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Abstract: We discuss a way to evaluate the full prediction for the interquark potential

which is expected from the effective Nambu-Goto string model. We check the correctness

of the prescription reproducing the results obtained with the zeta function regularization

for the first two perturbative orders. We compare the predictions with existing Monte

Carlo data for the (2+1) dimensional Z2, SU(2) and SU(3) gauge theories: in the low

temperature regime, we find good agreement for large enough interquark distances, but

an increasing mismatch between theoretical predictions and numerical results is observed

as shorter and shorter distances are investigated. On the contrary, at high temperatures

(approaching the deconfinement transition from below) a remarkable agreement between

Monte Carlo data and the expectations from the Nambu-Goto effective string is observed

for a wide range of interquark distances.
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1. Introduction

Working out an effective description for the infrared behaviour of the interquark poten-

tial is one of the major challenges of modern lattice gauge theory [1]–[3]. In these last

years, much effort has been devoted in trying to identify the nature of an effective string

model that reproduces the results of high precision numerical studies of the confining po-

tential in pure gauge models [4]–[24]. Despite these efforts, a clear answer has not been

obtained yet. The simplest, and most natural, candidate for an effective string picture is

the Nambu-Goto model [26]–[28]: numerical tests of the predictions of this model at the

first leading orders, however, did not lead to conclusive results. As a matter of fact, the

data obtained for different lattice gauge theories at short interquark distances R disagree

with the Nambu-Goto predictions [11]–[15], whereas at large distances the agreement is

remarkably good [10]–[12].

In the setting where one considers a confined, static, quark-antiquark (QQ̄) pair at

a finite temperature T , a possible way to derive effective predictions from the Nambu-

Goto model consists in working out a perturbative expansion in powers of (σRL)−1, a

dimensionless quantity which depends on the interquark distance R, on the system size in

the compactified direction L (which is inversely proportional to the temperature) and on

the string tension σ. As it is expected, the leading, non-trivial (LO) contribution emerging

in this expansion describes the asymptotic free string picture, whose degrees of freedom

are independent, massless bosons associated with string vibrations along the transverse

directions, whose partition function can be easily evaluated by means of standard conformal
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field theory techniques. The contribution at the next-to-leading order (NLO) can also be

evaluated analytically [3], but treating further terms in such a perturbative expansion

would be much more difficult. On the other hand, comparison of numerical results with

the next-to-leading-order predictions can be tricky, as it is difficult to judge if the mismatch

observed, for instance, at short distances and low temperatures could be interpreted as an

effect due to the NLO truncation, or if — vice versa — the agreement which is found at

high temperatures could be spoiled by higher orders (see discussion in [10, section 5]).

Here we address this problem by estimating the full partition function of the Nambu-

Goto effective string model, relying on the fact that formal quantization of this model is

possible, and the spectrum can be obtained analytically [25]. This procedure allows for

a comparison with the existing Monte Carlo data of the interquark potential that is not

biased by the truncation effects discussed above.

The results of this comparison can be summarized as follows:

• The mismatch between numerical data and NLO predictions which is observed at

short distances is confirmed (and even enhanced) if one considers the full string

prediction.1

• On the contrary, at higher temperatures, approaching the deconfinement transition

from below, a remarkable agreement (which is particularly striking for the case of

SU(2) gauge group) between Monte Carlo data and full Nambu-Goto expectations is

found.

These observations suggest that the Nambu-Goto action does not provide a correct

description of the interquark potential at short distances, where the problem is still open

and an alternative effective model is probably needed, in agreement with the results which

were first presented in [13, 14]. At the same time, however, these observations also suggest

that this effective string action can be considered as a reliable (and better than the pure

“free string picture”) description of the interquark potential at large distances. As the

finite-temperature deconfinement transition is approached we observe a crossover between

this “universal” Nambu-Goto behaviour and a new behaviour which is different in the Z2

and SU(2) cases and keeps into account the fact the Nambu-Goto action would lead to the

wrong critical indices at the deconfinement point.

This paper is organized as follows. In section 2, after recalling the basics about the

Nambu-Goto model, we work out the predictions of interest for the effective string scenario,

using the perturbative approach and evaluating the full partition function in terms of the

string spectrum. We also comment about the convergence bounds that naturally arise

in the latter approach. In section 3, the predictions of the full string partition function

are compared with existing Monte Carlo data for Z2, SU(2) and SU(3) LGT in (2 + 1)

dimensions. Finally, in section 4 we summarize the results and provide our conclusions.

Calculations displaying the matching between the full partition function and the known

perturbative results at leading and next-to-leading order are reported in the appendix.

1The authors of ref. [14] reported a similar result for the effective conformal charge and the first excited

string state.
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2. The Nambu-Goto string

In this section, we report some results concerning the Nambu-Goto string model [26]–[28]

which will be useful to our analysis. We refer the reader to [10] for a more detailed

derivation. Before presenting the theoretical predictions of this model, we would like

to remark the fact that the IR description in terms of an effective string between the

sources is eventually expected to break down at some finite distance scale: as a mat-

ter of fact, at short distances it is reasonable to expect that the behaviour of the in-

terquark potential gets a contribution from the gluonic modes inside the quark-antiquark

flux tube [15] — whose role is irrelevant in the picture of a long enough, string-like, flux

tube.

The action of the Nambu-Goto model is proportional to the area of the string world-

sheet:

S = σ

∫ L

0
dτ

∫ R

0
dς
√
g , (2.1)

where g is the determinant of the two-dimensional metric induced on the world-sheet by

the embedding in Rd and σ is the string tension, which appears as a parameter of the

effective model.

Eq. (2.1) is invariant with respect to reparametrization and Weyl transformations,

and a possible choice for quantization of the effective model is the “physical gauge” (see [2]

for more details) in which g becomes a function of the transverse displacements of the

string world-sheet only. The latter (which can be denoted as X i(τ, ς)) are required to

satisfy the boundary conditions relevant to the problem — in the present case, the effective

string world-sheet associated with a two-point Polyakov loop correlation function obeys

periodic b.c. in the compactified direction and Dirichlet b.c. along the interquark axis

direction:

Xi(τ + L, ς) = X i(τ, ς) ; X i(τ, 0) = X i(τ,R) = 0 . (2.2)

This gauge fixing implicitly assumes that the world-sheet surface is a single-valued function

of (τ, ς), i.e. overhangs, cuts, or disconnected parts are excluded. It is well known that rota-

tional symmetry of this model is broken at a quantum level because of the Weyl anomaly,

unless the model is defined in the critical dimension d = 26. However, this anomaly is

known to be vanishing at large distances [31], and this suggests to use the “physical gauge”

for an IR, effective string description also for d 6= 26.

Here and in the following, we restrict our attention to the d = 2 + 1 case, which is

particularly simple, as there is only one transverse degree of freedom (X). In the physical

gauge, eq. (2.1) takes the form:

S[X] = σ

∫ L

0
dτ

∫ R

0
dς
√

1 + (∂τX)2 + (∂ςX)2 . (2.3)

This action describes a non-renormalizable, interacting QFT in two dimensions; the

associated partition function is expected to encode an effective description for this sector

of the gauge theory, providing a prediction for the VEV of the two-point Polyakov loop

– 3 –
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correlation function:

〈P †(R)P (0)〉 = Z =

∫

DXe−S[X] . (2.4)

Quantum corrections beyond the classical solution (which corresponds to a flat string world-

sheet surface) can be studied in two different ways.

2.1 Perturbative expansion of the partition function

Despite the fact that the Nambu-Goto string theory is non-renormalizable, one can address

the study of the effective model in a perturbative way, expanding the square root appearing

in eq. (2.3) in powers of the dimensionless quantity (σRL)−1: this approach is expected to

be consistent with the fact that the effective theory holds in the IR regime of the confined

phase.

Going to dimensionless world-sheet coordinates: ξ1 = τ/L, ξ2 = ς/R and with a global

rescaling for the X field: φ =
√
σX, eq. (2.3) can then be expanded in a natural way in

a series of terms associated with different powers of (σRL)−1; in particular, the first few

terms read:

S = σLR+
1

2

∫ 1

0
dξ1

∫ 1

0
dξ2 (∇φ)2−

1

8σLR

∫ 1

0
dξ1

∫ 1

0
dξ2

[

(∇φ)2
]2
+O

(

(σRL)−2
)

, (2.5)

where:

(∇φ)2 =
1

2u

(

∂φ

∂ξ1

)2

+ 2u

(

∂φ

∂ξ2

)2

(2.6)

and:

u =
L

2R
. (2.7)

Apart from the trivial, classical contribution given by the first term appearing on the r.h.s.

of eq. (2.5) — the second term of the expansion shows that the leading order quantum

correction is nothing but the CFT of a free, massless bosonic field, while the subsequent

O((σRL)−1) contribution (which is quartic in φ) encodes string self-interaction.

Discarding the string self-interaction term, the LO approximation of the partition

function can be evaluated analytically:

ZLO(L,R) = e−σRL · Z1 , (2.8)

where Z1 encodes the (regularized) contribution of the gaussian fluctuations:

Z1 =
1

η(iu)
(2.9)

and it is expressed in terms of Dedekind’s η function:

η(τ) = q1/24
∞
∏

n=1

(1− qn) ; q = e2πiτ , (2.10)

On the other hand, keeping into account the string self-interaction term, the resulting

approximation for Z at the next-to-leading order reads [3]:

ZNLO(L,R) = e−σRL · Z1 ·
{

1 +
π2L

1152σR3

[

2E4 (iu)− E2
2 (iu)

]

}

, (2.11)

– 4 –



J
H
E
P
0
3
(
2
0
0
5
)
0
2
6

where E2 and E4 are the Eisenstein functions:

E2(τ) = 1− 24
∞
∑

n=1

σ1(n)q
n (2.12)

E4(τ) = 1 + 240
∞
∑

n=1

σ3(n)q
n (2.13)

q = e2πiτ , (2.14)

where σ1(n) and σ3(n) are, respectively, the sum of all divisors of n (including 1 and n),

and the sum of their cubes.

2.2 The string spectrum

The spectrum of the Nambu-Goto string with length R and fixed ends can be obtained

through formal canonical quantization [25], and in d = 2 + 1 dimensions it reads:

En(R) = σR

√

1 +
2π

σR2

(

n− 1

24

)

, n ∈ N . (2.15)

The full partition function of the Nambu-Goto string can thus be written as — see also [6]:

Z =
∞
∑

n=0

wne
−EnL (2.16)

with integer weights wn accounting for level multiplicities. In particular, in d = 2 + 1

the latter are nothing but P (n): the number of partitions of n. In fact, since the wn

coefficients do not depend on R, they can be evaluated in the large R limit, where the

theory eventually reduces to a c = 1 CFT in two dimensions. The Hilbert space of such a

theory is well known and the multiplicity of states with energy En is given by the number

of ways one can combine the Virasoro generators of the 2d conformal algebra to obtain a

field of conformal weight n — which is precisely P (n).

In principle, eq. (2.16) can provide a tool to test the validity range of the effective

Nambu-Goto string picture, disentangling truncation errors which affect the perturbative

expansion of Z, from physical effects related to the eventual breakdown of this effective

string description at some scale.

In turn, it can be shown that the energy levels appearing in eq. (2.16) can be treated

in a perturbative expansion in powers of (σR2)−1, and the corresponding truncated ap-

proximations for Z(R,L) correctly reproduce eq. (2.8) at LO (see also [6]) and eq. (2.11)

at NLO (calculations are reported in the appendix).

It is particularly interesting to study the domain of convergence of the series in (2.16).

For large n, the asymptotic behaviour of P (n) is [29]:

P (n) ∼ 1

4n
√
3
e
π
√

2n
3 . (2.17)

– 5 –
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Thus, the series on the r.h.s. of eq. (2.16) turns out to be convergent for:

1

σL2
<

3

π
. (2.18)

On the other hand, a convergence constraint over R can be worked out exploiting the

open-closed string duality to rewrite Z(R,L) as a series of Bessel functions [6]:

∞
∑

n=0

P (n)e−En(R)L =

√

σL2

π

∞
∑

n=0

P (n)K0(ẼnR) (2.19)

involving Ẽn = Ẽn(L), the closed string energies:

Ẽn(L) = σL

√

1 +
8π

σL2

(

n− 1

24

)

. (2.20)

Since the asymptotic behaviour of K0(x) for large values of x is:

K0(x) ∼
√

π

2x
e−x

[

1 +O

(

1

x

)]

(2.21)

the series on the r.h.s. of (2.19) converges for:

1

σR2
<

12

π
. (2.22)

Let us comment on the constraints (2.18) and (2.22):

• They can be obtained from each other via interchanging 2R and L: this “symmetry”

is related to the open-closed string duality.

• They can also be derived by requiring that the ground state energies for the open and

closed string energies are real; in particular, inequality (2.18) — which was derived

requiring convergence for the series involving open string states — can be obtained

imposing that the closed string ground state energy is real, while inequality (2.22)

— which, vice versa, was obtained requiring convergence of the series involving the

closed string spectrum — can be obtained imposing that the open string ground state

is real.

• These bounds are the analogue of the Hagedorn temperature in string thermodynam-

ics.

• The bound of eq. (2.18) can be interpreted as a prediction for the deconfinement

temperature [32, 33] leading to the estimate Tc =
√

3σ/π, which is in rather good

agreement with the results of numerical simulations for various lattice gauge theories

in d = 2 + 1.

• The inequality (2.22) implies a lower bound for the interquark distance at which the

Nambu-Goto string could be observed: σR2
c > π/12 ∼ 0.262 . . .. In physical units2

2Note that the length scale refers to QCD in 3+1 dimensions.
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Rc is slightly below 0.1 fm (as it can be easily seen comparing it with the so called

“Sommer scale” Rs defined by the relation F (Rs)R
2
s = 1.65 [16] which corresponds

to a physical length Rc ' 0.5 fm). However this bound is less relevant from a physical

point of view than the previous one since, as we shall see below, the MC results for

the interquark potential start to diverge from the predictions of the Nambu-Goto

action at distances much larger than Rc.

3. Comparison with Monte Carlo simulations

Before presenting the comparison of theoretical predictions with the numerical results for

various gauge models, let us discuss a few aspects about the evaluation of the partition

function appearing in eq. (2.4) by means of eq. (2.16).

The sum of the series in eq. (2.16) cannot be evaluated in closed form and its numerical

estimate is not completely trivial, since both rounding and truncation effects must be kept

under control.

Calculating the partitions of the integers P (n) appearing as coefficients in eq. (2.16)

is a task that can be addressed in an efficient way without resorting to any commercial

program by means of the following identity:

P (n) =
n
∑

k=1

Pk(n) , (3.1)

where Pk(n) denotes the number of partitions of n made exactly of k parts, which enjoys

the recursive relation [30]:

Pk(n) = Pk−1(n− 1) + Pk(n− k) . (3.2)

To avoid truncation errors one can use from a given threshold nmax the approximation

of eq. (2.17) for the weights P (n) and then approximate the sum for n > nmax in the

partition function with an integral. We checked that for all the choices of σ, R and L that

we studied nmax = 10000 was enough to keep the systematic errors of our estimates several

orders of magnitude smaller than the statistical uncertainties of the MC estimates of the

same quantities.

3.1 Z2 gauge model

As a first test, we considered the results for Z2 gauge model in d = 2 + 1 taken from [10]

and [11] — to which we refer the reader for notations and general properties of this lattice

gauge theory. In addition to these data we also performed some new simulations whose

results are collected in table 5. In the present analysis, we focus the attention onto the

data samples corresponding to the coupling parameter β = 0.75180 (which is the nearest

to the critical point, among the values studied in the mentioned papers), for which the

finite temperature deconfinement transition occurs at Lc = 8 [34]. For the samples that
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R LO NLO full NG MC data

8 0.372554 0.358712 0.353033 0.382613(58)

10 0.391751 0.385458 0.383979 0.396313(61)

12 0.402904 0.399676 0.399177 0.405088(65)

14 0.409919 0.408105 0.407905 0.411017(69)

16 0.414606 0.413511 0.413422 0.415268(71)

18 0.417886 0.417189 0.417146 0.418048(74)

20 0.420270 0.419808 0.419786 0.420344(74)

22 0.422056 0.421741 0.421730 0.422062(78)

24 0.423430 0.423211 0.423205 0.423323(78)

26 0.424511 0.424357 0.424354 0.424486(78)

28 0.425377 0.425270 0.425269 0.425496(81)

30 0.426085 0.426012 0.426011 0.425958(81)

32 0.426672 0.426624 0.426624 0.426747(82)

36 0.427588 0.427574 0.427573 0.427513(83)

40 0.428270 0.428276 0.428274 0.428255(84)

60 0.430134 0.430159 0.430158 0.430097(87)

80 0.431023 0.431043 0.431043 0.431068(88)

Table 1: Comparison of Monte Carlo results (last column) for correlator ratios Γ(R) = G(R+1)
G(R) in

the Z2 gauge model at β = 0.75180 and T = Tc

10 (corresponding to L = 80) with the LO-truncated,

NLO-truncated, and full predictions from the Nambu-Goto effective string action (respectively:

second, third, and fourth column), as a function of the interquark distance in lattice units R (first

column). Note that the data for R ≥ 22 were used in ref. [11] to determine the value of σ which is

used here; assuming LO corrections.

R LO NLO full NG MC data

8 0.74374 0.73654 0.73364 0.75075(7)

12 0.76220 0.76282 0.76223 0.76492(8)

16 0.77015 0.77183 0.77150 0.77193(8)

20 0.77479 0.77636 0.77625 0.77661(9)

24 0.77789 0.77925 0.77925 0.77926(10)

32 0.78181 0.78291 0.78297 0.78311(11)

40 0.78419 0.78516 0.78523 0.78532(12)

48 0.78578 0.78669 0.78677 0.78677(13)

Table 2: Same as in table 1, but for T = Tc

3 (L = 24).

we considered here, the temperatures range from T = Tc
10 (see figure 1) to T = 2

3Tc (see

figure 2). For the zero temperature string tension at this value of β, we used the estimate

given in [11]: σ = 0.0105241(15) which was obtained from our data sample at T = Tc
10 , i.e.

L = 80 and R ≥ 22, taking into account LO order corrections only. The numbers given in

table 1 show that subleading corrections are of a similar size as the statistical errors of our

Monte Carlo data for these large values of L and R.
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R LO NLO full NG MC data

8 0.82236 0.82516 0.82161 0.83207(8)

12 0.83885 0.84492 0.84415 0.84523(9)

16 0.84707 0.85205 0.85233 0.85220(10)

20 0.85210 0.85632 0.85693 0.85655(12)

24 0.85550 0.85928 0.85999 0.85937(13)

32 0.85981 0.86315 0.86390 0.86371(16)

40 0.86242 0.86556 0.86631 0.86624(15)

48 0.86418 0.86721 0.86796 0.86740(17)

Table 3: Same as in table 1, but for T = Tc

2 (L = 16).

R LO NLO full NG MC data

8 0.86788 0.88317 0.88202 0.88387(10)

12 0.88455 0.89683 0.90037 0.89646(12)

16 0.89318 0.90322 0.90779 0.90351(14)

20 0.89848 0.90741 0.91219 0.90723(14)

24 0.90207 0.91039 0.91520 0.91074(16)

32 0.90661 0.91433 0.91910 0.91444(18)

40 0.90937 0.91680 0.92153 0.91717(18)

48 0.91122 0.91851 0.92320 0.91875(20)

Table 4: Same as table 1, but for T = 2
3Tc (corresponding to L = 12).

In our analysis, we did not consider effects induced by a possible “boundary term” that

could be included in the effective string action [5], since numerical results in [11] and [12]

already showed that the coefficient of such a term is vanishing for this model, and, from

the theoretical point of view, the presence of a boundary term in the string action is ruled

out, if open-closed string duality holds [6].

For this value of β we expect very small scaling corrections to our data. In [11]

we directly verified this by comparing our results for β = 0.75180 with those taken at

β = 0.73107 (corresponding to a string tension which is roughly four times larger than

here). An independent check is given by the product σL2
c . For the value of β we study here,

one finds σL2
c = 0.6740(10), which deviates from the asymptotic estimate σL2

c = 0.654(3)

less than 3% [35].

The results of our analysis are shown in tables 1–5, where Monte Carlo results for the

ratio Γ(R) = G(R+1)
G(R) (rightmost column) are compared with the corresponding predictions

from the LO-truncated, NLO-truncated, or full effective Nambu-Goto string, obtained from

eq. (2.8), from eq. (2.11), and from eq. (2.16), respectively.

All these theoretical estimates are affected by an uncertainty (due to the statistical

error in σ, and proportional to σL2) whose relative amount is of order 10−5 (for L = 12)

or 10−4 (for L = 80), and it is never larger than the statistical errors of the Monte Carlo

data. For this reason, we chose not to report this overall uncertainty in the tables, in order

to avoid confusion.
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We remark the fact that the comparison is “absolute”, in the sense that there is no

free parameter.

The results can be summarized as follows.

• For the two samples at the lowest temperatures (T = Tc
10 and T = Tc

3 ), Monte Carlo

data and theoretical estimates obtained from the full partition function are in good

agreement for R ≥ 30 and R ≥ 24, respectively. However, it is also important to

notice that in this range the NLO-truncated predictions show no substantial difference

with respect to the estimates from the complete action. Conversely, for lower values

of R, the numerical data are not compatible with predictions from either eq. (2.8),

eq. (2.11), or from eq. (2.16): in that regime, the Monte Carlo results for Γ(R)

appear to be systematically larger than the values predicted by the effective string

picture, and, in particular, the discrepancy gets even larger when R decreases. This

mismatch had already been observed in [11], using the NLO-truncation. Here, we

find that keeping into account the subleading corrections from the whole Nambu-Goto

action does not remove the disagreement.3

• For the two samples at higher temperatures (T = Tc
2 and T = 2

3Tc), the contribu-

tion by subleading terms beyond the NLO becomes quantitatively more relevant and

the precision of the numerical data allows to appreciate the difference between the

predictions of eq. (2.11) and eq. (2.16) for all values of R that are considered.

For T = Tc
2 and R ≥ 16, the Monte Carlo data lie in between the full Nambu-Goto

expectation and the NLO truncation. For T = Tc
2 and R ≥ 16, the Monte Carlo

data fall (incidentally), within about two standard deviations, on top of the NLO

truncation. The numerical matching with the full Nambu-Goto is clearly worse.

• It is very interesting to look at the data at fixed R = 32 collected in table 5 (see

figure 3). We see that for all values of L > 16 the data agree with the Nambu-Goto

predictions almost within one standard deviation. Fortunately in this region the

precision is high enough to distinguish between LO, NLO and full Nambu-Goto. The

picture which emerges, in agreement with the above observation is that the Nambu-

Goto string is the correct description for low enough temperatures and that around

T = Tc/2 there is a smooth crossover towards a behaviour which is instead very near

to the NLO result. We shall discuss in more detail this point in the last section.

3.2 SU(2) gauge model

For the SU(2) model in d = 2+1 dimensions we considered data published in [12] (to which

we refer the reader for details and notation), focusing onto the two samples corresponding

to the largest (L = 60) and the smallest (L = 8) values the inverse temperature at β = 9.0

— the other samples reported in [12] show the same qualitative behaviour which is observed

for the data set at L = 60, adding no further information to the present analysis.

3Quantitatively, the subleading corrections induce an even larger mismatch.
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Figure 1: Differences between the values of Γ(R) for the full Nambu-Goto action (dashed line),

the NLO approximation (solid line) and the Monte Carlo results (crosses) with respect to the LO

approximation for the sample at β = 0.75180, L = 80 in the Ising gauge model (data of table 1).

Notice that for this value of L the NLO and full Nambu-Goto results almost coincide and cannot

be separated in the figure.
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Figure 2: Same as figure 1 but for the data at L = 12 (see table 4). In this case the difference

between NLO and full Nambu-Goto predictions is perfectly detectable.

For β = 9.0 the string tension of this model is known to a high degree of precision:

σ = 0.025900(12) [12]. The lower bound Rc is between 3 and 4 lattice spacings and the
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L 1 loop 2 loop full NG MC data

9 0.94940 0.96772 0.96651(22)

10 0.93401 0.94732 0.98210 0.94670(15)

11 0.91984 0.92984 0.93933 0.92915(19)

12 0.90661 0.91433 0.91910 0.91444(18)

13 0.89411 0.90021 0.90295 0.90051(17)

14 0.88221 0.88712 0.88882 0.88752(12)

15 0.87080 0.87482 0.87593 0.87532(11)

16 0.85981 0.86315 0.86390 0.86371(16)

17 0.84917 0.85199 0.85251 0.85252(10)

18 0.83884 0.84124 0.84161 0.84143(10)

19 0.82879 0.83086 0.83113 0.83119(10)

20 0.81899 0.82078 0.82098 0.82102(09)

24 0.78181 0.78291 0.78297 0.78311(11)

Table 5: Same as table 1, but for a fixed value of R: R = 32 and various values of L.
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Figure 3: Same as figure 1, but for the data at R = 32 (see tab. 5). As mentioned in the text,

in this case the Monte Carlo results appear to interpolate between the full Nambu-Goto behaviour

(dashed line) at low temperature and the NLO one (solid line) at high temperature.

deconfinement temperature in lattice units is approximately Tc ' 1
6 , thus the two samples

that we are considering correspond to T = Tc
10 and T = 3

4Tc respectively. In agreement

with notations in [12], we define the following quantity:

Q(R) = − 1

L
log

(

G(R+ 1)

G(R)

)

(3.3)

whose dominant contribution is the string tension; the relative error induced by the uncer-

tainty in σ is approximately of order 10−4, which turns out to be negligible or comparable
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R LO NLO full NG MC data

2 0.047717 0.076813 0.040455(7)

3 0.036808 0.043891 0.034374(10)

4 0.032445 0.034967 0.037080 0.031426(12)

5 0.030263 0.031378 0.031842 0.029785(14)

6 0.029017 0.029584 0.029731 0.028777(16)

7 0.028237 0.028556 0.028614 0.028113(17)

8 0.027718 0.027910 0.027936 0.027654(19)

9 0.027354 0.027477 0.027490 0.027322(22)

10 0.027090 0.027172 0.027179 0.027076(24)

11 0.026892 0.026949 0.026953 0.026887(28)

12 0.026739 0.026780 0.026782 0.026739(33)

13 0.026619 0.026649 0.026651 0.026616(40)

Table 6: Monte Carlo results (rightmost column) for Q(R) in SU(2) gauge theory at β = 9.0 and

T = Tc

10 (corresponding to L = 60) in comparison with the theoretical expectations from the LO

(second column), NLO (third column) and full (fourth column) effective Nambu-Goto action.

with respect to the Monte Carlo result precision for both samples.

Comparison between numerical data and theoretical expectations is reported in ta-

bles 6, 7, with the same format used for previous tables.

The results for this model show that:

• At low temperatures, the behaviour of Monte Carlo data for SU(2) is very similar

to the Z2 gauge model; in particular, the lattice simulation results disagree with

respect to the predictions from the full Nambu-Goto partition function, whose sub-

leading terms with respect to the NLO-truncated approximation induce an increasing

gap between numerical data and theoretical expectations as shorter and shorter in-

terquark distances are investigated.

• On the contrary, for the high temperature (T = 3
4Tc) sample, SU(2) results are in

remarkable agreement with the predictions of the full Nambu-Goto partition function:

agreement within statistical errors is observed for all interquark distances R > 6 (see

figure 4). Notice that in this temperature regime the subleading string effects play

a relevant role, and the LO, NLO and full Nambu-Goto predictions can be clearly

distinguished within the precision of numerical data: in particular, the difference

between the full-order prediction and the NLO approximation is larger than five

times the uncertainty of Monte Carlo data, for all values of R.

3.3 SU(3) gauge model

For the SU(3) model in d = 2+1 dimensions, we compare the theoretical expectations with

the data published in [5]. We focused onto the sample at β = 20, using the data reported

in [5, table 3] to build the Q(R) observable discussed above.4 In this case we have L = 60,

4Notice the shift in R between our Q(R) and the quantity F (R) in [5].
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R LO NLO full NG MC data

2 0.04769 0.07537 0.03741(4)

3 0.03660 0.04001 0.03093(5)

4 0.03185 0.02992 0.03179 0.02756(6)

5 0.02915 0.02620 0.02670 0.02550(6)

6 0.02736 0.02449 0.02445 0.02409(7)

7 0.02607 0.02348 0.02312 0.02307(8)

8 0.02508 0.02275 0.02221 0.02227(9)

9 0.02430 0.02218 0.02153 0.02164(9)

10 0.02368 0.02170 0.02100 0.02113(10)

11 0.02316 0.02129 0.02057 0.02069(11)

12 0.02272 0.02095 0.02020 0.02032(11)

13 0.02235 0.02064 0.01990 0.02000(12)

14 0.02203 0.02038 0.01962 0.01973(13)

15 0.02175 0.02015 0.01939 0.01948(14)

16 0.02151 0.01994 0.01918 0.01926(15)

17 0.02129 0.01975 0.01900 0.01905(15)

18 0.02110 0.01958 0.01883 0.01887(16)

19 0.02092 0.01943 0.01868 0.01869(17)

Table 7: Same as in table 6, but for T = 3
4Tc (L = 8).
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Figure 4: Values of Q(R) for the full Nambu-Goto action (dashed line), the NLO approximation

(solid line), the LO approximation (dotted line) and the Monte Carlo results (crosses) for the sample

at β = 9.0, L = 8 in the SU(2) model (data of table 7).

corresponding to a temperature T ' Tc
10 , while we have no data for the high T regime. An
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R LO NLO full NG MC data

2 0.0555706 0.0778972 0.0508627(32)

3 0.0446623 0.0500971 0.0592690 0.0434942(32)

4 0.0402990 0.0422344 0.0432510 0.0399646(33)

5 0.0381173 0.0389728 0.0392195 0.0380274(35)

6 0.0368707 0.0373058 0.0373874 0.0368546(38)

7 0.0360915 0.0363358 0.0363683 0.0360941(41)

8 0.0355721 0.0357196 0.0357344 0.0355749(45)

9 0.0352084 0.0353027 0.0353102 0.0352080(49)

10 0.0349440 0.0350071 0.0350111 0.0349401(55)

11 0.0347457 0.0347895 0.0347917 0.0347382(62)

12 0.0345931 0.0346244 0.0346258 0.0345838(73)

13 0.0344732 0.0344962 0.0344970 0.0344673(92)

Table 8: Comparison between theoretical predictions and numerical results for the SU(3) model

in d = 2 + 1 dimensions obtained from data published in [5]. Results refer to β = 20.0, L = 60

(corresponding to T ' Tc

10 ). The format is the same as for table 6.

estimate for the string tension σ can be obtained from the data themselves, following a

procedure similar to the one used in [12] for the SU(2) model; we found σ = 0.033754(3),

corresponding to a lower bound Rc between 2 and 3 lattice spacings.

Comparison of theoretical predictions and numerical data is reported in table 8, in

the same format used for the previous cases. The pattern which emerges is the same that

is observed for SU(2) at low temperatures, the only difference being that the mismatch

between the full Nambu-Goto string prediction and Monte Carlo results appears to be

slightly smaller than in the SU(2) case.

4. Conclusions

The pattern emerging from the comparisons discussed in the previous section can be sum-

marized in the following points.

• The Nambu-Goto action describes Monte Carlo data rather well for large values of

L and R; however, in this regime it is almost indistinguishable from its truncation

at NLO and (for very large values of R) from the pure free bosonic effective string.

Nevertheless, it is interesting to note that results from our simulations of the Ising

gauge theory at fixed R (R = 32 in our case) show that the predictions of the full

Nambu-Goto action match the numerical data in the range L ≥ 16, and in particular

there exists a window (16 ≤ L ≤ 20) where the full-order and the NLO-truncated

predictions can be clearly distinguished — while for larger values of L this is not

possible anymore, within our statistical precision.

• At low temperatures, a common pattern for the three models is observed as R de-

creases: clear evidence of a mismatch with respect to the string expectation is found.
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Such a mismatch is increasingly severe for shorter and shorter interquark distances

and is not fixed by keeping into account subleading corrections beyond the NLO

approximation of the Nambu-Goto string action. This observation has two relevant

consequences. First, at short distances the string spectrum must be different from

the Nambu-Goto one, in agreement with the recent observations of [13, 14]. Fur-

thermore, the short distance behaviour seems to disagree with the results obtained

in [6] by imposing the open-closed string duality of the effective string. In fact in [6]

it was shown that in d = 2 + 1 the NLO contribution to the energy levels is fixed

and must coincide with the Nambu-Goto one. This implies (see the derivation in the

appendix) that also the NLO contribution to the interquark potential must be the

Nambu-Goto one for any effective string theory fulfilling open-closed string duality.

A possible interpretation of these two observations is that at these scales (despite the

fact that the leading order Lüscher term still correctly describes the gross features of

the interquark potential) there is a breakdown of the effective string picture [13, 14].

• For lower values of L (i.e. as the deconfinement temperature is approached) the

situation seems to change, and the effective string picture appears to provide a better

description of Monte Carlo data as T approaches Tc. However, there is a relevant

difference between the behaviour observed in the Z2 and in the SU(2) gauge models:

for the Ising gauge model, data are in better agreement with the NLO-truncated

than with the full partition function predictions, whereas for the SU(2) theory, the

whole Nambu-Goto action appears to provide a remarkably good description of the

numerical results.

• However, it is important to stress that this agreement could well be only a coinci-

dence. In fact, dimensional reduction and the Svetitsky-Yaffe conjecture [36] suggest

a critical index for the deconfinement transition (both for the Ising and for the SU(2)

model) equal to the one of the 2d spin Ising model, i.e. ν = 1. This means:

σ(T ) ∼ σ0(T − Tc) . (4.1)

On the contrary, from the Nambu-Goto action we find ν = 1/2 [32, 33]. This suggests

that at some stage there should be a truncation of the square root expansion in the

Nambu-Goto effective string. The order of the power at which this truncation occurs

needs not to be universal and can be inferred by looking at the critical temperature.

In the Nambu-Goto model in d = 2 + 1 dimensions, Tc is expected to be [32, 33]:

Tc√
σ
=

√

3

π
' 0.977 . (4.2)

This prediction does not agree with the high precision results obtained in [35] for

the Z2 gauge model Tc√
σ
= 1.237(3). If one evaluates the order at which the Nambu-

Goto expansion should be truncated in order to obtain this value for the critical

temperature one finds with a good approximation a quartic polynomial, i.e. one

expects to describe well the data with the leading and next to leading order only, as
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we saw in the previous section. This is particularly evident if one looks at the data

collected in table 5.5 On the contrary in the SU(2) case the estimate for Tc is closer

to the value predicted by the Nambu-Goto model. The most accurate estimate is

(for a recent review with updated estimates see [37]) Tc√
σ
= 1.12(1), corresponding to

much a higher order in the truncation and, accordingly, a better agreement with the

prediction of the all-order Nambu-Goto prediction.

The picture which emerges is that the Nambu-Goto action is most probably the correct

effective description for large enough values of R and L (see in particular the data collected

in table 5). However, for different reasons, as R or L are decreased this effective description

looses its validity. When R is decreased (most probably due to the anomaly problem

discussed in section 2) the effective string picture as a whole seems to be no longer valid.

When L is decreased the Nambu-Goto string which predicts mean field critical indices

must necessarily break down and we observe a crossover towards a new string behaviour

(which is different for different gauge groups) with a critical behaviour compatible with that

expected from dimensional reduction and the Svetitsky-Yaffe conjecture. In particular, in

the two cases that we studied: Z2 and SU(2), this effective string seems to be a suitable

truncation of the whole Nambu-Goto action. Summarizing these observations we could

look at the Nambu-Goto action as a sort of “mean field effective string” which turns out

to be a remarkably good approximation for distances larger than a few times the bulk

correlation length of the model.

In this respect it would be very interesting to extend the high temperature analysis

also to the SU(3) gauge model, running low L simulations like to the ones presented in [12]

for the SU(2) gauge group. In fact in the SU(3) case we have (see [37]) Tc√
σ
= 0.98(2), i.e.

an almost perfect agreement of the critical temperature with the Nambu-Goto expectation.

Moreover in the SU(3) case the truncation mechanism suggested above should not work

since in this case we expect a non-integer critical index for the deconfinement transition

(which according to the Svetitsky-Yaffe conjecture should belong to the 2d Z3 universality

class).
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A. Partition function truncated at LO and NLO

We show the matching between the full partition function eq. (2.16) and the LO- and

NLO-truncated approximations eq. (2.8) and eq. (2.11) respectively.

5Notice however that it is rather non trivial and in principle unexpected the fact that the linear critical

behaviour expected for the model is exactly realized (from a numerical point of view) truncating the Nambu-

Goto action and not with a completely different coefficient in front of the quartic term.
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The square root appearing in the open string spectrum eq. (2.15) can be expanded

perturbatively in powers of (σR2)−1:

En(R) = σR+
π

R

(

n− 1

24

)

− π2

2σR3

(

n− 1

24

)2

+O
(

σ−2R−5
)

. (A.1)

Truncating at the first non-trivial order yields:

ELO
n (R) = σR+

π

R

(

n− 1

24

)

(A.2)

and, correspondingly, the leading-order truncation of the partition function eq. (2.16) reads:

ZLO(R,L) = e−σRLe+
π
24

L
R

∞
∑

n=0

P (n)e−
πLn
R . (A.3)

Defining: q ≡ e2πiτ , with τ = iu = i L
2R , one finds:

ZLO(R,L) = e−σRLq−
1
24

∞
∑

n=0

P (n)qn . (A.4)

Due to the well-known identity:

1
∏∞

n=1(1− qn)
=
∞
∑

n=0

P (n)qn (A.5)

and to Dedekind’s function definition eq. (2.10), we end up with:

ZLO(R,L) =
e−σRL

η(iu)
(A.6)

in agreement with eq. (2.8).

On the other hand, truncation of eq. (A.1) at the next-to-leading order yields:

ENLO
n (R) = σR+

π

R

(

n− 1

24

)

− π2

2σR3

(

n− 1

24

)2

. (A.7)

Correspondingly, the next-to-leading-order approximation for the partition function reads:

ZNLO(R,L) =
e−σRL

η(iu)

[

1 +
π2L

1152σR3

1

G(q)

∞
∑

n=0

P (n)qn(1− 48n+ 576n2)

]

, (A.8)

where we defined:

G(q) ≡
∞
∑

n=0

P (n)qn . (A.9)

The non-trivial sums appearing on the r.h.s. of eq. (A.8) can be written as:

1

G(q)

∞
∑

n=1

nP (n)qn = q
d

dq
lnG(q) (A.10)
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and:

1

G(q)

∞
∑

n=1

n2P (n)qn = q2 d
2

dq2
lnG(q) +

1

G(q)

∞
∑

n=1

nP (n)qn +

[

1

G(q)

∞
∑

n=1

nP (n)qn

]2

. (A.11)

On the other hand, by virtue of the identity (A.5):

q
d

dq
lnG(q) = −

∞
∑

n=1

q
d

dq
ln(1− qn) =

∞
∑

n=1

nqn

1− qn
. (A.12)

For any positive integer l, the following identity holds:

∞
∑

n=1

nlqn

1− qn
=
∞
∑

k=1

σl(k)q
k , (A.13)

where σl(k) denotes the sum of the l-th powers of the positive divisors of k; this identity

can be easily proven by expanding the l.h.s. of eq. (A.13):

∞
∑

n=1

nlqn

1− qn
=
∞
∑

n=1

nl
∞
∑

k=1

qnk =
∞
∑

k=1





∑

d|k
dl



 qk =
∞
∑

k=1

σl(k)q
k , (A.14)

where
∑

d|k is precisely the sum over positive divisors of k. Using the identity (A.13) and

the definition of the Eisenstein function eq. (2.12), one gets:

q
d

dq
lnG(q) =

1− E2(q)

24
. (A.15)

Finally, the terms in (A.11) can be handled using the fact that:

q2 d
2

dq2
= q

d

dq
q
d

dq
− q

d

dq
(A.16)

and the following identity among Eisenstein functions:

q
d

dq
E2(q) =

E2
2(q)− E4(q)

12
(A.17)

which yield:

q2 d
2

dq2
lnG(q) =

E4(q)− E2
2(q)

288
− 1− E2(q)

24
. (A.18)

Plugging the various terms into eq. (A.8), one ends up with:

ZNLO(R,L) =
e−σRL

η(iu)

{

1 +
π2L

1152σR3

[

2E4 (iu)− E2
2 (iu)

]

}

(A.19)

which is exactly eq. (2.11), as it was expected.
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