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generalization of QCD to the limit of a large number of color charges, originally proposed
by ’t Hooft. Then, after introducing the gauge-invariant non-perturbative formulation
of non-Abelian gauge theories on a spacetime lattice, we present a selection of results
from recent lattice studies of theories with a different number of colors, and the findings
obtained from their extrapolation to the ’t Hooft limit. We conclude with a brief discussion
and a summary.
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1. Introduction

In 1974, two seminal papers were published in the theoretical physics literature: on April 18, the article titled ‘‘A planar
diagram theory for strong interactions’’, by Gerard ’t Hooft, appeared in Nuclear Physics B [1], while, on October 15, Physical
ReviewD published ‘‘Confinement of quarks’’, by Kenneth GeddesWilson [2]. The former paper studied a non-Abelian gauge
theory in the double limit of an infinite number of color chargesN and vanishing gauge coupling g , at fixed g2N , showing that,
in this limit, Feynman diagrams could be arranged in an expansion in powers of 1/N , in which the dominant contributions
come from a limited class of diagrams with well-defined topological properties, and revealing a close analogy with the
string model for strong interactions. The latter paper, on the other hand, introduced a regularization for non-Abelian gauge
theories, by discretizing the continuum Euclidean spacetime on a grid, and proved the confinement of color charges in the
strong-coupling limit of this model; this formulation laid the foundations of modern lattice field theory,1 which provides a
mathematically rigorous, gauge-invariant, non-perturbative definition of non-Abelian gauge theory,2 andmakes it amenable
to investigation by statistical field theory methods, including Monte Carlo simulations.

Both papers have been highly influential during the course of almost four decades, but the developments they inspired
followed somewhat different historical paths. In particular, the elegantmathematical simplifications of the large-N limit, the
appeal of its qualitative phenomenological predictions, a record of successful applications of large-N techniques in deriving
analytical results for statistical spin systems, and the (semi-)analytical solution of the spectrum of large-N QCD in two
spacetime dimensions [8], led to early expectations that this approach could soon disclose the key to understand the low-
energy dynamics of strong interactions. These expectations, however, turned out to be delusive, and, although this approach
led to a number of fruitful theoretical developments (including, for example, the discovery of a closed set of equations for
physical gauge-invariant operators [9], and, later, the formulation of a systematic 1/N-expansion for baryons [10]), it did
not provide an exact solution for QCD in four spacetime dimensions.

On the contrary, the early results (both analytical and numerical) in lattice field theory were mostly limited to a
domain of parameters (gauge couplings, quark masses, lattice sizes, as well as simulation statistics) characterized by large
discretization effects and systematic and/or statistical uncertainties, and provided valuable, but only qualitative, information
about the continuum theory. Although QCD (with its full continuum symmetries) is expected to emerge as a low-energy
effective description for the lattice model when the lattice spacing a tends to zero, the suppression of artifacts of the lattice
discretization in numerical simulations relies on the separation between the typical energy scale µ relevant for a given
physical quantity, and the intrinsic lattice cut-off π/a, so Monte Carlo computations have to be performed in a parameter

1 While the origin of lattice QCD can be identified with Wilson’s article [2], ideas related to the regularization of field theories on a spacetime grid were
also discussed in earlier works by Wentzel [3], by Schiff [4], by Wegner [5], and in unpublished works by Smit and by Polyakov (see Ref. [6]).
2 An alternative computational framework for defining non-Abelian gauge theory in the strong coupling regime is provided by the formulation in light-

cone quantization—see Ref. [7] and references therein.
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range forwhichµ ≪ a−1; in addition, at the same time the lattice sizes should be sufficiently large, to suppress finite-volume
effects. The combination of these requirements poses a non-trivial computation challenge, which is made even tougher
by the technical complications that arise when fermionic fields are included. For these reasons, until the end of the last
century,many latticeQCD simulationswere still performedon relatively coarse lattices, and/orwithin the so-called quenched
approximation (i.e., the effects of dynamical quark loops were neglected); the difficulties in approaching the continuum and
large-volume limits in simulations including the dynamical effects of sufficiently light quarks were summarized by Ukawa
at the international Lattice conference in 2001 [11], in a presentation including a famous plot of the computational costs,
which looked like an unsurmountable barrier, and was henceforth dubbed ‘‘the Berlin wall’’ of lattice QCD.

Fortunately, dramatic algorithmic andmachine-power improvements during the last decade have radically changed this
scenario. Today, large-scale dynamical lattice simulations, at physically realistic values of the parameters, have become the
routine, and canprovide theoretical predictions for quantities such as hadronmasses, from the first principles of QCD [12,13].
At the same time, there has been similar progress also for other challenging lattice field theory computations, including, in
particular, simulations of large-N gauge theories. This is particularly timely, given that during the last fifteen years, the
interest in large-N gauge theories has received a further, tremendous boost, with the conjecture of a duality between four-
dimensional gauge theories and string theories defined in a higher-dimensional, curved spacetime [14–16], which is often
called AdS/CFT, or holographic, correspondence. According to the ‘‘dictionary’’ relating quantities on the two sides of this
correspondence, the strong coupling limit of the gauge theory corresponds to the limit in which the spacetime where the
dual string theory is defined is weakly curved; moreover, when the number of color charges in the gauge theory becomes
large, the string coupling in the dual string theory tends to zero—so that the string theory reduces to its classical limit. In
fact, it is only in this limit that string theory can be studied with analytical methods: hence all holographic computations
rely on the approximation of an infinite number of color charges for the gauge theory. For this reason, understanding
the quantitative relevance of the large-N limit for real-world QCD becomes a particularly important issue—one which can
be reliably addressed in a first-principle approach via numerical computations on the lattice (at least for a large class of
observables in non-supersymmetric theories). In addition, the level of control over systematic and statistical uncertainties
in present lattice computations is also sufficient for reliable tests of some of the phenomenological predictions that have
been derived using 1/N expansions and other (non-holographic) large-N methods.

This motivated us to write the present review article, whose purpose is twofold: on the one hand, we would like
to summarize the results of recent lattice computations in large-N gauge theories, and to communicate them to the
broader high-energy physics community, presenting them in a concise format, readily accessible also to people who are
not lattice practitioners. In doing this, we point out some important fundamental aspects of lattice field theory, and its
mathematical robustness, but also some of the non-trivial technical and computational challenges, that one has to cope
with, in lattice studies of certain physical problems. On the other hand, we would also like to present an overview of the
theoretical aspects of large-N gauge theories, and to draw the attention of our colleaguesworking in lattice QCD to themany
phenomenologically interesting implications of the large-N limit—with an encouragement to compare the results of their
computations (not only those for theories with more than three colors, but also, and especially, those for ‘‘real-world QCD’’
with N = 3 colors) with the quantitative predictions for many physical observables, that have been worked out using 1/N
expansions.

In order to make this review as self-contained as possible, we decided to include an introduction to the large-N limit
of QCD (and to its main phenomenological implications) in Section 2, as well as an introductory overview of the lattice
regularization in Section 3. These sections are very pedagogical, and (each of them separately) should be suitable as a
general introduction to the topics therein covered. Then, Section 4 discusses some aspects related to the property of
factorization in large-N gauge theories: these include volume independence, loop equations in the continuum, the lattice
Eguchi–Kawai model, and the interpretation of these properties in terms of large-N ‘‘orbifold’’ equivalences; the results of
various numerical investigations of reduced large-N models are also critically reviewed. Finally, the main lattice results for
physical quantities extrapolated to the large-N limit are presented in Section 5, while the conclusive Section 6 summarizes
the present status of this field, and outlines those that, in our view, are potentially interesting research directions for the
future.

The ideal target of this article encompasses a broad audience, including people working in various fields of high-energy
physics, and with a varying degree of expertise on the topics that are presented. Throughout the various sections, we tried
to keep the discussion at a pedagogical level, which should also be suitable and easily understandable for graduate or
undergraduate students. In particular, as we said, we hope that some sections, like Sections 2 and 3, could be useful on their
own, and could provide a concise overview for the readers interested in large-N QCD or in lattice field theory, respectively.

We conclude this introduction with some disclaimers. First of all, the implications of the large-N limit for QCD and for
QCD-like theories have been studied in literally thousands of scientific papers, for almost four decades: while it would be
impossible to cover all of the relevant literature in the present article, we encourage the readers to integrate the discussion
presented here with some of the many excellent reviews that are already available. The most significant early works
on this subject are collected in Ref. [17], and introductory lectures on the topics discussed therein can be found, e.g., in
Refs. [18–24]. In addition, we would like to mention the proceedings of the ‘‘Phenomenology of Large Nc QCD’’ conference
held at the Arizona State University in Tempe, Arizona, US in 2002 [25], and the slides of the ‘‘Large N @ Swansea’’ workshop
held at the University of Swansea, UK in 2009, which are available online [26]. Besides, there exist various review articles
focused on specific topics, like, for example, the interpretation of the large-N limit in terms of coherent states [27], baryon
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phenomenology [28], loop equations [29], Eguchi–Kawai models [30], early lattice results from simulations of Yang–Mills
theories with two, three and four colors [31] and aspects related to the dependence on a topological θ-term [32]. Most of
the lattice results in large-N lattice gauge theories, that we discuss here, have also been reported in plenary presentations
at various recent editions of the International Symposium on Lattice Field Theory [33–35].

Finally, although we tried to summarize the contents of the articles cited herein as clearly and as accurately as possible
(compatibly with the tight constraints of a review article), we apologize with the authors of those works, which we may
have presented in an unsatisfactory way.

2. The large-N limit

Expansions around the large-N limit are a mathematical tool to study statistical models and quantum field theories
characterized by invariance under a certain (local or global) group G of transformations of their internal degrees of freedom,
whose number is related to a parameter N . In contrast to the naïve expectation, that the dynamics might get more andmore
complicatedwhenN becomes arbitrarily large, inmany cases it turns out that the opposite is true: often, the theory becomes
analytically more tractable – or even solvable – in the limit for N → ∞, and corrections accounting for the finiteness of N
can be arranged in an expansion around such limit, in powers of the ‘‘small’’ parameter 1/N .

In statistical spin systems, early applications of this idea date back to the seminal works by Stanley [36] and by various
other authors [37–41]: in particular, this approach showed the deep connections between the nature of critical phenomena
and the spacetime dimensionality, and laid a theoretical basis for mean-field computations. In addition, when applied to
matrix models, large-N techniques can be used to derive exact analytical solutions [42], and reveal the connection of these
models to discretized random surfaces and to quantum gravity in two spacetime dimensions [43–49]. Generalizations
to higher dimensions can be formulated in terms of tensor models, or group field theory [50–54]. Although explicit
computations in thesemodels have been hindered by the difficulties in formulating a viable, systematic generalization of the
1/N expansion, significant progress has been recently achieved, with the introduction of colored tensor models [55]—see
the very recent Ref. [56] for a discussion.

For non-Abelian gauge theories – in particular, quantum chromodynamics (QCD) – the large-N expansion was first
studied in the 1970’s by ’t Hooft [1], who suggested a generalization of the theory in which the number of color charges
is the parameter N , which is sent to infinity (in an appropriate way, as discussed below). The large-N limit of QCD is
particularly interesting, because in this limit the theory undergoes a number of simplifications—which, in certain cases,
allow one to derive exact solutions with analytical or semi-analytical methods. Well-known examples can be found in two
spacetime dimensions, with the computation of the meson spectrum [8], the identification of a third-order phase transition
separating the strong- and weak-coupling regimes in a lattice regularization of the theory [57–59], and the determination
of the properties of the spectral density associated to Wilson loops in the continuum theory [60].

In the physical case of four spacetime dimensions, the large-N limit does not make QCD analytically solvable;
nevertheless, it discloses a considerable amount of information not captured by conventional perturbative computations
around theweak-coupling limit. In addition, it also offers a simple interpretation – often based on elementary combinatorics
arguments – for some empirical facts observed in hadronic interactions. Finally, a persistent Leitmotiv in the scientific
discourse on the subject, has been the idea that the large-N limit of QCD may correspond to some kind of string theory.

In this section, we first introduce the ’t Hooft limit of QCD in Section 2.1, and discuss its main implications for the meson
and glueball spectrum (Section 2.2) and for baryons (Section 2.3). Then, after presenting some implications of the large-N
limit for the topological properties of the theory in Section 2.4, we review the expectations for the phase diagram at finite
temperature and/or finite density in Section 2.5. Finally, in Section 2.6 we briefly discuss the rôle of the large-N limit in
the conjectured correspondence between gauge and string theories [14–16], which has been widely regarded as a powerful
analytical tool to study the dynamics of strongly coupled gauge theories for the last fifteen years.

Although, due to space limits,we cannot cover these topics in the present review,wewould like tomention that there also
exist interesting studies of the implications of the large-N limit for hadron scattering amplitudes in the limit of large invariant
energy s at fixed transferred momentum t [61,62] and physics at the partonic level [63–70], for QCD evolution equations
[71–84], and for small-x physics [85–89] (see also the discussion in the reviews [90,91]), for the hadronic contribution to
the muon anomalous magnetic moment [92–94], for the physics of electroweak processes like, e.g., those relevant for kaon
physics [95–100], for studies of the ‘‘large-N Standard Model’’, in which large-N QCD is combined with the usual electro-
weak sector of the Standard Model and implications for Grand Unification are derived [101–105]. Ref. [106] proposed to
use mathematical tools relevant for the large-N limit – specifically: random matrix theory – to study neutrino masses and
mixing angles, considering the number of generations in the StandardModel3 as the ‘‘large’’ parameter N . Finally, we would
like to mention a very recent article discussing large-N gauge theories from a philosophy of science point of view [111].

2.1. The planar limit of QCD

In the Standard Model of elementary particle physics, strong interactions are described by QCD: a non-Abelian vector
gauge theory based on local invariance under the SU(3) color gauge group. The QCD Lagrangian density in Minkowski

3 Note that this is different from the possibility of a large number of right-handed neutrinos, which was considered in Refs. [107–110].
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spacetime reads:

L = −
1
2
Tr

FαβFαβ


+

nf
f=1

ψ f

iγ αDα − mf


ψf , (1)

where g is the (bare) gauge coupling, Dµ = ∂µ − igAa
µ(x)T

a is the gauge covariant derivative (with the T a’s denoting the
eight generators of the Lie algebra of SU(3), in their representation as traceless Hermitian matrices of size 3 × 3, with the
normalization: Tr(T aT b) = δab/2), Fαβ = (i/g)[Dα,Dβ ] is the non-Abelian field strength, the γ α ’s are the Dirac matrices,
while ψ(x) and ψ(x) = ψĎγ 0 respectively denote the spinor associated with the quark fields and its conjugate. Quark
fields are in the fundamental representation of the gauge group, and occur in nf different species (‘‘flavors’’, labeled by the
f subscript in the equation above), with generically different massesmf .

The ’t Hooft limit of QCD [1] is a generalization of the theory, in which the gauge group is taken to be SU(N), and the
number of color charges N is assumed to be arbitrarily large. Standard weak-coupling computations show that, in order for
this limit to make sense at least perturbatively, it is necessary that at the same time the coupling g be taken to zero, holding
the ’t Hooft coupling λ = g2N fixed. As for the way the number of quark flavors nf should be scaled in the large-N limit,
’t Hooft’s original proposal was to hold it fixed. Then, for example, it is easy to see that forN → ∞ the two-loop perturbative
QCD β-function:

µ
dg
dµ

= −
1

(4π)2


11N − 2nf

3


g3

−
1

(4π)4


34N3

− 13N2nf + 3nf

3N


g5

+ O(g7) (2)

turns into a renormalization group equation for λwith finite coefficients:

µ
dλ
dµ

= −
11

24π2
λ2 −

17
192π4

λ3 + O(λ4). (3)

Note that, since the coefficient of the first term appearing on the right-hand side of Eq. (3) is negative, perturbation theory
predicts that the ’t Hooft limit of QCD is an asymptotically free theory. While higher-order coefficients of the β-function
are scheme-dependent, inspection of the results obtained, e.g., in the minimal-subtraction scheme [112,113] shows that it
remains true that the coefficients appearing on the r.h.s. of Eq. (3) tend – rather quickly [114] – to finite values in the large-N
limit. It is then natural to assume that theΛQCD scale parameter of strong interactions is held fixed for N → ∞.

Another interesting feature of Eq. (3) is that it does not depend on nf : this is simply due to the fact that the number
of quark degrees of freedom is O(nfN), i.e. O(N) in the ’t Hooft limit, and hence subleading with respect to the number
of gluon degrees of freedom, which is O(N2). In fact, a different large-N limit of QCD (Veneziano limit) can be obtained,
if nf is also sent to infinity, holding the nf /N ratio fixed [115]; however it turns out that this choice leads to generally
more complicated computations, and, hence, has received less attention in the literature. Another inequivalent large-N
limit of QCD (Corrigan–Ramond limit) is obtained, by assuming that nf is fixed, but (some of) the fermions (‘‘larks’’) are
in the two-index antisymmetric representation of the color gauge group [116,117] (which, for N = 3, is nothing but the
antifundamental representation), whose number of components scales like O(N2) at large N . Finally, yet another type of
large-N limit, in which λ grows like Nc (with c > 0) for N → ∞, has been recently proposed in Refs. [118,119]. In the
following, unless where otherwise stated, we shall focus on the ’t Hooft limit.

The properties of QCD in the ’t Hooft limit can be studied in terms of so-called large-N counting rules, and are determined
by the combined effects that arise from the number of colors becoming large, and the coupling becoming small. Since this
double limit is taken at fixed λ, it is convenient to write all Feynman rules by replacing g with

√
λ/N . Furthermore, an easy

way to keep track of the number of independent (fundamental) color indices appearing in Feynman diagrams is based on
the so-called double-line, or ribbon graph, notation: since quarks are fields in the fundamental representation of the SU(N)
gauge group, a generic quark propagator of the form ⟨ψ i(x)ψ

j
(y)⟩, (where i and j are fundamental color indices, and we

assume a suitable gauge-fixing, like, e.g., Feynman gauge) is proportional to a Kronecker delta δij, and can be associated to
a single oriented line. By contrast, the properties of the SU(N) algebra generators imply that a propagator for gluon field
components ⟨Ai

µ j(x)A
k
ν l(y)⟩ is proportional to


δilδ

k
j − δijδ

k
l /N


, and, hence, can be denoted by a pair of oppositely-oriented

lines. Here and in the following, we neglect the δijδ
k
l /N term appearing in the expression of the gluon propagator; strictly

speaking, this amounts to replacing the SU(N) gauge group with U(N), and induces a subleading, O(N−2) relative correction
to the results derived in the large-N limit.4

With this notation, it is easy to see that, in the ’t Hooft limit, the amplitudes for physical processes are dominated by
diagrams which are planar in index space, and which do not contain dynamical quark loops. This can be clarified by the
example depicted in Fig. 1, which shows three different types of diagrams contributing to the gluon propagator at three-
loop order for generic N: the planar diagram on the left panel, which contains virtual gluons only, is the one with the

4 The subleading corrections due to this difference between the U(N) and the SU(N) gauge theories can be accommodated, by introducing an unphysical
U(1) ‘‘phantom’’ field, which cancels the extra U(1) degree of freedom of U(N) [120].
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Fig. 1. Different types of three-loop Feynman diagrams contributing to the gluon propagator; in the ’t Hooft limit, only the diagram on the left panel yields
a non-negligible contribution.

largest number of independent color lines, and (if the color indices of the external gluon are not fixed) is proportional to
g6N5

= N2λ3. Note that this diagram can be drawn on the plane (or, equivalently, on the surface of a two-sphere) without
crossing lines, and is thus called ‘‘planar’’. By contrast, replacing an internal gluon loop with a quark loop (central panel)
removes a color line, reducing the overall power of N by one, down to Nλ3. Finally, the diagram on the right panel of Fig. 1,
which includes a line crossing and is proportional to g6N3

= λ3, is suppressed by two powers of N .
Part of the mathematical simplification of QCD in the ’t Hooft limit is due to the fact that in this limit the dynamics is

only sensitive to planar diagrams (whose number grows only exponentially with the order of the diagram, in contrast to
the total number of diagrams, which grows factorially—see Ref. [121] and references therein). In spite of this simplification,
the summation of all planar Feynman diagrams of QCD in four spacetime dimensions is a daunting task, which has not been
possible to complete—see Refs. [42,122–127] for a discussion.

Another interesting simplification taking place in the ’t Hooft limit is that virtual quark loops can be neglected. Note that
this feature, which corresponds to the so-called ‘‘quenched approximation’’ in lattice QCD, or to the ‘‘probe approximation’’
in the context of string theory, arises dynamically at infinite N , and, in particular, does not imply any of the fundamental
problems that occur in quenched lattice QCD at finiteN (which include, e.g., the lack of awell-definedHilbert space, unitarity
violations and negative-norm states, etc.). In relation to the suppression of sea quark effects, we note two observations,
suggesting that the ’t Hooft limit may be a ‘‘good’’ (i.e. ‘‘quantitatively accurate’’) approximation of real-world QCD. The
first is the phenomenological success of quark model spectroscopy: the masses of experimentally observed hadronic states
can be described surprisingly well, in terms of just the flavor symmetry patterns for valence quarks, neglecting sea-quark
effects. The second is the remarkable success of quenched lattice QCD calculations [128], which are performed neglecting the
dynamical effects (virtual fermion loops) induced by the determinant of the Dirac operator—see Section 3 for a discussion.

Note that the diagrams appearing in the central and right panel of Fig. 1 can be drawnwithout crossing lines on the surface
of a punctured sphere and of a two-torus, respectively. This is a manifestation of a general property of the classification of
Feynman diagrams in the ’t Hooft limit: a generic amplitude A for a physical process can be expressed in a double series,
in powers of the coupling λ and in powers of 1/N , where the latter expansion is of topological nature: the power of 1/N
associated to a given diagram is related to the number of ‘‘handles’’ (h) and ‘‘boundaries’’ (b) of the simplest Riemann surface
on which the diagram can be drawnwithout crossing lines (and with quark lines along the boundaries), and equals its Euler
characteristic:

A =

∞
h, b=0

N2−2h−b
∞
n=0

ch, b; nλn. (4)

Since at large N the leading contributions in Eq. (4) are O(N2) and correspond to planar (h = 0) diagrams with no quark
loops (b = 0), the ’t Hooft limit is also called ‘‘planar limit’’. Obviously, in the study of quantities involving gauge-invariant
fermionic bilinears, there exists at least one closed quark line (which is conventionally drawn as the exterior boundary of the
ribbon graphs), hence in this case the leading contributions come from terms corresponding to b = 1, h = 0,which areO(N).

We conclude this subsection with an observation about generating functionals for connected and non-connected planar
graphs: in general, due to some subtleties related to cyclic ordering of operators, exponentiating the generating functional
for connected planar graphs does not yield the generating functional for planar graphs only. The correct definition of the
generating functionals for planar diagrams can be formulated in terms of appropriate non-commuting sources [129].

2.2. Phenomenological implications of the large-N limit for mesons and glueballs

Under the assumption that the ’t Hooft limit of QCD is a confining theory (see the discussion in Section 3), the large-N
counting rules defined in Section 2.1 lead to a number of interesting phenomenological implications, in particular for the
lightest physical states: glueballs and mesons.

To see this, following the discussion in, e.g., Ref. [21], it is convenient to rescale the fields appearing in the Lagrangian
density defined by Eq. (1), according to:

Aa
µ(x) →

1
g
Aa
µ(x), ψf (x) →

√
Nψf (x), (5)
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so that L can be written as: L = NL̃, with:

L̃ = −
1
4λ


F a
µνF

aµν
+

nf
f=1

ψ f

iγ µDµ − mf


ψf . (6)

Naïvely, one could then imagine that the quantum theory defined by the functional path integral:

Z0 =


DADψDψ exp


iN


dt d3x L̃[A, ψ,ψ]


(7)

reduces to its classical limit [18], obtained as the stationary point of L̃. This, however, is not the case, because an ‘‘entropic’’
term [130], of the same order in N , also arises from the field measure, and, as a consequence, the large-N limit is not
equivalent to the classical limit (see also the discussion in Section 4.2).

Connected correlation functions of gauge-invariant (local or non-local) single-trace operators Oa, built from gauge fields
and possibly fermionic bilinears, can be studied by adding corresponding source terms of the form (NJaOa) to L:

ZJ =


DADψDψ exp


iN


dt d3x

L̃[A, ψ,ψ] + JaOa


(8)

and taking appropriate functional derivatives:

⟨O1(x1) . . .On(xn)⟩c = (iN)−n δ

δJ1(x1)
. . .

δ

δJn(xn)
lnZJ


J=0. (9)

As discussed in Section 2.1, the leading contribution to the sum of connected vacuum graphs in the ’t Hooft limit is O(N2)
(or O(N), if fermionic bilinears are considered): as a consequence, n-point connected correlation functions like the one
appearing in Eq. (9) are dominated by diagrams of planar gluon loops, and scale like O(N2−n), in the pure-glue sector, or like
O(N1−n), for the case of correlation functions involving quark bilinears.

Let Gi be a purely gluonic, gauge-invariant, Hermitian operator, with the appropriate quantum numbers to describe a
given glueball; as a two-point connected correlation function of the form ⟨GiGi⟩c is O(1) in the large-N limit, the operator Gi
creates a glueball state with an amplitude of order one. Glueball–glueball interactions (including decays, scatterings, etc.)
are then described by higher-order connected correlation functions ⟨G1 . . .Gn⟩c , with n ≥ 3: as they generically scale like
O(N2−n), they are suppressed by at least one power of 1/N relative to the free case.

Similarly, meson states can be described by gauge-invariant, Hermitian operators Mi, involving quark bilinears, with the
appropriate quantum numbers. In this case, ⟨MiMi⟩c scales proportionally to 1/N in the large-N limit, so that

√
NMi is an

operator creating ameson state with amplitudeO(1). Note that, as a consequence of this, the pion decay constant fπ , defined
in terms of the matrix element describing the overlap between the isovector axial current and a pion state:

⟨0|Nψ(x)γµγ5Tjψ(x)|πl(k)⟩ = −ifπkµδjl exp(−ikx) (10)

(in which the N factor in the definition of the axial current is necessary, in order to express this quantity in terms of the
rescaled quark fields) is proportional to

√
N in the large-N limit.

Meson–meson interactions are described by connected correlators of the form:

Nn/2
⟨M1 . . .Mn⟩c, (11)

with n ≥ 3: they scale like O(N1−n/2), hence they are suppressed at largeN . Finally, meson–glueball interactions andmixing
processes are described by correlators of the form ⟨G1

√
NM1⟩c (or of higher order), which scale (at most) like N−1/2, and

thus are also suppressed.
To summarize, if the ’t Hooft limit of QCD is a confining theory, then its low-lying spectrum consists of stable, non-

interacting glueballs and mesons. Exotic states like tetraquarks, molecules, etc. are absent in the ’t Hooft limit, because
the leading-order contribution to their propagators comes from terms which correspond to the propagation of mesons or
glueballs. At finite but ‘‘large’’ values ofN (or, better: at finite but ‘‘small’’ values of 1/N), hadron interactions are suppressed
by powers of 1/

√
N , so that, in the ’t Hooft limit, QCD is a theory of weakly-coupled hadrons, with interactions described by

a ‘‘coupling’’ which vanishes for N → ∞. It is worth noting that, although the dependence of this ‘‘hadronic coupling’’ on N
is of the form 1/

√
N , the parameter determining the actual numerical accuracy of large-N expansions may be proportional

to a power of it, and possibly be further suppressed by numerical factors.
Combining the two pieces of information, that at low energies the large-N spectrum consists of non-interacting, infinitely

narrow hadrons, and that at high energies the theory is asymptotically free (see Eq. (3)), one can prove that the number of
stable glueball and meson states is infinite by reductione ad absurdum: since two-point correlation functions in momentum
space can be expressed as a linear combination of hadron propagators with ‘‘sharp’’ poles, proportional to (p2 − m2)−1

(denoting the four-momentum as pµ), if the number of hadrons were finite, then it would be impossible to reproduce the
functional form expected for meson correlators, which involves a dependence on the logarithm of p2.
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Fig. 2. Large-N counting rules offer a simple interpretation for the Okubo–Zweig–Iizuka rule: the figure shows an example of Feynman diagrams relevant
for the propagation of a meson: the diagram on the right, in which the process goes through an intermediate stage where only virtual gluons appear, is
suppressed by a power of 1/N with respect to the one on the left.

As discussed, for example, in Ref. [131], the features of the large-N spectrum also have interesting relations with the
QCD sum rules due to Shifman, Vainshtein and Zakharov [132,133], which are based on the idea of expressing a generic
correlation function of quark currents in terms of an operator product expansion [134], with a matching to a sum over
hadron states.

Another interesting phenomenological implication of the large-N counting rules relevant in the ’t Hooft limit of QCD, is
that they provide an explanation for the empirical rule due to Okubo, Zweig and Iizuka [135–137], i.e. the suppression of
strong-interaction processes described by Feynman diagrams that can be split in two by cutting only internal gluon lines.
Fig. 2 shows an example of this, for two different Feynman diagrams describing the propagation of a meson (denoted by a
blob): the diagram on the l.h.s., in which the quark/antiquark lines originating from the initial state propagate all the way
to the final state (getting dressed by two virtual gluons on the way), is proportional to λN , whereas the one on the r.h.s.,
in which the same process goes through the annihilation of the initial quark and antiquark, the intermediate emission of
two virtual gluons, and then the creation of a quark/antiquark pair that ends up in the final meson, is proportional to λ, and
therefore suppressed by one power of N relative to the former diagram.

Large-N counting rules also provide phenomenological information relevant for the meson sector—which, in particular,
allows one to discuss a low-energy effective theory for the light mesons [138–143] (see also Ref. [144] and references
therein). In particular, the very existence of light, pseudoscalar mesons is related, by the Nambu–Goldstone mechanism,
to the spontaneous breakdown of chiral symmetry. In the ’t Hooft limit, this phenomenon was first studied by Coleman and
Witten in Ref. [145].

As it is well-known, in QCD with a generic number N of color charges and nf massless quark flavors,5 the Dirac operator
iγ µDµ anticommutes with the chirality operator γ5, hence for nf ≥ 2 the Lagrangian in Eq. (1) is classically invariant under
a global, non-Abelian chiral symmetry UR(nf ) × UL(nf ). This symmetry describes the independent rotations of the right-
and left-handed components ψR,L = PR,Lψ of the quark fields (and the corresponding components of the conjugate spinor
ψ), where the right- and left-projectors are defined by:

PR,L =
1± γ5

2
. (12)

The global UR(nf )×UL(nf ) symmetry of the classical Lagrangian for massless quarks can be re-expressed in terms of vector
(V ) and axial (A) transformations as: SUV (nf )× UV (1)× SUA(nf )× UA(1).

At the quantum level, the UV (1) symmetry remains exact, and corresponds to the conservation of the baryon number B
in QCD. Also the SUV (nf ) symmetry remains exact, and, in the real world, is only mildly explicitly broken by the small mass
differences between the light quarks; this symmetrymanifests itself in the approximate isospin and strangeness degeneracy
patterns observed in the light hadron spectrum.

By contrast, the SUA(nf ) symmetry is spontaneously broken: the QCD vacuum is characterized by a non-vanishing chiral
condensate ⟨ψψ⟩. Correspondingly, (n2

f − 1) light (pseudo-) Nambu–Goldstone bosons appear in the spectrum: the three
pions (if one assumes nf = 2 light quark flavors), or the three pions, together with the four kaons and the η (if one also
considers the strange quark as approximately massless).

Finally, the fate of the UA(1) symmetry is particularly interesting, as it is related to the so-called UA(1) problem: were the
QCD vacuum invariant under this symmetry, then the spectrum of light hadrons should consist of (nearly) mass-degenerate
partners of opposite parity, which are not seen experimentally. On the other hand, if the UA(1) symmetrywas spontaneously
broken, then there should exist a light non-strange, isoscalar, pseudoscalar meson—but such particle is not observed either:
the lightest meson with these quantum numbers is the η′ meson, with a mass of 957.78(6)MeV [147], much heavier than
the pions, kaons and the η. The solution of this problem is the following: the UA(1) is explicitly broken at the quantum level,
due to the non-invariance of the path integral measure for quark fields [148–150]. The corresponding anomaly, however, is
proportional to g2 (for details, see the discussion in Section 2.4), i.e. it is suppressed like 1/N in the ’t Hooft limit, so that,

5 Here and in the following, we restrict our attention to nf ≥ 2. Note that the nf = 1 case, albeit of limited phenomenological interest (because in nature
both the up and down quarks are very light), is somewhat special [146].
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for vanishing quark masses, the η′ also becomes massless in the N → ∞ limit. As a consequence, the spectrum of large-N
QCD with nf massless (or light) quarks features n2

f light pseudoscalar mesons, as the (pseudo-) Nambu–Goldstone bosons
associated with the spontaneously broken axial symmetries.

Since, in general, the masses of other hadrons will be separated from these by a finite gap, the low-energy dynamics of
QCD can be modeled by chiral perturbation theory (χPT) [151,152] – see also Refs. [153–155] for reviews of the topic –,
which is an effective theory for the fields describing the light mesons. Assuming that the theory has nf = 3 light quark
flavors, the latter can be conveniently packaged into the components of a U(3)-valued matrix field U(x) defined by:

U = exp

i
√
2Φ/F


, (13)

where the entries ofΦ are linear combinations of themeson fields (see, e.g., Ref. [144] for an explicit expression). According
to the usual construction of effective field theories, the Lagrangian Leff describing the dynamics of U must be compatible
with the global symmetries of QCD, but, a priori, it is otherwise unspecified; in addition, it can also include couplings to
external Hermitian matrix fields Lα , Rα , S and P , to account for finite quark mass, electromagnetic- and weak-interaction
effects.6 Defining ∂̃αU = ∂U − iRαU + iULα and χ̃ = 2B0(S + iP), it is possible to organize the most general expression
for Leff according to the number of derivatives it contains (i.e., in powers of momentum). At the lowest order in derivatives
and quark masses, the expression for Leff reads:

Leff =
F 2

4
Tr

∂̃αUĎ ∂̃αU + χ̃ĎU + UĎχ̃


, (14)

and involves two low-energy constants: F can be interpreted as the meson decay constant,7 while B0 is proportional to the
quark condensate [156]. Note that F 2

∼ f 2π = O(N), so Leff is O(N), hence for N → ∞ – see also Refs. [138–141] – the tree-
level approximation for the effective theory becomes exact.8 Moreover, since the definition ofU in terms of themeson fields
in Eq. (13) also contains a 1/F factor, the expansion of U generates meson interactions which are suppressed by powers of
N−1/2 in the ’t Hooft limit. Hence, large-NχPT can be interpreted as a consistent combined expansion in powers of 1/N , of
the (squared) momentum, and of the quark masses [157–159].

The expression ofLeff at the next-to-leading order involves ten new low-energy constants9: their numerical values, fixed
using experimental information on various decays [154,155], agree with the expectations from large-N counting rules—
which predict some of them to be O(N), and some others to be O(1). Quantitative large-N predictions, however, can also be
obtained, byworking in the so-called single-resonance approximation [162], i.e. by neglecting the contributions of resonance
states above the nonet of lowest-lying mesons with a given set of quantum numbers, and are in very good agreement with
the values determined from experimental input (see, e.g., Table 1 in Ref. [144]). Combining (unitarized) chiral perturbation
theory with large-N arguments, it is also possible to investigate the nature of different physical mesons [163–166]. In
addition, the large-N limit also allows one to get a better matching between perturbative QCD predictions at high energies,
and χPT predictions at low energies [167].10 Further details about the applications of the large-N limit in χPT can be found
in Ref. [157]. Other implications of the large-N limit, which are relevant for mesons, have been derived for electroweak
processes at low energies [169–174]. There are also a number of works (e.g. [175–177] and theworks reviewed in Ref. [144])
discussing the sense inwhich large-N QCDprovides a theoretical justification for computations of various physical quantities
in the context of the vector meson dominance model [178]. A very recent example is given by the study of generalized form
factors carried out in Ref. [179] (to which we refer, for further references on this topic).

Finally, in the literature there exists a very large number of articles studying the properties of mesons in QCD-likemodels
in the large-N limit, using holographic methods. Since it would not be possible to discuss all of these works here, we refer
the interested reader to the review [180]. However, we shall present a brief discussion of the rôle of the large-N limit in
holographic computations in Section 2.6.

2.3. Phenomenological implications of the large-N limit for baryons

The basic features of baryons in the ’t Hooft limit of QCD have been known for more than three decades [181]. Baryons
are defined as completely antisymmetric, color-singlet states made of N quarks, thus, in contrast to mesons, the Feynman
diagrams that represent them (not just the associated combinatorial factors) depend on N . Another difference with respect

6 In particular, the quark masses are encoded in the diagonal entries of S.
7 Note that, with the conventions of Eqs. (13) and (14), the phenomenological value of F (or, more precisely, of fπ ) is about 92.4 MeV.
8 Note that – in contrast to our discussion of the functional path integral in Eq. (7) – in the present case there are no subtleties related to the large-N

scaling of the functional measure, because the degrees of freedom of the effective theory are hadrons, whose number does not grow with N in the ’t Hooft
limit.
9 In principle, at this order one could also include a contribution reproducing the effect of QCD fermion anomalies: the effect of non-Abelian anomalies can

be accounted for by aWess–Zumino–Witten term [160,161], with no free parameters, whereas the axial UA(1) anomaly can bemimicked by a θ-term [157].
10 A large-N effective model for quarks, gluons and pions, which could also provide a quantitatively accurate description of hadronic phenomena at
moderate and intermediate energies, has been recently proposed in Ref. [168].
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to mesons is that baryon masses scale as O(N): the mass of a baryon receives contributions from the constituent quark
masses, from their kinetic energies (both of which are proportional to N) and from the total potential energy associated to
quark–quark interactions (for each pair of quarks, the interaction strength is proportional to g2, i.e. toN−1, while the number
of distinct quark pairs scales proportionally to N2, so that their product is, again, O(N)).

To get a quantitative picture of the ground state baryon energy in the ’t Hooft limit, one can study the large-N baryon in a
Hamiltonian approach, and resort to an approximate Hartree–Fock-like solution (or to a relativistic generalization thereof):
this is based on the idea that the total potential felt by each quark can be interpreted as a background, mean-field-like
potential resulting from the interaction with all other quarks in the baryon. Although this approach does not lead to an
exact analytical solution for the large-N baryon spectrum, it reveals that, while the mass of a baryon is O(N), its ‘‘form
factor’’ (i.e., its charge distribution) is independent of the number of colors in the ’t Hooft limit.

Arguments based on large-N counting rules also show that the amplitude for baryon–baryon (or for baryon–antibaryon)
scattering scales as O(N), i.e. is of the same order as the baryonmass. Baryon–meson scattering, on the contrary, turns out to
be O(1), so this physical process does not affect the motion of the baryon, but only of the meson (whose mass is also O(1)).

Finally, there exist physical processes involving baryons, which are missed at all orders in the large-N expansion.
One example is baryon–antibaryon pair production from high-energy collisions of lepton–antilepton pairs. This process
proceeds via an intermediate virtual photon, which then creates a quark–antiquark pair. In order to form the baryon and
the antibaryon in the final state, however, this process must take place N times, and the probability for this to happen is
exponentially suppressed as e−N . This dependence on N is never captured at any order in the expansion in powers of N−1,
hence the corresponding physical process is absent at all order in large-N QCD. Similarly, the processes of baryon–antibaryon
annihilation into a pair of leptons, and lepton–baryon scattering (which are related to the previous example by crossing
symmetry) are also exponentially suppressed with N .

These features reveal an intriguing analogy, suggested in Ref. [181], between the 1/N expansion of QCD, and the
usual weak-coupling expansion of quantum electrodynamics (QED), with mesons and baryons playing a rôle analogous to
electrons and ’t Hooft–Polyakov monopoles, respectively. Indeed, electrons are the physical states in QED, their interactions
can be successfully studied in a perturbative expansion in powers of αQED = e2/(4π), and their mass is independent of e,
i.e. scales likeO(e0). ’t Hooft–Polyakovmonopoles, on the other hand, do not appear as elementary objects or as simple bound
states in the theory (neither do they appear in any Feynman diagram), but rather as particular topological solutions; their
masses are inversely proportional to αQED, and, for small αQED, their structure can be studied by classical equations (in which
αQED factors out, yielding results for the monopole size and monopole structure, that are independent of αQED). Moreover,
both monopole–monopole scattering, and the scattering of an electron off a monopole are processes with well-defined,
non-vanishing limits for αQED → 0. Processes like the production of monopole–antimonopole pairs via electron–positron
annihilation are not captured at any order in weak-coupling expansions of QED. As discussed above, all of this bears a close
qualitative resemblance to the description of mesons and baryons in the 1/N expansion of QCD.

An interesting prediction for the large-N spectrum of baryons of different spin J was first suggested, in connection to
the Skyrme model (see Ref. [182] for a review), in Ref. [183], and later discussed also in Ref. [184]: the ‘‘hyperfine splitting’’
between the masses of these states should be described in terms of a rotor spectrum:

M = c1N + c2
J(J + 1)

N
+ O(1/N2). (15)

Other important large-N implications for baryon phenomenology, that were discovered during the 1980’s, include the
determination of the group structure for baryonmultiplets [185,186] and its relation to the SU(3) chiralmodel and to current
algebra Lagrangians and to the quarkmodel [161,187–192]. Large-N baryons can also be interpreted as chiral solitons of the
Nambu–Jona-Lasinio model [193,194].

Later, it was further realized that, combining the large-N counting rules, that characterize the ’t Hooft limit, with unitarity
conditions, it is possible to derive quantitative predictions for several baryonic observables, and to organize the large-N
expansions in the baryon sector in a systematicway [10,184,185,195–197]—see also Refs. [21,28] for reviews. This possibility
arises from the fact that a contracted SU(2nf ) spin-flavor symmetry for baryons emerges in the large-N limit.

A simple way to see how these predictions can be derived is the following. At leading order, the coupling of a meson
to a baryon is obtained by insertion of a fermion bilinear onto one of the valence quark lines in a baryon—which can be
done in N different ways. Since, as discussed above, fermion bilinears create mesons with amplitude O(N1/2), it follows
that the effective baryon–meson coupling must be O(N1/2). The process of baryon–meson scattering, on the other hand,
can be obtained by insertion of two fermion bilinears onto the valence quark lines of the baryon: if they are inserted on
the same line, then the process can occur in N different ways; alternatively, there are O(N2) possibilities to insert them
on different lines, but then, in order to transfer energy from the incoming meson to the outcoming one, a gluon has to be
exchanged between the two baryon quark lines, and this involves a g2 factor, which reduces the overall amplitude of the
process by one power of N . Finally, taking into account that each baryon–meson coupling is O(N1/2), one obtains that the
total amplitude for baryon–meson scattering is O(1).

From a kinematic point of view, however, in the scattering of a meson (with mass O(1)) off a baryon (whose mass is
proportional to N), the baryon can be considered as static, and the process can be interpreted as the absorption of the
incoming meson, followed by the emission of the scattered meson. Since the couplings of the baryon to both the incoming
and the outcoming meson are O(N1/2), the total scattering amplitude for this process should be proportional to N . This,
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however, would violate unitarity, and would be incompatible with the fact that the baryon–meson scattering amplitude is
O(1). The apparent paradox can be resolved, if there are cancellations among the baryon–meson scattering diagrams, and
this leads to a set of large-N consistency conditions for baryon–meson couplings [185,197,198].

The process of pion–nucleon scattering at low energies in the chiral limit provides a concrete example: the absorption
of a pion by a static nucleon, N + π → N ′, can be described by the formula:

cN
∂iπ

fπ
(X ia)N N ′ , with: (X ia)BB′ =

⟨B′
|(ψγ iγ5τ

aψ)|B⟩
cN

, (16)

where an overall N factor (together with an arbitrary, N-independent, normalization constant c) has been extracted from
the isovector baryon axial current, so that X ia has a finite limit for N → ∞. At large N , the leading contributions to the
baryon–pion scattering come from the difference of two tree-level diagrams (corresponding to the fact that the nucleon can
either first get into its excited stateN ′ by absorption of the incoming pion, and then decay to the ground statewith emission
of the outgoing pion, or vice versa). Requiring the total scattering amplitude to be O(1), leads to the constraint:

N[X ia, X jb
] ≤ O(1). (17)

By expanding the X ia operator in powers of 1/N:

X ia
= X ia

0 +
1
N
X ia
1 +

1
N2

X ia
2 + · · · (18)

Eq. (17) yields a sequence of constraints among the different terms in the expansion; in particular, at the first order in 1/N ,
it implies that:

[X ia
0 , X

jb
0 ] = 0. (19)

Eq. (19) can only be satisfied if, besides the nucleon, there exist other intermediate states, with the same mass. Since a pion
in the p-wave state coupled to a nucleon can also produce a baryon with spin and isospin both equal to 3/2 (i.e. a∆ baryon),
the large-N consistency conditions impose a constraint relating gπN N to gπN∆. In turn, the same argument can be applied
to the∆+ π → ∆+ π scattering process, implying the existence (at least in the large-N limit) of a baryon with the same
mass as N and∆ and with quantum numbers J = I = 5/2, and fixing a constraint among the respective couplings, and so
on. The conclusion is that the consistency condition equation (19) implies the existence of an infinite tower of degenerate
baryons with J = I = k+ 1/2, for any k ∈ N, and fixes their couplings to the pion (up to the overall normalization factor c).

Eq. (19) can be interpreted as a subalgebra of a contracted su(4) (or su(2nf ), in the case of nf light quark flavors) spin-
flavor algebra: the X ia

0 operators can be seen as the large-N limit of the su(4) generators that mix spin and flavor (rescaled by
N). Note that the emergence of a spin-flavor symmetry, mixing internal and Lorentz degrees of freedom, is possible because
in the large-N limit the baryon field is infinitely heavy, and hence static. The irreducible representations of the contracted
spin-flavor algebra can be classified using standard techniques for induced representations [199].

More generally, consistency conditions of the form of Eq. (17) can be used to systematically organize the 1/N expansion
using group-theoretical methods and operator identities, and to fix constraints on the subleading corrections. In particular,
for nf = 2, one finds that the first corrections to the mass of low-spin baryons, as well as to the baryon axial couplings,
are O(N−2) relative to the respective leading terms. This framework can be extended to nf = 3 light flavors as well,
and allows one to derive predictive theoretical expectations for a number of observables, including axial couplings and
form factors [200–203], masses [184,204–207], magnetic moments [198,200,208–211], masses of excited states [212–
220], their couplings and decays [214,221–229], as well as those of baryons containing a heavy quark [230–236]. In this
approach it is also possible to study a large-N generalization [237] of heavy-baryon chiral perturbation theory [238,239], the
nucleon–nucleon potential and scattering [240–249] (see also Ref. [250], for work on related topics), and various quantities
related to the baryonic structure11 [251,252]. Further phenomenological implications for baryons in the large-N limit are
discussed in Refs. [229,253–258] and in the review [259].

Other articles on related topics include Refs. [260–262], which used large-N consistency conditions to show a flaw
in the theoretical prediction of the Θ+ pentaquark state [263] (various other exotic baryonic states were studied in
Refs. [264–266]), and Refs. [267,268], in which a relation between the large-N approach to baryons and the quark model
was pointed out. Finally, large-N QCD expansions based on the contracted spin-flavor symmetry also show the connection
between the large-N limits of the Skyrmemodel [183,187,269,270] and of the quarkmodel [271,272]: this formalismenables
one to derive model-independent predictions, purely based on group-theoretical relations.

2.4. Topological aspects in large-N QCD

Various types of gauge field configurations characterized by non-trivial topological properties are believed to play
a prominent rôle in determining the vacuum structure in QCD and in other confining gauge theories: these include
center vortices [273–276], Abelian monopoles [277], instantons [148,278–282] and bions [283–287]. In general, the

11 For a different type of approach to hadronic structure functions using the large-N limit, see Refs. [69,81,87,88] and references therein.
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analytical understanding of the way these objects affect the dynamics, however, is limited to some form of semi-classical
approximation.

The topological objects, for which the large-N limit has the most interesting implications, are instantons: they are
solutions of the Euclidean equations ofmotionwith finite action,which canbe interpreted as ‘‘tunneling’’ events between the
topologically inequivalent classical vacua of the theory, classified by a Pontryagin index taking values in the third homotopy
group of the gauge group: π3(SU(N)) = Z [288]. Their relation to the large-N limit of QCD has been investigated since the
late 1970’s [289–292], and is still raising continued interest [293].

As mentioned in Section 2.2, in QCDwith nf massless quarks, the global Abelian axial symmetry is anomalous, due to the
non-invariance of the fermion measure12; correspondingly, the conservation of the UA(1) current is violated:

∂α jαA(x) = −2nf q(x), (20)

by a term proportional to the topological charge density q(x):

q(x) =
g2

16π2
Tr

F̃µν(x)Fµν(x)


, with: F̃µν(x) =

1
2
ϵµνρσ Fρσ (x). (21)

Note that q(x) can be written as the divergence of the Chern current Kα(x):

q(x) = ∂µKµ(x), where: Kµ(x) =
g2

4π2
ϵµνρσAa

ν


∂ρAa

σ −
g
3
f abcAb

ρA
c
σ


, (22)

which is proportional to the Hodge dual of the Chern–Simons three-form. Although q(x) is given by the divergence of
a current, its spacetime integral (the ‘‘topological charge’’ Q ) can take non-vanishing, integer values in the presence of
instantons. In general, the value of Q for a given gauge field configuration is equal to the index of the Dirac operator, i.e. to
the difference between the number of left- and right-handed zero-modes of the Dirac operator [294–299].

In the ’t Hooft limit, the right-hand-side of Eq. (20), being proportional to g2, is – at least naïvely – suppressed likeO(1/N):
as a consequence,m2

η′ should vanish like O(1/N) for N → ∞. Thus, in the ’t Hooft limit one expects the meson spectrum to
include n2

f – rather than (n2
f − 1) – massless (or light) Nambu–Goldstone bosons.

By studying the Ward–Takahashi identities for jαA(x) + 2nf Kα(x), it is possible to derive the Witten–Veneziano
formula [290,291]:

m2
η + m2

η′ = 2m2
K +

4nfχtopol

f 2π
(23)

(see also Ref. [300] for a discussion), relating the pseudoscalar meson masses, the pion decay constant, and the topological
susceptibility χtopol, which is defined by:

χtopol = −i


d4x⟨0|T {q(x)q(0)}|0⟩, (24)

where T denotes time-ordering.
Combining the Witten–Veneziano formula Eq. (23) with the expectation that the square of the η′ mass vanishes

proportionally to 1/N in the ’t Hooft limit (andwith the fact that fπ scales likeN1/2 forN → ∞), it follows that the topological
susceptibility should have a non-vanishing, O(1) limit at large N . This is at odds with traditional pictures of the QCD vacuum
as a semiclassical gas of dilute instantons, according to which the probability of tunneling events between topologically
different vacua of the theory (i.e. the ‘‘statistical weight’’ of instantons) should scale proportionally to exp(−8π/g2); in
particular, the number density d of instantons of (small) size ρ is expected to be proportional to [282,289]:

d(ρ) ∝ exp

−

8π2N
λ(ρ)


, (25)

i.e. to be exponentially suppressed with N in the ’t Hooft limit. A naïve dilute instanton picture, however, is invalidated
by infrared divergences; furthermore, one should note that the exponential suppression which holds for instantons at the
cutoff scale, may not be valid for instantons of finite size, see, e.g., Refs. [301–303] for a discussion.

The non-trivial interplay between 1/N suppression of hadronic mass differences, the anomaly Eq. (20), and topologically
non-trivial non-Abelian gauge fields (in particular instantons) has also been discussed in Ref. [133]. Further implications for
the so-called proton spin problem [304] were discussed in Refs. [305–307].

It is interesting to consider the issues related to the topological aspects of large-N QCD in the context of a generalization
of the theory, including a topological θ-term (see, e.g., Ref. [308] for a discussion): in the Standard Model, there exists
no fundamental symmetry principle forbidding a term proportional to the topological charge density q(x) in the QCD

12 An alternative, equivalent way to see the origin of the UA(1) anomaly, is from a perturbative analysis, which shows that the anomaly arises from the
ultraviolet divergences of a one-loop triangle diagram of virtual quarks.
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Lagrangian:

Lθ = −
1
2
Tr

FαβFαβ


+

nf
f=1

ψ f

iγ αDα − mf


ψf − θq(x) (26)

(so that, in particular, χtopol can be expressed in terms of the second derivative of the corresponding effective action, with
respect to θ ).

Since the topological charge density is a pseudoscalar, it explicitly breaks the discrete parity (P) and time-reversal (T )
symmetries. For massless quarks, a θ-term in the QCD Lagrangian can be reabsorbed via a redefinition of the fermion fields,
by a global UA(1) rotation. For massive quarks, however, such rotation would make the quark masses complex, leading
to phenomenological consequences: these include, in particular, a non-vanishing electric dipole moment for the neutron,
proportional to θ . Experimental results on this quantity [309,310] pose very stringent bounds on the magnitude of the θ
term, indicating that – if non-vanishing at all – it must be extremely (‘‘unnaturally’’) small: |θ | ≤ 10−10. The smallness of
|θ | is usually called the ‘‘strong CP problem’’ [311] of the Standard Model (see also Ref. [32] for a discussion).

If the QCD Lagrangian includes a θ-term, as in Eq. (26), then the quantization of Q in integer units implies that the
vacuum energy density of the theory is periodic in θ , with period 2π . In addition, the large-N counting rules discussed in
Section 2.1 imply that the vacuum energy density should also be O(N2) at large N . Finally, the form of Eq. (26) shows that,
in the ’t Hooft limit, the natural scaling variable is θ/N; note that, in particular, this implies that the dependence on θ in
quantities like, e.g., the string tension or the mass gap, should be suppressed like 1/N2 in the ’t Hooft limit. A possible way
to reconcile these observations consists in assuming that the ground state energy density E is given by the minimum of a
multi-branched function of θ/N [140]:

E(θ) = N2 min
0≤k<N

f

θ + 2πk

N


. (27)

The potential barrier between states corresponding to different k values is expected to be proportional toN , so that tunneling
effects should be suppressed in the large-N limit [312–315]: at large N , different candidate ground states become stable,
but not degenerate. In addition, for N ≫ 1 the energy densities associated with the lowest few k-values at θ = 0 can be
approximately expressed as:

E(θ)+ 2π2k2χtopol, (28)

hence the gap with respect to the actual ground state energy is independent of N . Since the relevant scaling parameter of
the theory in the large-N limit is expected to be θ/N , it follows that the dependence on θ in quantities like, e.g., the energy
density per unit area of domain walls separating different vacua, or the mass gap, should be suppressed like 1/N2 in the
’t Hooft limit.

Finally, note that, for any N , the theory is not only CP-invariant for θ = 0, but also for θ = π . In the latter case, if two
degenerate, CP-violating vacua exist, CP symmetry may get spontaneously broken [316] (a phenomenon that cannot occur
at θ = 0, if the assumptions of the Vafa–Witten theorem hold [317]): the interesting phenomenological implications of this
possibility have been discussed in a number of works, including Refs. [140,141,314,318–323].

2.5. Large-N theories at finite temperature and/or density

The focus of this subsection is on QCD at finite temperature and/or net baryon number density13 in thermodynamic
equilibrium [324] (which is relevant for the description of heavy-ion collision experiments [325–327]), and on the
implications for its properties that can be derived in the large-N limit—a problem which has been studied since the
1980’s [328–333].

First of all, if the large-N limit of QCD is confining at zero and low temperatures and densities, then the spectrum of
physical states consists of color-singlet states: mesons, glueballs, and baryons. Their number is O(1) for N → ∞, and the
masses of mesons and glueballs are also O(1), while baryonmasses are O(N). Furthermore, meson–meson interactions scale
as O(1/N), while meson–glueball and glueball–glueball interactions are even more suppressed, O(1/N2). As a consequence
of these properties, the equilibrium thermodynamic properties of large-N QCD in the confining phase are expected to scale
like O(1), and to be described in terms of a gas of non-interacting mesons and glueballs. Thus, in the thermodynamic limit,
the pressure p at a finite temperature T can be written as:

p = −


s

nsT
2π2


∞

0
dq q2 ln


1 − e−

√
M2

s +q2/T


=


s

nsM4
s

2π2

∞
k=1


T

kMs

2

K2


k
Ms

T


, (29)

where the summation is done over meson and glueball states, with the index s labeling a species of particles with massMs,
spin Js, isospin Is and ns = (2Is + 1)(2Js + 1) physical degrees of freedom; Kν(z) denotes the modified Bessel function of

13 Since the baryon number is a conserved charge in QCD, it is possible to associate with it a corresponding chemical potentialµ, whose value determines
the net density of quarks over antiquarks in a thermodynamic system.
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the second kind of index ν. Note that the sum in Eq. (29) does not include baryon states: since their masses are O(N), their
contribution to equilibrium thermodynamic quantities is exponentially suppressed as e−N in the large-N limit.

On the other hand, due to asymptotic freedom [334,335], in the high-temperature limit T → ∞ the thermodynamics
of non-Abelian gauge theories is expected to be described in terms of a gas of free, massless quarks and gluons. Since the
number of gluon degrees of freedom is O(N2), while for quarks it is O(nfN) (i.e. proportional to N in the ’t Hooft limit), in
this limit the pressure scales like O(N2):

p =
π2T 4

180


4(N2

− 1)+ 7Nnf


(30)

(see also Ref. [336] for a discussion on the counting of degrees of freedom at finite temperature). Approximating the
thermodynamics of a deconfined non-Abelian gauge theory in terms of a relativistic gas of free quarks and gluons is
accurate at high enough temperatures, where the physical running coupling becomes negligible. At lower temperatures
(but still in the deconfined phase), the physical coupling is finite [337], so that corrections to the Stefan–Boltzmann limit
can be expressed in terms of thermal weak-coupling expansions [338–351]. It is important to point out that, even at high
temperature, and for any number of colors, the deconfined plasma retains some aspects of non-perturbative nature: in
particular, the low-frequency modes of the plasma are strongly coupled at all temperatures [352,353].14 Via dimensional
reduction [356,357], the long-wavelength degrees of freedom of the deconfined phase of an SU(N) gauge theory at high
temperature can be mapped to a confining effective SU(N) theory in three dimensions, possibly coupled to an adjoint
scalar field [345,358–360]; the latter effective theory is known as ‘‘electrostatic QCD’’ (EQCD), and captures the physics
at ‘‘soft’’ scales O(gT ), while the former goes under the name of ‘‘magnetostatic QCD’’ (MQCD), and describes phenomena at
‘‘ultrasoft’’ scales, parametrically O(g2T ).

The deconfined phase at high temperature is expected to be separated from the low-temperature, confining phase by
a deconfinement transition (or cross-over), taking place at a finite temperature Tc [361–363], which for the ’t Hooft limit
of QCD was first discussed in Ref. [328]. In SU(N) Yang–Mills theory, the standard interpretation of the deconfinement
transition is in terms of spontaneous breakdown of the exact global ZN symmetry associated with the center of the gauge
group: in the Euclidean formulation of thermal field theory, bosonic fields obey periodic boundary conditions along the
compact Euclidean time direction, and the Yang–Mills dynamics is invariant if gauge fields satisfy periodic boundary
conditions up to a global transformation in the center of the gauge group.15 The corresponding order parameter is theWilson
line along the compactified Euclidean time direction (or Polyakov loop) [362,365,366]:

L(x⃗) =
1
N
Tr

P exp


ig
 1/T

0
dτAτ (x⃗, τ )


(31)

(where P denotes path ordering). In the thermodynamic (i.e., infinite-volume) limit, the thermal Wilson line defined in Eq.
(31) has a vanishing expectation value in the confined phase at low temperature, while it acquires a non-zero expectation
value at high temperature.16 It can be interpreted in terms of the propagator of an infinitely massive external color probe
source, implying that the free energy associated to an isolated color source is infinite in the confined phase, and is finite
in the deconfined phase.17 In general, the Polyakov loop free energy depends on the representation of the color source:
in Ref. [371], a theoretical prediction for this dependence was worked out analytically, using an effective lattice theory of
Polyakov lines at strong coupling [372–376], finding that the Polyakov loop free energy is proportional to the eigenvalue
of the quadratic Casimir of the representation. This effective model also leads to the prediction that, when approaching the
deconfinement temperature from above, the Polyakov loop in the large-N theory tends to the value 1/2 [377].

Although in QCDwithN = 3 colors the center symmetry is explicitly broken by the quarks, in the ’t Hooft limit the theory
becomes quenched; as a consequence, the finite-temperature deconfinement in large-N QCD is expected to be a genuine
transition [328].18 In particular, arguments based on the large mismatch between the number of degrees of freedom in the
two phases suggest that the large-N transition should be of first order (see, e.g., Ref. [380] and references therein), with
a latent heat O(N2)—but the possibility of a second-order transition has also been discussed in the literature [381]. Very

14 The non-perturbative aspects of the deconfined plasma are closely related to the so-called ‘‘Linde problem’’ [352], affecting perturbative expansions
in thermal gauge theories, namely to the breakdown of the familiar correspondence between expansions in powers of the coupling, and expansions in the
number of loops. This effect, which is due to the existence of infrared divergences in finite-temperature gauge theory (see, e.g., Ref. [354]), is responsible
for the non-trivial mathematical structure of perturbative expansions in thermal QCD, which include, for example, terms proportional to odd powers and
to logarithms of the coupling, as well as terms whose coefficients receive contributions from infinitely many Feynman diagrams, of arbitrarily complicated
topology. A pedagogical introduction to these topics can be found in Ref. [355].
15 An alternative view on the rôle of center symmetry and on the physical relevance of different center sectors in continuum Minkowski spacetime,
however, was discussed in Ref. [364].
16 Strictly speaking, this holds for a proper definition of the Polyakov loop, which requires renormalization [367].
17 Some expectations about the Polyakov loop temperature dependence in the large-N limit have been recently discussed in Refs. [368–370], using
arguments related to the gauge/string duality.
18 The existence of a finite-temperature deconfinement transition can also be argued on the basis of an exponential growth of the density of hadronic
states ρ̃(m) as a function of their massm [378] (see also Refs. [331,379]).
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recently, Ref. [382] presented an analytical study of the finite-temperature deconfinement phase transition (and of the θ-
dependence of the critical temperature) in pure Yang–Mills theory, for all simple gauge groups. Studying the interplay of
perturbative and non-perturbative effects (due to monopole-instantons and bions), the authors of Ref. [382] found that the
transition is of first order for all SU(N ≥ 3) (and G2) gauge theories (while the same approach predicts it to be of second
order for SU(2) gauge group [286]), and that Tc decreases when θ increases (see also Ref. [383]).

Building on the approach pioneered in Ref. [384], an analytical study of the deconfining transition in large-N gauge
theories on compact spatial manifolds was presented in Refs. [385,386]: these works reduced the Yang–Mills partition
function to an integral over an appropriate matrix model, which could be tackled with analytical techniques in the large-
N limit. The results showed the existence of a high-temperature phase, with a free energy O(N2), separated from the
confining phase by one or two phase transitions. Analytical studies based on a similar approach include Refs. [387–389],
and Ref. [390] (which considers the case of orientifold gauge theories). Other interesting implications of the large-N limit
for the thermal properties of non-Abelian gauge theories can be found in phenomenological models [391–399], in quasi-
particlemodels [400,401], and in computations in theweak-coupling limit, when the theory features various types ofmatter
content [402]. On the lattice, in addition to the effective models for Polyakov loops mentioned above, there are analytical
studies based on approximate renormalization group transformations [403] and on strong-coupling expansions [404,405]—
see also Ref. [406] for a review of early works.

Besides deconfinement, another important phenomenon taking place in QCD at finite temperature is the restoration
of chiral symmetry [407] (see also Ref. [408] for a proof in SU(2) gauge theory on the lattice)—which, depending on the
dynamics of the model, can occur at the same temperature as deconfinement or at a different (in particular: higher)
temperature [409–412]. As discussed in Section 2.2, in QCDwith nf massless quarks, the SUA(nf ) symmetry is spontaneously
brokenby the existence of a non-vanishing quark condensate,while theUA(1) symmetry is explicitly brokenby an anomaly—
which, however, is suppressed in the ’t Hooft limit. At high temperatures, both these symmetries are expected to get
restored [301] and, as discussed in Refs. [413,414], the restoration of the UA(1) symmetry may trigger the appearance of
parity- and CP-violating effects. The qualitative features of the finite-temperature phase diagram of SU(N) gauge theories
(for N generic) with nf massless quark flavors have been recently discussed in Ref. [415]. In the large-N limit, one can
get more quantitative insight, e.g., by calculating the dependence of the topological susceptibility on the temperature
semiclassically, in terms of instantons [416,417], or by considering some phenomenological models [418].

Asymptotic freedom implies that QCD should also deconfine under conditions of large net quark density [419], where
interesting novel phases may be realized [420–427]. In particular, since lattice calculations show that at zero density
and finite temperature the deconfinement transition for N = 3 colors and physical quark masses is actually a crossover
[428–431], while at zero (or low) temperatures and finite density several model calculations indicate that it is a first-order
transition [422,432–438], one expects the first-order transition line separating the hadronic phase from the deconfined
phase to end at a second-order critical point [439]. The implications of the ’t Hooft limit for QCD-like theories at finite
temperature and finite quark chemical potential µ have been reviewed in Ref. [440],19 in which (under the assumption of
fermionic baryons—i.e. for odd values of N) it was also suggested that, at temperatures below the deconfinement transition,
baryons could form a dense phase of ‘‘quarkyonic matter’’, with pressure O(N) and with interactions between baryons near
the Fermi surface (see also Refs. [250,444–453], for discussions on related topics). At large N (with λ and nf fixed) the
deconfinement temperature is expected to be independent ofµ: this can already be seen from the leading-order perturbative
expression for the trace of the gluon self-energy tensor at vanishing momentum (which is gauge-invariant), which yields
the square of the Debye mass [454–456]:

Πα
α (q

2)

qµ=0 = λ


T 2

3
+

nf

2N


T 2

3
+
µ2

π2


=
λT 2

3
+ O(1/N), (32)

and holds at all orders in perturbation theory. In the confined phase at finite values ofµ, the contribution to the free energy
due to baryons is exponentially suppressed, because their mass is O(N). When the quark chemical potential exceeds the
critical value corresponding to the mass of a constituent quark mq = MB/N , which is an O(1) quantity, a Fermi sea of
baryons is created; if µ is just slightly larger than mq, the baryons (including, possibly, resonances) form a dilute ideal
gas, with pressure O(1/N). For larger values of µ, however, their interactions become non-negligible, and yield an O(N)
contribution to the thermodynamics of the system. By going to much larger values of µ (in particular: µ ≫ ΛQCD), the
free energy can be reliably computed perturbatively, in terms of quarks; however, the degrees of freedom in a region of
width of order ΛQCD near the Fermi surface are baryonic, i.e. non-perturbative. In addition, in such quarkyonic phase the
chiral restoration transition is expected to take place at values ofµ comparable withmq, implying that, for a larger chemical
potential, quarkyonic matter should be confined but chirally symmetric, with a parity-doubled hadron spectrum.20 This
problemwas studied using Schwinger–Dyson equation methods in Refs. [460,461]. The implications of the ’t Hooft limit for
a possible color-superconducting state of matter at large values of the chemical potential were discussed in Refs. [462,463].

19 For a similar discussion in the Veneziano limit, see Refs. [441,442]; for a discussion of possible phase transitions depending on the nf /N ratio, see
Ref. [443] and references therein.
20 The arguments discussed in Refs. [457,458] may not apply in the presence of a Fermi sea. In addition, at finite temperature the implications related to
anomalies cannot be immediately translated into a constraint relating the deconfinement and chiral restoration temperatures [459].
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There are also analytical studies of the large-N limit of QCD at finite chemical potential and at weak coupling, when the
theory is defined on a compact space [464–466], or in the strong-coupling regime on the lattice [466,467].

Various properties of the QCD phase diagram (including, in particular, the coincidence or splitting of the chiral
and deconfinement transitions [468], ρ-meson condensation [469], the possible existence of second-order critical
endpoints [470], or of the chiral magnetic effect [471]) may be influenced by the effects of strong electromagnetic fields:
it has been estimated that the magnetic field strength realized in heavy-ion collisions at LHC energies could be as large as
15m2

π [472]. The properties of the QCD plasma under strongmagnetic fields in the ’t Hooft limit have been recently discussed
in Refs. [473,474], in which it was found that the magnetic fields decrease the deconfinement temperature—at least if the
quarks exhibit paramagnetic behavior.

Finally, there exists a very large number of articles discussing the properties of QCD-like theories at finite temperature
and/or density, using holographic methods, which implicitly rely on the large-N limit. Like for the holographic studies of
mesons mentioned at the end of Section 2.2, it would not be possible to cover all the relevant literature in the present
manuscript. Hence, we recommend some recent review articles and lecture notes on this topic [475–481], and limit our
present discussion to a brief summary of the rôle of the large-N limit in the gauge-string correspondence, which is reviewed
in Section 2.6.

2.6. The rôle of the large-N limit in the gauge-string correspondence—a brief summary

An expansion analogous to Eq. (4) also arises in string theory—with the string coupling gs replacing 1/N as the expansion
parameter of the topological series. Were the ‘‘planar’’ and ‘‘non-planar’’ diagrams contributing to Eq. (4) to be interpreted
as defined in real space (rather than in the internal index space of the theory), then one could imagine that, while the
perturbative expansion is organized as a series of diagrams which, at any finite order, look like ‘‘fishnets’’, in a fully non-
perturbative formulation of the theory the holes may close, and the surfaces of the Feynman diagrams may become real
surfaces, or the world-sheets spanned by strings. This observation led to speculations that string theory might provide a
reformulation of non-Abelian gauge theory since the 1970’s—a possibility which, in fact, was already discussed in ’t Hooft’s
original work [1].

More recently, this idea resurfaced again in the context of the holographic correspondence, i.e. in the conjectured duality
between gauge theories and string theories in higher-dimensional, curved spacetimes [14–16] (see Refs. [482–485] for an
introduction to the topic).

To give an idea of how the gauge/gravity duality arises, and of the rôle of the large-N limit in it, it is helpful to consider the
most studied example of this correspondence, which relates N = 4 U(N) Yang–Mills theory in four spacetime dimensions
to type IIB superstring theory in ten spacetime dimensions. The former theory is the maximally supersymmetric non-
Abelian gauge theory in four dimensions, with four supercharges [486,487]. Its field content includes the gauge field Aµ
(which is a singlet under the global SU(4)R-symmetry), four Weyl fermions in the fundamental representation of the R-
symmetry, and six real scalars in the two-index antisymmetric representation of SU(4): all of these fields transform in the
adjoint representation of the gauge group. In addition, the theory is invariant under conformal transformations: this holds
at all orders in perturbation theory [488,489], and also non-perturbatively [490]. As a consequence, the theory is scale-
invariant, and its coupling does not get renormalized. Type IIB superstring theory is a chiral supersymmetric string theory
in ten dimensions with 32 supercharges [491,492]. Its spectrum includes D3-branes [493,494]: they are 3 + 1-dimensional
hyperplanes, on which open strings end, but they can also be interpreted as topological solutions of the supergravity limit
of type IIB theory. In particular, a stack of N coincident D3-branes is a supergravity solution corresponding to the metric:

ds2 =
1

1 +
R4
r4


−dt2 + dx2


+


1 +

R4

r4

dr2 + r2dΩ2

5


, (33)

where t is the time coordinate, the xi’s are the spatial coordinates on the brane, while r denotes the transverse distance from
the branes, and R is related to the string coupling (gs) and length (ls) via: R4

= 4πgsNl4s . Note that r → 0 is a horizon. At
very large distance from the branes, R ≪ r , the metric in Eq. (33) reduces to a 9 + 1-dimensional Minkowski spacetime. In
the opposite limit, i.e. for r ≪ R, introducing the variable z = R2/r , the geometry of the spacetime reduces to:

ds2 =
R2

z2

−dt2 + dx2 + dz2


+ R2dΩ2

5 , (34)

which is the product of a five-dimensional anti-de Sitter (AdS) spacetime21 times a five-dimensional sphere, AdS5 × S5. The
D3-branes are charged under an antisymmetric 4-form tensor field, and the flux of the corresponding self-dual field strength
through the S5 sphere is equal to N , i.e. it counts the number of D3-branes.22 At this point, the gauge/string correspondence

21 The anti-de Sitter spacetime is amaximally symmetric Lorentzmanifoldwith constant negative scalar curvature, which is a vacuum solution to Einstein
equations with a negative cosmological constant.
22 Note the analogy with Gauß’s law of electromagnetism: in four spacetime dimensions, pointlike electric charges (‘‘D0-branes’’) are sources of the
electromagnetic potential (a 1-form). The flux of the electromagnetic field strength (a 2-form) through a S2 sphere counts the number of charges in its
interior.
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arises as a formof open/closed string duality: it stems from the observation [14] that the low-energy dynamics of this system
can be described both in terms of a Dirac–Born–Infeld low-energy effective action for open strings (which, when expanded
in derivatives, reduces to the action of N = 4 super-Yang–Mills theory), and in terms of gravitational excitations, i.e. closed
strings propagating in the bulk of the spacetime. In particular, the description in terms of open strings is most natural when
gsN (which describes the strength of the coupling of N D3-branes to gravity) is small, so that the spacetime is almost flat.
On the contrary, when gsN is large, the spacetime is strongly curved, and the low-energy dynamics of the theory can be
described as a supergravity theory in anti-de Sitter spacetime.

The parameters of the two theories – namely, the number of color charges and the ’t Hooft coupling in the gauge theory,
and the string length ls and coupling, and the spacetime radius R on the string side – are related by:

λ =
R4

l4s
,

λ

N
= 4πgs. (35)

As a consequence of the second relation in Eq. (35), the large-N limit of the gauge theory corresponds to the limit in which
loop effects on the string side become negligible, i.e. to a classical string limit. If, furthermore, the ’t Hooft coupling of the
gauge theory is large, then the string theory reduces to its classical gravity limit.

The gauge/string correspondence discussed above relates the symmetries in the two theories in a non-trivial way:

• theR-symmetry in the gauge theory is SU(4), which is isomorphic to the SO(6) symmetry of the five-dimensional sphere
S5;

• the conformal invariance group of the gauge theory is isomorphic to SO(2, 4), which is the symmetry group of AdS5.

In particular, the latter isomorphism is related to the physical interpretation of the ‘‘radial’’ coordinate of the AdS5 spacetime,
which corresponds to the energy scale of the dual gauge theory (see, e.g., Refs. [495–497] for a discussion).

The correspondence can be formulated in a mathematically more precise way by relating the generating functional of
connected Green’s functions in the gauge theory to the minimum of the supergravity action, with appropriate boundary
conditions, via a field-operator map [15,16]. This means that a deformation of the field theory (defined in a flat spacetime of
dimension D) via a source term of the form:

dDxO(x)J(x) (36)

(where O is a local, gauge-invariant operator) can be mapped to (the supergravity limit of) a dual string theory with a bulk
field J which reduces to J (up to a scaling factor dependent on the conformal dimension) on the boundary23 of a (D + 1)-
dimensional AdS space (see Fig. 3 for a sketch):

T exp


dDxO(x)J(x)


= exp

−Ssugra [J(x, r)]


, (37)

where Ssugra denotes the on-shell supergravity action, and:

lim
r→∞

J(x, r) = r∆−DJ(x). (38)

For this reason, the gauge/string duality is also called ‘‘holographic correspondence’’, as it relates the description of dynamics
within a volume of space to information encoded on its boundary [498–500]—see also Ref. [501] for a review, and Ref. [502]
for a detailed discussion of the interplay between infrared and ultraviolet effects in the bulk and boundary theories. By
taking functional derivativeswith respect to the source, Eq. (37) opens up the possibility to compute correlators of composite
operators in the field theory by mapping them to integrals on the AdS space [503].

The construction outlined above can be extended to a finite-temperature setup, via aWick rotation, and compactification
of the resulting Euclidean time direction [504]. In this case, the asymptotic boundary geometry is S3 × S1, and, in addition
to the (Wick-rotated version of the) AdS metric, there exists another supergravity solution, which describes an AdS-
Schwarzschild black hole:

ds2 =
r2

R2


f (r)dτ 2 + dx2


+

R2

r2


1

f (r)
dr2 + r2dΩ2

5


, f (r) = 1 −

r4H
r4
, (39)

where τ denotes the Euclidean time. The partition function of the theory is then dominated by the solutionwith the smallest
Euclidean action. Note that the ‘‘blackness function’’ f (r) is monotonic, and tends to 1 for r → ∞, while it vanishes
for r = rH , which corresponds to the location of the black hole horizon. The Hawking temperature of the horizon is
T = rH/(πR2), and corresponds to the temperature of the dual gauge theory.24 Renowned results that have been obtained

23 Here, the word ‘‘boundary’’ should be interpreted in the sense of a conformal – rather than topological – boundary.
24 Note that a finite temperature breaks explicitly the supersymmetry and conformal invariance of theN = 4 super-Yang–Mills theory, making the latter
– at least qualitatively – ‘‘more similar’’ to QCD.
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Fig. 3. A simplified cartoon of the gauge/string correspondence: the figure shows a set of N coincident D3-branes (D3, at the bottom of the figure),
supporting excitations described by open strings (o), which describe gauge interactions. The D3-branes are heavy objects, so they curve the six extra
dimensions of the spacetime in which they are defined. For the sake of clarity, the cartoon only displays a sketch of the extra dimensions through a given
point x on the branes. Starting from x, the metric in Eq. (33) shows that at small distance r from the branes (r ≪ R) the geometry of the ten-dimensional
spacetime is approximately that of a five-dimensional anti-de Sitter spacetime (AdS5), times a five-dimensional sphere (S5), whose coordinates are here
symbolically denoted asΩ5 (while for R ≪ r it tends to a ten-dimensional Minkowski spacetime). The gravitational excitations in this space are described
by closed strings (c). The boundary (b) of the AdS5 spacetime is obtained for r → ∞, and is conformally equivalent to four-dimensional Minkowski
spacetime. The holographic correspondence expressed by Eq. (37) states that the string partition function with a bulk field J, which reduces to a field J on
the boundary – up to a scaling factor expressed by Eq. (38) – is equivalent to the generating functional of the gauge theory defined in four-dimensional
Minkowski spacetime, with a source J coupled to a gauge-invariant operator O, as in Eq. (36).

for the large-NN = 4 super-Yang–Mills theory at finite temperature, using the holographic correspondence, include the
value of the entropy density at strong coupling (identified with the Bekenstein–Hawking entropy density) [505,506]:

s
s0

=
3
4

+
45
32
ζ (3)(2λ)−3/2

+ · · · (40)

(where s0 = π2N2T 3/2 is the entropy density of the free N = 4 plasma) and the ratio between the shear viscosity η and
the entropy density [507]:

η

s
=

1
4π
. (41)

Although the N = 4 theory only contains fields in the adjoint representation of the gauge group, it is possible to
study fundamental matter in the probe approximation. On the string side, this can be done by the inclusion of nf D7-
branes [508,509] – called ‘‘flavor branes’’, and representing the different quark flavors – which extend along the same
spatial directions as, and which can be separated from, the D3-branes: then the theory has a reduced supersymmetry, and
a spectrum including open strings stretching from a D7- to a D3-brane (which are interpreted as massive ‘‘quarks’’), and
open strings with both ends on flavor branes (the ‘‘mesons’’ of the theory)—see also Ref. [180] and references therein for an
extensive discussion.

The gauge/gravity correspondence has also been extended to gauge theories qualitativelymore similar toQCD– including
non-supersymmetric theories with a linearly rising confining potential – in the so-called ‘‘top-down approach’’ [504]:
a partial list of relevant references includes [510–518]. On the other hand, a different, more phenomenology-oriented,
‘‘bottom-up’’ approach has been pursued in a series of works [519–530] trying to reproduce the main features of QCD
theories by constructing an appropriate five-dimensional gravitational background for the dual model.

In principle, these gauge/stringmodels allow one to get non-perturbative information about the strongly coupled regime
of a field theory, by studying an appropriate limit of the dual string model. While both the top-down and the bottom-up
approaches have led to some qualitative and quantitative success, it is fair to say that a completely realistic holographic
dual of QCD still remains missing. The main shortcomings of holographic models are inherent in the classical supergravity
approximation (which is expected to capture the large-N and strong coupling limits of the dual gauge theory), and include,
for example, the lack of a satisfactory description of asymptotic freedom, and certain mismatches between the parametric
dependence of typical dynamically generated mass scales characterizing confining gauge theories, like, e.g., the mass gap
and the (square root of the) force between color sources at asymptotically large distances [479]. In fact, as nicely summarized
in Ref. [531], the main difficulty appears to be the inclusion of non-negligible α′ string corrections, which account for the
finiteness of the physical coupling in the dual gauge theory. As Eq. (35) shows, at fixed ’t Hooft coupling, the string coupling
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constant is inversely proportional to the number of colors of the gauge theory, so that quantum corrections on the string
side of the correspondence are suppressed if N is large. Furthermore, if in this limit the ’t Hooft coupling is large, then
the string length ls becomes negligible with respect to the radius of the space on which the theory is defined, and hence
string theory essentially reduces to classical gravity (in an appropriate higher-dimensional spacetime). Since this limit
is particularly interesting, because it can be studied analytically or semi-analytically, the correspondence is often called
‘‘gauge/gravity’’ duality.25 In addition to the vast literature investigating the gauge/gravity duality with analytical methods,
it is worth mentioning that, especially during the last few years, there has been a tremendous boost of studies of related
problems using numerical tools: for an overview, see, e.g., Ref. [533] and the links to the online talks therein.

Finally, the large-N limit plays a crucial rôle also in the integrability of theN = 4 supersymmetric Yang–Mills theory: the
planar sector of this theory can be ‘‘solved’’ (meaning that scaling dimensions of local operators can be expressed analytically
as a function of the coupling constant) in terms of a system of algebraic equations, which can be derived as a particular limit
of the integral equations obtained from the thermodynamic Bethe Ansatz [534–537]—see the review [538] and references
therein for a discussion.

3. SU(N) gauge theories on the lattice

For energies above 1 GeV, QCD is perturbative. Hence, a controlled expansion in αs = g2/(4π) can be used to compute
physical quantities. This program is successful at explaining experimental data obtained at particle collider facilities, and
is indeed one of the key theoretical ingredients for the analysis of collision events observed at the LHC. However, as the
energy is lowered below 1 GeV, αs rapidly becomes of order one, and the perturbative expansion looses its predictive
power. Hence, in order to derive from first principles phenomena that are typical of the non-perturbative domain of QCD,
like chiral symmetry breaking and confinement, a different approach is needed. In the previous section, we have discussed
the large-N expansion as a possible systematic expansion to study non-perturbative QCD and the gauge–gravity dual as a
way to compute observables in the zeroth order in that expansion (corresponding to the N → ∞ limit of the theory). In
this section, we shall discuss a complementary approach, based on numerical simulations of the theory discretized on a
spacetime lattice using Monte Carlo techniques. Once the continuum limit is taken, numerical results for QCD obtained in
the lattice framework can be compared to observations. Thanks to recent technical advances in the field of lattice gauge
theory, not only do we have now a reasonable numerical proof that QCD is the correct theory of the strong interactions,
but we can also trust the predictive power of lattice QCD calculations. The progress in the field has encouraged further
development targeting amore theoretical understanding of gauge theories. Among possible directions, numerical studies of
the ’t Hooft large-N limit have generated a large volume of quantitative results that on the one hand significantly advances
our understanding of the theory and on the other hand can be used to inform analytical approaches. In this section, we lay
the foundations for understanding Monte Carlo results for SU(N) gauge theories in the ’t Hooft large-N limit. While this
part brings only limited benefit to the reader already familiar with numerical calculations on a spacetime lattice, it could
provide a useful reference for those who are interested in using lattice results to inform or inspire analytical calculations.
The exposition is pedagogical and aimed at underlining themain conceptual steps and the technicalities needed for a critical
understanding of the numerical results and fixing the notation for later chapters rather than at providing detailed derivations
of all the basic lattice results needed later on. The reader interested in this latter aspect is referred to the excellent textbooks
on lattice gauge theories [539–544]. Theworks reported in the early original literature on the subject are by now considered
classic papers in the field. Although we have mentioned the main original references, there are many more to which we
cannot and we are not making justice. Once again, we refer the reader to the textbooks, which contain a better account of
the early original contributions to the field.

This section is organized as follows. In Section 3.1 we discuss the discretization of the free scalar field and some general
aspects of the recovery of the continuum limit. How to construct lattice variables for the gauge fields so that gauge invariance
is respected in a discretized spacetime will be the subject of Section 3.2, which will also deal with subtleties connected
with the discretization of fermionic fields. Numerical calculations will be discussed in Section 3.3, while in Section 3.4 we
shall present how continuum large-N physics is extracted from numerical simulations. For the sake of definiteness, unless
otherwise stated, in this section we only deal with four-dimensional theories.

3.1. The free scalar field

3.1.1. Path integral approach
The lattice approach is based on the path integral quantization. For the sake of definiteness, let us consider a free scalar

theory, described by the Lagrangian

L(φ(x)) =
1
2
∂µφ(x)∂µφ(x)−

1
2
m2φ(x)2, (42)

25 Note that, strictly speaking, this is actually a misnomer [532], since the correspondence (in its ‘‘strong’’ form) is expected to hold at all values of the
parameters of the string theory.
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where φ is a spin zero scalar field of mass m. The easiest way to quantize this theory is to use the canonical approach.
With x = (x0, x⃗), with x0 being the temporal component and x⃗ the spatial component of the quadrivector x, we define the
momentumΠ(x) as

Π(x) =
∂L(φ(x))
∂0φ(x)

(43)

and we impose the usual equal-time (x0 = y0) commutation relations

[φ(x),Π(y)] = iδ3(x⃗ − y⃗),
[φ(x), φ(y)] = [Π(x),Π(y)] = 0.

This approach naturally leads to the Fock space, inwhich the base states aremulti-particle states labeled by themomenta
of each single particle.

If we now consider an interaction that can be written as26 V (φ) = αf (φ), with f e.g. a polynomial of degree k, for small α
we can still start from the canonical quantization and treat the effect of the interaction perturbatively in α. It is then possible
to compute systematically the n-point correlation function for arbitrary n

Cn (φ(xi), . . . , φ(xn)) = ⟨φ(x1) . . . φ(xn)⟩ (44)

as a power series in α. Since all the observables can be expressed using the Cn, all physical processes can be accessed in
this way. The basic physical assumption underlying the perturbative expansion is that multiparticle states of well-defined
momentumare still a good approximation of the eigenstates of the interacting theory,with corrections that can be accounted
for by a systematic expansion in powers of α. However, in a quantum field theory α is not constant, but depends on the
momentum. Hence, in order for the perturbative calculation to be valid, α needs to remain small for the relevant range of
energies.

An alternative approach for computing the correlation functions is the path integral. In this formulation, they are given by

Cn (φ(xi), . . . , φ(xn)) =


(Dφ(x)) φ(x1) . . . φ(xn)eiS(φ)

(Dφ(x)) eiS(φ)
, (45)

where φ has to be interpreted as a classical field and the integral has to be performed over all possible classical field
configurations (this is indicated by the expression (Dφ(x))). The integrand is weighted by the factor eiS(φ), where

S(φ) =


d4x L(φ) (46)

is the action evaluated over a field configuration φ(x). The denominator

Z =


(Dφ(x)) eiS(φ), (47)

needed to normalize the correlation functions, is what is referred to as the path integral. The advantage of the path integral
formulation is that it can be used also for the interacting theory, irrespectively of the value of the coupling.

3.1.2. The scalar field on the lattice
At this stage, the path integral (47) is still a formal expression: in order to be able to use it, we need to give a prescription

on how to perform the integration. To this purpose, we first perform aWick rotation, which consists in the change of variable
τ = ix0. In the new variables, up to an overall minus sign, the metric is Euclidean. For this reason, the space of the vectors
xE = (ix0, x⃗) is called Euclidean space. In Euclidean space, we write the Lagrangian as

LE(φ) =
1
2
∂
µ

E φ(xE)∂µ,Eφ(xE)+
1
2
m2φ(xE)2, (48)

where the metric is the identity (and in fact we could disregard the convention of lower and upper indices), and the action
as

SE(φ) =


d4xE LE(φ). (49)

Then, the path integral becomes

ZE =


(Dφ(xE)) e−SE (φ). (50)

Over Eq. (47), ZE has the advantage of having the damping factor e−SE (φ) replacing the oscillating factor eiS(φ) in the integrand,
which improves the convergence of the integral. Real-time correlation functions can be obtained from Euclidean-time

26 We assume that V (φ) is bounded from below.
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correlation functions by analytic continuation. From now on, we will work in Euclidean space, and for convenience we
will drop the subscript E from all expressions. For instance, we will write the Euclidean path integral as

Z =


(Dφ(x)) e−S(φ), (51)

where it is understood that φ is defined in Euclidean space and S is the Euclidean action.
We still need to give an operational implementation of the measure (Dφ(x)). To this purpose, we can consider a

spacetimegrid of spacing a (the lattice) anddefineφ only on sites of the grid, i.e. onpoints x such that x = (n0a, n1a, n2a, n3a),
with the ni all integer. If we also impose that 0 ≤ ni ≤ Ni−1, i.e. that the lattice size in the i-th direction is aNi, then the path
integral measure becomes a multidimensional integral. In the remainder of this section, we focus on the discretization of
the theory, while in the next section we shall see how the continuum theory can be recovered from its discretized version.

For convenience, we rescale the field φ by a, obtaining the dimensionless combination ϕ(i) = aφ(ai), with i =

(n0, n1, n2, n3) = (n0, n⃗), in terms of which we formulate the free field scalar theory on the lattice. To this purpose, we
replace the integral


d4xwith a4


i, where i runs over all lattice points, and the derivative of φ with the finite difference

∂µφ(i) →
φ(i + µ̂)− φ(i)

a
, (52)

where µ̂ is the unit vector in the direction µ. The lattice action becomes

S =
1
2


i


−

1
2


3

µ=0

ϕ(i + µ̂)ϕ(i)+ ϕ(i)ϕ(i − µ̂)


+

m̂2

+ 8

, (53)

where m̂ = am, and the discretized path integral reads

Z =

 
i

dϕ(i)


e−S(ϕ), (54)

with S given in (53) and the product running over all lattice points. n-point Green functions are easily computed in
momentum space, where it has to be considered that the momenta are cut-off at pmax = π/a (in crystallography, this
corresponds to the first Brillouin zone). For instance, for the two-point function (the lattice propagator), we have:

⟨ϕ(l)ϕ(m)⟩ =

 π

−π

d4p̂

(2π)4
eip̂·(l−m)

4

µ

sin2 p̂µ/2+ m̂2
. (55)

3.1.3. Continuum limit
The lattice path integral (54) is formally identical to the partition function of a statistical systemwith N1N2N3N4 degrees

of freedom and Hamiltonian S. The problem of recovering the infinite volume limit of the original system is then mapped
into the problem of performing the thermodynamic limit of the associated statistical system. This mapping allows typical
concepts of statistical mechanics to be carried over to lattice field theory. Although we do not pursue the analogy further,
important progress has been achieved exploiting this correspondence.

Once the infinite volume limit has been performed, the continuum limit can be recovered by taking the lattice spacing a to
zero. At the classical level, this implies that the discretized action should reproduce the continuum action in the limit a → 0.
This request is easily fulfilled, since the lattice action has been constructed as a simple discretization of the continuumaction.
For the quantum theory, we need to systematically compute all lattice n-point functions and show that they converge to the
corresponding continuum functionswhen a → 0. Since a quantum field theory is uniquely specified by its n-point functions,
this would suffice to prove that the lattice field theory reproduces thewanted field theory in the continuum limit. The above
procedure can look tautological. However, there is no guarantee that the lattice theory obtained by naïve discretization of
the path integral describe the wanted field theory in the continuum limit.

Since for the free theory the issue is trivial, let us consider the case of the interacting theory. Once the theory is discretized
on a lattice, observables depend on the dimensionless couplings (m̂, α, . . .), which in turn are functions of the lattice spacing.
If we now take the lowest mass of the physical spectrum,M , if a continuum limit exist, we must have

lim
a→0

M̂/a = M, (56)

where M̂ is the dimensionlessmass determinedon the lattice, and a reinstates the dimensions. Theprevious equation implies

lim
a→0

1/M̂ = ∞, (57)

where 1/M̂ = ξ can be interpreted as the correlation length (in dimensionless units) of the statistical system associated to
the regularized quantum field theory. Hence, in the language of Statistical Mechanics, reaching the continuum limit means
finding the values of the couplings for which the system is critical. Physically, this means that the correlation length of
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the system is much larger than the lattice spacing a, which implies that the system looses memory of the discretization.
In general, whether values of the coupling exist such that the system is critical is a dynamical problem. If it happens, it
might not be immediate to identify the corresponding quantum field theory in the infrared, since this is determined by the
value of the n-point functions at the critical point. For SU(N) gauge theories, thanks to asymptotic freedom, the system is
critical at the ultraviolet fixed point, where the theory is perturbative. Hence, the lattice provides a way to regularize the
theory in the ultraviolet, and removing the ultraviolet cut-off a corresponds to a well-defined renormalization procedure,
in which an infrared scale (e.g. the string tension in the pure gauge case or the mass of the ρ meson in the presence of
dynamical quarks) is fixed, and all spectral quantities are determined in terms of this scale.27 It is important to emphasize
that different ways to set the lattice scale (in terms of different physical observables) may lead to slightly different results
at finite values of the lattice spacing, because different observables can be affected by different lattice artifacts. However,
these differences disappear when results are extrapolated to the continuum limit a → 0. In fact, once one has proved that
the lattice discretized version of QCD has the right continuum limit, one could invert the logic and define QCD starting from
the construction on the lattice. This would give a more rigorous way to specify the quantum field theory than canonical
quantization, which has the problem of defining the theory starting from the perturbative Fock vacuum, which is very far
from the real QCD vacuum. By the same token, using the lattice we can rigorously define the large-N limit à la ’t Hooft of
SU(N) gauge theories as the theory defined by all the n-point correlatorswhen this limit is taken. In this approach, the lattice
could be used to prove the existence of this limit, even in the non-perturbative regime.

In passing by, we notice that different prescriptions could have been used to construct the lattice action from the
continuum one. For instance, we could request that the discrete derivative be defined as

∂µφ(i) →
φ(i + µ̂)− φ(i − µ̂)

2a
. (58)

The corresponding actionwould have differed from (53) by corrections that go to zero in the continuum limit. This ambiguity
in defining the lattice action can be exploited to improve at the quantum level the convergence of the lattice theory to the
continuum one as a → 0.

3.2. Discretization of SU(N) gauge theories

3.2.1. Gauge fields
Agood regularization of a quantum theory respects the crucial properties of the original theory,with the others recovered

when the ultraviolet cut-off is removed. On the lattice, the property that we absolutely need to preserve is gauge invariance.
This can be accomplished through parallel transports. Consider for instance continuum scalar electrodynamics (in Euclidean
space). If the (complex) scalar field is coupled to an Abelian gauge field Aµ(x), the continuum derivative is replaced by the
covariant derivative:

∂µ → Dµ = ∂µ + ig0Aµ(x), (59)

where g0 is the gauge coupling. Under gauge transformations defined by the functionΛ(x)

Aµ(x) → Aµ(x)− ∂µΛ(x), φ(x) → e−ig0Λ(x)φ(x), (60)

so that the Lagrangian

L(φ, Aµ) = Dµφ(x)Dµφ∗(x)+ m2φ(x)φ∗(x)+
1
4
Fµν(x)Fµν(x), Fµν(x) = ∂µAν − ∂νAµ (61)

is invariant. It is immediate to see that a naïve discretization of this Lagrangian will not preserve gauge invariance, the
problem being that the finite difference mixes fields defined on different lattice points. This can be remedied as follows. We
introduce the parallel transport along the link joining the sites i and i + µ̂ as

Uµ(i) = eig0
 x+aµ̂
x Aµ(s)ds, (62)

where x = ai. On the lattice, we make the replacement

Dµφ(i) →
Uµ(x)φ(i + µ̂)− φ(i)

a
. (63)

Gauge transformations act as usual on φ:

φ(j) → e−iλ(j)φ(j); φ∗(j) → eiλ(j)φ∗(j). (64)

27 An alternative way to set the lattice scale is based on Sommer’s scale r0 [545], which is defined as the distance at which the force F between a pair
of external, infinitely heavy, fundamental color sources (i.e., a static quark–antiquark pair) satisfies: r20 F(r0) = 1.65. Comparison with phenomenological
potential models shows that this length scale corresponds to approximately r0 = 0.5 fm. For the lattice regularization of SU(3) Yang–Mills with theWilson
gauge action, a high-precision determination of the lattice spacing a in units of r0 , as a function of the lattice parameter β , was reported in Ref. [546].
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For the link variables, we have

Uµ(j) → e−iλ(j)Uµ(j)eiλ(j+µ̂). (65)
Using the fact that U−µ(i) = U∗

µ(i− µ̂), it is easy to see that the terms involving φ in Eq. (61) are invariant under discretized
gauge transformationswhen using the prescription (63) for the covariant derivative. The part of the Lagrangian involving the
field tensor Fµν can also be expressed in terms of the link variables. The simplest possibility is given by theWilson action [2]

S = β

j,µ>ν


1 −

1
2


Uµν(i)+ U∗

µν(i)


(66)

where β = 1/g2
0 and

Uµν(j) = Uµ(j)Uν(j + µ̂)U∗

µ(j + ν̂)U∗

ν (j) (67)
is the parallel transport of the gauge field around an elementary lattice square (plaquette). It is worth noticing that S defined
in Eq. (66) is manifestly gauge invariant. Expanding the exponentials defining the links at the leading order in a, we get

S ≃
a4

4


j,µ,ν

Fµν(j)Fµν(j), (68)

which is the naïve discretization of the gauge field action.
The generalization of the above discussion to SU(N) is immediate. Now, the link variables Uµ(j) are defined as the path-

ordered exponential

Uµ(j) = P eig0
 x+aµ̂
x Aµ(s)ds, (69)

where now Uµ(j) is a matrix in the SU(N) group, and the plaquette is the path-ordered product of links around the lattice
plaquette:

Uµν(j) = Uµ(j)Uν(j + µ̂)UĎ
µ(j + ν̂)UĎ

ν (j) (70)

where as before U−µ(j) = UĎ
j−µ̂(j). Under gauge transformation implemented by the SU(N)-valued functionΩ(x), the Uµ(j)

transforms as
Uµ(j) → Ω(j)Uµ(j)ΩĎ(j + µ̂), (71)

which is the lattice version of the continuum gauge transformation

Aµ(x) → Ω(x)Aµ(x)ΩĎ(x)−
i
g0
Ω(x)∂µΩĎ(x). (72)

In terms of Uµν(j), the Wilson action reads

S = β

j,µ>ν


1 −

1
N
ReTrUµν(j)


. (73)

where ReTr indicates the real part of the trace andβ = 2N/g2
0 . Gauge invariance is guaranteed by the trace. The path integral

reads

Z =

 
j,µ

dUµ(j)


e−S, (74)

where each factor dUµ(j) in themeasure is theHaarmeasure of SU(N) associated to the linkUµ(j). For our purposes, themost
important property of theHaarmeasure is that it is uniform in the group. The action (73) yields the naïve discretization of the
SU(N) Yang–Mills theory at the leading order in a as a → 0, as it should. The lattice theory can also be shown to reproduce
the correct continuum limit when the lattice spacing goes to zero. As we will see in more detail later, this is a non-trivial
consequence of asymptotic freedom.

3.2.2. Fermions
Lattice discretization of fermion fields is not immediate. To see the origin of the problem and the possible solutions,

we start by following closely the strategy we have used for the bosonic field. Given a continuum field ψ(x), we define the
(dimensionless) discretized fermion field ψ̂(i) as

ψ̂(i) = a3/2ψ(ia) (75)
and its discretized derivative as

∂̂µψ̂(i) =
ψ̂(i + µ̂)− ψ̂(i − µ̂)

2
. (76)
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Note that, differently from the bosonic field case, we have used a symmetric definition for the derivative. By substituting
these equations in the Euclidean Dirac action, we get the lattice fermionic action

Sf =


i,j,α,β

ˆψα(i)


1
2


µ


γ E
µ


αβ


δi+µ̂,j − δi−µ̂,j


+ m̂δijδαβ


ψ̂β(j), (77)

where m̂ = am, withm the fermionmass. In this equation, Dirac indices are expressedwith Greek letters, while Latin letters
indicate lattice points. The γE are the Euclidean γ matrices, satisfying the anticommutation relations

{γ E
µ , γ

E
ν } = 2δµν . (78)

In terms of the Minkowskian γ matrices, the Euclidean γ matrices are given by

γ E
0 = γ0, γ E

i = −iγi, i = 1, 2, 3. (79)

It is convenient to define the Dirac operator D as

Dαβ(ij) =


1
2


µ


γ E
µ


αβ


δi+µ̂,j − δi−µ̂,j


+ m̂δijδαβ


, (80)

so that the fermion action can be written in a more compact form as

Sf =


i,j,α,β

ˆψα(i)Dαβ(ij)ψ̂β(j). (81)

Fermionic correlation functions can be expressed in terms of the inverse Dirac operator. For instance, for the correlator, we
have

⟨ψ̂α(i) ˆψβ(j)⟩ = D−1
αβ (ij). (82)

Using the momentum representation, we can rewrite this expression as

⟨ψ̂α(i) ˆψβ(j)⟩ =

 π

−π

d4p̂

(2π)4

−i

µ

γ E
µ sin


p̂µ

+ m̂

µ

sin2 p̂µ+ m̂2
eip̂·(i−j), (83)

where p̂ = ap and p is the continuummomentum. This expression reproduces the continuum Euclidean propagator of a free
fermionwhen a → 0, as it should. However, the same continuum form is obtained alsowhen at least one of the components
of the momentum pµ = π/a. Hence, each corner of the Brillouin zone contributes equally to the propagator, which means
that the so-called naïve discretization, given by Eqs. (75)–(77), gives rise to 16 fermion flavors in the continuum limit. This is
the problemof fermion doubling. Awell-knownno-go theoremdue toNielsen andNinomiya [547,548] implies that doubling
is an unavoidable consequence if one requires a discretized fermion theory that preserves chiral symmetry and is ultralocal
(i.e. the action only involves couplings between fields in a localized region of space). Hence, in order to avoid doubling, one
has to relax the request of chirality or the request of ultralocality. The Wilson solution to the problem of doubling was to
relax the request of chirality [549]. In his approach, an irrelevant operator in the limit a → 0 provides the doublers with
an infinite mass in the continuum limit.28 A different approach was proposed by Kogut and Susskind [553–555], who were
able to reduce the number of doublers from 2D (in D spacetime dimensions, assuming D to be even) to 2D/2 by spreading the
four components of the Dirac spinor on the corners of the Brillouin zone (hence the name of ‘‘staggered fermions’’ for this
discretization). More recently, a series of fermion discretizations, that avoid the doubling problem, by satisfying a modified
form of chiral symmetry on the lattice [556,557] (which goes over to the usual continuum chiral symmetry for a → 0), have
been proposed: these include the domain wall formulation [558–561], the overlap formulation [562–567], and the fixed-
point formulation [568–570].29 For a general discussion about lattice fermions and chiral symmetry, see Refs. [572–574].
We stress that the physics in the continuum limit is independent of the lattice discretization used. However, a particular
formulation could be more suited for a particular problem. In lattice calculations of SU(N) gauge theories with fermions,
mostly the Wilson formulation has been used. The main motivations for this choice are the following:

• simulations using Wilson fermions are much faster than simulations using non-ultralocal fermions;
• unlike in the staggered fermion case, a generic number of flavors can be simulated in the Wilson approach;
• chiral symmetry can be recovered by tuning the bare quark mass to a critical value.30

28 A variant of Wilson fermions, including a ‘‘chirally twisted’’ mass term, was proposed in Refs. [550–552].
29 A ‘‘chirally improved’’ variant of Wilson fermions was proposed in Ref. [571].
30 Although this value has to be found as a part of the simulation, this does not create particular problems in practical applications.
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TheWilson discretization starts from amodification of the Dirac operator with an additive term that goes like the Laplacian
of ψ̂ with strength controlled by a parameter r , conventionally taken to be equal to 1. Explicitly, this term reads

∆Sf = −
r
2


i

ˆψ(i)

µ


ψ̂(i + µ̂)+ ψ̂(i − µ̂)− 2ψ̂(i)


, (84)

This yields the following Wilson Dirac operator

DW
αβ(ij) = −

1
2


µ


r − γ E

µ


αβ
δi+µ̂,j +


r + γ E

µ


αβ
δi−µ̂,j


+

m̂ + 4r


δijδαβ . (85)

The resulting two-point function is

⟨ψ̂α(i)
ˆψβ(j)⟩ =

 π

−π

d4p̂

(2π)4

−i

µ

γ E
µ sin


p̂µ

+ m̂(p)

µ

sin2 p̂µ+

m̂(p)2

 eip̂·(i−j), (86)

which is similar in form to the naïve propagator, the difference being that now the mass depends on the momentum:

m(p) = m +
2r
a


µ

sin2
apµ

2


(87)

(note that we have reinstated dimensionful units in this expression). When apµ → 0 for all µ,m(p) ≃ m, and the expected
continuum result is recovered. Conversely, at the other corners of the Brillouin zone,m(p) diverges. Hence, in the continuum
limit the unphysical doublers get an infinite mass, decoupling from the action.

3.2.3. Gauge theories with fermionic matter
We conclude this brief introduction to lattice gauge theories with the case of fermionic matter coupled to gauge fields.

For simplicity, we consider the case in which there are nf fermion flavors having the samemass m̂. In the presence of gauge
interactions, for Wilson fermions the Dirac operator is given by

DW
αβ(ij) = −

1
2


µ


r − γ E

µ


αβ

Uµ(i)δi+µ̂,j +

r + γ E

µ


αβ

UĎ
µ(j)δi−µ̂,j


+

m̂ + 4r


δijδαβ . (88)

For the sake of clarity, wherever the context is unambiguous, from now on we suppress the Dirac indices and the spacetime
coordinates in DW and in the fermion fields. In themost straightforward formulation, the path integral of the theory is given
by

Z =

 
j,µ

dUµ(j)


j,α,l

dψ̂ l
α(j)


j,α,l

d
ˆ
ψ

l
α(j)


e−S−

ˆ
ψ

lDW ψ̂
l

(89)

where l is the flavor index, running from 1 to nf , and S is the gauge action (73). Performing explicitly the integration over
the fermionic variables gives

Z =

 
j,µ

dUµ(j)


(det DW )

nf e−S, (90)

in which the determinant of DW to the power of nf appears.
Among fermionic observables, we shall consider only zero-momentum correlation functions of isovector meson

operators, which take the form

CΓ Γ ′(t) =


x⃗


ˆ
ψ

l
(t, x⃗)Γ ψ̂k(t, x⃗)

Ď 
ˆ
ψ

l
(0, 0⃗)Γ ′ψ̂k(0, 0⃗)


, (91)

where Γ and Γ ′ are two Euclidean Dirac matrices, (0, 0⃗) is the conventional origin of the lattice and l ≠ k. Integrating the
previous expression over the fermion fields yields

CΓ Γ ′(t) = −


x⃗


tr

Γ Ď(DW )−1(x, 0)Γ ′(DW )−1(0, x)


, (92)

with 0 ≡ (0, 0⃗) and x ≡ (t, x⃗) and tr being the trace over Dirac indices. More explicitly, in the path integral formulation this
expression reads

CΓ Γ ′(t) = −
1
Z

 
j,µ

dUµ(j)


(det DW )

nf tr

Γ Ď(DW )−1(x, 0)Γ ′(DW )−1(0, x)


e−S . (93)
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3.2.4. Quenched approximation
Fermionic observables like CΓ Γ ′ require the evaluation of the fermionic determinant. This determinant can be expanded

in fermionic loops. As an expansion parameter, one can use for instance the fermion mass. This gives rise to the so-called
hopping parameter expansion. The leading order in this expansion simply consists in neglecting all fermionic loops, which
means setting det DW

= 1. This infinite fermion mass limit defines the quenched approximation. In practical terms, working
in the quenched approximation means neglecting the back-reaction of fermions on the gauge fields. Note in addition that
the quenched theory is non-unitary.

In lattice QCD, in order to obtain an accurate numerical result it is crucial to evaluate the full fermionic determinant.
However, in large-N QCD, at fixed quark mass fermion loops become less and less relevant. In fact, the quenched large-N
limit coincides with the large-N limit in the theory with dynamical fermions. Hence, if we are interested only in the large-N
result, the calculation can be performed in the quenched theory (note that, obviously, this does not hold for the evaluation
of finite-N corrections).

A phenomenon that has been observed in lattice QCD is the delayed onset of unquenching effects: the quenched
calculation proves to work even in a regime in which one would expect significant contributions from fermion loops [128].
This feature can be seen as another indication that the physical strong interaction is close to its large-N limit.

3.3. Monte Carlo calculations

In a SU(N) gauge theory, the evaluation of the path integral on a lattice of sizeS (in lattice units) involves the evaluation of
d = 4(N2

−1)S integrals. Such a large number of integrals are impractical to be performed using grid methods. A stochastic
approach, based on the observation that the path integral measure is reminiscent of the Boltzmann measure in statistical
mechanics – and, hence, at fixed bare parameters only a subset of possible values of the variables will dominate the integral
– is preferable.Moreover, gridmethods are affected by a systematic error that isO(1/Ss/d), where s is a number that depends
on the approximation used by the given grid method (for instance, s = 4 for the popular Simpson method). Hence, when
d is large, the error becomes unavoidably of order one. Monte Carlo methods provide the wanted stochastic approach: in
a Monte Carlo calculation, field configurations are generated according to the path integral measure, which means that
configurations recur according to the weight of their contribution to the path integral. Thanks to this property, the vacuum
expectation value of an observable can be computed as a simple average over the configurations generated during theMonte
Carlo simulation. Moreover, the error (which in this case is statistical and not systematic) can be kept under control, since
it scales as 1/

√
NK , where NK is the number of generated configurations.

The theory behind Monte Carlo calculations is based on Markovian processes. Consider a system that evolves through a
sequence of states over discrete time. We indicate a generic state as Cm and the ensemble of all states (or configurations) as
{Cm}. The evolution is determined by a probability Pnm to transition from Cn to Cm at any given time. The dynamics is said
to be Markovian if the configuration realized at time t only depends on the configuration realized at time t − 1, and not on
the configurations realized at previous times. Under some technical assumptions that we do not specify here, one can prove
that an asymptotic probability distribution characterizes a Markovian dynamics. This is called the equilibrium distribution.
Monte Carlo algorithms are recipes to constructMarkovian dynamics that have the path integral measure as the equilibrium
distribution. In general, several different Markovian dynamics can generate the same equilibrium distribution. For some
Markovian dynamics that satisfies the detailed balance relation

Pnme−S(Cn) = Pmne−S(Cm), (94)

where S(C) is the action evaluated on the configuration C , the equilibrium distribution ρm is given by

ρm =
e−S(Cm)
n
e−S(Cn)

, (95)

in which it is easy to recognize the Boltzmann equilibrium distribution.
The problem of generating an ensemble of configurations dominating the path integral and approximating the

observables with controlled precision becomes then the problem of defining an appropriate Markovian dynamics for our
theory. Once we have done this, we can start from any arbitrary state and let the system evolve. After discarding a sufficient
number of configurations at the beginning of the chain, the remaining ones would be distributed with the right statistics.31

An algorithm can be characterized by the efficiency with which it explores the configuration space. A good measure of
the efficiency is the correlation time. In general, for a given observable O,

⟨O(t)O(t + τ)⟩ ∝ e−t/τO , (96)

where the correlation time τO depends on both O and the chosen Markovian dynamics. At fixed observable, τO provides
a measure of the efficiency of the algorithm: the smaller τO , the faster the configuration space is explored. Topological

31 A correct identification of the transient requires an analysis of the numerical stability of the observables against the length of this cut.
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observables are notoriously more difficult to decorrelate than local observables. An algorithm that decorrelates fast
topological observables can be considered efficient in general terms.

For SU(2) pure gauge theory, an efficient algorithm is the one proposed by Creutz [575] and later refined by Kennedy and
Pendleton [576]. This algorithm belongs to the wider class of the heath-bath algorithms, i.e. of those algorithms in which
detailed balance is obtained by generating the new configuration according to its Boltzmannweight. To further decrease the
correlation time and increase ergodicity, it is possible to supplement the heath-bath with an overrelaxation step, in which
the link variables are changed in such a way that the action remains constant [577,578].

For SU(N), a Kennedy–Pendleton or overrelaxation update can be performed by a sequence of updates on different
SU(2) subgroups. The idea of updating the SU(2) subgroups was proposed by Cabibbo and Marinari [579]. Although
the Kennedy–Pendleton algorithm with a Cabibbo–Marinari cycle works well for SU(3), at very large N cycling over
the SU(2) subgroups may become inefficient. To overcome this potential issue, it has been proposed to supplement the
Cabibbo–Marinari update with an overrelaxation step over the whole SU(N) group [580,581].

After a sequence of thermalized updates, the expectation value of an observable can be computed as the average of the
values of the observable evaluated over the various configurations of the Markov chain. For instance, if O(i) is the value of
the observable O at the i-th configuration in a Markov chain of length NK , we define

ONK =
1
NK

NK
i=1

O(i). (97)

⟨O⟩, the vacuum expectation value of O, is found as

⟨O⟩ = lim
NK→∞

ONK . (98)

ONK is a controlled estimate for ⟨O⟩, in the sense that
∆⟨O⟩

⟨O⟩

2

=
⟨O⟩

2
− O

2
NK

⟨O⟩2
∝ N−1

K . (99)

Therefore, in a numerical simulation, ⟨O⟩ can in principle be obtained with the desired accuracy, by tuning the length of the
Markov chain. The statistical uncertainty∆O can also be quantified. However, due to the correlation of the configurations,
simple Gaussian statistics is not applicable in a straightforward way. Nevertheless, Gaussian statistics can be applied after
the values of the observable have been averaged over bins of size equal to or larger than τO . Practically, this means that the
number of independent estimates of O is not NK , as one would naïvely think, but rather NK/τO .

Another issue that needs to be taken into account in order to provide a reliable estimator for ⟨O⟩ is the bias. Technically,
one says that an estimate is biased if it does not agree with the analytical value when the latter is computable. While any
bias will disappear for NK → ∞, a bias could appear for naïve estimates at finite NK . There are standard methods to remove
biases, the most popular ones being jack-knife and bootstrap. Although the details of those methods will not be discussed
any further (we refer to Ref. [582] for a pedagogical introduction), it is important to be aware that extracting a numerical
value and the corresponding error for an observablemeasured in numerical simulations usingMonte Carlomethods requires
a careful analysis, the reason being that the data are correlated. This also applies to fits of Monte Carlo data [583]. Modern
lattice calculations, including those discussed in this review, use robust procedures to estimate errors on observables and
fitting parameters. The particular procedure used in each calculation is generally discussed in the corresponding original
publication, to which we refer for details.

3.4. Lattice simulations of SU(N) gauge theories

Monte Carlo calculations in lattice gauge theory aim at computing numerically values of physical observables. Typical
quantities that are computed are connected correlation functions of two operators at zero momentum:

C(τ ) =
1
Nt

Nt−1
t=0


⟨O

Ď
1(t)O2(t + τ)⟩ − ⟨O

Ď
1(t)⟩⟨O2(t + τ)⟩


, (100)

where Nt is the number of sites in the Euclidean-time direction of the lattice, and the operator is averaged over all the other
three spatial coordinates, to project onto zero-momentum states. We have assumed that the Euclidean-time direction is
compact, and that periodic (antiperiodic) boundary conditions along it are imposed for bosonic (respectively: fermionic)
fields. For asymptotically large Nt ,

C(τ ) ∝ e−mτ , (101)

wherem is the mass of the lowest-lying state that connects O1|0⟩ to O2|0⟩. If Oi are traces of closed loop operators carrying
well-defined JPC quantum numbers (note that in this context J refers to the dihedral group, to which the group of spatial
rotations is reduced by the lattice structure), C(τ ) will identify glueball states. If the Oi operator is a fermion bilinear with
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well-defined JPC , thenC will be saturated bymesonic states. Finally, if theOi are Polyakov loopswrapping around a compact
spatial direction (with periodic boundary conditions), then the propagating states will be torelons, which will have a mass
that is proportional to the string tension. Note that, in practice, extracting a signal with sufficient accuracy for a meaningful
determination of the mass can be challenging. This problem can be overcome, by building various operators with the same
quantum numbers that can be used in a variational approach (see e.g. Ref. [584]). The variational calculation also allows one
to extract masses of excitations in the given channels.

Another important remark is that the quality of the numerical data does not decrease with N: simple large-N counting
arguments show that the ratio noise over signal is constant in N for pure gluonic correlators, while improves as 1/

√
N for

fermionic correlators.
Thermodynamic properties can be studied in a finite temperature setup, in which the lattice has N3

s × Nt sites (Ns is the
number of sites in each spatial direction, while Nt is the number of sites in the temporal direction), with Ns ≫ Nt , and,
again, periodic (antiperiodic) boundary conditions for bosonic (fermionic) fields along the compact direction, whose size is
related to the temperature T by T = 1/(aNt). The deconfinement temperature is identified by looking at the peak of the
susceptibility of the order parameter, which for a deconfining transition in the Yang–Mills theory is the Polyakov loop.32 The
scaling of the position (in β) of this susceptibility as Ns → ∞ allows to identify the critical value of β (which is a function
of Nt and of the order of the phase transition). The framework that enables us to perform those studies is the theory of finite
size scaling.

Numerical studies of a lattice gauge theory with Monte Carlo techniques involve the following steps:

1. on a lattice of fixed size S and at a fixed value of the lattice coupling β (and of the hopping parameter κ , in the presence
of dynamical fermions), evaluate numerically the vacuum expectation values of operators corresponding to physical
observables;

2. at the same lattice couplings, perform numerical simulations on lattices of larger volume, in order to extrapolate to the
thermodynamic limit;

3. repeat these two steps at various couplings in order to determine the value of the observables in the continuum limit.

In the program, there are two extrapolation processes. Both of them involve fitting the Monte Carlo data to analytical
behaviors whose leading order in the correcting parameters is known. For instance, on a lattice of linear size L, in the chiral
limit the mass of the pseudoscalar meson mπ receives finite size corrections that, at the leading order, are proportional
to e−mπ L [585]. Fitting the lattice data on various sizes with this Ansatz in the region in which the asymptotic behavior is
reached (which has to be determined as a part of the simulation) allows one to extractmπ in the infinite volume limit.

Asymptotic freedom dictates that the continuum limit of the theory is reached for β → ∞. In fact, at the lowest order,
perturbation theory33 predicts that

a =
1
Λlat

e−
12π2

11N2 β (102)

(up to subleading corrections),whereΛlat denotes the dynamically generatedmass scale in the lattice regularization scheme.
This formula implies that the lattice spacing goes (exponentially) to zero when β → ∞. The variation of an observable
with a is predicted by the Callan–Symanzik equation. The existence of a well-defined continuum limit implies that for two
observables of the same mass dimension O1 and O2

lim
β→∞

Ô1

Ô2
=

O1

O2
, (103)

where Ôi = a−diOi and di is the mass dimension of Oi. At the leading non-trivial order in a, near the continuum limit34

Ô1

Ô2
=

O1

O2
+ O(a2M2), (104)

where M2 denotes an observable with mass dimension 2 [588,589]. This expression implies that, asymptotically, lattice
corrections are quadratic in the lattice spacing. Values of β for which observables fulfill Eq. (104) are said to be in the scaling
region.

We stress again that, in order for the extrapolations described above to be meaningful, the systemmust be in the correct
regime. For instance, in a small volume, deconfinement might arise and as a result the numerical data extracted in this

32 Strictly speaking, the Polyakov loop is a well-defined order parameter only on an infinite lattice, because there cannot be any phase transition in a
system with finitely many degrees of freedom. For this reason, one normally considers the modulus of the average Polyakov loop in a configuration as a
(pseudo-)order parameter, and identifies the location of the critical point by monitoring its susceptibility, when the system parameters are varied.
33 For SU(N) gauge theories, in the lattice scheme the Symanzik β-function, which determines the variation of a as a function of the coupling g0 , is known
to three loops [586,587].
34 We are assuming that boundary conditions do not introduce corrections that are proportional to a, which is not always the case, but it is true in most
simulations—including, in particular, those that use (anti-)periodic boundary conditions.
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phase are not simply related with their infinite volume limit. Similarly, the limit corresponding to strong (bare) lattice
gauge coupling (β → 0) is heavily dominated by discretization artifacts, whose properties (like, e.g., the existence of
confinement [2] and the finiteness of the mass gap [590], which were proven analytically in the early days of lattice QCD)
are not necessarily relevant for the continuum theory.35 Nevertheless, strong coupling expansions are a useful theoretical
tool in lattice gauge theory, and are characterized by a finite convergence radius [594,596]. For the Wilson discretization of
SU(N) Yang–Mills theories in four spacetime dimensions, it is known that, for N ≥ 5, the range of (weak) couplings, which
is analytically connected to the continuum limit, is separated from the strong-coupling regime by a strong, first-order bulk
transition – which is signaled by a discontinuity in the expectation value of the plaquette, and which is not related to any
symmetry breaking pattern –, while for N < 5 a crossover connects the strong- and weak-coupling regimes [597]. In order
to probe the region of couplings analytically connected to the continuum limit, the simulations have to be performed at
values of bare lattice ’t Hooft coupling λ0 smaller than the critical value corresponding to the bulk transition leading to the
strong-coupling regime—which, for N → ∞, has been numerically estimated to be at 0.3596(2) [598].36

SU(N) Yang–Mills theory dynamically generates a scale. The whole physical spectrum can be expressed in terms of this
scale. Hence, in order tomeaningfully compare theories at differentN , a scale needs to be fixed. This could be for instance the
string tension σ (i.e. the asymptotic slope of the confining potential at large distances) or the deconfinement temperature
Tc . Once the choice has been made, large-N arguments predict the scaling with N of all other quantities relevant for the
infrared dynamics. In particular, if a well-defined large-N theory exists, all spectral quantities should have a finite large-N
limit. From perturbation theory, we expect that the leading finite-N corrections are of order 1/N2 for the gauge theory, and
of order 1/N for the theory with dynamical fermions. Taking further the perturbative argument, one would expect that pure
gauge observables can be expressed in a power series in 1/N2, while in the presence of dynamical fermions the power series
is in 1/N . In this language, the proximity of SU(3) to SU(∞)means that the series converges forN = 3.Moreover, the large-N
approach is useful to describe QCD if for a comprehensive set of observables a reasonable approximation (to the order of few
percents) can be obtained by retaining only few leading corrections, with the quality of the approximation systematically
improving when higher-order corrections are added. Note that, in the large-N limit, the quantity of reference, that one uses
for comparing the results in theories with a different number of colors N , does not play any rôle: different quantities may
be affected by finite-N corrections with different coefficients, but each of them tends to a well-defined value in the N → ∞

limit.
We conclude this section with a brief discussion about the question, whether the continuum and the large-N limits

commute. As pointed out in Ref. [601], in general the interchange of these two limitsmay be non-trivial [602,603]—especially
if there exists a set of degrees of freedom, whose number does not growwith N , but which nevertheless have a strong effect
on the dynamics at the cut-off scale at any finite N . However, as discussed in Refs. [601,604], for the gauge theories that we
are presently interested in, one can safely assume that the continuum and the large-N limits commute. In other words, if
we want to study the theory at infinite N , we can either take first the continuum limit at fixed N and then the large-N limit,
or take first the large-N limit at fixed cut-off a and then the continuum limit. In the latter approach, the lattice spacing is
kept fixed across the various N , by simulating the various theories for β such that the value of a physical quantity (e.g. the
string tension or the critical temperature) has a predefined value in units of the lattice spacing a. While performing the
large-N limit at fixed lattice spacing should be seen as an intermediate step towards getting continuum large-N physics,
this approach can prove convenient in calculations that are particularly demanding from the computational point of view.
In addition to various examples in the continuum limit, in Section 5, wewill discuss some results for which the large-N limit
has been taken at a fixed lattice spacing in the scaling region.

4. Factorization, loop equations, and large-N equivalences

Besides the phenomenological implications and the connections with string theory discussed in Section 2, large-N field
theories and statisticalmodels exhibitmany further interestingmathematical properties: the expectation values of products
of physical operators factorize, up toO(1/N) corrections (see Section 4.1 below),which suggests an analogywith the classical
limit of a quantum theory (Section 4.2), and indicates the suppression of fluctuations for N → ∞. This led to conjecture
that the large-N dynamics may be determined by a master field (Section 4.3). The factorization properties also imply that
one can formulate a closed set of equations for the expectation values of gauge invariant operators, which are presented in
Section 4.4. For the lattice formulation of the Yang–Mills theory, Eguchi and Kawai discovered that these equations reveal
the volume independence of the theory in the large-N limit, so that, in four spacetime dimensions, the theory can be reduced
to a single-site model of only four matrices (Section 4.5), provided that center symmetry remains unbroken. Since the
latter condition is not satisfied at weak couplings (which are relevant to take the continuum limit), different variants of the
original model have been proposed in the literature: these include the quenched (Section 4.6) and the twisted (Section 4.7)

35 Indeed, in the limit of strong bare lattice gauge coupling, even compact U(1) lattice gauge theory is confining [591]—while it is in a Coulomb phase at
weak coupling [592–595].
36 It is interesting to note that this value is close to some estimates, worked out with (truncated) analytical expansions based on the large-N limit, which
were already obtained in the early 1980’s [599,600].
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versions of the Eguchi–Kawai model, its generalization with dynamical adjoint fermions (Section 4.8) or with double-
trace deformations of the Yang–Mills action (Section 4.9). In parallel to these theoretical developments (and to the related
numerical studies), a complementary approach has been pursued in a series of works (discussed in Section 4.10) exploiting
the partial volume reduction of the original Eguchi–Kawai model, down to the minimal lattice volume, in which center
symmetry is unbroken. Finally, in Section 4.11 we discuss how large-N volume independence and certain correspondences
between different large-N theories can be interpreted in terms of orbifold equivalences.

4.1. Factorization

Many of the mathematical simplifications characteristic of large-N field theories and statistical models are immediately
made manifest by the combinatorics of large-N counting rules. In particular, in the computation of expectation values of
products of (appropriate) gauge-invariant operators37 Oi in large-N gauge theories, the latter imply that the leading (in N)
contributions come from disconnected terms, because they are associated with the maximum number of color traces, and,
hence, with the largest number of independent color indices to be summed over:

⟨O1O2⟩ = ⟨O1⟩ ⟨O2⟩ + O(1/N). (105)

Eq. (105) shows that the large-N limit bears analogies with two different limits in quantum field theory. On the one hand,
it can be interpreted as a thermodynamic limit [130]: for a system characterized by a finite correlation length, Eq. (105)
is analogous to the cluster decomposition property of statistical, volume averages in a large volume V , which holds up to
O(1/V ) corrections. An interesting facet of this analogy is that both N and V are related to the number of degrees of freedom
of the system (so that the integration measure for the generating functional, or for the partition function of the system,
depends on N , or on V ).

4.2. A classical-mechanics description for the large-N limit

A different interpretation of Eq. (105) is motivated by the analogy with the classical limit of a quantum field theory [27].
As it is well-known, a classical system arises explicitly in the h̄ → 0 limit of a quantum theory, when one studies the
behavior of a basis of coherent states. The latter form an overcomplete basis, which allows one to write all operators solely
in terms of their diagonal elements, and have vanishing overlaps in the h̄ → 0 limit. Together, these two properties lead to
the factorization of expectation values of products of operators, and the deterministic nature of the limit becomes clear from
the fact that, for h̄ → 0, coherent states are characterized by simultaneously vanishing uncertainties in conjugate variables.
In this limit, the classical phase space can be defined as themanifold of the coordinates labeling different coherent states, the
quantum Hamiltonian (or, more precisely: the set of its diagonal matrix elements – also called its symbol – in the coherent
state basis) can be mapped to its classical counterpart (which is minimized by the solutions of the classical equations of
motion), and the classical Lagrange function is then obtained by Legendre transform.

This construction can be repeated for the large-N limit (more precisely: for the 1/N → 0 limit) of a family of
statistical systems or of quantum field theories,38 by generalizing the familiar Heisenberg group to an appropriate coherence
group [606], generated by suitable ‘‘coordinates’’ and ‘‘momenta’’. Choosing a coherence group that, for each value of N , acts
irreducibly on the Hilbert space HN of the corresponding theory, and a reference state |0⟩N , one can construct generalized
coherent states |α⟩N by acting with elements of the coherence group on |0⟩N . The irreducibility condition allows one to
express any bounded operator as a linear combination of elements of the coherence group [607]. For gauge theories, the
coherence group is generated by Wilson loops, possibly decorated by a (chromo-)electric field insertion.

Assuming that the correspondence between linear operators in HN and their symbols on coherent states is injective,
one can consider those operators ON whose elements in the coherent state basis (appropriately normalized) have a smooth
large-N limit:

∃ lim
N→∞

⟨α|O|β⟩N

⟨α|β⟩N
(106)

and introduce an equivalence relation among coherent states, |α⟩ ∼ |β⟩, defined by the requirement that, for all operators
satisfying Eq. (106), one has:

lim
N→∞


⟨α|O|α⟩N − ⟨β|O|β⟩N


= 0. (107)

If representatives of distinct equivalence classes defined by this relation have exponentially suppressed overlaps for N →

∞, and if the H/N operator satisfies Eq. (106), then one can prove that, for N → ∞, the original theory reduces to a

37 Such operators include, in particular, local gauge-invariant purely gluonic operators, fermionic bilinear operators, andWilson loop operators. Examples
of operators which, on the contrary, do not satisfy Eq. (105) have also been pointed out in the literature [130,605].
38 Following Ref. [27], we refer to a family of statistical systems or of quantum field theories, rather than to just a statistical system or a theory with one
parameter, in order to remark that also the very structure of the theory (including, in particular, its number of degrees of freedom) can depend on the
parameter.
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classical mechanics theory defined on the coadjoint orbit of the coherence group, and H/N tends to the corresponding
classical Hamiltonian [27].

We conclude this subsection with an important observation: while the discussion presented above shows that it is
possible to construct a suitable mapping of a large-N quantum field theory to a classical-mechanics system, it is important
to remark that, in general, this does not imply that fundamental fields of the large-N quantum theory are described by the
classical equations of motion derived from their Lagrangian density. As discussed, e.g., in Ref. [22], the reason is that the
generating functional of the system features an exponent, that receives O(N2) contributions not only from the action, but
also from the measure, due to the integration over O(N2) gauge field degrees of freedom. For a discussion of somewhat
related concepts, see also Ref. [608].

4.3. Spacetime independence and the master field

The construction outlined above can be carried out to find an explicit large-N solution for certain classes of models
(e.g., vector models [609] and single-matrix models [42,610]), but not for the most interesting case of gauge theories39—
with the exception of one-plaquette lattice models [612,613]. While, at first blush, this latter case may seem completely
unphysical, it turns out that the factorization properties expressed by Eq. (105) also have potential implications for the
(lack of) spacetime dependence of the large-N theory. A first, intuitive discussion of this feature was already expounded in
Ref. [18]: for O1 = O2, Eq. (105) shows that quantum fluctuations are suppressed in the large-N limit, hence it is reasonable
to expect that, for N → ∞, the path integral is dominated by a unique gauge configuration (or, more precisely, gauge orbit).
The latter was interpreted as a classical field by Witten [18], and later dubbed ‘‘master field’’ by Coleman [19].

Explicit results based on the master field approach were derived for some simple models in Refs. [614,615], while
an algebraic equation for the master field was proposed in Ref. [616], in the form of a quenched Langevin equation.
Poincaré invariance of vev’s then implies that the master field should also be Poincaré invariant—possibly up to gauge
transformations, meaning that there exists at least a gauge in which it is Poincaré invariant. While, strictly speaking,
the interpretation of the master field as a classical, c-valued field is not correct [130], a more rigorous treatment can be
formulated in terms of non-commutative probability theory (see Refs. [617–622] and references therein), as illustrated in
Refs. [623–625].

4.4. Loop equations

As discussed above, spacetime independence of the master field is related to the large-N factorization of expectation
values of products of gauge-invariant operators, expressed by Eq. (105). Another important consequence of the same
equation is that it implies that, for N → ∞, one can derive a closed set of Schwinger–Dyson equations for expectation
values of physical operators, such as traces of Wilson loops along a contour C in a gauge theory [9],

1
N
TrW (C) =

1
N
Tr

P exp


ig


C
Aa
µ(x)dx

µ


(108)

(whereP denotes path-ordering),which allowone to reformulate the theory in a gauge-invariantway [626]. Such geometric
reformulation of gauge theories in terms of ‘‘loop calculus’’ [29] maps the familiar objects appearing in gauge theories, like
(non-)Abelian phase factors, covariant derivatives and field strength to loop functionals, path derivatives and area derivative,
respectively—see Ref. [22] for a pedagogical introduction to the subject. Loop calculus deals with the Hilbert space of square-
integrable functions which describe closed loops C (up to reparametrizations), and functionals thereof, F (C). For the latter,
the operations of area and path derivative can be defined,40 by considering the variations obtained by deforming C through
the addition of an infinitesimal loop or, respectively, a backtracking infinitesimal path at one of its points.

Taking the area derivative (sometimes also called ‘‘keyboard derivative’’) of a Wilson loop at a point corresponds to
inserting the field strength at that point [627]:

δ

δσαβ(x)
1
N
TrW (C) =

i
N
Tr

Fαβ(x)W (C)


. (109)

Acting with the path derivative on a Wilson loop decorated by the insertion of a local operator O at a ‘‘marked’’ point x has
the effect of replacing O with its covariant derivative (evaluated at x):

∂

∂xµ

1
N
Tr [O(x)W (C)] =

1
N
Tr

DµO(x)


W (C)


(110)

(on the other hand, for functionals of the Stokes’ type, the path derivative is identically vanishing at ‘‘regular’’, i.e. non-
marked, points along a loop).

39 In this context, the difficulty of gauge theories is related to the representation of their fundamental fields—see, e.g., Ref. [611] for a discussion.
40 We restrict our attention to functionals of the Stokes’ type, for which the area derivative is well-defined, i.e., independent of the shape of the
infinitesimal loop.
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The loop calculus outlined above can be used to derive the equations describing the invariance of the following functional
integral:

DA
1
N
Tr

T aW (C)


exp


i


dt d3x L


(111)

(in which the base point of the loop C is taken to be x, i.e. T a is inserted at the point x) under (functional) variation of
the components of the gauge field, Ab

µ(x): the ‘‘source’’ terms obtained when the variation is applied to T aW (C) must
cancel against the ‘‘equation-of-motion’’ terms obtained applying it to the exponential. Upon contraction of the color indices
according to the Fierz identities of the color algebra, this results in the equation [9]:

∂µ
δ

δσαβ(x)


1
N
TrW (C)


= λ


dyνδ(D)(x − y)


1
N2

TrW (Cx,y)TrW (Cy,x)


−

1
N2


1
N
TrW (C)


, (112)

where Cx,y and Cy,x denote two complementary portions41 of the loop C .
Eq. (112) holds for every value of N , however it is not a closed equation in loop space, because, generally, the product

of traces appearing on the right-hand side is not a linear combination of single-trace loop operators. In the large-N limit,
however, factorization allows one to write such term as the product of the expectation values of two single-trace operators
(and to discard the last term on the right-hand side of Eq. (112) as subleading), leading to [9]:

∂µ
δ

δσαβ(x)


1
N
TrW (C)


= λ


dyνδ(D)(x − y)


1
N
TrW (Cx,y)

 
1
N
TrW (Cy,x)


+ O(1/N2), (113)

which is a closed equation in loop space.42
Eq. (113) is a geometric equation43 with deep implications.44 In particular, the construction of an iterative solution,

starting from the expansion of the path-ordered Wilson loop W (C) in a series of cyclically ordered Green’s functions,
reproduces the set of planar diagrams which give the non-vanishing contributions toW (C) in the large-N limit.

At the non-perturbative level, an explicit solution of Eq. (113) is not known; in Ref. [630], it was shown that a confining
area-law Ansatz for asymptotically large loops is consistent with Eq. (113), but the corresponding string tension could not
be computed. Interestingly, the Nambu–Goto bosonic string action [631,632] (which describes confining Wilson loops in
terms of fluctuating surfaces, with an action proportional to their area—see the discussion in Section 5.1), which has been a
candidate effective string model for the infrared QCD dynamics since the 1970’s [633–635], is not consistent with Eq. (113).
A formal string solution to Eq. (113)was discussed in Refs. [636,637]: it takes the form of a fermionic stringmodel, describing
the dynamics of point-like Majorana spinor fields (‘‘elves’’) on the surface bounded by the loop; the effective string tension
was found to be related to the bare elf mass by a scaling law with critical exponent 12/11, but a complete solution of the
theory was not found.

4.5. The Eguchi–Kawai model

One can also formulate equations, analogous to Eq. (113), on the lattice [638–640]: this led Eguchi and Kawai (EK) to
discover the surprising property of volume reduction [641], which, if the necessary conditions are satisfied, provides a
concrete realization of spacetime independence at largeN already alluded to by the idea of a translationally invariantmaster
field. In short, the statement of EK reduction is that, if:

1. factorization of the vev’s of physical operators, Eq. (105), holds, and
2. the global ZN center symmetry of the system (which, for the Euclidean time direction, has already been discussed

in Section 2.5 in the context of finite-temperature gauge theories) along each of the four Euclidean directions is not
spontaneously broken,

then the Schwinger–Dyson equations satisfied by vev’s of (topologically trivial) Wilson loops in the large-N SU(N)
Yang–Mills theory on the lattice are independent of the physical hypervolume of the system. As a consequence – assuming
that these equations have a unique solution – also the physical observables of the theory are independent of the system
hypervolume. Note that the second condition mentioned above arises from the fact that, due to gauge invariance, vev’s of
openWilson lines of finite length are vanishing in the large-volume theory, while, in the reduced-volume theory, if the linear

41 Note that, if C is a self-intersecting loop, the δ-distribution does not necessarily force Cx,y or Cy,x to be trivial.
42 Strictly speaking, Eq. (113) should be formulated taking an appropriate, gauge-invariant loop renormalization procedure into account; this does not
pose any particular problem, as it is possible to prove that the loop renormalization can be expressed through a purely multiplicative factor: this holds
both for smooth [367] and for self-intersecting loops [628].
43 As discussed in Ref. [22], the geometric aspects of Eq. (113) can be exhibited by expressing it in terms of the Lévy operator [629].
44 Note, however, that solving Eq. (113) for all loops would not provide the complete data about the theory: in particular, physical quantities such as the
mass spectrum and scattering amplitudes are encoded in connected correlation functions of gauge-invariant operators, which vanish if exact factorization
holds, and hence cannot be captured by Eq. (113).
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size of the system equals the line length, they vanish only if the global Z4
N center symmetry (which tends to U(1)4 in the

N → ∞ limit) is unbroken.
As a consequence, if the conditions above are realized, one could study the large-N lattice theory by reducing it down

to a single-site lattice model, i.e. to a model of only four matrices Uµ (which describe the parallel transporters along the
four Euclidean spacetime directions—see Section 3). The importance of this observation is not purely academic: if the two
conditions stated above are satisfied, then volume independence of the large-N theory could open up the possibility of
studying its non-perturbative dynamics analytically, by reducing the equations of the quantum field theory in an infinite
spacetime to the equation of the theory reduced to a single point, i.e. to the Schrödinger equation of ordinary quantum
mechanics [642].

4.6. The quenched momentum prescription and the quenched Eguchi–Kawai model

Even though a theoretically appealing idea, it was almost immediately realized that large-N volume reduction for pure
Yang–Mills theory along the lines of the original EK proposal could not work.45 The reason is the failure of the second
necessary requirement listed above: by reducing the lattice sizes, center symmetry gets spontaneously broken (at least in
the range of couplings relevant for approaching the continuum limit). This can already be seen at the perturbative level:
denoting the eigenvalues of the Uµ matrices in the EK model as exp(iθ aµ) (with 1 ≤ a ≤ N), the one-loop effective potential
experienced by the θ aµ phases turns out to be attractive for all spacetime dimensions D > 2, leading to spontaneous
breakdown of center symmetry [643,644]. The Monte Carlo simulations reported in Ref. [645] confirmed this also non-
perturbatively.

A first, possible solution to preserve center symmetry was proposed in Ref. [643]: the quenched EK model.46 The
quenched EK model is based on the idea of computing expectation values in the reduced model at ‘‘frozen’’ values of the
θ aµ’s, and then performing an average over such values according to a suitable probability distribution for the θ aµ’s, which is
chosen in such a way, that center symmetry is explicitly enforced.

The way volume independence could arise in the EK model, the way it fails due to the spontaneous breakdown of
center symmetry, and the way this problem is avoided (at least at the perturbative level) in the quenched EK model can be
understood via a suitable mapping of the degrees of freedom associated with different four-momenta in the original planar
theory in a large volume to the matrix entries of the one-site model [651–655]. This is based on the following, elementary
observation: for a generic theory (either onewith global or with gauge invariance under a U(N) symmetry group)with fields
in a two-index representation of the group, like, e.g., the adjoint representation, the fundamental lines in a generic Feynman
diagram expressed in double-line notation are closed and non-intersecting. Hence, momentum conservation at each vertex
of the diagram is automatically satisfied, if one associates a generic four-momentum paµ to each fundamental line (with index
a), and takes pabµ = paµ − pbµ to be the momentum associated with the propagator obtained from the (oppositely oriented)
lines of indices a and b. In view of this observation, one can prove that, by replacing each occurrence of i∂µ in the original
action of the continuum theory with the adjoint action of the matrix:

Pµ = diag

p1µ, p

2
µ, . . . , p

N
µ


, (114)

(or, equivalently, by replacing the finite translation operator exp(a∂µ)with exp(ia[Pµ, ·]) in the lattice theory), one obtains
propagators which are equivalent to those of the original theory [652,653]. This prescription, which goes under the name of
‘‘quenchedmomentum prescription’’ [652], removes the spacetime dependence of the original matrix field from the theory,
turning the action of the original theory into a function of a constant matrix and of the diagonal matrices Pµ, so that, for
example, the vev of a generic observable O could be obtained by computing, first, its value at fixed momenta Pµ, and then
integrating over the distribution of the Pµ’s. The theory obtained from the quenching momentum prescription has the same
planar limit as the original one, at least at any finite order in perturbation theory [652].

Note that, by identifying each i∂µ with the corresponding Pµ matrix defined in Eq. (114), applying the quenched
momentumprescription corresponds to representing the group of spacetime translations in terms of the degrees of freedom
of theU(1)N diagonal subgroup of the internal U(N) symmetry group (this holds for a global aswell as for a gauge symmetry).

For gauge theory, restricting our attention to pure Yang–Mills theory,47 the quenched momentum prescription reads:

Aµ(x) = exp(iPνxν)Aµ exp(−iPνxν), iDµ → Pµ + Aµ; (115)

when applied to the lattice formulation of the theory, using Dµ = exp(iaPµ), this yields:

S̃(Uµ, Pµ) =
2N
λ


1≤α<β≤4

Re Tr

UαDαUβDβ(UαDα)Ď(UβDβ)Ď


, (116)

45 This was already acknowledged in a note added to the original paper [641], mentioning the result of the work by Bhanot, Heller and Neuberger [643] –
who found evidence for the spontaneous breakdownof center symmetry in the regimeof couplings connected to the continuum limit, i.e. in the perturbative
regime – and similar findings by Wilson and by Peskin.
46 Related approaches were also discussed in Refs. [646–648], while a Hamiltonian version of the quenched EK model was discussed in Refs. [649,650].
47 Generalizations of the quenched EK model to include quarks (in the Veneziano limit) were discussed in Refs. [656–658].
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which (by a change of variables: Uα → UαDĎ
α) is equivalent to the Eguchi–Kawai model [641]:

S̃(Uµ, Pµ) =
2N
λ


1≤α<β≤4

Re Tr

UαUβUĎ

αU
Ď
β


. (117)

Note that the classical solutions minimizing S̃ are arbitrary diagonal unitary (or special unitary, in the case of SU(N) gauge
group) matrices.

The partition function and expectation values of the original lattice model are obtained by computing the corresponding
quantities in the reduced model, described by Eq. (117), at fixed Pµ’s, and then averaging over the distribution of the Dµ’s.
In taking the latter step, it is convenient to express the Haar integration measure over each Dµ in terms of the eigenvalues
exp(iapkµ), which yields a Vandermonde determinant∆(Dµ):

dDµ =

N
k=1

dpkµ
2π


1≤b<c≤N

sin2


pbµ − pcµ

2
a


=

N
k=1

dpkµ
2π

∆(Dµ) (118)

(where, in the case of a special unitary gauge theory, the phases of the eigenvalues of each Dµ matrix are constrained to sum
up to an integer multiple of 2π ). The dynamics of the EK model in the weak-coupling regime can then be investigated by
studying the effect of quantum fluctuations around a classical solution in a leading-order perturbative computation. This
requires an appropriate gauge-fixing (e.g. to Feynman gauge) and the corresponding Faddeev–Popov determinant, so that
the integration measure for the Dµ’s (in D spacetime dimensions) turns out to be proportional to [643,644]:

D
µ=1

N
k=1

dpkµ
2π

exp


−(D − 2)


1≤b<c≤N
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
D
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sin2

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2
a


. (119)

As anticipated above, Eq. (119) shows that a uniform distribution of the paµ’s is a stationary point of the argument of the
exponential, but one which corresponds to a minimum of the statistical weight for D > 2. As a consequence, quantum
fluctuations lead to the collapse of the paµ’s, and, hence, to spontaneous breaking of center symmetry, which, in turn,
invalidates the correspondence of the reduced model to the large-volume theory.

A possibleway to prevent spontaneous symmetry breaking (at least perturbatively), consists inmodifying the integration
measure for the Uµ’s,48 so that the dependence on the Pµ’s cannot be eliminated. In Ref. [652] it was proposed to do this by
requiring the eigenvalues of the lattice covariant derivative UµDµ to be equal to those of Dµ, for eachµ, i.e. by imposing the
constraints:

UµDµ = VµDµV Ď
µ, (120)

which are explicitly gauge-invariant.49 This leads to the integration measure:
µ

dUµdVµ∆(Dµ)δ(UµDµ − VµDµV Ď
µ), (121)

which includes integration over the degrees of freedom of the unitary matrix Vµ that maps Dµ to UµDµ by a similarity
transformation. Shifting Uµ → UµDĎ

µ, the integration over the Uµ’s can be immediately performed, leading to the reduced
action:

S̃ =
2N
λ


1≤α<β≤4

Re Tr

VαDαV Ď

αVβDβV
Ď
βVαD

Ď
αV

Ď
αVβD

Ď
βV

Ď
β


, (122)

and, finally, one is left with an integration over the paµ’s with a uniform distribution, yielding the quenched EK model
introduced in Ref. [643]. Thus, at the perturbative level, the effect of the gauge-invariant constraints in Eq. (120) is to replace
the non-uniformweight for the paµ’s of the original EKmodel, Eq. (119), which was the cause of spontaneous breaking of the
center symmetry, with a uniform distribution for the paµ’s, which explicitly enforces center symmetry.

Although early numerical tests found evidence confirming the validity of volume reduction in the quenched EK model
also at the non-perturbative level [659–664], these conclusions have been recently disproven by the high-precision study
reported in Refs. [665,666], which also discuss analytical arguments for this failure. The subtle dynamical mechanism
responsible for the breakdown of volume reduction in the quenched EK model can be understood by a careful inspection of
Eq. (120), which plays a pivotal rôle in the model, and that, when expressed for the redefined Uµ’s appearing in Eq. (122),
takes the form of a polar decomposition of the four Uµ matrices:

Uµ = VµDµV Ď
µ. (123)

48 An alternative possibility consists in modifying the action [647].
49 Alternative approaches, based on non-gauge-invariant constraints, were discussed in Refs. [648,654].
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The crucial observation is that Eq. (123) fixes the eigenvalues of theUµmatrices only up to permutations [649,667]. In general,
configurations of the reducedmodel, in which the eigenvalues of the Uµ’s differ only by permutations, yield different values
of the reduced action defined in Eq. (122). Hence, if dynamical fluctuations of the Vµ’s can produce tunneling events between
such configurations, the quenched system will choose the energetically most favored configuration(s), introducing non-
trivial correlations between the Uµ components along different directions (‘‘momentum locking’’), and resulting in non-
uniform sampling of the gluonmomenta. In fact, such phenomenon does occur: at fixed coupling, there exist configurations
mediating eigenvalue permutations, whose energy cost is not enhanced in the N → ∞ limit. The factorization condition,
which is necessary for volume reduction to hold, is generally violated in the presence of correlations between the Uµ’s
in different directions. This can be seen by considering, for example, Wilson lines of the form: Mαβ = (1/N)Tr(UαUβ),
with α ≠ β , whose value on a typical momentum-locked configuration is a complex number with modulus O(1) and
with a generic, momentum-dependent phase. Averaging over the momentum values,


Mαβ


will generally vanish, whereas

MαβM
Ď
αβ


, in which the momentum-dependent phase drops out, remains finite.

4.7. The twisted Eguchi–Kawai model

A different variant of the EK model was proposed by González-Arroyo and Okawa: the twisted EK model [668,669]. It is
based on the observation that the perturbative behavior of the EKmodel can be altered, in away that avoids the spontaneous
breaking of center symmetry, by modifying the boundary conditions with appropriate twist factors zαβ in the center of the
group [670,671].

Similarly to what happens for the quenched EK model, the twisted EK model can be written in a volume-independent
form. This is done by representing the group of spacetime translations of the original theory in terms of an Abelian subgroup
of SU(N). The key observation is that, for a theory with fields in a representation of the group which is blind to the action
of center transformations (i.e. a representation with zero N-ality), such as the adjoint representation, it is possible to
represent translations in a D-dimensional spacetime50 in terms of D traceless SU(N)matrices, satisfying the ’t Hooft–Weyl
algebra [670]:

ΓβΓα = zαβΓαΓβ = exp(2π inαβ/N)ΓαΓβ , α, β ∈ {1, 2, . . . ,D} (124)

(where nαβ is an antisymmetric D×Dmatrix, whose entries are integers modulo N), i.e., commuting only up to an element
of the center of the group (see also, e.g., Ref. [672]). Starting from the lattice formulation of SU(N) Yang–Mills theory, the
twisted EK model can be obtained by defining the following products of strings of Γα matrices at each site x:

V (x) =


µ

Γ
xµ
µ , (125)

by replacing the Uµ(x) link variables with:

Uµ(x) → V (x)UµV Ď(x) (126)

and finally by doing a change of variables: Uµ → UµΓ Ď
µ . This leads to the following action [668,669]:

STEK = −
N
λ


1≤α<β≤4

[zαβTr(UαUβUĎ
αU

Ď
β)+ H.c.]. (127)

For suitable choices of the zαβ twist factors, it is possible to prove that, at the perturbative level, the model described by
Eq. (127) satisfies the same Schwinger–Dyson equations as the theory defined in an infinite volume in the large-N limit. In
particular, since the classical solution is given by Uα = Γα , in the weak-coupling limit an openWilson line from the origin to
a generic point x fluctuates around V (x) (up to a ZN factor, which depends on the shape of the line). One can prove that any
two SU(N)matrices satisfying Eq. (124)with a twist factor different from1 are traceless. Using this fact, it is possible to show
that a sufficient condition for the traces of openWilson lines in the reducedmodel to vanish is that V (x) commuteswith all of
theΓα ’s. Since, for the theory in a lattice of finite volume, the only ‘‘open’’Wilson lineswhose trace can have a non-vanishing
expectation value are those winding around the lattice (like, e.g., Polyakov loops), the latter condition reduces to:

xαnαβ/N ∈ Z. (128)

In four spacetime dimensions, a simple solution for the case when N is a perfect square (N = L2, L ∈ N0) is given by the
symmetric twist: nαβ = L for all α < β . This also reveals that, in general, finite-N corrections in the twisted EK model can
be interpreted as finite-volume corrections, with the four-dimensional volume scaling like L4 = N2.

If the conditions that ensure the equivalence between the twisted EK model and the theory defined on a lattice of finite
(large) volume are satisfied, expectation values in the twisted EKmodel are trivially related to those in the theorywith trivial
boundary conditions (i.e., no twists): for example, vev’s of Wilson loops of area A in the (α, β) plane get simply multiplied
by a zAα,β factor.

50 Here, we assume D to be even.
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As mentioned above, for the simplest symmetric twist, the classical solutions of the twisted EK model are of the form:

Uα = Γα, (129)

where the Γα ’s are a set of D traceless, N × N special unitary matrices satisfying Eq. (124); such configurations correspond
to the absolute minimum that the action in Eq. (127) can take, and are hence called ‘‘twist eating’’ configurations [671]. As
discussed in Ref. [673], in two spacetime dimensions the Γα matrices can be identified with the ‘‘shift’’:

SN =


0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
. . . . . . . . . . . . . . .
1 0 0 0 . . .

 (130)

and ‘‘clock’’:

CN =


1 0 0 0 . . .
0 ω 0 0 . . .

0 0 ω2 0 . . .

0 0 0 ω3 . . .
. . . . . . . . . . . . . . .

0 0 . . . 0 ωN−1

 , ω = exp(2π i/N), (131)

matrices, which satisfy the little ’t Hooft algebra:

SNCN = exp(2π i/N)CNSN . (132)

In four dimensions, analogous matrices can be obtained from tensor products of these matrices (taking N to be a perfect
square, N = L2, with L ∈ N0, and replacing N with L in the definitions of the shift and clock matrices)51:

Γα = Cδα,1L Sδα,2L ⊗ Cδα,3L Sδα,4L . (133)

A systematic classification of the solutions was given by van Baal in Ref. [674] (see also Ref. [675]), showing the existence of
non-trivial configurations which could survive in the large-N limit.

The distribution of eigenvalues of the Uµ matrices in the (unphysical) strong-coupling limit is uniform over (four
copies of) the U(1) circle, hence center symmetry is not broken in this limit. In the opposite limit, the configuration
corresponding to the classical solution is invariant under ZL ⊂ ZN . As a consequence, the expectation values of the four
Polyakov loops in the twisted EK model are vanishing both at strong coupling and in the classical limit. To understand how
the continuum limit is approached, a leading-order weak-coupling expansion around the twist-eating solution was first
discussed in Ref. [669]: it revealed that, while the propagators coincide with those of the lattice theory, the vertices are
generally modified by momentum-dependent phase factors, and the overall phase of a given diagram is related to the leg
ordering. In the large-N limit, this leads to strongly oscillating factors, which suppress all non-planar diagrams [669,676].
In a continuum formulation [677], the presence of momentum-dependent vertices, with relative suppression of diagrams
which differ by non-cyclic permutations of the legs, can be interpreted in the context of field theories defined in non-
commutative spaces [678–680] (see also Ref. [681]), which are relevant for certain low-energy limits of M- and string
theory [682–685]. The twisted EKmodel provided away to regularize theories defined in such spaces and to study themnon-
perturbatively [686–689].52 In fact, this formulation can also be carried out at finite values of N; in contrast to the quenched
EK model (which only captures the dynamics associated with planar graphs) the twisted EK model is well-defined order by
order in an expansion in powers of 1/N .

Non-perturbative Monte Carlo studies of the twisted EK model have been carried out since the 1980’s; for Yang–Mills
theories in four spacetime dimensions,53 early works include Refs. [669,695–702]. These articles found numerical evidence
that the model, with the simple symmetric twist described above, correctly describes the physics of the large-N theory in
a large volume, and reported results for quantities like Tc/ΛL, the deconfinement temperature in units of the lattice Λ-
parameter. Recently, however, some accurate numerical studies disproved these claims [703–705], showing that, although
the center symmetry in the twisted EK model is preserved both in the weak- and strong-coupling limits, it does get
spontaneously broken at intermediate couplings, and the width of the range of couplings in which this occurs grows with
N , making the investigation of the correct continuum physics at large N challenging—if possible at all. The spontaneous
breakdown of center symmetry at intermediate couplings appears to be due to the system getting stuck in metastable
phases, characterized by the fields fluctuating around center-symmetry breaking configurations (with action O(N) above

51 Strictly speaking, this construction yields the twist eaters in a representation in which the twist tensor is skew-diagonal: n = iLσ2 ⊗ 12 . However, n
can then be brought to the standard form by an SL(4,Z) transformation.
52 Alternative regularizations for field theories defined in non-commutative spaces are reviewed in Refs. [690,691].
53 The twisted EK model has been studied numerically also in two [689,692,693] and in six dimensions [694].
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Fig. 4. A comparison of the results of simulations of the twisted EKmodel performed in Ref. [707] using the twist formulation discussed in Ref. [706] (green
symbol), with those from lattice simulations performed in a large volume (in the conventional formulation of the theory, without exploiting the volume-
independence properties), taken from Ref. [708] (red symbols), and their extrapolation as a function of the number of colors (blue line). The quantity which
is plotted is the ratio (extrapolated to the continuum limit) between the ΛQCD parameter in the MS scheme, and the square root of the string tension,
i.e., of the asymptotic force between static color sources at large separations. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

the twist-eating configurations, and separated from the latter by effective potential barriers of order O(N2)), that become
arbitrarily long-lived for N → ∞.

A possible solution to this problemwas recently proposed inRef. [706]: the idea is to lift the action of the center-symmetry
breaking configurations O(N2) above the twist-eating ones, by changing the twist to: nαβ = kL for all α < β , with k = O(L)
(in particular: k > L/4) and co-prime with N . Non-perturbative investigations of this new formulation of the twisted EK
model were initiated in Ref. [706], and encouraging new results have been recently reported in Ref. [707]. An example is
shown in Fig. 4, taken from Ref. [707], in which the value of the string tension (i.e., of the asymptotic slope of the confining
potential at large distances) extracted from simulations in this new version of the twisted EKmodel atN = 841, and suitably
extrapolated to the continuum, is compared with those reported in Ref. [708], from a conventional lattice study in a large
volume: the result obtained from the twisted EK model simulation is consistent with the extrapolation of the latter.

However, it is worth mentioning that the numerical study of Ref. [704], which also discussed the case of a twist tensor
n = O(N), concluded that the critical value of ’t Hooft coupling, belowwhich center symmetry is not spontaneously broken,
tends to zero like 1/N when N is increased. Similar conclusions were obtained in another numerical study [705], that used
a twist tensor with k = (L + 1)/2. To completely clarify the viability of the twisted EK model with a non-minimal twist to
investigate the behavior of large-N Yang–Mills theory, further numerical studies are needed.

Other recent numerical studies related to the twisted EK model include those discussed in Ref. [709] (which considered
Yang–Mills theory in three spacetime dimensions in a finite volume and in the presence of a chromomagnetic flux realized
with a twist, studying the interplay between the large-N limit and the physical size of the system) and in Ref. [710] (which
investigated volume reduction in the twisted model including fermionic fields in the adjoint representation of the gauge
group—see Section 4.8 for a discussion).

4.8. Volume reduction with adjoint fermions

A different method to preserve center symmetry in the EK model, which has been proposed in the literature, consists in
modifying the theory by adding one or more flavors of dynamical massless Majorana fermions in the adjoint representation
of the gauge group, andwith periodic boundary conditions [711].54 When the theory is compactified on a small spatial torus
of length R, a perturbative calculation of the effective potential Veff for the phases of the eigenvalues exp(iθa) of the Polyakov
line along that direction shows that the effect of fermions can (over-)compensate the symmetry-breaking terms coming from
gluons [353,714,715]:

Veff(θ) =
2(nf − 1)
π2R4

∞
n=1

1
n4

 N
a=1

exp(inθa)


2

=
π2(nf − 1)

45R4

N
a=1

N
b=1


1 −

15
8π4


π2

− f 2(θa − θb)
2

, (134)

where f (x) = (x mod 2π) − π . In the naïve EK model (nf = 0), the minimum of the potential is obtained when the term
between the square brackets (which is positive semi-definite, because |f (x)| ≤ π for any x) vanishes: this corresponds to

54 This idea is related to circle compactifications and supersymmetry-preserving deformations in supersymmetric gauge theories [285,712,713].
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the case when all eigenvalues collapse to the same value, inducing spontaneous center-symmetry breaking. By contrast,
in the nf = 1 case (which corresponds to N = 1 supersymmetric Yang–Mills theory) perturbatively one finds a flat
one-loop effective potential, but the flatness is actually lifted by non-perturbative effects due to center-stabilizing bions,
or ‘‘neutral bions’’ [285–287,716], which lead to a repulsive potential for Wilson-line eigenvalues, and stabilize center-
symmetric configurations; finally, for 1 < nf < 6 the inclusion of adjoint fermions in the theory has the effect of favoring
vacua in which center symmetry is preserved55 (see also Ref. [717] for a related computation). Analogous formulæ hold
in the case when two or more directions are compactified to small tori. It is worth emphasizing that studying QCD-like
theories including fermionic matter with periodic boundary conditions along a compact, spatial direction is interesting on
its own, as it may reveal transitions of quantum (rather than thermal) nature—and the non-trivial parametric dependence of
the corresponding scales on N [718].

An important aspect of gauge theories coupled to adjoint fermionswith periodic boundary conditions along a short spatial
direction is that they give some analytical control over phenomena such as confinement and chiral symmetry breaking—see
Ref. [719] for an explicit example in the theory with SU(2) gauge group.

While the inclusion of adjoint fermions in a QCDmodel may appear artificial, it should be noted that, in the large-N limit,
the orientifold equivalence relates QCDwith adjoint fermions to QCDwith Dirac fermions in a two-index, symmetric or anti-
symmetric representation [720–723]. Given that in real-world QCD the quark fields are in the fundamental representation
of the SU(3) gauge group, which is equivalent (up to charge conjugation) to the two-index antisymmetric representation,
the latter theory can be regarded as a natural generalization of QCD to the large-N limit. Incidentally, we mention that
a quenched lattice study of the orientifold equivalence (in a large volume) was reported in Ref. [724]: it was found that
the masses of vector mesons corresponding to quarks in different representations tend to compatible values in the chiral
and large-N limits, in agreement with the theoretical expectations. A similar result holds for the chiral condensate in the
quenched theory [725].

Following the proposal of Ref. [711], variousworks investigated the EKmodel with adjoint fermions and variants thereof,
both analytically and numerically [726–741]. The results of the most recent non-perturbative studies via lattice simulations
are encouraging, and indicate that EK volume reduction with adjoint fermions works as expected, both with nf = 1 and
nf = 2 Dirac flavors: as an example, Ref. [738] reported numerical evidence that center symmetry in the model with two
flavors is preserved, for a finite (and rather large—see the discussion in Ref. [736]) range of bare quark masses, over an
interval of couplings which appears to extend all the way to the continuum limit (see the sketch in Fig. 5, from Ref. [738]).
For the case with one adjoint quark flavor, a similar study was presented in Ref. [731].

After establishing that volume reduction in the EK model with adjoint fermions does work, the natural next step in this
agenda of lattice studies consists in investigating how cost-effective these simulations are.

4.9. Volume reduction in Yang–Mills theories with double-trace deformations

A related variant of the EKmodel was proposed in Ref. [742] (see also Ref. [743]): it leads to a one-loop effective potential
of the type appearing in Eq. (134) by deforming the ordinary lattice Yang–Mills action adding products of traces of Polyakov
loops,56 with suitably chosen (in particular: sufficiently large) positive coefficients, which suppress the weight of center-
symmetry breaking configurations in the path integral. One advantage of this approach is that it allows one to reduce the
extent of an arbitrary number of sizes of the system. For example, in order to preserve center symmetry when only one
direction is compactified, the deformation term may be of the form:


x⃗

⌊N/2⌋
n=1

an|tr(Ln(x⃗))|2 (135)

(where the summation is done over the points of a hyperplane orthogonal to the compactified direction), while more
complicated deformations, which also include products of loops along different directions, can be added, when two or more
directions are compactified to small sizes. The deformation terms also modify the expectation values of the observables,
however it is expected that they only do so by O(1/N) corrections, which become negligible in the large-N limit.

Note that the deformation terms appearing in Eq. (135) are (1) non-local and (2) non-linear functions of theUµ(x) fields on
the lattice, and that (3) their number growsO(N) (this latter requirement is necessary, in order to prevent partial breakdown
of the ZN symmetry down to a Zk subgroup, if k is a divisor of N). Even though these three features make the numerical
simulation of the deformed model considerably more demanding than that of ordinary Yang–Mills theory, it should be
noted that dedicated numerical algorithms for the simulation of this model are already available [748], and Monte Carlo
investigations are presently in progress [749].

55 For nf ≥ 6, the theory is no longer asymptotically free.
56 Related ideas have been considered in studies of the phase diagram of Yang–Mills theory at finite temperature [744–747].
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Fig. 5. Lattice simulations of large-N gauge theories with nf = 1 and nf = 2 flavors of dynamical adjoint fermions in a small volume indicate that center
symmetry is preserved in a wide region of quarkmasses, whose width remains finite in the continuum limit. The figure, taken from Ref. [738], is a sketch of
the symmetry realizations in different regions of the space of the simulation parameters. In particular, the regions in which center symmetry is preserved
in all the four directions are denoted by Z4

N . The quantity on the vertical axis (b) is the inverse of the bare lattice ’t Hooft coupling, so that (by virtue of
asymptotic freedom) the continuum limit is obtained by taking b → ∞—while the region corresponding to small values of b is the strong-coupling region
of the lattice theory. The quantity on the horizontal axis (κ) is a simulation parameter related to the fermion mass: in particular, the latter is infinite for
κ = 0 (corresponding to the pure Yang–Mills theory), while it decreases when κ is increased towards the dashed region, reaching zero at the critical value
κc . The figure, based on information obtained from simulations with nf = 2 dynamical quarks in the adjoint representation of the gauge group in a small
volume, shows that, in the presence of dynamical adjoint fermions, the spontaneous breakdown of center symmetry is avoided, for a rather wide range of
quark masses, in a region that extends to the continuum limit.

4.10. Partial volume reduction

Finally, a different approach to EK volume reduction has been proposed by Kiskis, Narayanan andNeuberger in Ref. [750],
and successfully carried out in a series ofworks,which investigated the large-N limit of various observables, in two, three and
four spacetime dimensions [580,750–759] (see also Refs. [33,760] for reviews). The idea underlying this approach consists
in reducing the lattice size down to theminimumvalue, forwhich center symmetry is preserved: this is possible because the
critical size lc at which the symmetry gets spontaneously broken (the ‘‘inverse deconfinement temperature’’) is a physical
quantity with a finite, non-vanishing limit for N → ∞. For this reason, in this approach one only achieves a partial volume
reduction, and the number of lattice variables that have to be simulated still grows like (1/a)D when the lattice spacing a is
reduced towards zero to approach the continuum limit.57 An advantage of this approach, however, is that it does not rely on
any ‘‘trick’’ (whose validity may possibly fail at the non-perturbative level—perhaps through some non-trivial mechanism);
moreover, its conceptual simplicity makes it straightforward to study numerically.

In particular, following this approach, in Ref. [750] it was shown that, in three spacetime dimensions, the distributions of
eigenvalues forWilson andPolyakov loops agreewhen extracted fromsimulations on a large volume lattice andon apartially
reduced lattice. The analysis of the four-dimensional case was carried out in subsequent work, reported in Ref. [580], which
studied the details of the phase diagram of the lattice theory, as a function of the lattice size in physical units: it was found
that there exists a cascade of transitions, corresponding to the breaking of center symmetry in one, then two, three, and
eventually in all four directions. This analysis was refined in Ref. [752], by addressing the loop renormalization [367] with
a suitable smearing procedure, to get a well-defined continuum limit. In parallel with these works, the chiral symmetry
realizations were studied in Refs. [751,755]; the results confirmed the validity of partial volume reduction at large N:
for finite lattices of linear extent larger than lc , chiral symmetry gets spontaneously broken, and a chiral condensate,
independent of the lattice volume, appears. Finally, a series of works studied the confining potential and the string tension
in the partial volume reduction approach [757–759]. In particular, this was done for the four-dimensional case in Ref. [759],
fromwhich the results shown in Fig. 6 are taken: the plot shows the behavior of the confining potential V as a function of the
distance r (the numerical values for both quantities are shown in the appropriate units of the lattice spacing a), as extracted
from simulations with N = 47 at inverse ’t Hooft coupling b = 0.348, on a lattice of linear size L = 6a in all directions

57 Note that, volume independence for lattices of linear sizes larger than lc is equivalent to temperature independence of physical operators in the
confining phase [329].
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Fig. 6. Computation of the confining potential V , as a function of the distance r between static color sources, using partial volume reduction. The figure
shows the results obtained in Ref. [759] for V (red circles), up to distances of nine lattice spacings, i.e. one and a half the linear size (L) of the lattice used in
those simulations. A three-parameter fit (dashed red curve) to a Cornell-type potential is also displayed.

(which is small, but sufficiently large to preserve center symmetry). The potential, which was computed up to a distance of
nine lattice spacings (i.e., one and a half the linear size of the lattice), shows the behavior that is expected in a large volume.

4.11. Volume independence and large-N equivalences from orbifold projections

Having discussed how the EK equivalence between theories defined in different spacetime volumes arises at largeN (and
how it can fail),we conclude this section presenting its interpretation in the broader context of a general class of equivalences
among large-N theories. Various types of correspondences between theories, which are different at every finite value of N ,
but become coincident in the large-N limit, were already discovered during the early 1980’s [761–763], but it is only during
the last decade, that systematic methods to construct such equivalences (and to precisely identify the conditions for their
validity) have been worked out.

One of the first papers pointing out the interpretation of EK volume reduction in large-N lattice gauge theories in terms
of these equivalences was Ref. [601]. The discussion that we present here mostly follows the developments of this subject
through a series of articles by Kovtun, Poppitz, Ünsal and Yaffe [711,715,733,742,764–768]. For historical reasons related to
their origin in the context of string theory [769–772],58 these equivalences are called ‘‘orbifold’’ equivalences.

In this context, an orbifold equivalence is defined as amappingbetween a ‘‘parent’’ theory, and a ‘‘daughter’’ theory,which
is obtained from the former by removing (‘‘projecting out’’) the degrees of freedomwhich are not invariant under the action
of a discrete global symmetry group.59 More precisely, in the large-N limit these equivalences relate vacuum expectation
values and correlation functions of a subset of gauge-invariant observables in the parent theory and in the daughter theory
(possibly up to a rescaling of couplings and volume factors), provided that the global symmetry of the parent theory used to
construct the orbifold projection is not spontaneously broken, and that possible global symmetries of the daughter theory,
which interchange its gauge group factors, are not spontaneously broken either.

At the perturbative level, this equivalence is based on the observation that planar graphs of the parent and daughter
theories coincide at all orders, and that generic correlation functions of gauge-invariant operators (from which one can
extract physical observables, including the mass spectrum) obey the same set of closed equations. To extend the validity
of the correspondence to the non-perturbative domain, the authors of Ref. [764] focused on U(N) gauge theories (possibly
coupled to ns species of massive scalar fields and nf species of fermion fields, both of which in the adjoint representation
of the gauge group) regularized on a lattice, and on the Migdal–Makeenko-like equations for gauge-invariant operators
(which can be written as traces of closed Wilson loops60) and their correlators. Consider first the pure Yang–Mills case
(ns = nf = 0): assuming that N is not prime (so that N = kn, with both k and n integers larger than 1), one can introduce an
orbifold projection under a H = Zk subgroup of the global U(N) group of coordinate-independent gauge transformations,
by requiring that a genericΦ field variable of the parent theory be invariant under:

Φ → γΦγ−1, (136)

58 In string theory, equivalences of this type arise when considering the low-energy dynamics of D-branes defined in spacetimes which are orbifolds,
i.e. manifolds admitting points whose neighborhood is locally diffeomorphic to a quotient of a real vector space by a finite group.
59 The degrees of freedomwhich are not invariant under the discrete symmetry group used for the projection are said to form the ‘‘twisted sector’’ of the
theory. Note, however, that here the adjective ‘‘twisted’’ has no direct connection with our discussion of the twisted EK model.
60 As discussed in Ref. [764], operators involving adjoint scalar or fermion fields can also be expressed through closed Wilson loops (without clumsy
insertions of matter field decorations along loops made only of gauge link variables), by generalizing the lattice to include one further dimension for each
matter species.
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where:

γ = Ω ⊗ 1n, Ω = diag(1, ω, ω2, . . . , ωk−1), ω = exp(2π i/k). (137)

The construction can be easily generalized to an orbifold under a Zd
k subgroup (if N = kdn), by introducing d matrices

γα , and requiring invariance of Φ under the transformations in Eq. (136), for each γα separately. Matter fields can also
be included in a straightforward way: for non-zero ns and/or nf , the global symmetry of the parent theory is enlarged to
U(N) ⊗ U(ns) ⊗ U(nf ), and each matter field can have a generic charge rα under the γα projection, so that the orbifolding
condition reads:

Φ = exp [2π irα(Φ)/k] γαΦγ−1
α . (138)

Under this projection, the gauge degrees of freedom of the parent theory are mapped to block-diagonal matrices, with kd

blocks of U(n)matrices, and the gauge invariance group of the daughter theory is U(n)k
d
. The action for the daughter theory

can then be written in the form of a standard Wilson lattice action (possibly coupled to the matter field terms), with a sum
over the ‘‘sites’’ of a Zd

k lattice, and with a trivial rescaling of couplings and volume factors.
This mapping can be extended to all gauge-invariants observables of the parent theory, which are ‘‘neutral’’ under the

orbifold projection, and, finally, one canderive the loop equations for the daughter theory. If theZd
k symmetry in the daughter

theory is not spontaneously broken, these equations are equivalent to those in the parent theory, provided that the latter
does not break the discrete symmetry used in the orbifold projection. For N → ∞, these equations become a closed set of
loop equations, and, in the strong coupling/large mass limit, they can be solved by an iterative algorithm, which generates
the large-N lattice strong-coupling expansion for the corresponding observables.

Note that the construction of an orbifold duality, that we outlined above, provides an explicit example of how the
spacetime-dependent degrees of freedom of the daughter theory can be obtained from a projection of internal degrees
of freedom in the parent theory.

The analysis of Ref. [764] was later extended beyond the strong-coupling domain in Ref. [765], which used the large-N
coherent-state methods described in Ref. [27] (and reviewed in Section 4.2) to demonstrate that the symmetry conditions
in the parent and daughter theories are both necessary and sufficient for (i.e., completely characterize) the validity of large-
N orbifold dualities.

Using these tools, the validity of the orientifold equivalence, relating the planar limits of QCD with an adjoint
Majorana fermion (i.e., N = 1 supersymmetric QCD) and of QCD with a Dirac fermion in the two-index antisymmetric
representation [720–723], was discussed in Ref. [715]. In particular, it was shown that the equivalence between these
two theories can be interpreted in terms of a ‘‘daughter–daughter’’ orbifold equivalence: both theories can be obtained
from a common parent theory, namely SO(2N) N = 1 supersymmetric QCD, by applying orbifold projections based on
two different Z2 groups. Projecting out the degrees of freedom which are not invariant under J = iσ2 ⊗ 1N yields the
N = 1 supersymmetric U(N) theory as a daughter, whereas a projection using a ‘‘graded’’ variant of the same operator,
J(−1)F , leads to the U(N) theory coupled to a fermion in the two-index antisymmetric representation of the gauge group.
Furthermore, it was also pointed out that the validity or invalidity of the planar orientifold equivalence (in the neutral
sectors of both daughter theories), being intimately related to realization of the discrete symmetries used in the projections,
depends crucially on the dynamics, and, as an example, it was shown that the orientifold planar equivalence may fail,
when the theories are compactified on a small61 spatial torus: this regime can be reliably studied with weak-coupling
expansionmethods, which show that charge conjugation gets spontaneously broken—and, as a consequence, the orientifold
equivalence fails.

As mentioned above, large-N EK volume independence can also be interpreted in terms of an orbifold equivalence: as
discussed in detail in Ref. [711], in this case the parent theory (defined, say, on a D-dimensional hypertorus of linear size L)
can be mapped to the daughter (defined on a smaller hypertorus of size L′, with L an integer multiple of L′, i.e. L = kL′),
by projecting out the degrees of freedom that are not invariant under the ZD

k translations by integer multiples of L′ in
each direction—or, equivalently, removing the Fourier components that are not quantized in units of 2π/L′. This leads to a
correspondence between theories defined in two different volumes, and, for a parent theory on a lattice of spacing a, yields
the EK model as the daughter theory, if L′

= a. Conversely, it is also possible to map a theory defined in a smaller volume to
one in a larger volume: this can be done by associating some of the internal degrees of freedom of the parent theory to the
spacetime degrees of freedom of the daughter. For example, the U(N) EK model with N = kdn can be mapped to ordinary
U(n) Yang–Mills theory on a kd lattice, following the construction that we outlined in the discussion of orbifold projections
earlier in this subsection, which amounts to imposing a set of constraints of the form:

Uα = exp(2π iδαβ/k)γβUαγ−1
β , (139)

with the γα ’s defined analogously to Eq. (137). The action (as well as the other neutral-sector observables) of the EK model
is then mapped to the action of the lattice gauge theory in the enlarged volume (up to a trivial rescaling of the couplings),

61 Here, ‘‘small’’ means ‘‘smallwith respect to the inverse of the characteristic dynamical scale atwhich the theory becomes strongly interacting’’, i.e. small
as compared to 1/ΛQCD .
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and the two theories are equivalent, as long as center symmetry is not spontaneously broken; furthermore, the inclusion of
matter fields in various representations is also possible (see Ref. [711] for details).

An interesting application of combined orbifold equivalences consists in the possibility of studying the large-N limit
of QCD with fermions in a two-index symmetric or antisymmetric representation in a large volume, by first mapping this
theory to QCD with adjoint fermions via the orientifold equivalence (which holds in a large volume), and then studying the
latter theory in a small volume (possibly reducing it to a matrix model, or to a single-site lattice model), using the fact that,
for adjoint QCD, the orbifold equivalence relating the theory in different volumes hold all the way down to infinitesimally
small system sizes.

Orbifold equivalences relating large-N theories defined in systems of different sizes also have interesting physical
implications for the phase diagram of these theories: in particular, volume-reducing or volume-expanding projections, that
change the size of a Euclidean gauge system only along one direction, increase or reduce the temperature of the system by a
factor k. If center symmetry is not spontaneously broken (i.e. if the system is in its confining phase), then the correspondence
of physical observables in the neutral sectors of the parent and daughter theory implies that, at large N , such observables
are temperature-independent in the confining phase.62 Another potentially interesting application of orbifold equivalences
for the study of the phase diagram of QCD has been proposed in Ref. [774] and discussed in Refs. [775–781], and stems from
the observation that the large-N equivalence of theories based on orthogonal and unitary gauge groups may allow one to
get information about the latter in the finite baryon density regime (in which lattice simulations are hindered by a severe
computational sign problem [782–784]), by performing numerical simulations of the former, for which the sign problem
is absent. In addition, these equivalences also allow one to analytically derive interesting implications for the critical point
in the QCD phase diagram, and for the order of the chiral symmetry restoration transition for massless quarks—which is of
first (second) order when it occurs at a critical temperature equal to (larger than) that of the deconfinement transition [785].
Recently, the problem of baryons in the context of orbifold equivalences has also been discussed in Ref. [786].

Finally, one further important application of orbifold constructions is in the context of lattice supersymmetry [787–794]—
for further details, we refer the reader to the review [795] and to the references therein.

5. Large-N results from lattice simulations

In this section, we review the main large-N results for physical observables from lattice simulations. Unless otherwise
stated, these are obtained fromsimulations on large lattices (i.e., without exploiting the large-N volume-reduction property).
First, in Section 5.1, we discuss the numerical results relevant for four spacetime dimensions; then, we briefly review the
results that have been obtained for large-N theories in three spacetime dimensions in Section 5.2. Finally, we conclude this
section with a summary of results from studies in two spacetime dimensions in Section 5.3.

5.1. Results in four spacetime dimensions

5.1.1. Is the large-N limit of QCD a confining theory?
Asmentioned in Section 2.2, many phenomenological implications derived from the large-N counting rules are based on

the assumption that QCD be a confining theory in the large-N limit. Since confinement is a non-perturbative phenomenon,
the validity of this assumption should be assessed with non-perturbative methods.

The first studies addressing this issue were reported in Refs. [31,796], comparing the SU(2), SU(3) and SU(4) Yang–Mills
theories. A possible way to assess whether these theories are confining consists in computing the two-point correlation
function of zero-transverse-momentum, purely gluonic, spatial string operators63 winding around the lattice (torelons)
along a periodic direction of size L, and studying its behavior as a function of the torelon separation τ : at large τ , the correlator
was found to decay exponentially,∝ exp[−m(L)τ ], wherem(L) represents themass of the lightest torelon. For long torelons,
m(L) tends to become linear in L (indicating that the torelon is characterized by a non-vanishing linear energy density, or
string tension, σ ), so themass of an infinitely long torelon diverges, implying confinement.64 The results from Refs. [31,796]
showed that confinement persists in all the theories studied.

5.1.2. Running of the coupling
Another important problem, that was investigated in the first numerical studies of large-N gauge theories, is the relation

between the scale and the gauge coupling. A key statement in large-N arguments is that the N → ∞ limit exists if one
keeps g2N fixed. Equivalently, one might say that, perturbatively, the dynamically generated scale ΛQCD is the same for

62 Related topics have been discussed in the recent paper [773], in which the temperature independence of a three-dimensional Yang–Mills theory with
adjoint fermions was used to map it to a two-dimensional gauge theory, which was then studied using non-Abelian bosonization methods.
63 The formation of string-like objects in gauge theories is an idea that dates back to almost forty years ago [797].
64 Note that, as discussed, e.g., in Ref. [798], this criterion for establishing the confining behavior of a theory is conceptually well-defined, and free from
the potential ambiguities between confinement and screening, that may hinder alternative definitions of confinement. In addition, it also provides a viable
operational way to study the phenomenon in lattice simulations.
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Fig. 7. Relation between the mean-field improved ’t Hooft coupling and the lattice spacing (in units of 1/
√
σ ), as determined non-perturbatively in

Ref. [708], in Yang–Mills theories with a different number of colors, from 2 to 8.

all N , at fixed g2N . To define non-perturbatively the large-N limit, it is useful to look at the dependence of ΛQCD (or of a
related, dimensionful, dynamically generated scale, such as the string tension σ ) on g2N in the non-perturbative regime. By
determining non-perturbatively how the lattice spacing a varies, as a function of the bare lattice gauge coupling, Ref. [597]
showed that the square of the bare lattice coupling scales roughly like 1/N (’t Hooft scaling), as expected from perturbative
arguments.

In fact, even stronger evidence for ’t Hooft scaling can be obtained, by using a ‘‘mean-field improved’’ definition of the
bare coupling [799,800], obtained by dividing the square of the bare coupling by the average plaquette (normalized to 1 in
the weak-coupling limit). This improved definition of the lattice coupling comes from the observation that, expanding the
relation between lattice fields and continuum fields as:

Uµ(x) = exp

iag0Aµ(x)


= 1+ iag0Aµ(x)−

1
2
a2g2

0A
2
µ(x)+ · · · (140)

reveals that, in addition to the terms reproducing the continuumYang–Mills action, the lattice action also includes infinitely
many verticeswithmultiple gluons,which are pure artifacts of the lattice discretization. At the classical level, these terms are
irrelevant in the continuum limit, because they aremultiplied by higher powers of the lattice spacing a. At the quantum level,
however, the tadpole diagrams arising from the contraction of fields in these terms turn out to be proportional to (a power
of) the lattice cut-offπ/a, so that, in fact, in the continuum limit the artifacts are only suppressed by powers of g0. To alleviate
this problem, one can introduce a tadpole- or mean-field-improved coupling, which is obtained by integrating out the high-
frequency modes of the gauge fields, and reabsorbing the resulting constant into a redefinition of the coupling [799,800]. In
particular, a convenient definition of the rescaling factor for the lattice couplingβ is given by the average plaquette,65 so that
the corresponding improved coupling can be interpreted as the effective coupling experienced by the dynamical variables
in a uniform background field. The scaling of themean-field improved bare lattice coupling with N (at a fixed physical scale)
was studied in Refs. [597,801] and later in more detail in Ref. [708], from which the plot shown in Fig. 7 is taken: the figure
shows themean-field improved ’t Hooft coupling as a function of the lattice spacing, determined non-perturbatively in units
of the inverse of the string tension square root: the collapse of results obtained from different SU(N) Yang–Mills theories
(for N in the range from 2 to 8) confirms that, indeed, a physically meaningful large-N limit is the one at fixed ’t Hooft
coupling—also at the non-perturbative level.

While the bare (possibly improved) lattice gauge coupling can be interpreted as a physical coupling at distance scales of
the order of the lattice spacing, it is also interesting to investigate how the coupling runs at lower energies—in particular,
because, by definition, lattice gauge theory describes continuum physics for phenomena whose characteristic energy scales
are well below the intrinsic scale set by the inverse of the lattice spacing. A possible scheme choice is provided by the
Schrödinger functional (SF) [802–804]: in a nutshell, the idea is to extract the running coupling ḡ(L) at a given momentum
scale proportional to 1/L, by studying the effective action of the gauge systemwith fixed boundary conditions at the opposite
ends of a direction of size L (and periodic boundary conditions along the other directions, which are taken to be of sufficiently
large extent). Denoting the field configurations on the two boundaries as Ci and Cf , the SF is defined as the probability
amplitude for evolution from the state Ci to the state Cf . In the Euclidean setting, this can be written as:

Z

Ci,Cf


=


Ci,Cf

DU exp(−S) = exp(−Γ ) (141)

65 An alternative definition of the rescaling factor is based on the average value of the link variables in Landau gauge. However, the computation of the
average plaquette is numerically much easier.
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Fig. 8. Left panel: the running coupling in the SF scheme for SU(4) Yang–Mills theory, as determined in Ref. [805], assuming
√
σ = 420 MeV. The

black and blue dashed curves are the one- and two-loop perturbative predictions. Right panel: dependence of theΛQCD/
√
σ ratio (after conversion to the

MS scheme) on the number of colors, as obtained from computations of the physical coupling in the SF scheme in SU(2) [806], SU(3) [807] and SU(4)
Yang–Mills theory [805]. The plot, taken from Ref. [805], also shows the comparison with the large-N extrapolation (solid straight line) obtained from the
study of the mean-field improved lattice coupling in Ref. [708]; the region bounded by the dash-dotted lines corresponds to 68.3% confidence level. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where the path integral is done at fixed boundary conditions, and Γ = Γ

Ci,Cf


denotes the corresponding effective

action. For Ci and Cf , one takes the lattice fields to satisfy inhomogeneous Dirichlet boundary conditions, depending on a
dimensionless real parameter η, so that a physical running coupling at the length scale L can be obtained, by comparing the
derivative of the classical action and of the full effective action, with respect to the η parameter.66

In Ref. [805], this approach was used to compute the running coupling in the SF scheme in SU(4) Yang–Mills theory
(and to discuss a large-N extrapolation, by comparison with analogous results for the theories with two [806] and three
colors [807]): the simulation results showed that the running coupling is in very good agreement with the two-loop
perturbative β-function down to momentum scales of the order of a few hundreds MeV, and that the ratio of the ΛQCD
scale (in the modified minimal subtraction scheme) over the square root of the string tension has a smooth dependence on
1/N2, with the value in the SU(3) theory already very close to the extrapolated large-N limit (see Fig. 8).

Very recently, a similar type of comparison has been performed for SU(N) theories with N = 2, 3 and 4 colors and with
two flavors of dynamical fermions in the two-index symmetric representation of the gauge group [808]. The motivation for
this study comes from the suggestion [809–811] (see also Ref. [812] and references therein) that these theories are among
the potentially interesting candidates for walking technicolormodels of dynamical electro-weak symmetry breaking, which
recently have been the subject of many lattice studies (see, e.g., Refs. [813–817] for reviews). For this reason, the authors of
Ref. [808] focused on the investigation of the β-function, and on the behavior of the mass anomalous dimension γm (which
relates the pseudoscalar renormalization ZPS to the length scale L via: ZPS(L) ∝ L−γm ) as a function of the coupling, finding
remarkable similarities between the theories with two, three and four colors, as shown in Fig. 9.

Preliminary results of another study of the mass anomalous dimension in large-N QCD (with two flavors of adjoint
fermions) have recently been reported in Ref. [818].

5.1.3. Confining flux tubes as strings
Coming back to the problem of the heavy quark–antiquark potential in large-N pure Yang–Mills theory, the first lattice

studies [31,597,796,819] also showed that, besides the term linear in L, the masses of long torelons also include a correction
proportional to the inverse of their length, with a coefficient, which can be evaluated analytically, known as the Lüscher
term [820,821] (see also Ref. [822]):

m(L) = σ L −
π

3L
+ · · · (142)

where the ellipsis denotes subleading terms, suppressed by higher powers of 1/L. The left panel of Fig. 10 shows a lattice
calculation of torelon masses in SU(6) gauge theory. The Ansatz in Eq. (142) describes the numerical data down to lengths
of the order of 3/

√
σ .

As discussed, for example, in Refs. [824,825], the Lüscher term can be interpreted as a Casimir effect (namely: as a
quantum, finite-size effect), which arises from massless fluctuations of the flux tube along the transverse directions,67 and

66 This allows one to trade the explicit computation of the effective action, for the computation of expectation values of the operators obtained by deriving
the lattice action with respect to η.
67 These massless fluctuations can be interpreted as the Nambu–Goldstone modes associated with the spontaneous breakdown of Lorentz–Poincaré
symmetry, due to the formation of the flux tube.
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Fig. 9. Mass anomalous dimension in SU(N) gauge theory with N = 2, 3 and 4 colors and two flavors of dynamical fermions in the two-index symmetric
representation, as a function of the renormalized ’t Hooft coupling in the SF scheme, from Ref. [808]. The dashed green line denotes the leading-order
perturbative prediction in the N → ∞ limit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 10. Left panel: torelon mass, in lattice units, as a function of the length of the loop (in units of the string tension). Note that the dashed line is not a
best fit to the data, but has been obtained by extracting the string tension at the point for which l

√
σ = 5 and inserting this value in Eq. (142). The figure

is taken from Ref. [24]. Right panel: ratio of the tension of the string with N-ality k = 2 over the fundamental string tension. The Pisa group data are taken
from Ref. [801], while Oxford data are taken from Ref. [823]. The long dashed line is a continuum extrapolation of the Oxford data, obtained on symmetric
lattices (see Ref. [823] for technical details).

signals that the low-energy excitations of the flux tube can be described in terms of a vibrating, bosonic string.68 For an
overview of recent studies of this subject, see, e.g., the slides of the presentations at the ‘‘Confining Flux Tubes and Strings’’
workshop held in ECT⋆, Trento, Italy, in 2010 [828].

While the existence of string-like excitations is a generic feature of all confining gauge theories [829–836], the possibility
that a particularly simple effective string model for the low-energy dynamics of QCD could become exact at large N is
suggested by theoretical arguments [837], and has been studied in a number of lattice works—see, e.g., Refs. [31,597,796,
819,825,838,839] and references therein.

The lattice analysis of the confining potential between static probe sources in SU(N) Yang–Mills theories has also been
carried out for color sources in higher representations, and for excited states. In particular, a series of works [801,819,823,
840–842] investigated the behavior of the potential between static sources in representations of various N-alities (i.e., with
different transformation properties with respect to the ZN center of the gauge group). Part of the motivation to investigate
the confining potential for sources in representations of differentN-ality stems from the observation that, in supersymmetric

68 As discussed in Refs. [826,827], it is interesting to note that an effective stringmodel for the gauge theory also suggests the existence of a deconfinement
transition at finite temperature.
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SU(N) gauge theories, the associated string tensions σk (for stable strings) are related to each other by the sine-formula
[843–847]:

σk

σ1
=

sin(kπ/N)
sin(π/N)

, (143)

where σ1 denotes the fundamental string tension. This relation can be compared with the one that can be obtained from
Casimir scaling [848], which, for the totally antisymmetric irreducible representation of N-ality k, implies:

σk

σ1
=

k(N − k)
N − 1

. (144)

In the large-N limit at fixed k, both Eqs. (143) and (144) are consistent with the expectation from factorization: σk/σ1 → k.
In particular, the large-N behavior of σk/σ1 has been discussed in Refs. [849,850]. Lattice results show that at finite N the
energy of k-strings turns out to be lower than k times the energy of a fundamental string, and, in particular, appears to favor
sine scaling [801,840,841] or to lie in between the predictions of Eqs. (143) and (144) [819,823]. A summary of the situation
is presented in the right panel of Fig. 10: the different conclusion is not due to the numerical data, which are compatible, but
to the extrapolation to the continuum limit. To resolve the apparent discrepancy, more simulations closer to the continuum
limit need to be performed. On the other hand, for different irreducible representations of the sameN-ality, the lattice results
are broadly consistent with Casimir scaling, for SU(3) Yang–Mills theory [851] as well as for N > 3 [823].

Recently, a lot of work has been devoted to the study of excited string states in large-N Yang–Mills theories (see
Ref. [24] and references therein for a thorough discussion of the topic): this is important for understanding the nature of
the effective action describing the low-energy dynamics of confining flux tubes. A large number of lattice studies (recently
reviewed by Mykkänen in Ref. [825]) show that the main features of the dependence of the torelon mass on its length, or,
equivalently, of the ground-state quark–antiquark potential on the distance between the color sources, are consistent with
the hypothesis that the flux tube fluctuates like a bosonic string described by the Nambu–Goto action [631,632], which
is simply proportional to the area of the string world-sheet.69 Due to the simplicity of the string action, the Nambu–Goto
spectrum can be computed exactly: for an open string of length Lwith fixed ends, it reads [854,855]:

En(L) = σ L


1 +

2π
σ L2


n −

D − 2
24


, n ∈ N (145)

(where D denotes the number of spacetime dimensions, and σ is the string tension). Expanding the lowest-lying energy
around the σ L2 → ∞ limit yields (besides the classical, linear term σ L) the Lüscher term for the open string:

E0(L) = σ L −
π

24L
(D − 2)+ O(L−3). (146)

Similarly, for a closed string, the Nambu–Goto spectrum reads (see, e.g., Ref. [856]):

Enl,nr (L) = σ L


1 +

4π
σ L2


nl + nr −

D − 2
12


+

4π2(nl − nr)2

σ 2L4
(147)

(where nl and nr are non-negative integers denoting the number of left- and right-moving modes, respectively), which,
when expanded around the long-string limit in four spacetime dimensions, reproduces Eq. (142) for the ground state.

During the last decade, various theoretical works tried to determine the form of the subleading (in an expansion in
terms of the inverse of the string length) terms which the effective string action describing a confining flux tube should
include, using arguments related to open–closed string duality [857] and to Lorentz–Poincaré symmetry and its non-linear
realization [858–865] (a different approach was proposed by Polchinski and Strominger in Ref. [866]—see Refs. [867–869]
for a discussion of the relation between the two approaches). For a string of length L in four spacetime dimensions,
this shows that the string energy levels deviate from the Nambu–Goto spectrum at order 1/L4 for an open string [860],
whereas for a closed string the deviations occur at order 1/L5 for excited states, but only at order 1/L7 for the ground
state [860].

From the numerical point of view, the spectrum of closed strings in four spacetime dimensions was studied in Ref. [870],
using a sophisticated variational technique involving about 700 operators, in SU(3), SU(5) and SU(6) Yang–Mills theories.
The results showed general agreement with the Nambu–Goto spectrum, even down to surprisingly short values of L, of
the order of the inverse square root of the string tension—although some discrepancies were also reported. An example of

69 It is well-known that (unless the number of spacetime dimensions is D = 26) the Nambu–Goto action is not a consistent string action at the quantum
level, due, for example, to theWeyl anomaly, and to the existence of tachyonic states [852,853]. Nevertheless, these problems are not relevant for the case
of an effective, low-energy model, as discussed in the present context.
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Fig. 11. Closed string spectrum in SU(5) Yang–Mills theory, taken from Ref. [870], in comparison with the predictions for the Nambu–Goto model.

Fig. 12. Left panel: extrapolation to the continuum limit of the lowest-lying glueball spectrum in SU(4) gauge theory. Right panel: extrapolation of the
lowest-lying glueball spectrum for N → ∞, using only the leading finite-N correction. Both figures are plots of results published in Ref. [823].

these results is shown in Fig. 11. As discussed in Ref. [861], the precision of these very challenging lattice computations is still
insufficient to clearly distinguish deviations from theNambu–Goto spectrum in the range of L valueswithin the convergence
domain of the expansion in inverse powers of L.

5.1.4. Hadronic spectrum
Having ascertained that non-Abelian gauge theories are confining in the ’t Hooft limit, i.e., that a linearly rising potential

develops between a static quark and antiquark, the next problem to be addressed non-perturbatively, via lattice simulations,
is determining the values of the hadron masses at large N . In the literature, there exist computations of the masses of
glueballs [31,597,823,871,872], of mesons [873–876] and baryons [877]—all in the quenched approximation.

In general, the dependence of glueball masses on N turns out to be very smooth: typically, for each physical state, the
lattice results obtained in Yang–Mills theories at different values of N can be nicely fitted to a constant plus a term linear
in 1/N2 (as expected theoretically); within the precision of the numerical results, this holds all the way down to N = 3—or
even N = 2, in some cases. Results in the continuum limit for the lowest-lying states were presented in Refs. [597,823]. In
particular, the calculation of Ref. [823] leads to the following results:

m0++

√
σ

= 3.28(8)+
2.1(1.1)

N2
, (148)

m0++⋆

√
σ

= 5.93(17)−
2.7(2.0)

N2
, (149)

m2++

√
σ

= 4.78(14)+
0.3(1.7)

N2
. (150)

The quality of the data and the extrapolation to the continuum limit is shown in Fig. 12.
The most recent computation of the glueball spectrumwas reported in Ref. [872], and is summarized in Fig. 13, showing

the masses of the ground state (and of some excited states) in the different channels associated with the irreducible
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Fig. 13. The spectrum of glueballs in the large-N limit of SU(N) Yang–Mills theory, as determined in Ref. [872]. The plot shows the results (at a fixed, finite
value of the lattice spacing) for the ground state and some of the excitations, in various channels corresponding to different irreducible representations of
the cubic group, and different values of the parity and charge-conjugation quantum numbers. The figure also shows a comparisonwith the results obtained
in Ref. [823] for the ground state and for the first excited JPC = 0++ glueball, and for the 2++ ground state.

Fig. 14. Results from a quenched computation of the mesonic spectrum at large N [875]: the figure shows the masses (in units of the square root of the
string tension) of various meson states, and the decay constants of the pion and the ρ meson (divided by

√
N), as obtained from simulations for different

numbers of colors, in the chiral limit. The values extrapolated to N → ∞ are shown by the horizontal bands. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

representations of the cubic group70 and distinguishing states that are ‘‘even’’ and ‘‘odd’’ under parity and/or charge
conjugation. For comparison, the figure also shows the mass of the ground state and of the first radial excitation in the
scalar channel, and the ground state in the tensor channel, taken from an earlier work [823]. In addition, a lattice study of
the relation between mass and spin of the various glueballs in SU(3) and SU(8) Yang–Mills theories has also been carried
out, in Ref. [871].

Similarly, a smooth dependence on N has also been observed for themeson spectrum [873–875]: this is shown in Fig. 14,
reporting the results from Ref. [875], in which the masses of various meson states in the chiral limit are shown—together
with the pion and ρ decay constants (rescaled by

√
N). Symbols of different colors refer to different values of N , and the

band denotes the extrapolation to the ’t Hooft limit.
These results are consistent with the studies previously presented in Refs. [873,874], which confirmed that the values of

the pion and ρ masses in the large-N limit are close to those in the real world: for example, combining original results with
those of [873], Ref. [874] reported:

lim
N→∞

mρ
√
σ

= 1.79(5) (151)

70 The computation is done on a hypercubic lattice, at finite lattice spacing.
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Fig. 15. A recent quenched computation [877] of the baryon spectrum at large N reported evidence for a rotor-type spectrum in the masses of different
states as a function of their spin, as predicted in Refs. [183,184]. The plot, taken from Ref. [877], shows differences between the masses of states of various
spin, plotted against each other, in QCD with N = 5 (left panel) and N = 7 colors (right panel).

as an estimate for the ratio in the continuum limit. This result is consistent with the value (approximately equal to 1.75)
obtained from the experimentally measured mass of the ρ meson, and from a reasonable phenomenological estimate71 of
σ . Furthermore, the dependence of the ρ mass on the pionmass appears to be approximately quantitatively consistent with
the holographic computations discussed in Ref. [180].

We note that, by contrast, Ref. [876] reported very different results, indicating that the mass of the ρ meson in the large-
N limit could be about twice as large as in the real world. A possible explanation of the discrepancy between the results of
Ref. [876] and those of Refs. [873,874] in terms of an unexpectedly large finite-N correction (the simulations presented in
Refs. [873,874] were limited to N ≤ 6, whereas those in Ref. [876] were done for N = 17 and 19) has now been ruled out
by the results of the most recent study [875], which also included simulations for N up to 17, and found consistency with
Refs. [873,874]. Perhaps, a more likely interpretation of the difference between the results in Ref. [876] and those in the
other three works [873–875] could be the one already suggested in Ref. [24], which noted that the computation presented
in Ref. [876] was based on the evaluation of quark propagators inmomentum space, andwas carried out for only a few small
momenta, so it may have suffered from contamination from some excited state.

The recent article [877] presented a quenched computation of the baryonic spectrum for large values of N , up to 7; this
study was restricted to odd values of N—so that the baryons are fermions, like in the real world. Once again, the results
confirmed the theoretical expectations for the dependence of physical quantities on the number of colors (including, in
particular, baryonmasses approximately linearly increasingwithN), up to numericallymodest relative finite-N corrections.
In addition, this study also revealed that states of larger spin are heavier, and, more precisely, the dependence of the mass
of a baryon on its spin is consistent with a rotor spectrum, Eq. (15), as predicted in Refs. [183,184]. This can be seen in
Fig. 15, showing the linear relation between variousmass splittings for baryon states of different spin, on each other. Another
interesting comparison of lattice baryon spectroscopy and large-N predictionswas reported in Ref. [883]: thiswork analyzed
a set of configurations in N = 3 QCD (including dynamical fermions) [884], and investigated how the baryon mass splitting
predicted in a 1/N-expansion [205] compares with lattice results. Using different values of the quark mass to vary the
flavor-symmetry breaking, the authors of Ref. [883] were able to show that the results from lattice simulations of QCD with
N = 3 colors satisfy the expected 1/N-flavor scaling laws. A related work was presented in Ref. [885].

5.1.5. Topological properties at large N
The topological properties in large-N Yang–Mills theories have been studied numerically in variousworks [597,886–889],

and are summarized in the review [32]. In particular, Ref. [597] considered SU(N) Yang–Mills theory with N = 2, 3, 4 and
5 colors, and found that, in agreement with the theoretical expectation [289], the number density d of instantons in the
Yang–Mills vacuum is exponentially suppressed when N increases – see Eq. (25) – and that the density of instantons of
small size ρ at fixed N scales compatibly with:

d(ρ) ∝ ρ
11
3 N−5, (152)

71 The value of the string tension σ can be estimated from the analysis of Regge trajectories in experimentally observed meson states, and from studies
of charmonium and bottomonium spectra [878–880], which suggest values in the range between (400MeV)2 and (450MeV)2—see Refs. [881,882] for a
discussion.
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Fig. 16. Left panel: results for the topological susceptibility (in units of the square of the string tension), from the simulations performed in Ref. [888], and
their extrapolation to the large-N limit. Right panel: the fourth root of the topological susceptibility (in units of the square root of the string tension) in
SU(2), SU(3), SU(4), SU(6) and SU(8) Yang–Mills theory at zero temperature, as determined in Ref. [889] using a real- (open symbols) or integer-valued
(filled symbols) definition of the lattice topological charge operator. The corresponding quadratic fits, as a function of 1/N2 , are also shown.

as one can predict using perturbation theory (which should become reliable for ρ → 0). In addition, Ref. [597] also found
that the topological susceptibility tends to a non-vanishing value for N → ∞:

χ
1/4
topol

σ 1/2
= 0.376(20)+

0.43(10)
N2

. (153)

Fig. 16 shows the results from two subsequent, similar studies [888,889], which found results consistent with each other
and with Ref. [597]. In particular, Ref. [888] reported simulations for N = 3, 4 and 6 colors, yielding: χtopol/σ

2
=

0.0221(14)+ 0.055(18)/N2, which corresponds to:

χ
1/4
topol

σ 1/2
= 0.386(6)+

0.24(8)
N2

, (154)

while the authors of Ref. [889] studied the theories with N = 2, 3, 4, 6 and 8 colors, obtaining:

χ
1/4
topol

σ 1/2
= 0.382(7)+

0.30(13)
N2

−
1.02(42)

N4
, with: χ2/d.o.f. = 1.3, (155)

from the real values for the topological charge computed using a twisted plaquette operator (open symbols in Fig. 16)—
and very similar results with a definition of the topological charge truncated to integer values (filled symbols in Fig. 16).
To summarize, these studies indicate that the large-N limit of the topological susceptibility is non-vanishing, and around
(170 MeV)4, rather close to its value in the SU(3) theory (which is about (180 MeV)4).

The relation between the topological charge of the gauge fields (evaluated on ‘‘smoothed’’ gluon field configurations) and
the chirality of the quark fields, as probed by the low-lying eigenmodes of the overlap Dirac operator [562], was investigated
in Ref. [887], which found that the numerical results for these two quantities become consistent when N gets large, and that
the low-lying eigenmodes of the Dirac operator tend to lose their chirality properties and to become less and less localized
for N → ∞, suggesting that instantons do not survive and are not responsible for chiral symmetry breaking in this limit.

As discussed in Section 2.4, the topological susceptibility is closely related to the dependence of non-Abelian gauge
theory on the θ-term, whose lattice investigation in the large-N limit has been carried out in various works (including,
e.g., Refs. [888,890]), and is reviewed in Ref. [32]—see also Refs. [891–893] and references therein for analogous studies
in the SU(3) theory. It should be pointed out that the formulation of the theory with a topological θ-term on a Euclidean
lattice suffers from a sign problem which prevents its direct numerical simulation, due to the complex nature of the action.
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A possible way to circumvent this problem consists in studying the Taylor expansions of the physical quantities of interest
around θ = 0. In particular, following this strategy, the authors of Ref. [890] studied the θ-dependence of the string tension
and of the mass gap in SU(3), SU(4) and SU(6) Yang–Mills theory, finding results suggesting that such dependence vanishes
in the ’t Hooft limit, in agreement with the theoretical expectation that the relevant parameter at large N should be θ/N .

5.1.6. Large-N QCD at finite temperature
In addition to these studies at zero temperature, in the literature there exist a number ofworks about large-N lattice gauge

theories at finite temperature [894–906]. Typically, in these simulations the temperature (which, in Euclidean thermal field
theory, is just the inverse of the system size along a compactified direction: T = 1/L) is varied by changing the value of the
lattice spacing a, which, in turn, means changing the parameter β = 2N/g2

0 = 2N2/λ0 in front of the Wilson gauge action,
i.e. the inverse of the bare gauge coupling.72 As mentioned above, in order to probe the region of couplings analytically
connected to the continuum limit, the numerical simulations have to be run at sufficiently small values of the bare lattice
’t Hooft coupling λ0. However, it is remarkable that interesting implications for SU(N) thermodynamics can also be obtained
from lattice strong-coupling techniques [405].

In four spacetime dimensions, the simulation results show that all SU(N) Yang–Mills theories have a deconfinement
transition at a finite critical temperature, which – when expressed in physical units – is in the range between 250 and
300 MeV. The transition turns out to be of second order for the SU(2) gauge theory [908–910] – and its critical exponents
are consistent with those of the three-dimensional Ising model [911], in agreement with the general conjecture that, for
continuous transitions, the critical behavior of a gauge theory in D spacetime dimensions is characterized by the critical
exponents of statistical spin model in D − 1 dimensions, with the order parameter taking values in the center of the
gauge group [912] –, while it is a weak first-order one in the SU(3) theory [913,914] and a stronger first-order one for
all N ≥ 4 [894–896,903]. By comparison, note that, as mentioned in Section 2.5, lattice simulations of QCD with nf = 2+ 1
flavors of dynamical quarks, for physical values of the quarkmasses, predict the deconfinement transition to be a crossover,73
which takes place in a temperature range between 150 and 170 MeV [428–431],74 and appears to be compatible with
experimental evidence [923]. Further details about the lattice investigation of the QCD equation of state can be found in
Refs. [784,924].

In large-N pure Yang–Mills theory, the deconfinement critical temperature Tc can be determined unambiguously, and
the most recent, high-precision results show a mild dependence of this quantity on the number of colors (see Fig. 17, taken
from Ref. [906]), which can be summarized by the relation:

Tc
√
σ

= 0.5949(17)+
0.458(18)

N2
, with: χ2/d.o.f. = 1.18, (156)

obtained in Ref. [906] using the results for all values of N from 2 to 8.
As mentioned above, the latent heat Lh associated with the deconfinement transition is finite for all N ≥ 3, and scales

proportionally to N2 in the large-N limit [896,902]; in particular, Ref. [902] reported:

lim
N→∞

L1/4h

N1/2Tc
= 0.759(19), (157)

in full agreement with the result obtained in Ref. [896] for the same quantity, which reads: 0.766(40)− 0.34(1.60)/N2.
In addition to the finiteness of the latent heat, the first-order nature of the transition for N ≥ 3 is also related to

the finiteness of the surface tension (i.e., energy per unit area) γW associated with interfaces separating different center
domains—which, in real-world QCD, might be of experimental interest [925] (although the relevance of these objects for
physics in Minkowski spacetime has been questioned [364]). In particular, the probability for formation of a ‘‘bubble’’ of
surfaceA separating two different phases near the critical point is proportional to exp (−γWA/T )—so that tunneling events
in a finite volume are exponentially suppressed by the finiteness of γW . Note that, from the point of view of numerical
simulations, thismakes it practically necessary to study the deconfinement transition at largeN on lattices of relatively small
volume, in order to have a sufficient number of tunnelings during the Monte Carlo history. On the other hand, however, the
very first-order nature of the transition also makes it sufficient to consider small lattices, since it suppresses finite-volume
effects (for a more detailed discussion of finite-volume effects in large-N gauge theories at finite temperature, see also

72 A different approach, based on varying the temperature by changing the number of lattice sites along the compactified direction, is also possible [907],
however it has the practical disadvantage that it does not allow one to vary the temperature continuously.
73 In QCD with dynamical quarks of finite mass, there exists no bona fide order parameter for the finite-temperature transition, since center symmetry is
explicitly broken by the existence of quarks, and chiral symmetry is explicitly broken by their finite mass.
74 Previous studies [915–918] reported somewhat larger values (up to around 190MeV) for the crossover pseudo-critical temperature, which sparked off
some heated but constructive debate in the community [919,920]. However, it seems that this disagreement can be explained in terms of the uncertainties
related to the extrapolation to physical quark masses and to the continuum limit [921], and, more recently, one of the two collaborations presented a new
study [431], based on a highly improved lattice formulation for the quark fields [922], in which they found results compatible with those obtained by the
other group [428,429].
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Fig. 17. Dependence of the deconfinement critical temperature (in units of the square root of the string tension) on the number of colors in SU(N)
Yang–Mills theory. This figure, taken from Ref. [906] also shows the interpolation of the numerical results described by Eq. (156). The inset shows a
zoomed view of the simulation results.

Ref. [901]). In the limit of very high temperatures, the surface tension separating two different domains labeled by Polyakov
loops with values 1 and exp (2π ik/N) in SU(N) Yang–Mills theory can be computed perturbatively [926–931] – see also
Ref. [932] – with the leading-order result:

γ 0→k
W =

4k(N − k)π2T 3

3
√
3λ

[1 + O(λ)] . (158)

In particular, this shows that the largest of these interface tensions (for k = ⌊N/2⌋) is O(N2) in the ’t Hooft limit. As
discussed in Ref. [895], for temperatures close to Tc it is reasonable to expect that the tunneling from the center sector
with Polyakov loop equal to 1 to the one with k = ⌊N/2⌋ goes through an intermediate tunneling to the center-symmetric
phase, with a probability related to the interface tension γ c→d

W between the confining and deconfined phases, so that:
γ c→d
W = γ 0→k

W /2 = O(N2). The N-dependence of γ c→d
W was studied in Ref. [896], with the result:

γ c→d
W

N2T 3
c

= 0.0138(3)−
0.104(3)

N2
, with: χ2/d.o.f. = 2.7. (159)

As discussed in Ref. [929], the surface tension γ 0→k
W associated with walls separating different center domains in the

deconfined phase is also trivially related to the ‘‘dual’’ string tension σ̃ characterizing the area-law decay of large ’t Hooft
loops [273] in the deconfined phase: σ̃T = γ 0→k

W . The behavior of ’t Hooft loops in large-N Yang–Mills theories at finite
temperature was studied numerically in Refs. [897,900], which computed the values of σ̃ corresponding to ’t Hooft loops
carrying k units of flux (to be denoted by σ̃k), and found clear evidence for nearly perfect Casimir scaling:

σ̃k ∝ k(N − k). (160)

While Casimir scaling is predicted by perturbation theory, at least at the lowest orders – see Eq. (158) –, Refs. [897,900]
found that ratios of dual string tensions are consistent with Casimir scaling not only in the weakly coupled regime, but also
down to surprisingly low temperatures, with only very small deviations close to Tc .

Interestingly, similar results have also been obtained in a recent study [905], which investigated Polyakov loops in
different representations and for different numbers of colors, from 2 to 6. This work found that the free energies associated
with bare Polyakov loops in different representations (of various N-alities) are nearly exactly proportional to the eigenvalue
of the corresponding quadratic Casimir (as first predicted in Ref. [371]), even down to temperatures close to Tc , while
the renormalized Polyakov loops agree with perturbation theory [933,934] at high temperatures, but receive large non-
perturbative contributions at low temperatures (see Fig. 18). Analogous results had been previously obtained for the SU(3)
theory [393,935]. In addition, Ref. [905] also found that the value of the renormalized fundamental Polyakov loop for T → T+

c
(defined with a common normalization to 1 in the weak-coupling limit at high temperatures, and with a consistent choice
of renormalization scheme for all groups) appears to be very close to 1/2, for all the gauge groups investigated. As we
mentioned in Section 2.5, this is the value predicted in the large-N limit [377] in an effective theory of Polyakov lines;
however, it is worth emphasizing that the numerical value of the renormalized Polyakov loop is a scheme-dependent
quantity.

The equation of state (i.e., the temperature dependence of the free energy density) in SU(N) Yang–Mills theory at large N
has been independently investigated on the lattice by three different groups in a series of recent studies [898,899,901–
904]. These works obtained consistent results, yielding a clear physical picture: the main finding is that, in the deconfined
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Fig. 18. Left panel: the bare Polyakov loops in twelve different irreducible representations of SU(6)Yang–Mills theory,when their free energies are rescaled
dividing them by the quadratic Casimir of the corresponding representation, fall on the same curve; the figure shows the results obtained from simulations
on a lattice of spacing a = 1/(5T ), plotted as a function of the Wilson gauge action parameter β , with the corresponding values of the temperature,
in units of Tc , indicated along the upper horizontal axis. Right panel: the renormalized Polyakov loop in the fundamental representation extracted from
numerical simulations in the deconfined phase of SU(4) Yang–Mills theory (open symbols), in comparison with the temperature dependence predicted
perturbatively [933,934] at one- (solid line) or two-loop order (dashed line). Note that the Polyakov loop is normalized so that it tends to 1 in the infinite-
temperature limit, and that the leading-order perturbative correction for the renormalized loop is positive. Both plots are taken from Ref. [905].

phase, the equilibrium thermodynamic quantities (pressure p, trace anomaly ∆, energy density ϵ and entropy density s—
which are related to each other by elementary thermodynamic identities) per gluon degree of freedom have essentially the
same dependence on T/Tc in all SU(N ≥ 3) Yang–Mills theories. This means that, at least as far as it concerns equilibrium
properties, the thermodynamic behavior of the ‘‘physical’’ theory with N = 3 colors is the same as that of the theory in the
large-N limit. This result gives some confidence that the infinite-N approximation underlying all holographic models of the
QCD plasma [475,476,478–481] should not be a major source of systematic uncertainty. In fact, a quantitative comparison
between the lattice results for the large-N equation of state and some holographic models was carried out in Ref. [902],
considering, in particular, the equation of state constructed from the bottom-up model discussed in Refs. [936–939] (see
also Refs. [940–948] for related work) and the relation between the entropy density and the finite ’t Hooft coupling for the
N = 4 supersymmetric Yang–Mills theory,75as determined in Refs. [505,506]—see Eq. (40).

A further, interesting piece of information obtained in Refs. [902,904] concerns the temperature dependence of the trace
anomaly∆. Up to temperatures of a few times Tc (see Fig. 19), this dependence seems to be quadratic—and possibly due to
some contribution of non-perturbative origin.76 While this characteristic temperature dependencemight be accommodated
in phenomenological models [391,398,954–960], its physical origin at the fundamental level remains to be understood. At
higher temperatures, the lattice results exhibit a smooth approach to the perturbative predictions.

Other interesting physical quantities at finite temperature were investigated in Ref. [896]: the Debye mass mD, which
characterizes the gluon screening in the deconfined phase, and which, at the leading order in a weak-coupling expansion,
can be expressed as [353]:

mD =


λ

3
T , (161)

and the string tension associated to large spatial Wilson loops, σs, which, due to the strongly coupled nature of the long-
wavelength modes of the plasma (see the discussion in Section 2.5), is non-vanishing at any temperature. In particular,
in Ref. [896] the Debye mass was extracted from the connected correlator of Polyakov loops; the results showed the
independence of mD from N (except close to Tc), and also its (approximate) proportionality to the temperature in a
temperature range 1.5Tc . T . 2.5Tc . The linear relation betweenmD and T is compatible with the perturbative prediction
(assuming that the coupling is onlymildly varying in the narrow temperature range considered), although there is no reason
to believe that, at those temperatures, the coupling should be sufficiently small to validate a leading-order perturbative
result. As for the spatial string tension, the simulations performed in Ref. [896] indicated that, when N is large, σs is
approximately constant for 0 ≤ T < Tc , whereas it is discontinuous at T = Tc (with limT→T−

c
σs(T ) < limT→T+

c
σs(T ),

by about 15%), and increasing with T in the deconfined phase.

75 As noted in Ref. [949], a similar type of comparison (butwith lattice QCD results forN = 3 andwith dynamical quarks)was also carried out in Ref. [950],
finding a similar value for the ’t Hooft coupling at which the N = 4 theory best ‘‘mimics’’ QCD: λ ≃ 5.5.
76 As discussed in Section 2.5, the existence of non-perturbative effects in deconfined gauge theories is not surprising. Such effects can be investigated
numerically, via lattice simulations of dimensionally reduced effective theories: this was done, e.g., in Refs. [951,952] for the SU(3) theory, and in Ref. [953]
for the generalization to the large-N limit.
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Fig. 19. Left panel: at temperatures close to the deconfinement transition, the quadratic dependence of the trace anomaly on T is exhibited by the linear
dependence of the dimensionless ratio ∆/T 4 per gluon degree of freedom (with an appropriate overall normalization) on 1/T 2 (from Ref. [902]). Right
panel: the same effect – and the same consistency of results obtained in theories with a different number of color charges – can also be seen from the
approximate temperature-independence of the quantity∆/T 2 per gluon degree of freedom (from Ref. [904]).

The temperature dependence of the topological susceptibilityχtopol at largeN was studied in Refs. [889,961]. It was found
that χtopol is nearly temperature-independent (and finite in the ’t Hooft limit) for 0 ≤ T < Tc , but it is strongly suppressed
(and, likely, vanishing for N → ∞) in the deconfined phase.

Conversely, the authors of the recent work [962] investigated the dependence of the critical temperature Tc on θ in
the SU(3) theory, by monitoring the Polyakov loop susceptibility in simulations at imaginary values of θ (to avoid the sign
problem), and then performing an analytical continuation to real θ . They showed that Tc is decreasing when θ varies from
zero to a finite, real value, and, following Ref. [312], they obtained:

Tc(θ)
Tc(0)

= 1 −
χtopol

2Lh
θ2 + O(θ4) ≃ 1 −

0.253(56)
N2

min
k
(θ + 2πk)2 (162)

at large N , having combined their results with large-N values for the topological susceptibility, for the latent heat and for
the critical temperature from Refs. [32,889,896]. The result that, at finite N , the critical temperature decreases when θ takes
non-zero values, is consistent with theoretical expectations [382,383] (see Section 2.5).

5.2. Results in three spacetime dimensions

Large-N gauge theories in three spacetime dimensions (3D) have been investigated in several lattice studies, with many
findings qualitatively similar to those obtained in four spacetime dimensions (4D).

SU(N) Yang–Mills theories in 3D are characterized by a dimensionful gauge coupling: g2 has the dimensions of an energy,
so that a natural dimensionless parameter for organizing perturbative expansions for physical processes at the momentum
scale k is the g2/k ratio (see, e.g., Refs. [358,963] and references therein). They are asymptotically free at high energy, and
super-renormalizable; in addition, one can also prove that the Coulomb potential in 3D is characterized by a logarithmic
dependence on the distance—a behavior which, in particular, would already be sufficient to imply color confinement.
However, perturbation theory is not reliable in the limit of large distances, in which these theories become strongly coupled.
The computational tool to study them in the non-perturbative regime is, thus, lattice simulations—inwhich the β parameter
appearing as a coefficient in front of the Wilson gauge action is defined as β = 2N/(ag2

0 ) = 2N2/(aλ0), where λ0 denotes
the bare (lattice) ’t Hooft coupling. Like in 4D, SU(N) lattice gauge theories in 3D are characterized by a strong-coupling
regime at small β , and by a weak-coupling regime at large β; in 3D, the two are separated by a crossover, which seems to
turn into a third-order phase transition for N → ∞ [964]. Recently, a similar study has also been performed for the phase
structure of 3D SO(2N) Yang–Mills theories [780].

5.2.1. Is the large-N limit of QCD in 3D a confining theory?
The numerical study of large-N Yang–Mills theories in 3D was initiated during the 1990’s, and the main results are

summarized in Refs. [965–967]: in particular, at zero (or low) temperature, all 3D SU(N ≥ 2) gauge theories are confining,
with a non-perturbatively generated, asymptotically linear quark–antiquark potential V (r) at large distance r . In particular,
the string tension σ (i.e., the asymptotic slope of the potential at large r) is related to the bare ’t Hooft coupling λ0 by [967]:

√
σ

λ0
= 0.19755(34)−

0.1200(29)
N2

. (163)
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Fig. 20. Ground state and excitation spectrum of a closed confining flux tube, winding around a spatial size of the lattice (torelon) in SU(6) Yang–Mills
theory in 3D, from Ref. [981]. The symbols show the lattice results for the energies of different states, as a function of the torelon length, while the lines
denote the corresponding predictions from the Nambu–Goto string model, i.e., Eq. (147) for D = 3. In particular, the solid lines refer to the predictions
using the continuum definition of the momentum, while the dashed lines are obtained from the lattice momentum (in a free theory)—which differs from
the former at scales of the order of the inverse lattice spacing.

More recently, the numerical determination of the string tension in 3D Yang–Mills theories was pushed to very high
precision in Ref. [968]: the goal was to test the predictions formulated in a series of works by Karabali, Kim and Nair
[969–972], in which the vacuumwavefunction and the string tension of 3D Yang–Mills theories were computed analytically
in a Hamiltonian approach. The results of previous lattice studies [966,967] had shown some discrepancies with respect
to these predictions, but could not give a conclusive answer about their validity for N → ∞. On the contrary, the
authors of Ref. [968] presented an accurate extrapolation to the large-N limit, which revealed a discrepancy of six standard
deviations with the predictions of Ref. [971]. The interesting analytical program discussed in Refs. [969–972] is presently
ongoing: a computation of the glueball spectrum was presented in Refs. [973,974], while refinements of the string tension
predictions have been recently proposed in Ref. [975]; however, it is fair to say that its theoretical foundations are still under
debate [976].

5.2.2. Confining flux tubes in 3D as strings
Inspection of the numerical results for V (r) at intermediate distances reveals that the potential also includes a 1/r

contribution, with a coefficient that is compatible with the Lüscher term prediction: this means that, similarly to what
happens in 4D, also in 3D the low-energy dynamics of confining flux tubes can be described in terms of (massless)
fluctuations of a bosonic string [825,830,966,977–982]. Again, this is not specific of the large-N limit only, but rather
appears as a generic feature of all confining models in 3D: the Lüscher term (or the broadening of confining flux tubes
with their length [983–989], which is a related implication of the same effective picture) is also observed in high-precision
studies of SU(2) Yang–Mills theory [982,990–995], of 3D lattice models with local invariance under a discrete gauge
group [982,992,996–1006] and even in random percolation models (with an appropriate, topological definition of Wilson
loop operators) [1007,1008].

In fact, these studies are now reaching a level of numerical precision, at which it becomes possible to investigate
subleading (in 1/r) corrections to the confining potential, and possibly compare them with analytical computations that
predict at which order the correct effective string model should deviate from the Nambu–Goto string [860–863,865]. As an
example, Fig. 20, taken from Ref. [981], shows the torelon spectrum obtained from simulations in SU(6) Yang–Mills theory,
in comparison with the closed-string energy levels predicted by the Nambu–Goto model, see Eq. (147). As shown by this
figure, in which both the torelon length and the energies are measured in appropriate units of the relevant energy scale
(set by the square root of the string tension), a somewhat surprising feature is that the agreement with the Nambu–Goto
model appears to hold down to very short distances, at which a priori there is no reason to expect that the approximation of
the confining flux tube as a uni-dimensional string should still be valid. In fact, the deviations from the curves predicted by
the Nambu–Goto model are mostly accounted for, by replacing the continuum definition of the momentum with its lattice
counterpart (the two become significantly different only at scales comparable with the inverse lattice spacing).
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5.2.3. Glueball spectrum in 3D
The spectrumof 3D Yang–Mills theories at largeN (including several excitation states)was studied via lattice simulations

in various works [871,965–967,1009] (and compared with a variant of the Isgur–Paton model [1010] in Ref. [1011]): the
physical states are hadrons (glueballs), which can be classified according to the irreducible representations of the SO(2)
group in the continuum (or to the corresponding subduced representations restricted to the square group, if the theory is
regularized on a cubic Euclidean lattice), as well as a ‘‘mirror’’ parity77 and charge conjugation. The simulations show that
these theories have a finite mass gap (which remains non-vanishing in the large-N limit), and that ratios of different masses
are almost independent of N—up to small, O(1/N2) corrections.

A lattice study of correlation functions of gauge-dependent quantities (gluon and ghost propagators) in the Landau gauge
in 3D Yang–Mills theories was carried out in Ref. [1012]. This work compared the results obtained in SU(N) theories with
a number of colors ranging from 2 to 6, and in G2 Yang–Mills theory, finding essentially no dependence on the rank of the
gauge group.78

5.2.4. Large-N QCD in 3D at finite temperature
The properties of 3D SU(N) Yang–Mills theories at finite temperature are qualitatively similar to those found in 4D: there

exists a deconfinement transition at a critical temperature Tc , at which color-singlet hadronic states give way to a plasma
of deconfined particles, and the value of Tc (in units of the square root of the string tension) remains finite in the ’t Hooft
limit [1017]:

Tc
√
σ

= 0.9026(23)+
0.880(43)

N2
. (164)

The transition is of second order for ‘‘small’’ values of N , i.e. for SU(2) [1018,1019] and SU(3) [1020,1021] gauge theory,
with critical indices respectively in agreement with those of the Z2 and Z3 spin models in two dimensions [912]. For SU(4),
identifying the order of the transition has been a challenging problem [1022], but the most recent and accurate studies
indicate that it is a first-order one [1023], like for N ≥ 5 [1017,1024]—in agreement with the intuitive picture of a more and
more abrupt transition, due to an increasing imbalance between the free energy in the confined phase (which is O(1)) and
the same quantity in the deconfined phase, in which it scales like O(N2).

The large-N lattice computations performed in Refs. [1025,1026] have shown that in the confining phase the equation of
state can be adequately modeled in terms of a gas of almost non-interacting, massive glueballs, as obtained by summing the
known glueball states [966,967]—except very close to Tc , where heavier states (whose density can be modeled in terms of a
simple bosonic string model, following an approach similar to the one discussed in Ref. [1011]) appear to become relevant.
With the exception of a narrow region of temperatures in the vicinity of Tc , the equation of state is essentially independent
ofN . On the contrary, in the deconfined phase the pressure (like the other equilibrium thermodynamics properties) is nearly
perfectly proportional to the number of gluon degrees of freedom (N2

− 1), although the approach to the asymptotic value
given by the Stefan–Boltzmann limit:

lim
T→∞

p
T 3

= (N2
− 1)

ζ (3)
2π

(165)

(where ζ (3) denotes Apéry’s constant, approximately equal to 1.20205690316 . . .) is rather slow: at temperatures around
7 Tc , the pressure is still about 15% smaller than the limiting value in Eq. (165). This indicates that, at those temperatures,
the deconfined plasma is still far from a gas of non-interacting gluons (for the SU(3) theory, analogous results have also
been obtained in Ref. [1027]). Fig. 21, taken from Ref. [1026], shows a plot of the trace of the energy–momentum tensor∆
in units of T 3 (which equals the derivative of p/T 3 with respect to ln T ) per gluon d.o.f., as a function of T/Tc : the perfect
agreement between the simulation results for different gauge groups shows that, in the deconfined phase, the equilibrium
thermodynamic quantities are exactly proportional to N2 in the large-N limit. An interesting feature emerging from these
results is that, like in 4D, also in 3D∆ is proportional to T 2 in this range of temperatures. Finally, the solid yellow curve in the
figure shows the prediction from a generalization of the holographic model proposed in Refs. [938,939] for 3D Yang–Mills
theory.

5.3. Results in two spacetime dimensions

QCD toy models in two spacetime dimensions (2D) are interesting theoretical laboratories, in which, by virtue of a
limited number of physical degrees of freedom, various problems can be studied analytically (or semi-analytically) in
the large-N limit. As we discussed in Section 2, classical examples include the determination of the meson spectrum in
the ’t Hooft model [8], the discovery of a phase transition separating the weak- and strong-coupling phases of the lattice

77 Note that, for any even number d of spatial dimensions, the ‘‘usual’’ parity transformation, corresponding to inversion of all spatial coordinates, is
nothing but a rotation, because −1 ∈ SO(d) for d even.
78 Analogous results have also been obtained from the comparison of the SU(2) and SU(3) theories in four spacetime dimensions [1013–1016].
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Fig. 21. Temperature dependence of the trace of the energy–momentum tensor in units of T 3 per gluon from simulations of the deconfined phase of
3D SU(N) Yang–Mills theories, from Ref. [1026]. The plot shows the simulation results for N = 2 (brown symbols), 3 (black), 4 (green), 5 (blue) and 6
(magenta), and their comparison with the expectation (yellow curve) obtained from a generalization of the holographic model proposed in Refs. [938,939]
to 3D Yang–Mills theory. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

regularization of the theory with the Wilson gauge action [57,58],79 and the analysis of the spectral density of Wilson loops
in the continuum [60] (which continues to attract attention to this day [753,1032–1039]).

Recent examples of analytical results in 2D models of QCD at large N include, e.g., those obtained in the study of form
factors in the principal chiral model [1040–1042]—a theory which has also been studied numerically [1043] (see also
Ref. [1044]).

Finally, another problem that has been recently investigated in the context of 2D large-N QCD, is the one of baryonic
matter at finite density [1045–1047]. In particular, in Ref. [1046] it was found that, at finite baryon density, the ground state
of the system breaks translation invariance, with the formation of a chiral crystal; related topics have been discussed in
Refs. [1048,1049].

6. Conclusions

The idea put forward by ’t Hooft in his seminal article [1] proved to be among the most fruitful ones of the last few
decades in theoretical elementary particle physics, and paved the way to a number of developments in different directions.
The implications of the large-N limit for non-Abelian gauge theories have been studied in fields ranging from string theory
to QCD phenomenology, and in many cases have even generated whole new research areas. Along with this rich variety
of developments, however, also came an increasing specialization and fragmentation of the different subfields—a trend
presently common to all scientific disciplines (or, more generally, in nearly all branches of human knowledge). In our view,
this excessive specialization (together with a tendency towards increasing precarity in the scientific job market) may have
harmful consequences for the long-term progress of science, as it naturally limits the possibility of fruitful exchanges of
ideas between scholars working in different, albeit closely related, areas.

This state of affairs gave us our first motivation to write the present review, whose primary purpose consists in offering
a broad, unitary, panoramic view of large-N gauge theories. While describing the general aspects of this topic in Section 2,
we tried to emphasize the main ideas and the fundamental physical concepts, leaving a technical account of the details
out of our discussion. We tried to be as pedagogical as possible, precisely in order to facilitate the comprehension of the
various problems, studied by different research communities, as clearly as possible. In doing so, on several occasions we
were, unfortunately, bound to be incomplete, or not as accurate as we wished. There are many topics, which we could only
touch upon, or mention very briefly: in apologizing for our omissions, we hope that, in this review, the interested readers
can find at least a reference to an article or to a review presenting a more detailed discussion of some specific subject—but,
at the same time, we also encourage them to read the sections that may look not directly relevant for the topic they are
interested in.

Our secondmotivation for writing this manuscript was, admittedly, more directly related to our own research work, and
consisted in presenting the current status of lattice studies of large-N gauge theories. These studies (both the analytical and
the numerical ones) are now reaching a level of maturity, and can give precise answers tomany theoretical questions, which
are relevant in a large variety of contexts. We hope that this manuscript serve as a vehicle, to inform the large community of

79 Note, however, that this phase transition is not physical, and its nature and very existence depend on the lattice discretization that is used [1028–1030]
—see also Ref. [1031] for a discussion.
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researchers interested in topics related to ’t Hooft’s limit about the recent progress in the lattice field.We found it important
to devote an entire section (Section 3) to a pedagogical introduction of the lattice formulation of field theory, in order to
facilitate the interpretation of the results reviewed in Section 5 also for non-experts. In doing so, we hope that we succeeded
in clarifying the main virtues and strengths of lattice computations, and in clearing out some misconceptions or prejudices
which are, unfortunately, not so uncommon among non-practitioners.

The overview of lattice results presented in Section 5 shows the convincing numerical results that have been obtained
for large-N gauge theories during the last fifteen years, and highlights the progress in areas which, until recently, appeared
to be out of the reach of lattice calculations. Highly excited states of confining flux tubes, hadron spectroscopy, thermal
observables (to name but a few) are all quantities for which lattice computations can now provide very precise and accurate
results—while the first few dynamical simulations at N > 3 are beginning to appear. On the theoretical side, the last
decade has also witnessed very significant developments on the topics related to the time-honored idea of large-N volume
independence, for which, in particular, there has been a lot of progress in understanding the transition from the strong- to
weak-coupling regimes. At the same time, mathematical tools inspired by orbifold equivalences in string theory led to deep
conceptual advances in our understanding of large-N volume independence and large-N equivalences between theories
with different field content. As we discussed in Section 4, the techniques that have been developed in the process are also
finding practical applications for some of themost challenging problems to be studied on the lattice—supersymmetry is one,
might QCD at finite density be the next?

To summarize the state of the art in this field, we can say that, while many problems have already been successfully
studied, many others are currently still open, and being actively investigated. In view of the advances in lattice QCD
computations in the last few years, we foresee further, dramatic progress for large-N studies on the lattice in the near
future. For these reasons, we would like to conclude this review encouraging especially the young, ambitious and talented
researchers to join this field.
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