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1 Introduction

Working out the implications of Quantum Chromodynamics (QCD) for strongly interacting

matter under extreme conditions of temperature and/or baryon density is one of the most

important theoretical challenges in elementary particle physics [1–5]. Such conditions,

which are produced in high-energy nuclear collision experiments (for a recent review, see

ref. [6]), have a dramatic qualitative impact on the physics, as they directly affect the two

most important phenomena determining the hadronic spectrum: confinement of colored

degrees of freedom and dynamical breakdown of chiral symmetry. When the temperature

is increased to values larger than approximately 160 MeV, hadrons cease to exist, and QCD

undergoes a crossover to a deconfined plasma phase, in which quarks and gluons interact

with each other through screened long-range forces [7]. When finite values of the quark

chemical potential µ are allowed, additional phases (possibly characterized by phenomena

like color superconductivity and superfluidity, color-flavor locking, etc.) may appear.

Close to the deconfinement region, the quark-gluon plasma (QGP) produced in col-

lider experiments appears to be (quite) strongly coupled, hence its theoretical description

requires intrinsically non-perturbative tools. One possibility is provided by computations

based on the gauge/string duality [8–10], which yields a description of the large-N [11] and

strong-coupling limits of a gauge theory, in terms of the classical gravity limit of a dual

string model, defined in a higher-dimensional spacetime. The applications of holography

to model the physics of hot QCD are discussed in detail in ref. [12]. Another way to ad-

dress the problem is via numerical Monte Carlo calculations in the lattice regularization

of QCD [13], which provides a gauge-invariant, non-perturbative definition of the theory.

During the past decade, lattice QCD studies have provided conclusive quantitative answers

to many questions relevant for the QGP [14–16]: these include the nature of the decon-

finement and chiral-symmetry-restoration crossover [17], the equation of state at vanishing
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chemical potential [18–20], the effect of electromagnetic fields on the QGP [21, 22] and

the determination of the freeze-out conditions relevant for heavy-ion collisions [23–26]. Al-

though the lattice study of problems involving some form of dynamical evolution in real

time is conceptually and practically much more challenging, recent works have addressed

QGP phenomena related to transport and diffusion [27–33], to jet quenching and like-cone

dynamics [34–42], and more.

Besides quantities of most direct phenomenological interest, the constant progress in

algorithmic sophistication and in computational power makes it possible to address more

fundamental issues, and to generalize the lattice studies of the QGP to QCD-like theories

which, although not realized in nature, can provide helpful insight into the structure of

non-Abelian gauge theories and can be compared, for instance, to analytical computations

based on semiclassical approaches [43]. Examples include finite-temperature lattice studies

in pure-glue SU(3) Yang-Mills theory [44–50], in its generalizations with a larger number

of color charges N [51–62] and/or to three, rather than four, spacetime dimensions [63–70],

or theories based on a center-less exceptional gauge group [71–75].

Following this line of research, in this article we report a high-precision study of the

thermodynamics of SU(2) Yang-Mills theory (in four spacetime dimensions), focusing on

the equilibrium properties in the confining phase. In particular, we show that the equation

of state throughout the confining phase can be accurately modeled in terms of a gas of

massive, non-interacting glueballs, provided that, in addition to the lightest glueball states

(known from previous lattice calculations [76]), one includes the contribution due to heavier

glueballs, which can be described in terms of a Hagedorn stringy spectrum. The possibility

that glueballs admit a description in terms of some sort of “strings” is quite natural, if one

thinks of them in terms of “rings of glue”, i.e. of closed color flux tubes. Historically, one of

the first concrete realizations of this idea was put forward with the Isgur-Paton model [77].

The present work, carried out according to the setup defined in section 2, provides a

direct generalization of the seminal lattice study presented in ref. [46] for SU(3) Yang-Mills

theory, and later extended to SU(N) theories in three spacetime dimensions in ref. [68].

An important difference with respect to the three-color case in four spacetime dimensions,

is that SU(2) Yang-Mills theory has a second-order deconfining phase transition; hence, if

a Hagedorn temperature exists, it should coincide with the critical deconfinement temper-

ature Tc. This constraint makes the heuristic glueball model in terms of closed bosonic

strings much more predictive. As it will be shown in section 3, our lattice results for

thermodynamic quantities in SU(2) Yang-Mills theory are in excellent agreement with the

theoretical predictions of this phenomenological string model. Furthermore, in section 3 we

show that the same agreement also holds for the SU(3) theory: the bosonic string model

allows one to derive a parameter-free prediction for the Hagedorn temperature, and includ-

ing the contributions from the lightest glueball masses reported in ref. [78] one can obtain

model predictions in excellent agreement with the results for thermodynamic quantities

computed in ref. [47]. The presence of a Hagedorn spectrum [79] in the low-energy sector

of a theory is generally regarded as evidence for string-like dynamics (a very partial list

of articles relevant for this subject includes refs. [80–88]): the implications of the present

work in this respect will be discussed in section 4, together with some concluding remarks.
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2 Definitions and setup of the lattice calculation

In this work, the regularization of SU(2) Yang-Mills theory in four-dimensional Euclidean

spacetime is carried out in a finite hypercubic lattice Λ of spacing a and hypervolume

L3
s × Lt = a4(N3

s × Nt), in which periodic boundary conditions are imposed along all

directions. As usual in thermal field theory, the shortest compactification size (which we

take to be Lt) defines the temperature T of the system via the relation T = 1/Lt, while

the sizes of the system in the three other, “spatial”, directions are taken to be much larger

(9 ≤ Ls/Lt ≤ 12) to avoid finite-volume effects.

The Euclidean action for the lattice theory is taken to be the standard Wilson

action [13]

SW = − 2

g2

∑
x∈Λ

∑
0≤µ<ν≤3

TrUµν(x) (2.1)

where g denotes the (bare) lattice coupling and

Uµν(x) = Uµ(x)Uν (x+ aµ̂)U †µ (x+ aν̂)U †ν (x) (2.2)

is the plaquette, with Uµ(x) an SU(2) group element (in the defining representation) which

represents a parallel transporter (in color space) from the site x to the site x+ aµ̂. In the

following, we also introduce the Wilson action parameter β = 4/g2.

At the quantum level, the dynamics of the lattice system is defined by the integral

Z =

∫ ∏
x∈Λ

3∏
µ=0

dUµ(x) exp (−SW) (2.3)

(where dUµ denotes the SU(2) Haar measure), so that the expectation value of a generic,

gauge-invariant quantity A is given by

〈A〉 =
1

Z

∫ ∏
x∈Λ

3∏
µ=0

dUµ(x)A exp (−SW) . (2.4)

In our work, all expectation values of this form are estimated numerically, via Monte Carlo

integration: this is done by averaging over large sets of lattice configurations, produced by

an algorithm based on a sequence of heat-bath [89, 90] and overrelaxation updates [91, 92].

The statistical uncertainties due to the finiteness of the configuration sets are evaluated

using the jackknife method [93].

We define the normalized, traced Polyakov loop through a point x in the t = 0

Euclidean time-slice Λt=0 of the lattice as

P (x) =
1

2
TrL0(x), (2.5)

where

L0(x) =
∏

0≤n<Nt

U0(x+ na0̂). (2.6)

We computed the zero-temperature, two-point Polyakov loop correlation function

G(r) =

〈
1

3N3
s

∑
x∈Λt=0

P (x)
∑

1≤i≤3

P (x+ rı̂)

〉
(2.7)

– 3 –



J
H
E
P
0
7
(
2
0
1
5
)
1
4
3

at different values of r and β using the multilevel algorithm [94] (see also refs. [95–97]) and

extracted the interquark potential V (r) from

V (r) = − 1

Lt
lnG(r); (2.8)

these computations were carried out on lattices with Lt = 32a. This non-perturbative

determination of V (r) allows one to set the scale of the lattice simulations, extracting the

value of the lattice spacing by fitting V (r) to the following functional form:

aV = aσr + aV0 −
πa

12r
. (2.9)

While this form is reminiscent of the old phenomenological Cornell potential [98] (up to the

additive constant aV0, which simply accounts for an overall renormalization), it is worth

pointing out that eq. (2.9) can be derived in a more modern approach, assuming that color

confinement is associated with the formation of a thin flux tube behaving like a quantum

mechanical string, and carrying out an expansion around the low-energy (i.e., long-string)

limit [99]. In this approach, the coefficient of the 1/r term is unambiguously fixed by the

massless nature of transverse string fluctuations [100]. The symmetries of the effective

string action also fix the coefficients of further, subleading terms which could appear on

the right-hand side of eq. (2.9), which are proportional to higher powers of 1/r; however,

we do not include them in eq. (2.9) because their contribution to the potential is negligible,

within the precision of our numerical data.

The value of the lattice spacing in “physical” units can then be deduced from the

fitted value of σa2, at each value of β. A complete determination of the relation between

the lattice spacing a and the Wilson action parameter β for SU(2) pure gauge theory is

discussed in section 3. For a detailed discussion of alternative scale-setting methods in

lattice gauge theory, see ref. [101] and references therein.

A quantity of major phenomenological interest in finite-temperature field theory is the

pressure p, which in the thermodynamic limit V →∞ equals the opposite of the free-energy

density per unit volume f :

p = − lim
V→∞

f = lim
V→∞

T

V
lnZ. (2.10)

p is related to the trace anomaly of the theory (denoted as ∆) via

∆

T 4
= T

∂

∂T

( p

T 4

)
. (2.11)

Other two, closely related, quantities are the energy density per unit volume

ε =
T 2

V

∂ lnZ

∂T

∣∣∣∣
V

= ∆ + 3p (2.12)

and the entropy density per unit volume

s =
ε

T
+

lnZ

V
=

∆ + 4p

T
. (2.13)
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Following the method introduced in ref. [102], it is straightforward to express these

thermodynamic quantities in terms of plaquette expectation values: for example, the pres-

sure (more precisely: its difference with respect to the value it takes at T = 0) can be

evaluated using

p =
6

a4

∫ β

β0

dβ′ (〈Up〉T − 〈Up〉0) , (2.14)

where 〈Up〉T denotes the average plaquette at a generic temperature T . In practice, in

the simulations one computes the integral appearing on the right-hand side of eq. (2.14)

numerically, typically using one of the methods discussed in ref. [103, appendix A], choosing

a lower integration extremum β0 deep enough in the confined phase, corresponding to a

value of the temperature where the difference of the equilibrium thermodynamic quantities

with respect to their zero-temperature values is negligible.

Note that the integrand appearing in eq. (2.14) is closely related to the trace anomaly,

∆ =
6

a4

∂β

∂ ln a
(〈Up〉0 − 〈Up〉T ) , (2.15)

up to a factor which can be readily evaluated from the scale setting.

3 Numerical results and comparison with a bosonic string model

In this section, we first present our results for the SU(2) Yang-Mills theory in subsection 3.1,

comparing them with the predictions of an effective model for the glueball spectrum, in

which the physical states are interpreted as closed bosonic strings. Then, in subsection 3.2

we extend the analysis to the SU(3) results reported in ref. [47] (for the equation of state)

and in ref. [78] (for the glueball masses).

3.1 Results for SU(2) Yang-Mills theory

We computed the static interquark potential for distances up to r = 16a. The lower value

of the distance range fitted to eq. (2.9) was chosen in such a way that r
√
σ > 1. The tree-

level improved definition of the distance r for the lattice potential introduced in ref. [104]

has been used.

Our results for the string tension in lattice units σa2 are reported in table 1. For

an accurate non-perturbative determination of the relation between a and β, they have

to be interpolated by a suitable functional form. One possibility is to fit the data for the

logarithm of the string tension to a polynomial of degree npar−1 in (β−β0), with β0 = 2.35.

Interpolating with

ln(σa2) =

npar−1∑
j=0

aj(β − β0)j (3.1)

and choosing npar = 4 the fit yields a χ2
red of 0.01. We found the values of the parameters

to be a0 = −2.68, a1 = −6.82, a2 = −1.90 and a3 = 9.96 respectively. A fit with the

functional form proposed in ref. [105] yields a very small χ2
red as well and similar results.

This scale setting allows one to get an accurate determination of the temperature for

a given value of the parameter β.
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β rmin/a σa2 aV0 χ2
red

2.27 2.889 0.157(8) 0.626(14) 0.6

2.30 2.889 0.131(4) 0.627(30) 0.1

2.32 3.922 0.115(6) 0.627(32) 2.3

2.35 3.922 0.095(3) 0.623(20) 0.2

2.37 3.922 0.083(3) 0.621(18) 1.0

2.40 4.942 0.068(1) 0.617(10) 1.4

2.42 4.942 0.0593(4) 0.613(5) 0.1

2.45 4.942 0.0482(2) 0.608(4) 0.4

2.47 4.942 0.0420(4) 0.604(5) 0.3

2.50 5.954 0.0341(2) 0.599(2) 0.1

2.55 6.963 0.0243(13) 0.587(11) 0.2

2.60 7.967 0.0175(16) 0.575(16) 0.3

Table 1. Results for the string tension (in units of the inverse squared lattice spacing, in the third

column) at different values of the Wilson action parameter β (first column), calculated by fitting

the potential V as a function of the tree-level improved interquark distance r (see ref. [104] for

details) to eq. (2.9). V was extracted from Polyakov loop correlators on lattices of temporal extent

Lt = 32a. The minimal distances (reported in the second column, in units of the lattice spacing)

used in the fits were fixed by the r
√
σ > 1 condition. The table also shows the results for the

“perimeter-like” term aV0 (fourth column) and the χ2
red values (fifth column).

N4
s at T = 0 N3

s ×Nt at T 6= 0 nβ β-range nconf

324 603 × 5 17 [2.25, 2.3725] 1.5× 105

404 723 × 6 25 [2.3059, 2.431] 1.5× 105

404 723 × 8 12 [2.439, 2.5124] 105

Table 2. Setup of our simulations. The first two columns show the lattice sizes (in units of the

lattice spacing a) for the T = 0 and finite-temperature simulations, respectively. In the third

column, nβ denotes the number of β-values simulated within the β-range indicated in the fourth

column. Finally, in the fifth column we report the cardinality nconf of the configuration set for the

T = 0 and finite-T simulations.

The main part of our study of SU(2) Yang-Mills theory consists in a high-precision

non-perturbative determination of the finite-temperature equation of state in the confining

phase. Table 2 shows the setup of Monte Carlo simulations to compute the thermodynamic

observables defined in section 2. The results obtained from lattices with temporal size (in

lattice-spacing units) Nt = 5, 6 and 8 are showed in figure 2. Note that on the horizontal

axis the temperature is displayed in units of the deconfinement temperature T/Tc, that we

derived using the value for Tc/
√
σ = 0.7091(36) reported in ref. [52].

Because of confinement and dynamical generation of a finite mass gap, the only physical

states in the confined phase of SU(N) Yang-Mills theory are massive glueballs. Under the

assumption that such states are weakly interacting with each other (which is supported

– 6 –
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results from JHEP 0401 (2004) 061

this work
fit

Figure 1. The values of the string tension in lattice units obtained from our lattice simulations

(red circles) are showed along with those reported in ref. [52] (blue squares). The solid black curve

and the dashed black lines show the interpolation to the functional form in eq. (3.1), with the

associated uncertainties.

by theoretical arguments [106] and appears to be compatible with experimental results in

real-world QCD [107]), it is reasonable to think that the thermodynamic observables of

these theories can be modelled in terms of a gas of free, relativistic bosons.

The pressure of a gas of non-interacting, relativistic bosons of mass m is given by

p =
m2T 2

2π2

∞∑
n=1

K2 (nm/T )

n2
, (3.2)

where Kν(z) denotes a modified Bessel function of the second kind of index ν. Correspond-

ingly, the trace anomaly reads

∆ =
m3T

2π2

∞∑
n=1

K1 (nm/T )

n
. (3.3)

Using the fact that in the confining phase T < Tc, and that, in turn, all glueball masses are

significantly larger than Tc, the expressions above can be recast into a simpler form, using

known asymptotic expressions for the Bessel functions Kν(z), which are valid for large real

values of z:

p ' T
(
Tm

2π

)3/2 ∞∑
n=1

exp (−nm/T )

n5/2

(
1 +

15T

8nm

)
(3.4)

and

∆ ' m
(
Tm

2π

)3/2 ∞∑
n=1

exp (−nm/T )

n3/2

(
1 +

3T

8nm

)
. (3.5)
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all glueballs below the two-particle threshold

contribution from the lightest glueball

N
t
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N
t
 = 6

N
t
 = 8

Figure 2. Comparison between our lattice results for the trace anomaly in SU(2) Yang-Mills theory

from simulations with Nt = 5, 6 and 8 (brown symbols) and the behavior expected for a gas of free,

massive glueballs. The dotted line corresponds to the contribution of the lightest state only, with

quantum numbers JPC = 0++. The dashed line includes all the low-lying glueballs, with masses

below the threshold associated with the appearance of two 0++ glueballs (taken from [76]) while

the solid line corresponds to the case in which we included also the contribution from high-lying

states, described by a bosonic string model. The trace anomaly ∆ is displayed in units of the fourth

power of the temperature, and is plotted as a function of T/Tc.

In particular, the precision of our numerical results is sufficient to investigate the first

subleading terms in the asymptotic expansions in eq. (3.4) and in eq. (3.5), so we truncate

the expansions accordingly.

Figure 2 displays our lattice results for ∆/T 4 as a function of T/Tc in SU(2) Yang-

Mills theory, together with their comparison with the prediction from the glueball-gas

model described by eq. (3.8), for which we used the results reported in ref. [76] for the

lightest spectrum states and the value of Tc taken from ref. [52].

In figure 2, the dotted line shows the contribution to ∆/T 4 from a glueball gas in-

cluding only the lightest state, with quantum numbers JPC = 0++, whereas the dashed

line is obtained including all states with masses below the threshold associated with the

appearance of two 0++ glueballs. The plot reveals that there is a large mismatch between

the contribution of these light glueballs and our lattice results.

Note that, due to the exponential dependence on the mass in eq. (3.4) and in eq. (3.5),

this mismatch can only be accounted for, if heavier glueballs are described by a Hagedorn-

like (i.e. exponentially increasing) spectrum. In a confining gauge theory, a Hagedorn-like

spectrum does arise, when hadrons are modelled in terms of thin color flux tubes, whereby

mesonic states (made of a bound quark-antiquark pair) can be described by an open bosonic

string [100], while glueballs are described by a closed bosonic string [77, 108].
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To be more quantitative, the closed bosonic string model leads to a spectral density

ρ̂(m) =
1

m

(
2πTH

3m

)3

exp (m/TH) (3.6)

(for a detailed derivation see ref. [68, appendix]), in which the only free parameter is the

Hagedorn temperature TH. The latter, actually, can also be predicted by the string model,

if the action governing the dynamics of the bosonic string is known. The simplest Ansatz

for the effective string action is the Nambu-Gotō action [109, 110]: although it is non-

renormalizable and affected by problems at a fundamental level (including, for example, an

anomaly), recent advances in our understanding of the effective string description for Yang-

Mills theories indicate that it provides a very good approximation of the actual effective

string action, up to very small corrections that appear only at a large order in the expansion

around the long-string limit [99]. Assuming that the glueball spectrum is described by a

closed Nambu-Gotō string model, one obtains

TH = TNG =

√
3σ

2π
' 0.691

√
σ. (3.7)

If the deconfinement transition is of second order, as is the case in SU(2) Yang-Mills

theory, then TH coincides with the deconfinement temperature.1 On the other hand, if the

deconfinement transition is discontinuous, as in SU(N ≥ 3) theories, then the Hagedorn

temperature is expected to be larger than Tc.

The free glueball gas prediction for the trace anomaly can then be written as a sum of

two contributions:

∆(T ) =
∑

mi<mth

(2J + 1)∆(mi, T ) + nC

∫ ∞
mth

dm′ρ̂(m′)∆(m′, T ). (3.8)

1Note that the TH value in eq. (3.7) is slightly lower than the critical deconfinement temperature deter-

mined numerically in ref. [52] for this model: Tc/
√
σ = 0.7091(36); albeit small (less than 3%), the difference

is statistically significant. If taken at face value, this discrepancy would imply the surprising (and almost

paradoxical) conclusion that the partition function of the SU(2) theory ought to diverge before reaching

the deconfinement transition — which is clearly unsupported by our simulations. Barring the possibility

of additional, unknown uncertainties on the lattice results, the most likely solution of the conundrum is

that the effective string model fails to capture the dynamics at temperatures very close to Tc. In fact, as it

will be discussed in more detail in section 4, it is known that, in the presence of a second-order deconfine-

ment transition, the behavior of long-range correlation functions at criticality is consistent with the indices

predicted by the Svetitsky-Yaffe conjecture [111], rather than with the mean-field behavior that one would

expect from a bosonic string. An alternative possibility is that, besides the Nambu-Gotō term, the actual

effective string action describing the confined phase of the theory includes additional contributions, which

do not spoil Lorentz invariance [112]. For example, using high-precision lattice calculations in the dual

formulation of the model [113, 114], it was recently shown that the effective string action describing com-

pact U(1) lattice gauge theory in three dimensions includes a non-negligible contribution from an extrinsic

curvature term [115]. However, as discussed in detail in ref. [115], the numerical relevance of this particular

contribution is closely related to the non-trivial (and highly non-generic) scaling of the ratio between the

square root of the string tension and the mass gap in compact U(1) lattice gauge theory in three dimensions,

and we do not expect a similar effect to be relevant for SU(2) Yang-Mills theory. As a matter of fact, lattice

calculations confirm that the Nambu-Gotō string provides a very accurate description of the low-energy

dynamics of non-Abelian gauge theories, both in three and in four spacetime dimensions [116, 117].
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Figure 3. Same as in figure 2, but for the pressure p, in units of the fourth power of the temperature.

On the right-hand side, the first addend is the contribution from known glueballs of masses

up to a threshold scale, which we conventionally assume to be mth = 2m0++ , while the

second accounts for contributions from heavier states, described according to the spectral

density of the bosonic string model. The multiplicity factor nC counts the number of

charge-conjugation eigenvalues; for the SU(2) Yang-Mills theory, the pseudo-reality of the

gauge group implies that only C = 1 glueballs exist, hence nC is fixed to 1.

As figure 2 shows, our data are in remarkable agreement with the prediction of the

closed bosonic string model. We remark that this comparison has no free parameters

except for the choice of mth = 2m0++ , but we checked that our results are robust against

small changes of this threshold. As such, this is a very stringent test of both the effective

string model and of the assumption that the confining regime of SU(2) Yang-Mills theory

is described well by a gas of massive, non-interacting glueballs.

The corresponding results for the pressure are shown in figure 3.

3.2 Comparison with SU(3) Yang-Mills theory

It is instructive to compare our findings with those obtained in Yang-Mills theory with

SU(3) gauge group. To this end, we use the very precise data for ∆/T 4 (extrapolated to

the continuum limit) reported in ref. [47] and the glueball masses obtained in ref. [78].

As discussed above, in contrast to the two-color case, the SU(3) theory features a

first-order deconfinement transition, hence the Hagedorn temperature is expected to be

different from the deconfinement temperature. We assume that the Hagedorn temperature

coincides with the temperature at which the “effective”, temperature-dependent string
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tension predicted by the Nambu-Gotō string model vanishes, namely TH =
√

3σ/(2π). An

additional difference with respect to the SU(2) case, is that Yang-Mills theories with N ≥ 3

color charges admit C = −1 glueballs (whereas for N = 2 only C = 1 states are allowed,

since all irreducible representations of the gauge group are real or pseudo-real). In our

analysis for the SU(3) theory, we include all C = ±1 states of masses below mth and count

the bosonic string contribution in eq. (3.8) twice, i.e. in eq. (3.8) nC is set to 2.

It should be noted that, for the lightest states in the SU(3) spectrum, there is no mass

degeneracy between glueballs of opposite charge-conjugation eigenvalues: the states in the

C = 1 sector are lighter than those with C = −1 and with the same J and P quantum

numbers [78, 118]. While it may be that some hierarchy of this sort persists for heavier

states, one notes that the spectra of the lightest C = 1 and C = −1 glueballs are not just

trivially shifted with respect to each other. On the other hand, the bosonic string model,

per se, does not suggest the existence of a finite gap between glueballs of different C (at

least for the part of the spectrum that it is expected to describe, i.e. heavier states). Hence,

for the sake of simplicity, and to avoid introducing an arbitrary number of additional free

parameters in our effective model, we assume that the states of opposite C above the

two-particle threshold are mass-degenerate — and interpret the gap between the lightest

C = 1 and C = −1 particles as an accidental feature of the lowest end of the spectrum

(which certainly is not expected to be described by a model predicting a continuous density

of states).2

The results for both SU(2) and SU(3) Yang-Mills theories are plotted in figure 4 as

a function of T/TH: the numerical results are in excellent agreement with the predictions

from the effective string model. Note that, as already observed in 2 + 1 dimensions [68],

the presence of C = −1 states for N > 2 plays a crucial rôle. We also remark that, using

the string prediction TH =
√

3σ/(2π) for the SU(3) theory, the curves predicted by the

string model do not depend on any free parameters: this is the case both for N = 2 and

N = 3 colors.

4 Discussion and concluding remarks

In this work we presented some novel, high-precision numerical lattice results for the equa-

tion of state in SU(2) Yang-Mills theory. In particular, we studied the equilibrium ther-

modynamics in the confining phase, i.e. at temperatures below the critical temperature

at which the second-order thermal deconfinement transition takes place. We showed that

it can be described very well by a gas of free massive glueballs, provided one includes

the contribution due to higher states in the spectrum, which we modelled using a bosonic

closed-string model. We also showed that similarly good agreement holds for the results

2The idea that heavier glueball states of different C may exhibit mass degeneracies, which are absent

among the lightest states, should not be completely surprising. In QCD, due to the dynamical breaking

of chiral symmetry at low energies and its approximate restoration at higher energies, excited hadrons

of different parity P tend to become mass-degenerate, while the effects of dynamical chiral-symmetry

breaking are dramatic on the lightest states, and lead to large gaps between particles with P = 1 and

P = −1 [119, 120].
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Figure 4. Comparison between the predictions of a massive-glueball gas, supplemented by the

contribution from states modelled by a closed Nambu-Gotō string model, like in eq. (3.8), and

continuum-extrapolated data obtained in ref. [47] for SU(3) Yang-Mills theory and our data for

the SU(2) theory (from simulations at finite lattice spacings corresponding to Nt = 6 and 8), as a

function of T/TH.

for the SU(3) theory obtained in ref. [47], as already pointed out therein (see, in particular,

ref. [47, figure 4]) and in ref. [46]. Note, however, that the analysis carried out in those

works was slightly different: in particular, in ref. [46] the Hagedorn temperature was fitted

from the numerical results and turned out to be about 4% smaller than the Nambu-Gotō

string estimate.3 A closely related analysis was presented in ref. [121], in which a gen-

eralization to other gauge groups was also discussed. Another phenomenological model

to describe the Yang-Mills equation of state in terms of a glueball gas was discussed in

ref. [122, section 7]. Another interesting lattice study of the Hagedorn temperature in

SU(N) Yang-Mills theories at large N was presented in ref. [56], where the value of TH was

calculated by determining the temperature-dependent “effective string tension” σeff asso-

ciated with the two-point spatial correlation function of flux tubes. Such effective string

tension is a decreasing function of T , and TH can be identified as the temperature at which

σeff vanishes. Since SU(N ≥ 3) Yang-Mills theories undergo a first-order thermal decon-

fining transition at a critical temperature Tc < TH, one cannot directly reach the point at

which the spatial correlation length 1/
√
σeff diverges, but the key observation of ref. [56] is

that one can, nevertheless, extract σeff values even for T > Tc, as long as one remains in a

3This mismatch with respect to our results might be due to a missing nC = 2 factor (which accounts for

the existence of both C = 1 and C = −1 glueballs) multiplying the closed bosonic string density of states:

we verified numerically that setting nC = 1 in eq. (3.8) would lead to the same shift in TH.

– 12 –
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metastable confining phase. The existence of the latter follows from the strongly first-order

nature of the deconfinement transition at large N [52, 53], it allows one to compute σeff at

temperatures sufficiently close to TH, and finally to carry out an accurate determination of

TH from a short-ranged extrapolation in T : the results indicate that TH/Tc ' 1.1 at large

N , with some variation depending on the type of fit used for the extrapolation. Note that

in our numerical study of SU(2) Yang-Mills theory, this procedure is not necessary, as the

correlation length diverges at Tc. For the SU(3) theory, on the other hand, the deconfining

transition is a discontinuous one and TH > Tc, but the latent heat Lh associated with the

deconfinement transition is smaller than at large N , and probing the metastability region

may be more challenging.

Our findings add new, quantitative support to the idea that the low-energy dynamics of

confining gauge theories admits an accurate description in terms of a bosonic string model.

Loosely speaking, in this picture glueballs can be interpreted as “rings of glue” [77]. The

simplest assumption about the effective action describing the dynamics of these fluctuating

loops of color flux is that it coincides with the Nambu-Gotō action. It is worth remarking

that this assumption is not arbitrary: the effective theory describing the low-energy dynam-

ics of confining gauge theories must be consistent with a non-linear realization of Lorentz-

Poincaré symmetry [99, 112, 115, 123–132], a requirement imposing tight constraints not

only on the functional form of the terms appearing in the effective action, but also on

their coefficients. In particular, the leading terms (in an expansion around the long-string

limit) turn out to agree precisely with those of the Nambu-Gotō action. This is confirmed

numerically by a vast body of lattice calculations, reviewed in refs. [116, 117, 125, 133–136].

A word of caution, however, is in order: the continuous nature of the thermal decon-

fining transition in SU(2) Yang-Mills theory implies that, at T = Tc, the dynamics of the

system (including, for example, the way the spatial correlation length of Polyakov loops

diverges) is characterized by the critical indices of the tridimensional Ising model [111].

By contrast, the Nambu-Gotō string model predicts mean-field exponents. This indicates

that, strictly speaking, the effective string model cannot completely capture the dynamics

of the system, all the way up to Tc. Nevertheless, our numerical results indicate that the

agreement is very good over a broad range, reaching temperatures close to the deconfine-

ment one. We note that analogous conclusions could be drawn from the study of SU(3)

Yang-Mills theory in three dimensions reported in ref. [70]: this theory has a second-order

deconfining transition, and the analysis carried out in ref. [70] showed that the Nambu-

Gotō string model successfully predicts the value of the deconfinement temperature, even

though the critical behavior very close to Tc is consistent with the universality class of

the bidimensional three-state Potts model (i.e. agrees with the Svetitsky-Yaffe conjecture)

rather than with the mean-field exponents predicted by the bosonic string. Similar findings

were also obtained from the study of large-N Yang-Mills theories in the aforementioned

ref. [56], where it was found that, close to TH, the scaling of the effective spatial string ten-

sion extracted from Polyakov loops at large N is better described by the critical exponent

of the tridimensional XY model, than by the one predicted by a bosonic string.

A natural implication of the Hagedorn scenario for the deconfinement transition is that

glueballs, due to their divergent contribution to the equation of state, cannot exist at tem-
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peratures (much) above the deconfinement temperature [137]. This non-trivial observation

can be contrasted with the claims reported in refs. [138, 139].

While the idea that a thermal deconfining transition takes place in the presence of

an exponentially growing, Hagedorn-like, hadronic spectrum dates back to forty years

ago [140], it should be pointed out that only recently has it become possible to test this

conjecture quantitatively from first principles, via high-precision Monte Carlo computations

on the lattice. In this respect, our present work can be considered as a generalization of

recent studies, that addressed this problem either in D = 2+1 (rather than 3+1) spacetime

dimensions [68], or in 3 + 1 spacetime dimensions, but for N = 3 color charges [46, 47],

with similar results. As we discussed, the theory with N = 2 color charges addressed here

provides an important cross-check of the glueball-gas model, given that the spectrum of

SU(2) Yang-Mills theory does not contain C = −1 states.

The present work could be generalized along different directions: for example, one

could extend the present analysis to SU(N > 3) Yang-Mills theories, and/or take the effect

of glueball interactions into account, possibly in terms of excluded-volume corrections [141,

142], as recently discussed in refs. [143, 144].
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