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temperature increases higher order corrections become important and cannot be neglected

even at large distances. These higher order corrections seem to be well described by the

Nambu-Goto action truncated at the first perturbative order.
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1. Introduction

In these last years a lot of efforts have been devoted to extract the interquark potential from

lattice gauge theories (LGT’s) looking at the expectation values of Wilson loops or Polya-

kov loop correlators in Montecarlo simulations. Besides the important goal of obtaining

reliable values of physical observables like the string tension, these simulations also allow

to study the physical nature of the potential. In particular, a very interesting issue is the

so called “string picture” of the interquark potential: quark and antiquark linked together

by a thin fluctuating flux tube [1].

The standard approach to study this problem is to look at the finite size effects due

to quantum string fluctuations, which, in finite geometries, give measurable contributions

to the interquark potential. This approach traces back to the seminal work of Lüscher,

Symanzik and Weisz [2] and has interesting connections with the conformal field theory

(CFT) approach of two-dimensional models developed in the eighties [3, 4].

The major problem in trying to use these finite size corrections to obtain information on

the underlying effective string is that very high precision estimates of the interquark poten-

tial are needed. Such a precision is very hard to reach with standard algorithms, in particu-

lar if one is interested in the large distance regime where the effective string should show up.
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This led us in the past years to concentrate on the simplest non-trivial LGT, namely

the 3d gauge Ising model for which, thanks to the dual transformation, new and very

powerful algorithms can be constructed and very high precisions can be reached within a

reasonable amount of CPU-time even for large distance interquark potentials. Following

this line we found convincing evidences for the existence of a bosonic type effective string

theory in the 3d gauge Ising model both in the case of the Wilson loop geometry [5] (fixed

boundary conditions (bc) in both directions) and of the interface geometry [6] (periodic

bc in both directions). This paper deals with the third remaining case, namely that of

the Polyakov loop correlators, which corresponds to a mixed geometry (fixed b.c. in one

direction and periodic b.c. in the other direction). A preliminary account of the present

study recently appeared in [7]. Here we complete the analysis using a new algorithm which

fully exploits the power of dual transformations, leading to a gain of more than one order

of magnitude in precision with respect to [7]. Thanks to this higher resolution we are now

able to explore in greater detail the fine structure and the higher order corrections of the

underlying effective string theory. This is the main goal of the present paper.

While studying the Ising model allows a very careful control of all possible sources of

systematic errors and a very precise study of the fine details of the underlying effective

string, it remains an open problem to see if the results obtained are particular features of

the gauge Ising model only or have a more general validity and can be extended also to

non-abelian LGT which are more interesting from a physical point of view.

Last year, an important progress was made in this direction, thanks to a new, powerful,

algorithm proposed by Lüscher and Weisz in [8]. With such an algorithm an exponential

reduction of statistical errors of Polyakov loop correlators can be obtained with no need

of dual transformations. Hence it can be used for any non-abelian LGT, thus allowing

to study the possible existence of string corrections in a much wider set of models. In

particular it was recently used by the same authors in [9] to study the SU(3) theory both

in (2+1) and (3+1) dimensions. In both cases they found again a good agreement with

the predictions of the free bosonic effective string theory.

Thanks to this relevant progress it is now possible to address the important issue of the

string universality, i.e. to compare the properties of the effective strings underlying different

LGT’s. It is by now clear that for large enough distances (and low enough temperatures

in the case of Polyakov loop correlators) one always finds the same asymptotic theory,

i.e. the free bosonic effective theory originally studied in [2]. However for shorter dis-

tances and/or higher temperatures, terms of higher order (typically self-interaction terms

or boundary-type contributions) which are present in the string action start to give mea-

surable corrections and can be detected and studied.

In this respect Polyakov loop correlators turn out to be a perfect tool to study these

effects, since as the temperature increases these higher order corrections become rather

large even for large interquark distances, i.e. in a regime in which other possible sources of

corrections (say, for instance, the perturbative one gluon exchange contribution in SU(3))

are under control or negligible.

Thanks to this fact and to the relevant precision of our simulations we are able to

precisely observe the deviations with respect to the free bosonic string predictions, and we
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can see that, as expected, they increase in magnitude as the temperature increases. We

shall also show that these corrections are well described (with some cautionary remarks

discussed in sections 4 and 5 below) by a Nambu-Goto type string action, truncated at the

first perturbative order.

This paper is organized as follows. In section 2 we shall discuss some general results

concerning the effective string description of the interquark potential. We shall introduce

both the bosonic string and the self-interaction terms induced by the Nambu-Goto string.

We shall then discuss the corresponding finite size corrections. We made an effort to make

this section as self-contained as possible, so as to allow the reader to follow all the steps of

the derivation. In section 3 we shall give a few general information on the 3d gauge Ising

model, on the algorithm that we used to simulate the model, and we shall also describe in

some detail the simulations that we performed. In section 4 we shall discuss our results.

Finally section 5 will be devoted to some concluding remarks and to a comparison with

the analogous results obtained in SU(3) in [9].

2. Theory

As mentioned in the introduction, Polyakov loops naturally arise if one studies finite tem-

perature LGT. Thus we shall begin this section with a brief summary of known results

on finite temperature LGT (section 2.1). This will also allow us to fix notations and

conventions. Next we shall address the issue of finite size corrections, following two com-

plementary paths. First we shall discuss them in full generality, without resorting to any

specific string model, but simply exploiting the quantum field theory implications of the

roughening transition (section 2.2), using some general results of Conformal Field Theory

(section 2.3) and the exact solution of the CFT of a free boson (section 2.4). This ap-

proach is very powerful but it allows no insight in possible higher order corrections due to

the self-interaction of the string. To this end a precise choice of the effective string model

(i.e. the precise form of world-sheet lagrangian of the underlying string) is needed. We

shall address this point in section 2.5, studying the simplest possible string (the natural

generalization of the free bosonic CFT) i.e. the Nambu-Goto string. Next in section 2.6

we shall outline the implications of this choice for our understanding of the deconfinement

transition. Finally we close this theoretical introduction by addressing the important issue

of the range of validity of the effective string picture (section 2.7).

2.1 Finite temperature gauge theories: general setting and notations

The partition function of a gauge theory in d spacetime dimensions with gauge group G

regularized on a lattice is

Z =

∫

∏

dUl(~x, t) exp

{

−β
∑

p

ReTr(1− Up)

}

, (2.1)

where Ul(~x, t) ∈ G is the link variable at the site (~x, t) = (x1, . . . , xd−1, t) in the direction

l and Up is the product of the links around the plaquette p.
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Let us call Nt (Ns) the lattice size in the time (space) direction (we assume for sim-

plicity Ns to be the same for all the space directions). Lattice simulations with non-zero

temperature are obtained by imposing periodic boundary conditions in the time direction.

A (Ns)
d−1Nt lattice can then be interpreted as representing a system of finite volume

V = (Nsa)
d−1 at a finite temperature T = 1/L = 1/Nta where a is the lattice spacing. To

simplify notations we shall fix from now on the lattice spacing to be 1 and neglect it in the

following.

The order parameter of the finite temperature deconfinement transition is the Polyakov

loop, i.e. the trace of the ordered product of all time links with the same space coordinates;

this loop is closed owing to the periodic boundary conditions in the time direction:

P (~x) = Tr

Nt
∏

z=1

Ut(~x, z) . (2.2)

The vacuum expectation value of the Polyakov loop is zero in the confining phase and

acquires a non-zero expectation value in the deconfined phase. The value βc(T ) of this

deconfinement transition is a function of the temperature, and defines a new physical

observable Tc. The inverse of this function gives for each value of β the lattice size in the

time direction (which we shall call in the following Nt,c(β)) at which the model undergoes

the deconfinement transition.

The interquark potential can be extracted by looking at the correlations of Polyakov

loops in the confined phase. The correlation of two loops P (x) at a distance R and at a

temperature T = 1/L = 1/Nt is given by

G(R) ≡ 〈P (x)P †(x+R)〉 ≡ e−F (R,L) , (2.3)

where the free energy F (R,L) is expected to be described, as a first approximation, by the

so called “area law”:

F (R,L) ∼ Fcl(R,L) = σLR+ k(L) , (2.4)

where σ denotes the string tension1 and k(L) is a non-universal constant depending only

on L. The meaning of the index cl refers to the fact that (as we shall discuss below) this

should be considered as a “classical” result, which neglects quantum fluctuations.

In the following we shall mainly study the combination

Q0(R,L) ≡ F (R + 1, L)− F (R,L) ≡ log

(

G(R)

G(R + 1)

)

(2.5)

in which the non-universal constant cancels out.

The observable (2.3) is similar to the expectation value of an ordinary Wilson loop

except for the boundary conditions, which are in this case fixed in the space directions

and periodic in the time direction. The resulting geometry is that of a cylinder, which is

topologically different from the rectangular geometry of the Wilson loop.

1In the following, when needed, we shall also explicitly write the dependence of the string tension on

the finite temperature T and the coupling β as σ(T ) or σ(T, β) depending on the case
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2.2 The roughening transition and the effective string

Eq. (2.4) correctly describes the Polyakov loop correlators only in the strong coupling

phase. As it is well known the confining regime of a generic lattice gauge theory consists in

general of two phases: the strong coupling phase and the rough phase. These two phases

are separated by the roughening transition where the strong coupling expansion for the

Polyakov loop correlator (as well as that for the Wilson loop or the interface) ceases to

converge [10, 2]. These two phases are related to two different behaviors of the quantum

fluctuations of the flux tube around its equilibrium position [2]. In the strong coupling

phase, these fluctuations are massive, while in the rough phase they become massless and

hence survive in the continuum limit. The inverse of the mass scale of these fluctuations2

can be considered as a new correlation length of the model. It is exactly this new correlation

length which goes to infinity at the roughening point and induces the singular behavior of

the strong coupling expansion.

In the rough phase the flux-tube fluctuations can be described by a suitable two-

dimensional massless quantum field theory, where the fields describe the transverse dis-

placements of the flux tube. The common lore is that this QFT should be the effective

low energy description of some fundamental string theory (this is the reason for which this

QFT is often called “effective string theory” and the finite size contributions it induces are

usually named “string corrections”).3 It is expected to be very complicated and to con-

tain in general non-renormalizable interaction terms [2]. However, exactly because these

interactions are non-renormalizable, their contribution is expected to be negligible in the

infrared limit (namely for large quark separation) [12]. In this infrared limit the QFT

becomes a conformal invariant field theory (CFT) [4].

From the general theory of CFT’s we immediately see that there are two important

signatures which, if detected, could validate the whole picture, and which could be in

principle observed in numerical simulations.

1. The massless quantum fluctuations delocalize the flux tube which acquires a nonzero

width, which diverges logarithmically as the interquark distance increases [13, 14].

2. These quantum fluctuations give a non-zero contribution to the interquark potential,

which is related to the partition function of the above 2d QFT. Hence if the 2d QFT

is simple enough to be exactly solvable (and this is in general the case for the CFT

in the infrared limit) also these contributions can be evaluated exactly. They show

up as finite size corrections to the interquark potential.

It is this last signature which is the best suited to be studied by numerical method

and which we shall address in the following section.

2Notice that this scale is completely different from the glueball mass scale.
3Notice however that the existence of such an underlying fundamental string theory is not a manda-

tory requirement to justify the results that we shall discuss below. Any alternative mechanism (see for

instance [11]) which could induce a fluctuating flux tube description for the interquark potential works

equivalently well.
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2.3 Finite size effects: general discussion

As mentioned above, the pure area law is inadequate to describe the Polyakov loop corre-

lator in the rough phase and must be multiplied by the partition function of the 2d QFT

describing the quantum fluctuations of the flux tube which in the infrared limit becomes

a 2d CFT. Let us call Zq(R,L) the partition function of such a CFT on the cylinder (the

open ends of the cylinder being the two Polyakov loops). Then eq. (2.4) in the rough phase

becomes:

〈P (x)P †(x+R)〉 = e−Fcl(R,L)Zq(R,L) . (2.6)

Defining the free energy of quantum fluctuations as

Fq(R,L) = − logZq(R,L) ,

we find for the free energy

F (R,L) ∼ Fcl(R,L) + Fq(R,L) = σLR+ k(L)− logZq(R,L) . (2.7)

By using standard CFT’s [4] methods we can study the behavior of Fq(R,L) as a

function of R and L in a general way. Indeed any two dimensional CFT is completely

described once the conformal anomaly c, the operator content hi and the operator product

algebra (or the fusion algebra which equivalently encodes all the fusing properties of the

CFT) are given. Then it is easy to show that Fq(R,L) only depends on the adimensional

ratio4 z = 2R/L. It is possible to give asymptotic expressions for Fq(R,L) in the z À 1

and z ¿ 1 regimes:

z À 1 [15]:

Fq(R,L) ' −c̃
πR

6L
, (2.8)

where c̃ = c − 24hmin is the effective conformal anomaly [16]; hmin is the lowest

conformal weight of the physical states propagating along the cylinder. In the case

of unitary CFT’s hmin = 0 (unless special boundary conditions are chosen) and c̃

coincides with the conformal anomaly c;

z ¿ 1 [17]:

Fq(R,L) ' −ĉ
πL

24R
, (2.9)

where ĉ = c − 24hα,β and hα,β is the lowest conformal weight compatible with the

boundary conditions α and β at the two open ends of the cylinder. In the case of an

unitary CFT and fixed bc we have again hα,β = 0.

If the CFT is exactly solvable, namely if the whole operator content is known, one can

explicitly write the free energy for all values of z, which smoothly interpolates between the

two asymptotic behaviors.

An important role in this construction is played by the modular transformations. All

the partition functions can be written as power expansions in q = exp(2πiτ ), with τ = iz

4the factor of 2 in the definition of z is a consequence of the asymmetry in the boundary conditions.
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for Polyakov loop correlations (notice that τ = iRL if one studies Wilson loops). Modular

transformations allow to extend these expansions in the whole τ plane. In particular we

shall be interested, in the following, in the τ → −1/τ transformation.

In the Wilson loop case, this transformation is a symmetry, because it exchanges R

and L. We can use this symmetry by choosing for instance L ≥ R, and τ = iL/R. With

this choice L plays the role of a time-like extent and the interquark potential V (R) we

want to extract from the data is defined in the limit: V (R) = limL→∞ F (R,L)/L. A

similar symmetric situation occurs if one studies the behavior of the interface tension (see

for instance [6]).

In the Polyakov loop case, the situation is completely different: L andR have a different

meaning and the modular transformation τ → −1/τ allows us to move from the region

in which 2R > L to that in which 2R < L. What is new is that, due to the modular

transformation, in these two regions the string corrections have, as we have seen above,

different functional forms. While in the region in which 2R < L the dominant contribution

is, like in the Wilson loop case, of the type 1/R, in the region in which 2R > L the dominant

contribution is proportional to R, and acts as a finite size correction of the string tension.

This behavior will play a major role in the following.

2.4 The simplest case: the free bosonic string

The simplest possible choice for the CFT which should describe the effective string in the

infrared limit is to assume that the d− 2 fields which describe the transverse displacement

of the flux tube are d− 2 free non-interacting bosons. We shall denote in the following this

approximation of Fq with the notation F 1
q and the corresponding partition function as Z1.

5

With abuse of language this choice is usually referred to as the “bosonic string” model.

Notice however that this model, being only an effective long range description, could well

be related to a wide class of wildly interacting (and not necessarily bosonic) string theories.

Besides being the simplest choice this model is very important for at least three reasons:

1. In the framework of the interface physics this QFT is known as “capillary wave

model” and has received in the past years impressive confirmations in a set of studies

of different models belonging to the Ising universality class (see for instance ref. [6]

and references therein).

2. Historically it was the first to be studied in QCD. The so called “Lüscher term”

actually is nothing but the dominant contribution of this bosonic string correction in

the 2R < L limit.

3. It has been recently observed that it well describes the finite size corrections of the

interquark potential in SU(3) LGT both extracted from Wilson loops [18] and from

Polyakov loops correlators [9] and also in SU(N) LGT with N 6= 3 [19] (see also the

analysis of [20])).

5The rationale behind this choice is that we think of F 1
q as the first term in the expansion of Fq in powers

of (σRL)−1. We shall address below the second term of this expansion which we shall denote as FNLO
q .
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Notwithstanding being the simplest one, this CFT is all the same highly non-trivial. In

particular, as we shall see in detail in section 3, the peculiar choice of lattice sizes which

is usually made in standard lattice simulations requires that one takes into account the

whole functional form of F 1
q (R,L), and not only the dominant contributions discussed in

eqs. (2.8) and (2.9). This is indeed one of the main points of this paper and we shall discuss

it in detail in section 4 when comparing our predictions with the numerical simulations.

The whole functional form of F 1
q (R,L) can be evaluated by a suitable regularization

of the laplacian determinant (or alternatively by summing over the whole set of states of

the Virasoro algebra). This result has a rather long history: it was discussed for the first

time in 1978 by M. Minami in [21]. It was then reobtained in ref.s [22, 23] and with a

different approach in ref. [24]. Here, we only report the result, which for a d dimensional

gauge theory (i.e. d− 2 bosonic fields) is:

F 1
q (R,L) = (d− 2) log (η(τ)) ; −iτ =

L

2R
, (2.10)

where η denotes the Dedekind eta function:

η(τ) = q
1
24

∞
∏

n=1

(1− qn) ; q = e2πiτ , (2.11)

and R is the distance between the two Polyakov loops.

We list below for completeness the power expansions in the two regions:

2R < L

F 1
q (R,L) =

[

− πL

24R
+
∞
∑

n=1

log(1− e−πnL/R)

]

(d− 2) , (2.12)

2R > L

F 1
q (R,L) =

[

−πR
6L

+
1

2
log

2R

L
+
∞
∑

n=1

log(1− e−4πnR/L)

]

(d− 2) . (2.13)

These are the expressions that we shall compare in section 4 with our Montecarlo data.

Notice, as a side remark, that for any practical purpose it is enough to truncate the infinite

sums which appear in eqs. (2.12) and (2.13) to the first two or three terms. The errors

obtained in this way (if one remains inside the regions of validity of the two expansions:

z < 1 for eq. (2.12) and z > 1 for eq. (2.13)) are much smaller than the uncertainties of

the numerical estimates.

2.5 The Nambu-Goto string

The approach discussed in the previous sections is very general. It shows that at large

enough interquark distance, the finite size corrections to the potential are independent of

the fine structure details of the effective string model and only depend on the choice of

boundary conditions, on the number of transverse dimensions and on the geometry of the

observable used to extract the potential. This universality of the string correction was
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already observed by Lüscher, Symanzik and Weisz in their original papers [2] and remains

the nicest feature of the effective string approach to the interquark potential. However, it

is clear that along this way we have no hope to predict the effect (or even simply check

the existence) of higher order corrections due to the self-interaction of the string. These

self-interaction terms are expected to play a role in the intermediate region, before the

asymptotic regime of the pure free bosonic CFT is reached. Notice however that there is

no sharp separation between these two regimes, and the border between them only depends

on the resolution of the data used to test the predictions. Precise enough data could allow

to detect these higher order terms (if they exist) at any value of the interquark distance.

In order to study the self-interaction of the string, a precise choice of the effective

string model (i.e. a precise form for the world-sheet lagrangian of the underlying string) is

needed. In this paper we shall follow the simplest possible option, which is known as the

Nambu-Goto action. There are a few reasons which support this choice:

• It is the simplest and most natural generalization of the free bosonic CFT, since its

action is simply given by the area of the world-sheet, with no need of additional

information or degree of freedom.

• It implies a behavior of the deconfinement temperature which seems to agree rather

well with the simulations (see section 2.6 below).

• As far as we know, there is only one other case in which higher order corrections to

the free effective string have been detected and studied, i.e. the finite size behavior

of the interface free energy in the three dimensional Ising model [6, 25]. In this case

the Montecarlo data were in perfect agreement with the predictions obtained using

the Nambu-Goto action.

However it is important to stress that this is by no means the only possible choice.

In fact there are several other actions which can give (at the first order to which we are

addressing the problem here) the same corrections.

Besides the self-interaction type terms, one could also include in the action “boundary

type” terms, like those studied in [9]. We decided in this paper to neglect this class of

higher order corrections, since they require the introduction of a free parameter which

must be fitted from the data and also because here we are mainly interested in the string

self-interaction terms. However we plan to address the issue of boundary correction in a

forthcoming paper.

2.5.1 Finite size corrections due to the Nambu-Goto string

The major problem of the derivations that we shall discuss below is that the gauge choice

that we have to make in order to be able to perform our calculations is not consistent at the

quantum level. There are arguments which tell us that this anomaly should vanish at large

enough distance [12], but this cannot eliminate the problem. This is the reason for which

we repeatedly stressed in this paper that what we are addressing here is an effective string

model. We are here in a completely different framework with respect to the fundamental

string theories, for which consistence at the quantum level is mandatory.

– 9 –
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We must think of the Nambu-Goto action as a low energy, large distance, approxima-

tion of the “true” (unknown) fundamental string theory.

This can be clarified by looking at the 3d Ising model as an example. The fundamental

string is expected to describe the model at the microscopic level. The common assumption

is that it should describe the behavior (and the statistics) of the surfaces contained in the

strong coupling expansion of the model, as it does the free fermion field theory in the 2d

case. On the contrary, the effective string theory should describe the behavior of these

surfaces at a much larger distance scale, where the microscopic features become negligible

and one only looks at the collective modes of the fluctuations of these surfaces which

behave, as a first approximation, as free massless bosonic fields.

As anticipated above, the Nambu-Goto string action is simply given by the area of the

world-sheet:

S = σ

∫ L

0
dτ

∫ R

0
dς
√
g , (2.14)

where g is the determinant of the two-dimensional metric induced on the world-sheet by

the embedding in Rd:

g = det(gαβ) = det ∂αX
µ∂βX

µ .

(α, β = τ, ς, µ = 1, . . . , d) (2.15)

and σ is the string tension.

The reparametrization and Weyl invariances of the action (2.14) require a gauge choice

for quantization. We choose the “physical gauge”

X1 = τ

X2 = ς (2.16)

so that g is expressed as a function of the transverse degrees of freedom only:

g = 1 + ∂τX
i∂τX

i + ∂ςX
i∂ςX

i +

+∂τX
i∂τX

i∂ςX
j∂ςX

j − (∂τX
i∂ςX

i)2 (i = 3, . . . , d) . (2.17)

The fields X i(τ, ς) must satisfy the boundary conditions dictated by the problem. In our

case periodic b.c. in one direction and Dirichlet b.c. in the other one:

Xi(0, ς) = X i(L, ς) ; X i(τ, 0) = X i(τ,R) = 0 . (2.18)

It is clear that this gauge fixing implicitly assumes that the surface is a single valued

function of (τ, ς), i.e. it must not have overhangs or cuts. This is certainly not the case

for the microscopic surfaces which one obtains in the strong coupling expansion. Thus this

gauge fixing is just another way to state that the string that we are studying is an effective

string. This point can be made more rigorous by looking at the quantum consistency of

this gauge fixing. Indeed it is well known that due to the Weyl anomaly this gauge choice
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can be performed at the quantum level only in the critical dimension d = 26. However,

in agreement with our picture of a large scale effective string, this anomaly is known to

disappear at large distances [12], which is the region we are interested in.

Inserting this result in eq. (2.14) and setting for simplicity d = 3 (i.e. only one trans-

verse degree of freedom)6 we end up with

S[X] = σ

∫ L

0
dx1

∫ R

0
dx2
√

1 + (∂τX)2 + (∂ςX)2 . (2.19)

Let us now expand the square root. As a first step, in order to correctly identify the

expansion parameter let us rewrite the action in terms of adimensional variables. Let us

define: φ =
√
σX, ξ1 = τ/R, ξ2 = ς/L. In this way we recognize that the expansion

parameter is (σLR)−1. Expanding the action keeping only the first two orders (i.e. keeping

only terms up to the fourth order in the fields) we find:

S[X] = σLR+ S ′(φ) , (2.20)

where

S′(φ) = SG(φ)−
1

8σLR
Sp(φ) +O

(

(σLR)−2
)

. (2.21)

Let us look at these two terms in more detail:

• SG is a purely gaussian term

SG(φ) =
1

2

∫ 1

0
dξ1

∫ 1

0
dξ2 (∇φ)2 (2.22)

with

(∇φ)2 = 1

2u

(

∂φ

∂ξ1

)2

+ 2u

(

∂φ

∂ξ2

)2

(2.23)

and

u =
L

2R
. (2.24)

It is easy to see that this term is exactly the free field action discussed in section 2.4.

At this level of approximation the partition function becomes

Z(L,R) = exp(−σLR)Z1 , (2.25)

where Z1 is the gaussian integral evaluated in section 2.4

Z1 =
1

η(iu)
. (2.26)

It is easy to see that this result also holds for d > 3, each transverse degree of freedom

being independent from the other so that the final result is simply the product of

(d−2) times the Dedekind function. Thus we exactly recover the result of eq. (2.10).

6With this choice the quartic terms in eq. (2.17) cancel out and the expression simplifies. Notice that

if one is interested in the action for d > 3 these terms survive. This is the reason for which in the final

result one finds a non-trivial dependence on d. A nice way to understand this fact is to notice that the

self-interaction of the string also couples different transverse degrees of freedom.
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• Sp is the “self-interaction term”:

Sp(φ) =

∫ 1

0
dξ1

∫ 1

0
dξ2

[

(∇φ)2
]2
. (2.27)

At order (σLR)−1 the partition function is therefore

Z(L,R) = exp(−σLR) Z1

(

1 +
1

8σLR
〈Sp〉

)

, (2.28)

where the expectation value of Sp is taken with respect to the action SG. Also

this expectation value can be evaluated using the ζ-function regularization. The

calculation can be found in [22]:

〈Sp〉 =
π2

36
u2
[

2E4(iu) −E2
2(iu)

]

, (2.29)

where E2 and E4 are the Eisenstein functions. The latter can be expressed in power

series:

E2(τ) = 1− 24
∞
∑

n=1

σ(n)qn (2.30)

E4(τ) = 1 + 240

∞
∑

n=1

σ3(n)q
n (2.31)

q ≡ e2πiτ , (2.32)

where σ(n) and σ3(n) are, respectively, the sum of all divisors of n (including 1 and

n), and the sum of their cubes.

Bringing together the two terms we finally find (recall that we have fixed d = 3):

F (NLO)
q (R,L) =

[

log η(τ)− π2L

1152σR3

[

2E4(τ)−E2
2(τ)

]

]

+O

(

1

(σLR)2

)

. (2.33)

This is the functional form of the finite size corrections which we shall compare with the

results of our Montecarlo simulations in section 4. Notice that the inclusion of next-to-

leading terms does not require the introduction of any new free parameter, so that the

predictive power is the same as for the free string case.

2.6 Implications for the deconfinement transition

One of the most interesting consequences of eqs. (2.8), (2.13) is that in the large R limit the

quantum fluctuations of the flux tube are proportional to R and have the effect to decrease

the string tension. This change is proportional to T 2 and introduces a dependence on the

finite temperature of the effective string tension:

σ(T ) = σ(0) − πT 2(d− 2)

6
, (2.34)
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where T = 1/L denotes the finite temperature and σ(0) is the zero temperature limit

of the string tension (which is measured, for instance, through Wilson loop expectation

values). This process eventually leads to the deconfinement transition and can be used

(see [26, 27]) to estimate the adimensional ratio σ(0)/T 2
c . If we assume that the free string

picture holds for all temperatures up to Tc, eq. (2.34) would predict the value of the latter

to be Tc =
√

6σ0/π, a prediction that turns out to be rather far from the value obtained

in Montecarlo simulations.

This is another reason which supports the existence of higher order terms in the effec-

tive string action. We can easily extend eq. (2.34) so as to keep into account the next to

leading order in the Nambu-Goto action expansion. To this end, the modular transforma-

tion properties of the Eisenstein functions

E2(τ) = −
(

i

τ

)2

E2

(

−1

τ

)

+
6i

πτ
(2.35)

E4(τ) =

(

i

τ

)4

E4

(

−1

τ

)

(2.36)

turn out to be very useful.

Performing a modular transformation so as to reach the large R limit we find

E2

(

i
L

2R

)

= −4R2

L2
E2

(

i
2R

L

)

+
12R

πL
∼ −4R2

L2

E4

(

i
L

2R

)

=
16R4

L4
E4

(

i
2R

L

)

∼ 16R4

L4
(2.37)

so that

− 1

8σLR
〈Sp〉 ∼ −

π2R

72σL3
(2.38)

and finally

F (L,R) ∼ σLR

(

1− π

6L2σ
− π2

72σ2L4

)

. (2.39)

This result perfectly agrees with the conjecture reported in [27, 26] which states that

if the world sheet bordered by the two Polyakov loops is described by a Nambu-Goto

type action then the string tension should vanish at the critical point with a square root

singularity: σ(T ) ∼ (Tc − T )1/2. This behavior is compatible with eq. (2.34) only if we

assume:

σ(T ) = σ(0)

√

1− T 2

T 2
c

(2.40)

with

T 2
c =

3σ(0)

π
, (2.41)

which turns out to be in much better agreement with the results of MC simulations.

Inserting this value into eq. (2.39) we find:

F (L,R) ∼ σ
R

T

(

1− 1

2

(

T

Tc

)2

− 1

8

(

T

Tc

)4
)

(2.42)

which is exactly the expansion to the next to leading order of eq. (2.40).
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Even if the estimate of eq. (2.41) predicts a value for the ratio T 2
c /σ(0) which is in good

agreement with the existing Montecarlo estimates for SU(N) LGTs, it should be considered

with great caution, since it predicts a critical index 1/2 for the deconfinement transition

which disagrees both with Montecarlo results and with the expectations of the Svetitsky-

Yaffe conjecture. This means that assuming a Nambu-Goto type action is probably too

naive and/or that the regularization of higher perturbative orders introduces new terms in

the large-R limit.

However, notwithstanding this cautionary observation, the previous discussion cer-

tainly tells us that the simple free bosonic theory cannot be the end of the story and that

higher order terms must necessarily be present to match with the expected behavior near

the deconfinement transition.

2.7 Range of validity of the effective string picture

As mentioned in the previous sections, the effective string picture is expected to hold at

large enough distances (see in particular the comments in section 2.2). However one of

the surprising features of the recent Montecarlo results [18, 9] is that the effective string

picture seems indeed to hold at remarkably small distances. In [18] (Wilson loop operators

in d = 4 SU(3) LGT) the range of validity starts at Rc ∼ 0.4 fm. (In the following we

shall denote with Rc the minimum value of interquark distance at which we expect the

effective string picture, possibly with higher order corrections, to hold). A similar result

is also reported in [9] (Polyakov loop correlators in d = 3 and d = 4 SU(3) LGT), with

0.4 . Rc . 0.5 fm.

As for the Ising model, we found looking at the Wilson loop expectation values that [5]

σR2
c ∼ 1.5 (see figure 2 of ref. [5]). In exactly the same range of values also the logarithmic

increase of the flux tube starts to hold, in agreement with the effective string predictions

(see the comment at page 408 of [14]). If (with abuse of language) we try to write these

scales in fermi units using the definition of the Sommer scale r0 which is given by σr20 = 1.65,

we see that also in the Ising case we find 0.4 . Rc . 0.5 fm. Following [5] we shall assume

that also in our present analysis Rc =
√

1.5/σ.7

All these observations show that the scale Rc is much smaller than what one would

naively expect and that it seems to show a remarkable degree of universality. It would be

very interesting to understand the reason of this behavior.

When dealing with Polyakov loop correlators, a natural scale to measure distances is

the critical temperature Tc, which is related to the string tension by [29]

Tc√
σ

= 1.2216(24) . (2.43)

For Lc = 1/Tc we hence get σL2c ∼ 0.67. This implies that Lc ∼ 0.3 fm and Rc ∼ 1.5Lc.

7The presence of this threshold of validity is the main reason why earlier studies in the 3d Ising gauge

model, probing shorter physical distances, due to the smaller computational power available, could not

identify the free bosonic string as the correct model and actually suggested a fermionic string model [28].

It is now clear that, at least in the range of values that we studied in the present paper, such a picture is

not supported by the data.
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In view of the above discussion it is useless to look at correlators below the scale Lc,

since in that region the string picture certainly does not hold. At the same time it is

interesting to explore the scales below Rc in the range Lc < R < Rc to see if the value

of Rc is again confirmed and/or if higher order effects can in part take into account the

deviation from the free string picture below Rc.

3. Simulations

3.1 3d gauge Ising model

In order to test our predictions we performed a set of simulations on the 3d Z2 gauge

model, whose partition function can be obtained from the general expression in eq. (2.1)

by setting Ul ≡ σl ∈ {1,−1}. The resulting partition function turns out to be

Zgauge(β) =
∑

{σl=±1}

exp (−βSgauge) . (3.1)

The action Sgauge is a sum over all the plaquettes of a cubic lattice,

Sgauge = −
∑

¤

σ¤ , σ¤ = σl1σl2σl3σl4 . (3.2)

As in eq. (2.1), we choose the same coupling in the time-like and in the two space-like

directions of the cubic lattice.

This model is known to have a roughening transition at βr = 0.47542(1) [30], and a

bulk (i.e. at zero temperature) deconfinement transition at βc = 0.7614133(22) [31]. We

performed our Montecarlo simulations at three different values of the coupling constant

β, all located in the rough phase and close enough to the deconfinement point to be well

within the scaling region. We chose three values for which the deconfinement temperature

(and hence the critical distance Rc) was known with high precision so as to be able to

precisely fix the minimal distance between the Polyakov loops and the lattice size in the

time direction.

It is important to recall that the 3d gauge Ising model can be translated into the 3d

spin Ising model by the so called Kramers-Wannier duality transformation

Zgauge(β) ∝ Zspin(β̃) (3.3)

β̃ = −1

2
log [tanh(β)] , (3.4)

where Zspin is the partition function of the Ising model in the dual lattice:

Zspin(β̃) =
∑

si=±1

exp(−β̃H1(s)) (3.5)

with

H1(s) = −
∑

〈ij〉

J〈ij〉sisj , (3.6)
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where the sum runs over the links 〈ij〉 connecting the nearest-neighbor sites i and j. Here

the couplings J〈ij〉 are fixed to the value +1 for all the links. This relation defines a

one-to-one mapping between the free energy densities in the thermodynamic limit.

The expectation values of gauge invariant observables can be expressed as ratios of

partition functions of the spin model. For instance the dual of the Polyakov loop correlators,

in which we are presently interested, is given by

〈P (x)P †(x+R)〉 = Zspin,S(β̃)

Zspin(β̃)
, (3.7)

where in Zspin,S all the couplings of the links (in the dual lattice) that intersect a surface

S joining the two loops (any choice of the surface joining the two loops is equivalent) take

the value J〈ij〉 = −1. This construction explains why the results that we are discussing are

related (apart from the different choice of boundary conditions) to those obtained studying

the interfaces of the 3d Ising spin model.

For the ratios of correlators that we shall study below, we get

G(R)

G(R + 1)
=

Zspin,L×R(β̃)

Zspin,L×(R+1)(β̃)
, (3.8)

where we have taken the minimal surfaces that join the Polyakov loops. Eq. (3.8) is the

basis of the algorithm that we shall discuss below.

3.2 The algorithm

Computing the Polyakov-loop correlation function in the lattice gauge theory in the straight

forward way, the statistical error is increasing exponentially with L and R. On the other

hand the value of G(R) is decreasing exponentially with R. This problem is partially

resolved by the algorithm of Lüscher and Weisz [8].

Our approach in the dual model overcomes the problem completely. The statistical

error of the ratio G(R)/G(R + 1) virtually does not depend on L and R. The numerical

results show that already for R = 2 our method in the dual model gives similar statistical

errors as the direct measurement in the gauge model. For instance, in the β = 0.73107

case, with L = Nt = 8 we find with the present algorithm G(5)/G(4) = 0.68421(9) (see

table 3) to be compared with the value G(5)/G(4) = 0.68429(21) obtained with the direct

measurement and used in our previous paper [7].

Our method is essentially an improved version of the so called “snake algorithm”

introduced in [32] to study the ’t Hooft loop in SU(2) LGT’s and later adapted to the

study of the interface free energy in the 3d spin Ising model [33]. The major improvement

in our algorithm with respect to ref.s [32, 33] is the hierarchical organization of the lattice

updates (see below) which allows us to greatly enhance the precision of our results. Let us

see in detail our algorithm.

In order to compute eq. (3.8) numerically, we factorize the ratio of partition functions

in such a way that for each factor the partition functions differ just by the value of J〈ij〉 at

a single link
ZL×R

ZL×(R+1)
=
ZL×R,0

ZL×R,1
· · · ZL×R,M

ZL×R,M+1
· · · ZL×R,L−1

ZL×R,L
, (3.9)
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Figure 1: Sketch of the surface denoted by L×R,M . In the example, L = 6, R = 8 and M = 2.

The circles indicate the links that intersect the surface.

where we have suppressed the index spin and the argument β̃ to simplify the notation.

L×R,M denotes a surface that consists of a L×R rectangle with aM×1 column attached.

A sketch is given in figure 1.

Each of the factors of eq. (3.9) can be written as expectation value in one of the two

ensembles:

ZL×R,M+1

ZL×R,M
=

∑

si=±1
exp(−β̃HL×R,M(s)) exp(−2β̃sksl)

ZL×R,M
, (3.10)

where 〈k, l〉 is the link that is added going from L×R,M to L×R,M+1. Note that already

the ratio of partition functions in eq. (3.8) could be written as an expectation value in the

ensemble for the L × R surface. However the corresponding observable has an enormous

variance.

The observable that we measure has only support on a single link on the lattice.

Therefore it would be quite a waste of time to update the whole lattice before measuring

sksl. In order to circumvent this problem we have enclosed the link 〈kl〉 in a sequence of

sub-lattices of the size b1,i× b2,i× b3,i. The center of each of the sub-lattices is the link 〈kl〉
and b1,i ≤ b1,i+1, b2,i ≤ b2,i+1 and b3,i ≤ b3,i+1. i is running from 1 to n. In our simulation

we have taken n = 5 throughout.

Now we perform update sweeps over these boxes in a hierarchical way. This can be

best explained by the following piece of pseudo-code:

for(j_l=0;j_l<m_l;j_l++)

{

for(k_l=0;k_l<t_l;k_l++) sweep over the whole lattice;

for(j_n=0;j_n<m_n;j_n++)

{

for(k_n=0;k_n<t_n;k_n++) sweep over the sub-lattice n;

for(j_nm1=0;j_nm1<m_nm1;j_nm1++)

{

for(k_nm1=0;k_nm1<t_nm1;k_nm1++) sweep over the sub-lattice n-1;
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.

.

.

for(j_1=0;j_1<m_1;j_1++)

{

for(i_1=0;i_1<t_1) sweep over the sub-lattice 1;

measure s_k s_l;

}

.

.

.

}

}

}

As basic update algorithm we have used the microcanonical demon-update with multi-

spin coding implementation combined with a canonical update of the demon [34]. Details

on the implementation can be found in refs. [35, 6]. In our implementation of multi-spin

coding 32 or 64 lattices are simulated in parallel, depending on the architecture of the

machine the program is running on. (Here we used Pentium 4 and Pentium III PC’s; i.e.

32-bit machines. Hence 32 lattices are simulated in parallel).

In our simulations we have chosen the parameters of the algorithm ad hoc, without any

attempt to optimize them. In particular we have always chosen 5 sub-lattices of increasing

size and m1 = m2 = · · · = m5 = 10. As an example, for L = 24 we have chosen sub-lattice

sizes of 2× 3× 3, 4× 5× 5, 8× 9× 9, 16× 17× 24 and 32× 33× 24. Note that the largest

sub-lattices already take the full extent of the lattice in time direction.

In one cycle we performed tl = 5 for β̃ = 0.228818 and β̃ = 0.236025 and tl = 10

for β̃ = 0.226102 complete sweeps over the lattice. In one instance we did sweep t1 =

t2 = · · · = t5 = 2 times over the sub-lattice. In our production runs, we always performed

ml = 1000 complete cycles. That means that the total number of measurements for one

value of M is 32 × 1000 × 105 = 3.2 × 109. Since exp(−β̃sksl) can take only two values,

the expectation value of exp(−β̃sksl) can be easily obtained from the expectation value

of sksl. Therefore, in the program, we accumulated sksl rather than exp(−β̃sksl) itself.

Averages of sksl over whole cycles were written to a file for later analysis.

Before we started the measurement, 8000 sweeps over the whole lattice were performed

for β̃ = 0.228818 and β̃ = 0.236025 and 16000 sweeps for β̃ = 0.226102 for equilibration.

In order to get a good estimate of autocorrelation times we performed one more ex-

tended run for β̃ = 0.226102, L = 24, R = 24 and M = 0 with 10000 complete cycles. For

the cycle averages of sksl we obtain τint = 0.92(5) in units of cycles. To deal with the large

number of simulations, the analysis had to be automated. Computing the statistical error,

we performed a binning analysis with 50 bins i.e. a bin size of 20 throughout. Given the

small autocorrelation time, this bin size should be sufficient.

As an example, we give the individual results for ZL×R,M+1/ZL×R,M for β̃ = 0.226102,

L = 24 and R = 24 in table 1. Classically, one expects ZL×R,M/ZL×R,M+1 = exp(−σ) =
exp(−0.010560) = 0.9895 . . .. In fact, the results for 1 < M < 22 are rather close to this
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M ZL×R,M+1/ZL×R,M

0 0.968311(25)

1 0.985483(29)

2 0.988214(23)

3 0.988921(23)

4 0.989258(29)

5 0.989387(24)

6 0.989479(22)

7 0.989538(28)

8 0.989590(25)

9 0.989560(24)

10 0.989665(26)

11 0.989660(27)

12 0.989720(27)

13 0.989742(30)

14 0.989750(28)

15 0.989775(28)

16 0.989780(26)

17 0.989866(26)

18 0.989988(32)

19 0.990072(29)

20 0.990396(29)

21 0.991146(23)

22 0.993860(26)

23 1.011208(30)

Table 1: As an example we give the results for the ratios of partition functions defined by eq. (3.10)

R = 24, L = 24, β̃ = 0.226102 on a 128× 128× 24 lattice. The final result is ZL×(R+1)/ZL×R =

0.77926(10).

value. Note that ZL×R,0/ZL×R,1 is much smaller and ZL×R,L−1/ZL×R,L much larger than

this value. i.e. it is unfavorable to create corners and favorable to eliminate them.

The statistical error of ZL×R+1/ZL×R in table 1 is on average a little less than 0.00003.

Given the expectation value, it is easy to compute the variance of exp(−2β̃sksl), since it

can assume only the value exp(2β̃) or exp(−2β̃). Let us denote the probability for the two

signs by p+ and p−. Then

p+ + p− = 1 (3.11)

and

p+ exp(+2β̃) + p− exp(−2β̃) = 〈exp(−2β̃sksl)〉 ≈ 1 . (3.12)

Hence

p+ ≈
1− exp(−2β̃)

exp(+2β̃)− exp(−2β̃)
. (3.13)
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The variance of exp(−2β̃sksl) is hence given by

var[exp(−2β̃sksl)] ≈ p+ exp(+4β̃) + p− exp(−4β̃)− 1 . (3.14)

For β̃ = 0.226102 we get var[exp(−2β̃sksl)] ≈ 0.208. With this value for the variance,

the statistical error of 0.00003 corresponds to Neff ≈ 2.3 × 108 effectively independent

measurements, which does not compare too bad with the 3.2 × 109 measurements that

actually have been performed.

Note that the results for the individual values of M are obtained from completely

independent simulations, i.e. computing the statistical error of ZL×R/ZL×(R+1) we can use

standard error-propagation. This becomes very simple, when we take the logarithm

log

(

ZL×R

ZL×(R+1)

)

=
L−1
∑

M=0

log

(

ZL×R,M

ZL×R,M+1

)

. (3.15)

Finally let us discuss the CPU-time that was needed for the simulations. E.g. for the

128×128×24 lattice at β̃ = 0.226102 the measurement for a single value of M takes about

125 min on a P4 1.7 GHz PC. The time for equilibration is about 17 min. i.e. the total

time to compute G(R + 1)/G(R) is 24× (125 + 17) min = 2 days and 8 hours.

3.3 Comparison with other existing algorithms

The only other algorithm which allows an exponential reduction of the error in the mea-

surement of large Polyakov loop correlators is the Lüscher and Weisz algorithm (LW)

discussed in [8] and [9]. It is interesting to compare the performances of our algorithm

with respect to LW. As mentioned above, the CPU time needed for the evaluation of a

Polyakov loop correlator with our algorithm increases as L (L being the lattice size in

the time-like direction) and virtually does not depend on the distance R between the two

loops.8 These two results (which are precisely confirmed by our simulations) both descend

from the simple observation that, for a fixed number of iterations, the error of the ratio

logZL×R,M/ZL×R,M+1 essentially does not depend on the arguments L,R and M. Thus the

statistical error of

log

(

G(L,R)

G(L,R + 1)

)

=

L−1
∑

M=0

log
ZL×R,M

ZL×R,M+1
(3.16)

has a negligible dependence on R, and increases as
√
L (because the number of terms

that are added is L). Since the value of log(G(L,R)/G(L,R + 1)) has again a negligible

dependence on R and is roughly proportional to L, we end up with the result that, if we

keep the number of iterations fixed in each step of our iterative algorithm, then the relative

error of log(G(L,R)/G(L,R+1)) has a negligible dependence on R and decreases as 1/
√
L.

8As a matter of fact, since with our approach each correlator requires an independent simulation, if

one is interested in measuring the correlators for all the distances up to R then the CPU time which is

effectively required is linearly increasing with R.
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Since the numerical effort needed to keep this error dependence only increases as L2

(one power comes trivially from the change in lattice size, the second from the fact that

L independent simulations are needed for each estimate of log(G(L,R)/G(L,R + 1))), the

CPU time needed to keep a fixed relative error increases as L.

On the contrary, the CPU time, at fixed relative error, for the LW algorithm has a L3

dependence on the length of the loops and exponentially increases with R. Notwithstand-

ing this exponential dependence, the LW algorithm represents a major improvement with

respect to all other existing algorithms which would scale instead as exp(cRL). However,

it is definitely less efficient than ours for large values of R. As a matter of fact, all the

present studies with LW are confined to small or intermediate values of R where only the

short distance regime of the effective string can be studied, while our algorithm allowed us

for the first time to explore very large values of the interquark separation, where the large

distance regime of the effective string can be studied.

It is also important to stress that since with our approach each correlator requires an

independent simulation, the results have no cross-correlation. This is another major differ-

ence with respect to the LW algorithm, whose results are instead highly cross-correlated.

In our opininion, in all the cases in which the dual transformation can be effectively

implemented (hence in all the LGT’s with abelian groups) a suitable generalization of our

algorithm is always the best option to study Polyakov loop correlators, and also large

Wilson loops.

3.4 The simulation setting

We performed our simulations at three different values of β and various choices of Nt, Ns

and R. In choosing these values we had to face four major constraints:

(a) The lattice size in the space-like directions Ns must be large enough so as to avoid

unwanted finite size effects due to the rather large values of the correlation lengths

that we shall study. Experience with the model suggests that any value Ns ≥ 10ξ

should solve this problem (see for instance [36]).

(b) The distance R between the two Polyakov loops should be larger than the inverse of

the critical temperature (see the discussion in section 2.7) i.e. R ≥ Lc(β) = Nt,c(β).

(c) The values of β that we choose must be in the scaling region. This is needed at

least for two reasons. The first (and obvious) one is that we do not want to mix the

finite size effects that we plan to observe (which are expected to be very small) with

unwanted effects due to scaling violations. The second reason is that, as we shall

discuss below, we need a very precise estimate of the zero temperature string tension

in order to perform our analysis. This requires a careful extrapolation of the known

values of the string tension to the values of β at which we perform our simulations.

Therefore high precision results for the string tension for a rather dense set of β-

values should be available in the literature. Taking refs. [37, 6, 38], this means that

we should have β > 0.73.
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β Nt,c Nt Ns ξ σ Rc

0.73107 4 6,8,12 64 1.41(3) 0.0440(3) 5.84

0.74603 6 9,12,18 96 2.09(4) 0.018943(32) 8.90

0.75180 8 10,12,16,24 128 2.95(10) 0.010560(18) 11.92

Table 2: A few information on our simulations. In the first column the value of β, in the second

the inverse of the critical temperature. In the third and fourth columns the values of Nt and Ns

that we studied. In the last three columns the values of the correlation length, the zero temperature

string tension and the corresponding value of Rc.

(d) We want to study the range of T in which the precise functional form of the string

corrections is most important. This means that we should explore the region Tc >

T > Tc/3.

From the above discussion we see that a central role is played by the value of Nt,c, so

we decided to choose three values of β for which the critical temperature was known with

high precision. The natural choice was β = 0.73107 for which Nt,c = 4; β = 0.746035 to

which corresponds to Nt,c = 6 and finally β = 0.75180 for which Nt,c = 8 (these values are

taken from [29]). This choice fulfills constraint [c]. Further details on the parameters of the

simulations can be found in table 2, where we also list for completeness the values of the

correlation length and the zero temperature string tension for these three values of β. Since

the precise value of σ(0, β) at the three values of β that we studied will play an important

role in the following, it is worthwhile to shortly discuss how we extracted these estimates

from the literature. The first important observation is that, due to the high precision of

our data and to the relative distance from the critical point we cannot simply rely on the

asymptotic scaling estimate of σ(0). A much better (and precise enough for our purpose)

estimate can be obtained taking as reference values those published in [37, 6, 38]9 and then

interpolating among them with the law

σ(0, β) = σ(0, βref )

(

β − βc
βref − βc

)2ν

, (3.17)

where βref is the coupling at which the reference value of σ is taken and βc is the critical

temperature. If |β−βref | is small enough, both the uncertainty in ν and the systematic error

due to neglecting higher order terms in the scaling law can be neglected. The systematic

error induced by this approximation can be estimated by repeating the same analysis with

another nearby value of βref . The difference between the two results for σ(0, β) obtained in

this way gives a good estimate of this systematic error. The final error on σ is the sum of the

above systematic error plus the statistical errors of σ(0, βref ) (as quoted in ref.s [37, 6, 38]).

Besides the simulations with the choice of parameters reported in table 2 we also

studied, in order to have a cross-check of our finite size effect predictions, (only in the case

of β = 0.74603) several values of Nt keeping R fixed at the value R = 24 (notice that for

this value of β we have Rc ∼ 9 so with R = 24 we are deep in the region of validity of the

effective string picture). The results are reported in table 6.

9We also used some unpublished values of σ obtained as a byproduct of the work published in [38].
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R Nt = 6 Nt = 8 Nt = 12

4 0.77558(11) 0.68421(9) 0.55275(10)

6 0.79682(14) 0.70519(10) 0.57304(11)

8 0.80850(14) 0.71627(10) 0.58320(13)

10 0.81628(15) 0.72351(11) 0.58943(14)

12 0.82151(18) 0.72825(12) 0.59387(16)

14 0.82540(20) 0.73183(14) 0.59692(18)

16 0.82798(20) 0.73487(15) 0.59956(19)

20 0.83215(21) 0.73870(16) 0.60266(20)

24 0.83564(25) 0.74134(17) 0.60522(22)

28 0.83769(30) 0.74332(21) 0.60734(24)

Table 3: Values of the ratio of two successive Polyakov loop correlators: G(R+1)/G(R) for various

values of R and Nt at β = 0.73107.

4. Discussion of the results

For all the values of β and Nt listed in table 1 we extracted from the simulations the

expectation values of the ratios

G(R + 1)

G(R)
≡ 〈P (x)P †(x+R+ 1)〉

〈P (x)P †(x+R)〉 . (4.1)

We studied only a selected sample of values of R. The results of the simulations are

reported in tables 3, 4 and 5. Notice that, since each value of R corresponds to a different

simulation all values reported in tables 3, 4 and 5 are completely uncorrelated.

From these ratios we constructed the quantity:

Q0(R) = log

(

G(R)

G(R+ 1)

)

. (4.2)

If no string effect is present, the correlator should follow the pure strong coupling behavior

of eq. (2.4). Then it is easy to see that we should have

Q0,cl = σL . (4.3)

So, in order to select the finite size corrections in which we are interested we defined:

Q1(R) = log

(

G(R)

G(R+ 1)

)

− σL . (4.4)

We plot in figures 2–5 our data together with the prediction for Q1 of the pure string

contribution (the simple Dedekind function) and the Nambu-Goto correction eq. (2.33) for

the four values of Nt at β = 0.75180. For each value of Nt we report in the figure caption

the value of zc ≡ 2Rc/Nt beyond which the effective string picture is expected to hold

(see the discussion in section 2.7). The data for the other two values of β show a similar

behavior as it can be easily checked using the values reported in tables 3, 4 and 5.
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R Nt = 9 Nt = 12 Nt = 18

6 0.84766(10) 0.78156(7)

8 0.85912(11) 0.79336(8)

10 0.86664(12) 0.80081(9)

12 0.87219(13) 0.80607(9) 0.70586(7)

14 0.87586(14) 0.80992(11) 0.70955(8)

16 0.87908(15) 0.81310(11) 0.71235(8)

18 0.88145(17) 0.81539(13) 0.71464(9)

20 0.88356(17) 0.81731(13) 0.71611(9)

22 0.88468(17) 0.81906(13)

24 0.88591(18) 0.82037(13) 0.71885(10)

26 0.88725(20) 0.82174(14)

28 0.88854(20) 0.82249(15) 0.72086(11)

30 0.88941(20) 0.82354(16)

32 0.89048(21) 0.82407(15) 0.72237(12)

36 0.82570(17)

40 0.82691(18)

Table 4: Same as table 3, but with β = 0.74603.

R Nt = 10 Nt = 12 Nt = 16 Nt = 24

8 0.91749(14) 0.88387(10) 0.83207(8) 0.75075(7)

12 0.92941(16) 0.89646(12) 0.84523(9) 0.76492(8)

16 0.93597(17) 0.90351(14) 0.85220(10) 0.77193(8)

20 0.93999(18) 0.90723(14) 0.85655(12) 0.77661(9)

24 0.94292(19) 0.91074(16) 0.85937(13) 0.77926(10)

32 0.94706(21) 0.91444(18) 0.86371(16) 0.78311(11)

40 0.94864(20) 0.91717(18) 0.86624(15) 0.78532(12)

48 0.95111(23) 0.91875(20) 0.86740(17) 0.78677(13)

Table 5: Same as table 3, but with β = 0.75180.

Q1(R) is affected by two different types of uncertainties. The one due to the Polyakov

loop correlators and that due to σ (let us call it δσ). The two must be treated differently.

We encoded the statistical errors of the Polyakov correlators as usual with the error bars,

while we kept into account the uncertainty in σ by plotting in the figures (both for the

Nambu Goto corrections and for the pure string term) two curves obtained using σ + δσ

and σ − δσ, respectively.

In figure 6 we plot the data at fixed R reported in table 6.

Few comments are in order.

(a) Finite size corrections with respect to the pure classical law of eq. (2.4) are certainly

present in the Polyakov loop correlators. In fact the deviation from the pure area

law expectation (which is Q1 = 0) is immediately evident from the figures.
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Nt z Q1 × 102 FNLO × 102 F free × 102

7 6.857 −7.63(3) −7.70(2) −5.439
8 6.000 −6.15(3) −6.05(3) −4.504
9 5.333 −4.93(2) −4.89(3) −3.777

10 4.800 −4.12(2) −4.03(3) −3.195
11 4.364 −3.46(2) −3.36(4) −2.719
12 4.000 −2.93(2) −2.83(4) −2.322
14 3.428 −2.09(2) −2.04(5) −1.699
16 3.000 −1.53(2) −1.46(5) −1.232
18 2.667 −1.08(2) −1.05(6) −8.678
24 2.000 −0.31(2) −0.24(8) −0.140

Table 6: Results at β = 0.74603, with R = 24 kept fixed. In the first column the value of Nt that

we simulated. In the second column the corresponding values of z, in the third, the values of Q1

obtained form the simulations. In the fourth column the prediction for Q1 with the first correction

due to the Nambu-Goto action. In the last column the corresponding quantity obtained with the

pure free bosonic string. These data are plotted in figure 6.
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Figure 2: Q1 for Nt = 24 (i.e. T = Tc/3) at β = 0.75180. The variable z is defined as z ≡ 2R
Nt

.

The continuous lines correspond to the free bosonic string prediction, while the two dashed lines

correspond to the first Nambu-Goto correction. The difference between the two dashed and the

two continuous lines keeps into account the uncertainty in our estimate of σ. The pure area law

corresponds to the line Q1 = 0. The threshold zc = 2Rc/Nt beyond which the effective string

picture is expected to hold is located at zc ∼ 1 for these values of Nt and β.

(b) For the lowest temperature that we studied, i.e. T = Tc/3, the contribution of the

first correction of the Nambu-Goto string is almost of the same order of magnitude of

the uncertainty in the string tension (see figure 2). This is the reason why we chose

to study higher values of T/Tc.
10

10Notice however that for very low values of T/Tc (like those studied in [9]) the contribution due to the
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Figure 3: Same as figure 2, but for Nt = 16 (i.e. T = Tc/2) at β = 0.75180. In this case we have

zc ∼ 1.5.
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Figure 4: Same as figure 2, but for Nt = 12 (i.e. T = 2Tc/3) at β = 0.75180. In this case we have

zc ∼ 2.

(c) As the temperature increases, the gap between the pure bosonic string prediction and

the Nambu-Goto one becomes larger and larger. It is clear, looking at the figures,

that the pure bosonic string (continuous lines in figures 2–6) does not describe the

data in this temperature range. The disagreement is most probably the signature of

the fact that the effective string underlying the 3d gauge Ising model is actually a self-

interacting string. It is easy to guess that the contribution due to this self-interaction

first order correction to the Nambu-Goto string increases again in magnitude (but has the opposite sign)

in the small R region (but has the opposite sign).

– 26 –



J
H
E
P
0
1
(
2
0
0
3
)
0
5
7

-0.06

-0.055

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

2 3 4 5 6 7 8 9 10

Q
_1

z

T=4T_c/5

Figure 5: Same as figure 2, but for Nt = 10 (i.e. T = 4Tc/5) at β = 0.75180. In this case we have

zc ∼ 2.4.
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Figure 6: Q1 for R = 24 and the values of Nt reported in table 3 at β = 0.74603. As in the

previous figures the continuous lines correspond to the free string prediction while the two dashed

lines correspond to the first Nambu-Goto correction. For this value of β we have Rc = 9.

becomes more and more important as the temperature increases, and this is indeed

confirmed by the data. The data suggest that the main effect of this self-interaction

is to lower the value of the string tension. As discussed in section 2.6, this effect is

already present with the simple free bosonic string, but the lowering is enhanced by

the self-interaction.

(d) There is a remarkable agreement between the data and the functional form of eq.

(2.33) which describes the first correction of the Nambu-Goto string with respect to
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the free bosonic string. It is important to stress that this agreement is not the result

of a fitting procedure. There is no free parameter in eq. (2.33).

(e) The agreement becomes worse and worse as R decreases. The deviations are partic-

ularly evident in the R < Rc region (z < zc in figures 2–5). This could be simply due

to the fact that one is approaching the size of the flux tube thickness, but could also

indicate that the functional form that we use is inadequate in the small z region, or

that a smooth cross-over is present toward a different string picture.

(f) The data show a very good scaling behavior: once the proper value of σ(β) is sub-

tracted, no further dependence on β is present (this is the reason why we needed very

precise independent estimates for σ(β))

(g) The agreement is particularly impressive for the last set of data, i.e. those taken at

fixed R = 24 and shown in figure 6. In this case, for Nt > 12 the prediction of

eq. (2.33) agrees with the data within the errors (which, thanks to the nature of our

algorithm, are very small even if R is large). It is worthwhile to notice that for this

value of β we have Rc ∼ 9.

In the definition of Q1 we must insert the exact value of the string tension. In principle

it would be nice to avoid this external parameter and construct a combination of Polyakov

loop correlators in which only the effective string corrections appear, without additional

terms. This is easily achieved by the combination

H(R, k) ≡ Q1(R − k)−Q1(R) (4.5)

which is similar (apart from a different normalization) to the function c(r) discussed in [9].

However it is easy to see, looking at the large R expansions of eq. (2.13) and (2.37) that

this is not a good choice in the large z region that we study here, where the contributions to

H(R) from the pure bosonic string and from the Nambu Goto correction decrease as 1/R2

and 1/R3 respectively. On the contrary H(R, k) turns out to be a very useful quantity

in the small z region (as in the case of [9]). This is well exemplified by figure 7, where

we plotted H(R, 1) as a function of z for an hypothetical set of data with L = 60 and R

ranging from 6 to 30 (i.e. z < 1). In figure 8 we report H(R, 2) for our data at β = 0.74603

and L = 12. The data agree with the Nambu-Goto prediction, but the errors (even if

very small) are of the same order of magnitude of the difference between the pure bosonic

string and the Nambu-Goto correction. This is just another way to say that the major

contribution of effective string fluctuations to the interquark potential in the large z limit

is simply a temperature dependence of the string tension and it is exactly this signature

that we observe looking at the Q1 observable.

5. Conclusions

Despite the impressive agreement which is manifest in figures 2–6, our analysis leaves

several open problems.
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Figure 7: H(R, 1) as a function of z for an hypothetical sample with L = 60 and R ranging from

6 to 30 (i.e. z < 1). The continuous line is the pure bosonic string correction, while the dashed line

denotes the Nambu-Goto one.
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Figure 8: H(R, 2) for the data at β = 0.74603 and Nt = 12. The continuous line is the pure

bosonic string correction, while the dashed line denotes the Nambu-Goto one. For this sample

zc ∼ 1.5.

1. If we really assume that the Nambu-Goto proposal is the correct description for

the effective string, then the agreement that we find becomes rather embarrassing,

since there is apparently no room left for the higher order corrections which one

should expect in this framework. In principle one could guess that these higher

order correction are negligible, but this can be hardly reconciled with the expected

large R behavior. For R large enough, the only term which survives is the finite

renormalization of the string tension which for the Nambu-Goto string is expected [26]
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to be simply given, order by order, by the expansion of the square root in eq. (2.40),

and these terms are certainly not negligible.

This observation agrees with the results recently appeared in [39] where the spectrum

of string excitations in the d = 4 SU(3) LGT was studied. The observed spectrum

seems to disagree both with the predictions of the pure bosonic string and with that of

the Nambu-Goto model. It would be interesting to study the same spectrum directly

in the 3d gauge Ising model.

2. Comparing our results with what Lüscher and Weisz find in the d = 3 and 4 SU(3)

LGT [9] we see that the three models seem to be described by three different effective

string theories, with the same large distance limit (the free bosonic string) but dif-

ferent self-interaction terms. In fact in the d = 3 case they find a perfect agreement

with the pure free string contribution and higher order self-interaction terms seem

to be absent. In d = 4 they find higher order corrections which are modeled by a

boundary-type term. We checked that these deviations from the free string behavior

do not agree with the d = 4 version of the Nambu Goto correction of eq. (2.33).

In principle there is no reason to expect the same effective string in the 3d gauge

Ising model and in the 3d and 4d SU(3) ones, however in past years it has become

a common attitude to think that the effective string model underlying a given LGT

only feels the geometry of the observables and is independent of the particular gauge

group which one is studying. The present numerical results and those of [9] suggest

that this is not the case and that we are in presence of a variety of different effective

strings. In this respect it would be very interesting to have results from some other

models in d = 3 so as to have a larger statistics and see if we are really dealing with

different effective strings [40]. Notice, as a side remark, that we are looking to a

different range of values of z with respect to [9]. In principle it is also possible that

the two LGT’s show the same behavior if they are studied in the same range of z

values.

3. Several independent results (and in particular the experience with the dual problem of

the interface fluctuations in the 3d Ising spin model) suggest that in the 3d gauge Ising

model the parameter which controls the effective string fluctuations is the stiffness

rather than the string tension. The two coincide at the critical point, share the

same leading scaling behavior in the scaling region, but have different subleading

corrections. Unfortunately there is presently no reliable estimate of the stiffness in

the scaling region, thus we are unable to estimate the difference with respect to the

string tension and evaluate the correction that it induces in our estimates. However,

since we study three different values of β, where this effect should be quite different

in amplitude, we are confident that our qualitative results are not questioned by this

problem.

Our results naturally raise the question whether the effective string underlying the

Ising model is of the Nambu-Goto type or not. In view of the above discussion, we are not

presently able to answer in a definite way. What we can state with confidence is:
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• At large enough distances and low enough temperatures the data are well described

by a simple free effective bosonic string theory. Besides the Ising models, the same

seems to be true for SU(3) LGT in d = 3 and d = 4 [9, 18].

• At shorter distances and/or higher temperatures, the effective string picture still

holds, but corrections due to boundary-type terms or to self-interaction terms in the

string action appear. The Montecarlo simulations suggest that these corrections are

different in the various models.

• The peculiar geometry of the Polyakov loop correlators (in particular the fact that

the inverse temperature is related to the length of the Polyakov loops) implies that

they are perfect tools to explore this region and detect higher order terms which

must necessarily show up, even for large values of R, as the critical temperature is

approached.

• At large distances these higher order terms act to lower the string tension, while at

short distances they behave as 1/Rn corrections with n > 1.

• In the 3d gauge Ising model that we studied in this paper the data remarkably agree

with the predictions of the Nambu-Goto action, truncated at the first perturbative

order.

It is clear from this discussion that there is still a very long way before we can reach a

precise understanding of the effective string underlying lattice gauge theory. However we

are now in a much better position than before since new powerful numerical algorithms

(one of them is described in this paper) recently entered the game [8, 9]. The goal is

worthwhile and certainly justifies further efforts in this direction.
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