon iberoccitanus
?? $10104101 ? ? ? ? ? ? ? ? 0$??????? 0 ?0????? 00010 ?000000106000000??00100????0000000101?00???20000?0100?110?0000??010100000?1?? ???????1???0????010

Acynodon adriaticus
?????1?????????????01?100?1??????????010?10?????????01????????0???0??100??00??000 10?000?0?1060000?0???? $110 ? ? ? ? 00 ? 00011010000 ? 1 ? 11 ? 0 ? 0100 ? ? ? 0 ? ? ? ? 0 ? ? 010 ? 0 ? 0010 ? ? ?$???????????1???01?0

Iharkutosuchus makadii
??10124????????? $110 ? ? ? 00 ? ? 10 ? 1 ? ? ? ? 0001$??0000011061000?0???0110????0000001001100001201001?100?1?0?00?0???12???100?2?? ???1???1000000??110

Hylaeochampsa vectiana
??0?????0????? ?????0?0?1000?00??0110?0?00000001001000?0?2110000120????1?0?000010100000000??? ?1?001001000?0110

Eothoracosaurus mississippiensis 20?000??102500000??000000????0000101001000????00?000100???01???10000010?001?00 ????????100010000000

Thoracosaurus neocesariensis
??????0?????? $111 ? 1 ? 010 ? ? ? ? 0011 ? ? 0 ? ? 0 ? 00 ? ? ? 0 ? ? ? 1122 ? ? ? 3 ? ? ? ? ? ? ? ? 10 ? 000 ? 01 ? 0 ? ? ? ? ? 00$ 120?0000?1025000000??000000?0?00001010010000?00000000110?00010??1?0000100001 00000000?00100?10000000

Thoracosaurus macrorhynchus
??????0???0?1111?1?01?????00????0????00???0???1?22???3??????0?100000001100????00 120?00?0?1025000000??000000?0?00001010010000110000000110?000100?10001010?001 0000???0??0100010000000

Eosuchus minor

??????0???0??111???01?00?0?01???0000?000??0???1122??0300?0000?10?000001100????0 0120?0000?1025?00000?000000?00000001010010000?10000000110???0100?10?10010000 1?0100??1???101010101003

Eosuchus lerichei
??????0?????? $01 ? ? ? ? 01 ? ? ? ? ? ? ? 1$? ? ??????0????????1122???3??????????????????0?????0012 0?0000?1025000000?0000000???000010100100000100000?0110?000?0??10?2001000010?1 ????????10?01?101003

Eogavialis africanum

????????1?????11???010??????????0?????????0???1122??03?????10?100000??1101????001 20?000?01025?00000?000000000000001010010000010000000121?000100?1001001000010 100?000??0101010100000

Piscogavialis jugaliperforatus
????????????????????????????????1?????????????11?2???3?????0001???????10??????00120 ?001001025000000?000000????0000101001000000?000000111?1?0001010020010000100? 0?1?0?0?12??1?10?000

Gryposuchus colombianus
????0?0???001??????01??000????????????????0????11223?030100?000100000001100????00 12010000?1025?00000?0?0000??0?00001010010000011000000121?000100?100110100001 $00000100 ? 00121010100000$

Gavialis sp. (Siwalik)
???????????????????010??????????????????????????22???3??????0?100000??1?0?????00?3 0?0??????2??0???0?0?0000??0?0000?0?00100?0?1???0000121?000100?100??0?000010000 ?????00121010100000

Gavialis gangeticus

$020000000 ? 001111011010000000111000000 ? 0000000011223003000000001000000011000$ $100001301000001025 ? 00000000000000000000101001000001100000012100001000100110$ 10000100000000000121010100000

Borealosuchus threeensis
????0??????????????01???????0??????1?00??20???01002??1?????10?11?000001000??????? ??? ?????????????

Borealosuchus formidabilis
000?000?0?11001001001000000101000001?000?20???0110200000?000?110000000100001 ??00020?0000?0023100000?0000001000000010100100010100201?11000000?00?00001010 0101000??????00100110000000

Borealosuchus wilsoni
??????0??????????1001000000101??00?1?000?20???01002??100?0?001100000201000????0 0020?0?0???0231000?????00001?0?0?001010010001010020101100?000100??00110100101 0000?00???010011?0?0000

Borealosuchus acutidentatus

????????????????????????????0???????????????????002????????????000??????0?????00020 ?0?00??0231000?????0000????0?0??0???????1??002?1?1100?0?0?0??0?011010?101000??? ????010??1?0?0000

Borealosuchus sternbergii
000000000?110010?1001000000101000001?00???0???011020000000?00010000000100000 ??00020?00000001310000001000001?0?00000111010001010000111100?000100?00000010 $0101000000 ? 1 ? 00100110000000$

Pristichampsus vorax
????0?0???01001001?01?00000111??0100?10???1???1110?000?????0??1000001?1?0?????2 1010?0000?0003000100?000000??0?00000010010001010000111110???0100?01000010010 1000???01??1100110000002

Pristichampsus geiseltalensis

Planocrania hengdongensis
????????????????????1?????????????????????????1110???1????????1????0?01?0?????20010 ?0?????01300??????0?000????0????01001???????0??1?1100????????0?0?00100?0100????? 1???1???10?10001

Planocrania datangensis
??11?????0????????????????????????20010? 000??1003000000??0?000???????000??01???????0??1?1110????????0?000010010??0?????? ???????10??0?0?

Leidyosuchus canadensis
????0?0???????1????010000011?1??10?0?11??11???0110?00000?0?01?100000011101????0 0010?0000000030000000001000100010000111010001010000111100?01010010010001001 0100000001?00100110010001

Deinosuchus riograndensis
??????0????????????01????????????????00???1???0110???001?0?11?10??0??11?0?????00?? 1?0??????0?0000???0??00011?00?0??????????????000111120?012210?1110001001?1000?? 000?0?????1??100?1

Diplocynodon ratelii

??????0??????000???010?00?1111001400?10??21???01002101?????0111000001?1101????0 0120?0000001230000000101000??0?00000011110001010000111100??10100100000010110 100000001?10100110010001

Diplocynodon hantoniensis

100???1?1?01000010001000011111??1400?101?21???011021010?????011100000111101??? ?00120?0?000?11300?000?1010001?0?00000010110001010000111100?110100?001010101 101000??0?1??010011?010001

Diplocynodon muelleri
????????????????????1?01??1?????14?0?10??21???01002??2?????01110??10011100????00 120?1000001230000000101000????0000011111000001000?1?1100?110??0?01?010101101 00????????0100110010001

Diplocynodon tormis ?0???1?001?0110010001

Diplocynodon darwini

100001001?010000?00010000?1111??1400?101121???011020010??0?01?100000011110100? ?00020?0000?0103000000?0??000??0?0000001111?00101000?111100?110100?0110101011 01000???????0100110010001

Baryphracta deponiae

100?0?0???????0????01?0???1?????14?0?10??21????1?02??0?????01?10??0??1110?????00 1???000??01030000?0????000?????0?0001?11000?01000?111100?110100?0??011?0?101?0 0????????1???1??10001

Brachychampsa montana
101011001?1100???0001??000111100?000?103111???11101101?????01110?00001110100? ?00110?0002?1101000000?0010001?0?01000001111001012001111100?110200?011100101 10102000101?00100110010001

Brachychampsa sealeyi
?????????????????????????????????????10???1???11101??0???????11??0000111?1????001? 0?0002?110100000???010?????????00????????10?2001101?00???????????100???????2???? ?????????1??10??1

Stangerochampsa mccabei
????110???010010?0001000001111001000?01??11???111010100????0111110000?110????? 00110?0002?1102000000?001000????00000001111001012001111100?110200?0?11001021 01000??1?1??0100110010001

Ceratosuchus burdoshi

???????????????????????????????????0?1????????11111??0?????01?10??00?11?01????0001 0?0?01?0102000000???1000??0????00???01???1?1??0?111100????????0????010?111?????? ?????10??,10010001

Hassiacosuchus haupti
001?1?0?1??????0???01?000?1111?????0??11?11???111110?0?????01?10??0??11101????00 010?00???010?0000??????0001?0??????0?????????1100?111100?1?0200?01120010210101? ???????01???10010001

Navajosuchus mooki 00????1??010??10010001

Allognathosuchus polyodon
??11111010?????01?11??00?111?1????0001 0?000??01020000?0?????00??0?00?00?0?111001?1?01?111100????????0??20010?101????? ??????1???1??1???1

Allognathosuchus wartheni
????1?0????????????0?0000?1111??1000?11???1???11111010?100?011110000011101????0 0010?0000?010200000000010001?0?000000?0111001?11011111100?110200?01120010210 10000?1?1?0010011001?001

Procaimanoidea kayi
????110?1??????0???010?00?1111??10?0?112121?????010?1??100?01?11000001110?????1 0?????0???010?0000???0?1000??0?0000000011100?0110111111000??0200?011200102101 010???????0100110010001

Procaimanoidea utahensis
?? 110100 ?00?? $01011110 ? ? 0011101$???? 101 10?0100?01020?0000??01000????0000000?11100101101?111100?1?0200?01120010?10100 0???????0100110010001

Arambourgia gaudryi

??11010??0?????01?100?0??1110?????1001 ??010??01020000?0???10001000??000????11?0??1101?111100?1102?0?0?1210?0210100?? ???????10011?010?01

Wannaganosuchus brachymanus
????1?0???1?00?0???010000?1111001000?11???1???111110?0?????0??100?00?11?0?????0 0110?0000??10200??00???1000??0?100000???1??01?1101?111100????????0?12001??1010 00????????10011?010001

Alligator sinensis
101011101?110010100010110111110011000112111110110000120?001011200000111101?? 110010000100001020000000001000110010000001111001011011111110011020010112001 0210101000111100100110010001

Alligator mississippiensis

101011001?01001000001011011111001100011210110011000112010010112000101111010 011001000010000102000000000100011100000000111100101101111111001102001011210 10210101000111100100110010001

Alligator mefferdi
???????????????????????????1?????????11???????110000120100001120001011110100??00 100?0100?0102000000?0?10001?1?0000000?111001011011111110?110200?011210102101 010??1???00100110010001

Alligator thomsoni
???????????????????01????????1?????0?1????????110000?2?????011200010011101????001 $00 ? 01000010200000 ? ? 0010001 ? 1 ? 000000 ? ? ? ? 1 ? ? ? ? ? 1011111110 ? 1 ? 0200101 ? 21010210101$?001?11?0100110010001

Alligator olseni
??????0?1?????10???01?10011111???100?11???????11010010?????011200000011101????0 0100?01000?10200??00???1000??0?0?000101111101011011111110?110200?011200102101 010??????00100?1?010001

Alligator mcgrewi
100010001?010010?00010000111?1101??0?11???1???11110010?100?011100000111101??? ?00000?0100?0102000000?0010001?00100000011110010110111111000110200?011200102 101010?01???00100110010001

Alligator prenasalis

10001?0?1?????10?0?01000011111??1000?112111???11111010?????01110000011110100?? 00000?0100?0102000000?001000110010000001111001011011111100?110200?0112001021 01000001?1?00100110010001

Eocaiman cavernensis
?? $1110 ? ? ? 2 ? ? ? ? ? 11 ? 1$??????????????? 00 ??? ?0??????0??????????100???0?1??0000???????0?????1??1?0?????0?????????????1????????? ???0??1?2?????

Tsoabichi greenriverensis
???????????????????01????????????????10??20???1100???2????????1??????11???01??0001 0?10????10??000????????0????????????????????000?1111?0?1?0????0??211???101?2????? ???????????100??

Purussaurus neivensis

101?100?1?000010?0??1????011???????0?11???1???1?00??1?1010?111201100011001????0 0110?0001?0102000000?0010001?0?0?000001111012111111111110?110201?0112011?210 102000101??010??10210001

Orthogenysuchus olseni
??00??????????????????????0?????00121? 0?01??10?0?0???????000????01?000???????????????11110????????0????11??101??0?????? ?????????10001

Mourasuchus spp.
10??100?1?00?010?00?1?10?011????1300?11???1???1102?112?????01110?100011000????0 0121?0000?1105000100?0010001?0?01000001111012?1011?111110?110?00????2111??111 ?30????1???100110?10001

Caiman yacare
101111001?10001000001010111111001100011122111011002112101011101011020110010 111001100000000112000000000100011001000000111101211110111111001102011011201 11210103000101100100110210001

Caiman crocodilus
101111001? 10001000001010111111001100011122111011002112101011101011020110010 111001100000000112000000000100011001000000111101211100111111001102011011201 11210103000101100100110210001

Caiman latirostris
101110001?10001000001010?111110011000111221210110021121010111?10110201100??? 110011000000001020010000001000110010000001111012111001111110011020110112111 1210103000101100100110210001

Caiman lutescens

??0????????????????????????????? 00110 ? 0000?0102001000?001000????1000000111101211200?1?1?10?????0???????1????0???????? ???????????100?1

Melanosuchus fisheri
??????0????????0?????????????????????????????????02????????1?11011????10?1????001? 0?0000??102001010???1000??0???0????11????2?11???111110????????0????11??1010????? ????010??1?2?0001

Melanosuchus niger

101111001?1?00100000101011111100110001112212101100211210101111101102011001?? 110011000000001020010100001000110010000001111012111001111110011020110112111 1210103000101100100110210001

Paleosuchus trigonatus
100111111?01001010001000111111211300011132112011002122211111111011000110010 111101100001000102000000000100011000100010111101111000111111011102011011211 1?210102000101100100110210001

Paleosuchus palpebrosus
100111111?010010101010001111112113000111321120110021222111?11?10110001100?01 111011000010001020000000001000110001000101111011110001111110111020110112111 ?210102000101100100110210001

Mecistops cataphractus
10?001001?000010000011100111112012000111101101111041010100010010001110101?1 001001200000010021000000010000011010000101101000101000011111000010111001200 10010100011101011110010000003

Crocodylus niloticus
101000001? 10101000101110011111201200011120110111002101010001011000111010111 001001100000010021000000110000011010010001101000101100011111000010111001200 10010100011101011110011000003

Crocodylus porosus
111000001?00101010101110001111201200011120110111002101010001011000111010111 001001100000010021000100110000011010010001101000101000011111000010111001200 10010100011101011110011000003

Crocodylus rhombifer
001000001 ? 10101000101110011111201100011120110111002101010001011000111010111 001001100000010021010000110000011010010001101000101100011111000010111001200 10011100011101011110011000003

Euthecodon arambourgii
???0??????????????????1?????00020? 0000?1025000100?1000001101000000??0????0???000111110??11011?001210100101100?? ??1??11?0?1000?003

Osteolaemus tetraspis

```
??1?00001?001010100011100111112011100111111101110021010100010110000110101110 011010000010100210001000100000110110010111010101010000111110100101010012111 0010110011101011110110000003
```

Osteolaemus osborni
??1?00001?001010100011100111112011100111111101110021010100000110000110101110 011011000010100210001000100000110110010010010101010000111110100101010012111 0010110011101011110110000003

Voay robustus
??????0????????0???011?????111??1110??????1???1110210101000001100011111011????0 0110?0000?00210001000100000110100010111010101010000111110?00101110012011001 11110? 1101? 11110010000003

Rimasuchus lloydi ???1??????????????????1?????00110? 0000?0021000100?100000110100000????10??1??100?111110?001011?00120010010110011 1?1??1110?1000?003

Crocodylus pigotti
??????????00?010?00?11??01111????????10???0???11102??1????????1???111???1?????000 10?0100?00210001000100000????0010101101010001?0?0111110???1?1??00121010010110 0??1?1??1100?10000003

Crocodylus megarhinus
??????0???????????001?????????????????????????11102101?????00110000??01011????001 10?0000?002300000001?0000??0?00000011010001012000111110?002?11?0012?01001010 ?01100???1110010000003

Australosuchus clarkae

??????0???????1??0??1?????11???????0?10????1???1110?101?????001100001101011????00 110?00001102100000001000001?0?000000???????1010000111110?002011?011200100101 00011??1??11?001000?001

Kambara implexidens

??????0????????????01?????11????1100?10???1???11102101?????001100001101011????00 110?00001102100000001000001?0100000010010001010000111110?002011?001200100101 00011101?11110010000001

Trilophosuchus rackhami

01?111?0?1000?001

Quinkana spp.

??11?0???1??????????????????1?????21010 ?0000?10(0,2)(1,5)00(0,1)0000100000????0?0??????????1??1000111?10?002011100121010 010102?11101?11??01?000???1

Tomistoma schlegelii
021000001?0010100010110001111110110001013011011122? 104000001001000000010100 001001200000011021000001010000011010001001001000101100011111000001101001210 10010100011001011110010000003

Tomistoma lusitanica
??????0????????????001????????????????10???1???1??2???4?????00?10000??0101?????0012 0?0000?1021?00001?100000110?00001010010001010000111110?0001?1?10121010010100 011001??1110010000003

Toyotamaphimeia machikanense
00100100??11111100101100011111101100?00???1?????22??04?????10010?0000?101000?? 00120?00001100400000???00000????0000?010010000?10000011110??00?1??1??21010?10 10??????????110010?00003

Gavialosuchus eggenburgensis
????????????????????1???00120? 0000?1024000000??00000????00?0101001000?01200?0?1110?0??????1?121010?10100???? ????11???10000003

Paratomistoma courti
???0??10?000001010????00??? ????????2??0?0??????0001?0?????????????????000?1??11?????1???1??200100001000?1000 ?101?0?100??00?

Tomistoma cairense
??1??2???4???????? $1000001 ? 1010 ? ? ? ? 00$? 0?0?????025?0???0????000??0?000010100100010?00??011110???01???10?2001001010001 ??0???11?001?000003

Thecachampsa antiqua

02000000??001010?00011010111?1??11?0?00???1???1122???4?100????1000031?101?0??? 00120?000011021000000?100000??0?0000101?010001011000011110???011??1012001001 01010??00???11100100?2003

Tomistoma petrolica
???????????????????????????1????????????????????????04??????0010?0?01?1?10????00??? ????????2?00?0?0???00001???0?00101001??????1?0?0?1110?0?2?0??0??200?0000100????? ????1???1????003

Dollosuchoides densmorei
001???0???111010?0001?0?001111??1?00??????????1120???0?????000100?0??0101?????0 0120?00?0?1021000000??00000????01?0101001000101100?011110????????1??20010?1010 001???????10?01000?003

Kentisuchus spenceri
??????0??1?????0?????0??1000?1101?11????0011 0?0000?1021000000???0000??0?010010100100?101100?111110??????0?0??20010?10100?? ?????111?0?100?0?03

Brachyuranochampsa eversolei
??0011?? 00???1021000000??00000??0?0?0??01101000101000?111100???2?00?0?121010?101000??? ????1100010000003

Crocodylus acer
??00110? 0000?1021000000??000001???000100?1010001010000111100?002?01?00?2001001010001 ??0?? 11100010000003

Crocodylus depressifrons
???00?00??11000010011100001111??1100?10????1???11102101?????001100000001011???? 00110?0000?1011000000?1100001?0?0001001?01000101?000111100?010200?0012001001 0100011001?11100010000003

Crocodylus affinis
001001001?10001000011100001111001100?10???1???111021010100000110000000101100 ??00110?000010011000000?010000??0?00010011010001010000111100?0?010??00120010 01010001??0??? 1100010000003

Asiatosuchus germanicus

001?0?0?1?001010?0101?000?1111??1??0??????1???11102000?????00110000??0101?00?? 00010?0000?000100000???10000??0?00010???01000101000?111100???0100?00111010010 1000???????1100?10000003

Prodiplocynodon langi
??00110? 0000??003000000??100001??000010011?1000101????111100???0?0??0?11?010?1010001?? 01?01100110000003

Necrosuchus ionensis
??????0????????????0???01?111???1300?11???1???1100???2????????1???0?????0?????00?? ??0???????? ??0????1?0?1

Globidentosuchus brachyrostris gen. et sp. nov.
???????????????????01?????????????????????????11101??0?1???0?1101103111111????001 2??000??01?20000???1?10?0??????0???0?11?????1?1??1?1100??????0?0??2011??101?3??? ??????1???1?????0?

Supplementary References

Quiroz, L.I. \& Jaramillo, C.A., Stratigraphy and sedimentary environments of Miocene shallow to marginal marine deposits in the Urumaco Trough, Falcón Basin, western Venezuela in Urumaco and Venezuelan Palaeontology - The Fossil Record of the Northern Neotropics, (eds. M. R. Sánchez-Villagra, O. A. Aguilera, \& A. A. Carlini) 153-172 (Indiana University Press, Bloomington, 2010).

Brochu, C.A. Crocodylian snouts in space and time: phylogenetic approaches toward adaptive radiation. Am. Zool. 41, 564-585 (2001).
Sereno, P.C., Larsson, H.C.E., Sidor, C.A., \& Gado, B. The giant crocodyliform Sarcosuchus from the Cretaceous of Africa. Science 294, 1516-1519 (2001). Platt, S.G. et al. Size estimation, morphometrics, sex ratio, sexual size dimorphism, and biomass of Morelet's crocodile in northern Belize. Caribb. J. Sci. 45, 80-93 (2009).

Platt, S.G., Rainwater, T.R., Thorbjarnarson, J.B., \& Martin, D. Size estimation, morphometrics, sex ratio, sexual size dimorphism, and biomass of Crocodylus acutus in the coastal zone of Belize. Salamandra 47, 179-192 (2011).
Hurlburt, G.R., Heckert, A.B., \& Farlow, J.O. Body mass estimates of phytosaurs (Archosauria: Parasuchidae) from the Petrified Forest Formation (Chinle Group: Revueltian) based on skull and limb bone measurements. New Mexico Mus. Nat. Hist. Sci. Bull. 24, 105-114 (2003).

Webb, G.J.W. \& Messel, H. Morphometric analysis of Crocodylus porosus from the north coast of Arnhem Land, northern Australia. Austr. J. Zool. 26, 1-27 (1978). Vucetich, M.G., Carlini, A.A., Aguilera, O., \& Sánchez-Villagra, M.R. The Tropics as reservoir of otherwise extinct mammals: the case of rodents from a new Pliocene faunal assemblage from northern Venezuela. J. Mammal. Evol. 17, 265-273 (2010). Brochu, C.A., Njau, J., Blumenschine, R.J., \& Densmore, L.D., A new horned crocodile from the Plio-Pleistocene hominid sites at Olduvai Gorge, Tanzania. PLoS ONE 5(2), e9333. doi:10.1371/journal.pone. 0009333 (2010).
Buscalioni, A.D., Sanz, J.L., \& Casanovas, M.L. A new species of the eusuchian crocodile Diplocynodon from the Eocene of Spain. N. Jb. Geol. Pal., Abh. 187, 1-29 (1992).

Brochu, C.A., Parris, D.C., Grandstaff, B.S., Denton Jr., R.K., \& Gallagher, W.B. A new species of Borealosuchus (Crocodyliformes, Eusuchia) from the Late Cretaceous-early Paleogene of New Jersey. J. Vertebr. Paleontol. 32, 105-116 (2012). Norell, M.A. The higher level relationships of the extant Crocodylia. J. Herpetol. 23, 325-335 (1989).
Norell, M.A. Cladistic approaches to paleobiology as applied to the phylogeny of alligatorids. (PhD Thesis, Yale University, New Haven, CT, 1988).
Brochu, C.A. Phylogeny, systematics, and historical biogeography of Alligatoroidea. Soc. Vertebr. Paleontol. Memoir 6, 9-100 (1999). Swofford, D.L. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. (Sinauer Associates, Sunderland, Massachusetts, 2002).
Brochu, C. A. Phylogenetic relationships of Necrosuchus ionensis Simpson, 1937 and the early history of caimanines. Zool. J. Linnean Soc. 163, S228-S256 (2011). Brochu, C.A. A new alligatorid from the lower Eocene Green River Formation of Wyoming and the origin of caimans. J. Vertebr. Paleontol. 30, 1109-1126 (2010). Harshman, J., Huddleston, C.J., Bollback, J., Parsons, T.J., \& Braun, M.J. True and false gharials: a nuclear gene phylogeny of Crocodylia. Syst. Biol. 52, 386-402 (2003). Oaks, J.R. A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution 65, 3285-3297 (2011).
Meganathan, P.R., Dubey, B., Batzer, M.A., Ray, D.A., \& Haque, I. Molecular phylogenetic analyses of genus Crocodylus (Eusuchia, Crocodylia, Crocodylidae) and the taxonomic position of Crocodylus porosus. Mol. Phylog. Evol. 57, 393-402 (2010).

McAliley, L.R. et al. Are crocodiles really monophyletic?-Evidence for subdivisions from sequence and morphological data. Mol. Phylog. Evol. 39, 16-32 (2006). Piras, P. et al. The Gavialis-Tomistoma debate: the contribution of skull ontogenetic allometry and growth trajectories to the study of crocodylian relationships. Evol. Dev. 12, 568-579 (2010).

[^0]: ${ }^{1}$ Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, CH-8006 Zurich, Switzerland. ${ }^{2}$ Programa de Pós-graduaçäo em Biología Marinha, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Outeiro São João Batista, 1Niterói, s/nº. CEP: 24020-14, Rio de Janeiro, Brasil. ${ }^{3}$ Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy. ${ }^{4}$ Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona. Edifici ICP, Campus de la UAB s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain. ${ }^{5}$ Departamento de Paleontologia e Estratigrafia, IGeo, UFRGS, Avenue Bento Gonçalves 9500, Cx. P. 15001 Porto Alegre, RS, Brazil. ${ }^{6}$ Departamento Científico de Paleontología de Vertebrados, Museo de La Plata, Paseo del Bosque s/n B1900FWA La Plata, Argentina. ${ }^{7}$ Smithsonian Tropical Research Institute, Apartado Postal 0843-03092 Balboa, Ancon, Republic of Panama. ${ }^{8}$ Alcaldía Bolivariana del Municipio Urumaco, Calle Bolívar s/n, Urumaco, Estado Falcón, Venezuela. ${ }^{9}$ Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Canada SK S7N 5E2. Correspondence and requests for materials should be addressed to M.R.S.-V. (email: m.sanchez@pim.uzh.ch).

