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Abstract This paper analyzes preferences in the presence of ambiguity that are
rational in the sense of satisfying the classical ordering condition as well as monoto-
nicity. Under technical conditions that are natural in an Anscombe–Aumann environ-
ment, we show that even for such a general preference model, it is possible to identify
a set of priors, as first envisioned by Ellsberg (Q J Econ 75:643–669, 1961). We then
discuss ambiguity attitudes, as well as unambiguous acts and events, for the class of
rational preferences we consider.
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1 Introduction

Ellsberg’s seminal paper (1961) ignited a large and growing literature aimed at devel-
oping decision models that accommodate a concern for ambiguity, which is uncertainty
about the precise stochastic nature of the problem a decision maker faces (for a recent
survey, see Gilboa and Marinacci 2010). Among the first and most prominent contri-
butions, Schmeidler’s (1989) axiomatization of Choquet-expected utility (CEU) and
Gilboa and Schmeidler’s (1989) foundations for maxmin-expected utility (MEU) with
multiple priors occupy a special place. Furthermore, applications in several areas of
economics have demonstrated their usefulness.

More recently, several influential works have proposed decision models that over-
come specific limitations of the CEU and MEU models. Two behavioral aspects have
received special attention. First, both the CEU and the MEU model satisfy Certainty
Independence: the main implication of this axiom is that preferences and, in particular,
ambiguity attitudes are unaffected by changes in the “scale” and “location” of utili-
ties. To fix ideas, suppose the decision maker has a linear utility, and assume that he
is just indifferent between receiving $3 dollars for sure, and participating in a bet that
yields $10 dollars if an (ambiguous) event obtains, and 0 otherwise. Then, Certainty
Independence also implies that the decision maker would be indifferent: (i) between
receiving $300 for sure, and participating in a bet that yields $1,000 if the event obtains
and 0 otherwise and also (ii) between receiving $1,003 for sure and participating in a
bet that yields $1,010 if the event obtains and $1,000 otherwise. Analogies with choice
under risk suggest that decision makers may reasonably violate either one or both of
these conclusions.

Second, the MEU model is characterized by a specific form of dislike for ambigu-
ity, formalized by the “Uncertainty Aversion” axiom due to Schmeidler’s (1989). This
axiom, which delivers quasi-concavity of the functional representing preferences, is an
assumption shared by many classes of preferences discussed in the literature. It reveals
a form of dislike for ambiguity even outside the MEU realm; see Cerreia-Vioglio et al.
(2008, C3M henceforth). At the same time, Uncertainty Aversion imposes restrictions
on preferences which one may want to dispense with; see Ghirardato and Marinacci
(2002, GM henceforth) for a theoretical discussion or Baillon et al. (forthcoming) for
an experimental perspective.

Recent decision-theoretic models relax the Certainty Independence and Uncertainty
Aversion axioms in specific ways. For instance, Variational preferences (Maccheroni
et al. 2006) relax invariance to the scale of utilities, but retain invariance to their loca-
tion, as well as Uncertainty Aversion. The “Uncertainty Averse” preferences of C3M
satisfy the eponymous axiom, but not necessarily Certainty Independence. Grant and
Polak (2007) drop Certainty Independence, and weaken Uncertainty Aversion. Finally,
Siniscalchi (2009) retains invariance to the location of utilities, but drops scale invari-
ance, as well as Uncertainty Aversion.

123

Author's personal copy



Rational preferences under ambiguity

In this paper, both Certainty Independence and Uncertainty Aversion are dropped.
We consider preferences that only satisfy what in our view are the basic tenets of
rationality under ambiguity: weak order and monotonicity. We call these preferences
rational. Since they are a weak order, they are rational in the usual sense of utility
theory. At the same time, the monotonicity assumption guarantees consistency with
state-wise dominance, which is arguably not affected by considerations of ambiguity.
All the models discussed above, and several others belong to this class of preferences.1

In particular, this class includes both the Uncertainty Averse preferences of C3M and
the MBC preferences introduced by Ghirardato and Siniscalchi (2010, GS henceforth).

We first argue that, for such preferences, a set of priors can be obtained following
the approach of Ghirardato et al. (2004, GMM henceforth); i.e., as a representation
of the derived unambiguous preference relation.2 Thus, in a specific behavioral sense,
one can identify probabilities that are significant for the decision maker’s choices
regardless of the representation of her preferences, which following GS we call “rel-
evant priors.” We carry on this task in an Anscombe–Aumann setting, and under two
additional assumptions: Risk Independence and Archimedean continuity. We call the
rational preferences satisfying these additional axioms MBA preferences (for Mono-
tonic, Bernoullian, and Archimedean). We thus directly generalize the results of GMM
and Nehring (2002).

We then leverage this general representation result to analyze the individual’s per-
ception of ambiguity and her attitudes toward it. MBA preferences provide a relatively
“neutral” ground for the study of these issues, precisely because they do not incor-
porate any specific assumption about invariance and/or attitudes toward ambiguity.
First, we show that MBA preferences admit a “generalized Hurwicz” (or α-MEU)
representation, thus extending an analogous result established by GMM for prefer-
ences satisfying Certainty Independence. This representation provides a useful tool to
study, for instance, comparative ambiguity attitudes. Second, we discuss two differ-
ent notions of ambiguity aversion and the relations between them. Third, we propose
behavioral definitions of unambiguous acts and consequently unambiguous events
and characterize them in terms of the set of priors we identify. Finally, we offer some
consequences of the previous definitions. In particular, we extend a result of Marinacci
(2002) on probabilistic sophistication with multiple priors to MBA preferences.

Related literature

As outlined above, the main contributions of this paper are the following: (1) showing
that the (arguably) mild rationality assumptions for choice under ambiguity guarantee
the existence of a set of priors, first envisioned by Ellsberg (1961) and modeled in
the seminal papers of Gilboa and Schmeidler’s (1989) and Bewley (2002); (2) the

1 Grant and Polak (2007) also consider a version of their model that relaxes monotonicity.
2 Nehring (2001) and Gilboa et al. (2010) derive a set of priors from a separate relation, which they inter-
pret as embodying “objective rationality,” and impose consistency conditions between such relation and the
decision maker’s preference relation.
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discussion of ambiguity attitudes in such general context; and (3) the characterization
of unambiguous acts and events and consequences thereof.

With respect to the first contribution, our debt to the GMM paper is obvious. The
added contribution here is clearly in observing how (most of) the representation results
of that paper generalize to rational preferences which do not satisfy Certainty Inde-
pendence, but only Risk Independence. The contributions of C3M and GS are on the
other hand complementary to this paper. The main focus of C3M is the analysis of
rational preferences that also satisfy Schmeidler’s “Uncertainty Aversion” axiom. The
main focus of the GS paper is the characterization of the set of relevant priors for
popular preference models. Such characterizations hinge on a differential result that
requires a stronger continuity condition and thus applies only to a subset of MBA
preferences, which GS dub MBC (where C stands for “[Cauchy] continuous”). C3M
also characterizes the set of relevant priors in several ways and provides a differential
characterization different from the one in GS.

The discussion on ambiguity attitudes is also related to earlier work. We show
how the ideas in Ghirardato and Marinacci (2002) can be extended to the MBA
class of preferences. We refer to that paper for detailed discussion on the relation
of such vision of ambiguity aversion to those espoused in other papers, in particular
Schmeidler’s (1989) and Epstein (1999).

As to this paper’s third contribution, this paper fits within a well-established liter-
ature. Early attempts to characterize behaviorally ambiguity were focussed on ambi-
guity of events in specific preference models. Such is the case of Nehring (1999) and
Zhang (2002), which consider CEU preferences. Subsequently, Epstein and Zhang
(2001) and Nehring (2001) offered definitions of unambiguous event which apply
in principle to any preference, providing a characterization over rich state spaces.
Similarly, Klibanoff et al. (2005) propose a notion of unambiguous event and charac-
terize it within the context of their “Smooth Ambiguity” model. We refer the reader
to Sect. 6.3, and to Nehring (2006), Amarante and Filiz (2007), and Klibanoff et al.
(2011) for discussion on the relations between the definitions of unambiguous event
in the cited papers and the one presented here. To the best of our knowledge, the
only previous paper that provides a definition of unambiguous act as primitive, and
events as derivative, is GM. However, their definition only applies to preferences that
are ambiguity averse (or loving) according to the definition in that paper. For such
preferences, the definition of unambiguous act offered in the two papers can be shown
to coincide.

Finally, some of the consequences that we draw from our definitions of ambiguity
owe to previous work, and our debts and contributions are clearly identified in the
respective sections.

2 Notation and preliminaries

We consider a state space S, endowed with an algebra �. B0(�, �) indicates the set
of simple �-measurable functions on S with values in the interval � ⊂ R. We endow
B0(�, �) with the topology induced by the sup-norm. For simplicity, we write B0(�)

instead of B0(�, R).
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Rational preferences under ambiguity

The set of finitely additive probabilities on � is denoted ba1(�). We endow ba1(�)

with the (relative) weak∗ topology that is the topology induced by B0(�). Notice that
ba1(�) is compact under this topology.

We say that a functional I : B0(�, �) → R is:

• monotonic if I (a) ≥ I (b) provided a ≥ b
• continuous if it is sup-norm continuous
• normalized if I (α 1S) = α for all α ∈ �

Let X be a convex subset of a vector space. (Simple) acts are �-measurable func-
tions f : S → X such that f (S) = { f (s) : s ∈ S} is finite. The set of all acts is denoted
by F . We define mixtures of acts pointwise; that is, for each α ∈ [0, 1], α f +(1−α)g
is the act that delivers the prize α f (s) + (1 − α)g(s) in state s. Given f, g ∈ F and
A ∈ �, we denote by f A g the act in F , which yields f (s) for s ∈ A and g(s) for
s ∈ Ac.

3 Rational preferences and relevant priors: characterizations

In this section, we first briefly introduce our basic assumptions on preferences, char-
acterizing what we earlier dubbed the “MBA” model. We refer the reader to C3M and
GS for more detailed discussion of the axioms. We then argue that for MBA prefer-
ences, the unambiguous preference relation introduced by GMM can be used to obtain
a set of relevant probabilistic models for the decision maker. This identifies a set of
probabilities that we refer to as the set of relevant priors.

3.1 Axioms

The main object of study is a binary relation � on F . As usual, � (resp. ∼) denotes
the asymmetric (resp. symmetric) component of �. With a small abuse of notation,
we denote with the same symbol the prize x and the constant act that delivers x
for all s.

Axiom 1 (Weak Order) The relation � is non-trivial, complete, and transitive on F .

Axiom 2 (Monotonicity) If f, g ∈ F and f (s) � g(s) for all s ∈ S then f � g.

The above axioms define the class of rational preferences. The next two axioms
are tailored to the Anscombe–Aumann setup we consider.

Axiom 3 (Risk Independence) If x, y, z ∈ X and λ ∈ (0, 1] then x � y implies
λx + (1 − λ)z � λy + (1 − λ)z.

Axiom 4 (Archimedean) If f, g, h ∈ F and f � g � h, then there are α, β ∈ (0, 1)

such that α f + (1 − α)h � g � β f + (1 − β)h.

The above four axioms imply the existence of:

• a Bernoulli utility index on X , that is, a utility function u : X → R which is affine
and represents the restriction of � to X ;
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• the existence of certainty equivalents x f for all acts f ∈ F .

A binary relation � on F that satisfies Axioms 1–4 will henceforth be called an
MBA preference (for Monotonic, Bernoullian, Archimedean).

We now provide a basic representation result for binary relations satisfying the
above axioms. It generalizes previous results of Gilboa and Schmeidler’s (1989),
GMM, Maccheroni et al. (2006), C3M, and GS, which all impose more stringent
axiomatic requirements on preferences.

Proposition 1 A binary relation � satisfies Axioms 1–4 if and only if there exists a
non-constant, affine function u : X → R and a normalized, monotonic, continuous
functional I : B0(�, u(X)) → R such that for each f, g ∈ F

f � g ⇐⇒ I (u ◦ f ) ≥ I (u ◦ g). (1)

Moreover, if (Iv, v) also satisfies Eq. (1) and Iv : B0(�, v(X)) → R is normalized,
then there exist λ,μ ∈ R with λ > 0 such that v(x) = λu(x) + μ for all x ∈ X and
Iv(b) = λI (λ−1[b − μ]) + μ for all b ∈ B0(�, v(X)).

Observe that differently from Lemma 1 in GMM, the functional I is not neces-
sarily constant-linear.3 I therefore depends upon the choice of utility function (see
Ghirardato et al. 2005). On the other hand, due to its normalization, I is uniquely
determined by u and the equality I (u ( f )) = I

(
u

(
x f

)
1S

) = u
(
x f

)
.

3.2 Relevant priors and unambiguous preferences

We now recall GMM’s notion of “unambiguous preference” relation (see also Nehring
2007). Although it is defined under more general assumptions on preferences, such
relation has the same interpretation as in GMM: since ambiguity sensitivity may lead
to violations of the Anscombe–Aumann independence axiom, we look for rankings
that are not reversed by mixtures.

Definition 1 Let f, g ∈ F . We say that f is unambiguously preferred to g, denoted
by f �∗ g, if and only if, for each h ∈ F and each λ ∈ (0, 1], λ f + (1 − λ)h �
λg + (1 − λ)h.

It is not hard to verify that the relation �∗ enjoys the properties identified by GMM
(see GMM Propositions 4 and 5), and hence, as in GMM, it admits a representation
à la Bewley (2002) (see GMM Proposition A.2):4

3 A functional I on B0 (�) is said to be constant-linear if I (αa + β1S) = α I (a) + β for all a ∈ B0(�)

and for all α, β ∈ R with α > 0.
4 Here and henceforth, for results that are routine extension of existing results, we omit the proof and
provide a reference to the existing result.
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Rational preferences under ambiguity

Proposition 2 (GMM, Propositions 4 and 5) Let � be an MBA preference. Then, there
exists a non-empty, unique, convex, and closed set C ⊂ ba1(�) such that for each
f, g ∈ F ,

f �∗ g ⇐⇒
∫

u ◦ f d P ≥
∫

u ◦ g dP for all P ∈ C,

where u is the function obtained in Proposition 1. Moreover, C is independent of the
choice of normalization of u.

The last sentence—which follows from the structure of the Bewley representation—
shows that C is cardinally invariant even though I is not.

Thus, the unambiguous preference gives rise to a set of priors, which GMM interpret
as the (subjective) ambiguity revealed by the decision maker’s preferences. We refer
the reader to that paper for discussion of the appropriateness of such interpretation.

GS propose a behavioral definition of the set of priors that are relevant for the
individual’s primitive preference relation �. They then show that the resulting set is
precisely C and also show that the arguments provided by GMM in support of their
interpretation of C as revealed ambiguity extend to the preferences they study. We
refer the interested reader to GS for details. We shall sometimes implicitly invoke GS’
equivalence result and thus refer to C as the set of “relevant priors.”

Henceforth, any MBA preference � is consistently assumed to be represented by
the pair (I, u) as per Proposition 1, and by the relevant priors C as per Proposition 2.

4 A generalized Hurwicz representation

We now turn to the first consequence of the general representation results of the previ-
ous section. We show that the generalized α-MEU representation suggested by GMM,
which is in the spirit of Hurwicz’s “pessimism index” model (Hurwicz 1951), extends
to MBA preferences, and so does its interpretation in terms of comparative ambiguity.

We first introduce convenient notation. For each probability P ∈ ba1(�) and func-
tion a ∈ B0(�), let P(a) = ∫

a dP . Also, given a closed set D ⊂ ba1(�) and
function a ∈ B0(�), let D(a) = minP∈D P(a) and D(a) = maxP∈D P(a). Notice
that D (resp. D) is a normalized, monotonic, constant-linear, and concave (resp. con-
vex) functional on B0(�). In light of the previous two propositions, we then get the
following immediate Corollary.

Corollary 3 Let � be an MBA preference. For each a ∈ B0(�, u(X)) we have that

C(a) ≡ min
P∈C

P(a) ≤ I (a) ≤ max
P∈C

P(a) ≡ C(a).

A second piece of terminology is useful. GMM deem an act crisp if, intuitively, it
cannot be used to hedge the ambiguity of any other act. GMM formalize this intuition
via a behavioral condition that indirectly relies upon Certainty Independence. Since
MBA preferences do not necessarily satisfy this property, we require a slightly stron-
ger definition. We say that an act crisp if and only if it is unambiguously indifferent
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to a constant.5 Formally, denote by ∼∗ the symmetric component of �∗. Then, act
f ∈ F is crisp if there exists x ∈ X such that f ∼∗ x : for each h ∈ F and each
λ ∈ (0, 1],

λ f + (1 − λ)h ∼ λx + (1 − λ)h.

Intuitively, f cannot be used to hedge the ambiguity of any other act g. The charac-
terization of crispness in terms of C immediately follows.

Corollary 4 Let � be an MBA preference. Act f ∈ F is crisp if and only if C(u◦ f ) =
C(u ◦ f ).

We can now provide the sought generalized α-MEU representation. Given a
normalized representation (I, u) of an MBA preference �, define a function α :
B0(�, u(X)) → R by letting

α(a) = C(a) − I (a)

C(a) − C(a)
(2)

for all a ∈ B0(�, u(X)) such that C(a) �= C(a), and α(a) = 1
2 otherwise. The

following result is immediately proved.

Proposition 5 If � is an MBA preference, then there exist a non-empty, closed, and
convex set C ⊂ ba1(�), a non-constant, affine function u : X → R, and a function
α : B0(�, u(X)) → [0, 1] such that

(i) for each f, g ∈ F ,

f � g ⇐⇒ α (u ◦ f ) C(u ◦ f ) + [1 − α(u ◦ f )] C(u ◦ f )

≥ α(u ◦ g) C(u ◦ g) + [1 − α(u ◦ g)] C(u ◦ g);

(ii) u and C represent �∗ in the sense of Proposition 2;
(iii) for each non-crisp f, g ∈ F , if P(u ◦ f ) = P(u ◦ g) for all P ∈ C, then

α(u ◦ f ) = α(u ◦ g). For each crisp f ∈ F , α(u ◦ f ) = 1
2 .

Finally, if (u′, C ′, α′) also satisfy (i), (ii), and (iii) then C ′ = C, u′(x) = λu(x) + μ

for some λ,μ ∈ R with λ > 0, and α′(λ u ◦ f + μ) = α(u ◦ f ) for all non-crisp
f ∈ F .

Remark 4.1 The uniqueness part of Proposition 5 may be restated as follows: C is
unique, u is cardinally unique, and the function α(·) is also unique (for non-crisp
acts) if viewed as a function of acts rather than utility profiles. More precisely, α(·)
is invariant to cardinal transformations of the utility function u. (It is worth recalling
that GMM define α(·) over equivalence classes of acts, rather than functions.) As we
shall see, there is a sense in which α(·) can be interpreted as capturing the ambiguity
aversion of the decision maker; i.e., an ambiguity index.

5 For GMM’s preferences, the two conditions are equivalent: this follows immediately from Corollary 4
below and GMM’s Proposition 10.
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Since the functional I derived in Proposition 1 is not necessarily constant-linear,
the functional α does not have the same structure as in GMM. There, it is shown that,
for each two acts f, g ∈ F , α(u ◦ f ) = α(u ◦ g) holds if

P(u ◦ f ) ≥ Q(u ◦ f ) ⇔ P(u ◦ g) ≥ Q(u ◦ g) ∀P, Q ∈ C.

For MBA preferences, α(u ◦ f ) = α(u ◦ g) it requires the more restrictive condition
that P(u ◦ f ) = P(u ◦ g) for all P ∈ C .

4.1 Does B stand for biseparable?

MBA preferences share some of the properties of what Ghirardato and Marinacci
(2001) call “biseparable” preferences. In our context, a preference � is biseparable
if there exists a unique capacity ρ : � → R such that, given any representation (I, u)

of �, with I normalized, we have for each binary act x A y with x � y,

I (u ◦ (x A y)) = u(x)ρ(A) + u(y)(1 − ρ(A)). (3)

Biseparability thus requires that the “decision weight” attached to the event A in the
evaluation of the bet x A y be independent of the prizes x and y (provided x � y).
Also observe that biseparability is a property of preferences, not of their representa-
tion: Eq. (3) is equivalent to the requirement that x A y ∼ ρ(A)x +[1−ρ(A)]y, where
the r.h.s. of this indifference is a mixture of the prizes x and y. Hence, the capacity ρ

is also independent of the choice of u.6

It is not hard to see that in general, MBA preferences may fail to be biseparable, even
though they induce a cardinal and affine utility u. The following example illustrates
such a case.

Example 1 Recall (Klibanoff et al. 2005) that a Smooth Ambiguity preference is an
MBA preference whose representation (I, u) takes the form

I (u ◦ f ) = φ−1

⎛

⎜
⎝

∫

ba1(�)

φ (Q(u ◦ f )) dμ(Q)

⎞

⎟
⎠

where u is a Bernoulli utility function, φ : u(X) → R is continuous and strictly
increasing, and μ is a “second-order” probability defined over ba1(�). Consider an
arbitrary state space S and X = (0,∞). Suppose u(x) = x, μ({Q1}) = μ({Q2}) =
1
2 with Q1(A) = Q2(Ac) = 3

4 for some event A ∈ �, and φ(y) = log(y). In
this case, ambiguity aversion is intuitively decreasing in y. It follows that I (a) =

6 Consequently, under biseparability, the restriction of the normalized functional I to binary acts is also
independent of u, even though, for general acts, this is not generally the case. As it is argued in Ghirardato
et al. (2005), I is invariant with respect to u for all acts f in our Anscombe–Aumann framework only if we
assume that the preference satisfies Certainty Independence.
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e
1
2 log Q1(a)+ 1

2 log Q2(a) for all a ∈ B0(�, (0,∞)). Consider now the bet 2 A 1 that pays
2 USD if A obtains and 1 otherwise. We have

I (2 A 1) = e
1
2 log(1+Q1(A))+ 1

2 log(1+Q2(A)) ≈ 1.47902.

If, on the other hand, we consider the bet 3 A 2 then

I (3 A 2) = e
1
2 log(2+Q1(A))+ 1

2 log(2+Q2(A)) ≈ 2.48746

Thus, if we apply Eq. (3) to the bet 2 A 1, we conclude that ρ(A) equals 0.47902. If
we consider the bet 3 A 2, Eq. (3) implies that ρ(A) is 0.48746.

We therefore see that in this case, ρ(A) cannot be defined independently of the
choice of x � y. This is a violation of biseparability. Intuitively, since φ(y) = log(y)

displays decreasing absolute ambiguity aversion, as we increase the prizes involved,
we get a less conservative willingness to bet on the ambiguous event A.

While invariance of I and ρ to transformations of the utility function does not
obtain, for MBA preferences we can still obtain a “locally” biseparable representation
of �. Fix a pair (I, u) that represents � with I normalized and x � y. Given the bet
x A y on event A ∈ �, define

ρx,y(A) ≡ α(u ◦ x A y)(C(1A) − C(1A)) + C(1A). (4)

The uniqueness properties of the ambiguity index α(·) ensure that the quantity ρx,y is
independent of the utility function adopted (see Proposition 5). It is then easy to verify
that, when restricted to binary acts (bets) of the form x A y (for arbitrary A ∈ �), the
preference � has the representation

I (u ◦ (x A y)) = u(x)ρx,y(A) + u(y)(1 − ρx,y(A)). (5)

With this notation, an MBA preference is biseparable if ρx,y does not depend upon
x and y; we call such a preference MBis, for Monotone and Biseparable. It is natural
to ask whether an additional axiom identifies the MBis subclass of MBA preferences.
Ghirardato and Marinacci (2001) describe and axiomatize a model of preferences that
turns out to have exactly the type of separability we need. The main axiom is the
following; recall that an act f ∈ F is binary if it takes the form f = x A y for some
A ∈ � and x, y ∈ X .

Axiom 5 (Binary Certainty Independence) For all f, g ∈ F , with f, g binary acts,
x ∈ X, and λ ∈ (0, 1]: f � g if and only if λ f + (1 − λ)x � λg + (1 − λ)x.

We then have the following characterization (see Theorem 9 in Ghirardato and Mari-
nacci 2001).

Proposition 6 Let � be an MBA preference. � satisfies Axiom 5 if and only if it is
biseparable.
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5 Ambiguity aversion

Here, we consider the characterization of ambiguity attitudes for MBA preferences.
We first show that, as suggested in Remark 4.1 and consistently with the analysis in
GMM, the function α can be interpreted as an index of ambiguity aversion: The higher
α, the more averse to ambiguity the decision maker.

More precisely, following GM, we say that a preference �1 is more averse to
ambiguity than �2 if for each f ∈ F and each x ∈ X, f �1 x implies f �2 x .7

The comparison is made between preferences that display the same relevant priors C
and utility u; equivalently preferences such that, for each f, g ∈ F ,

f �∗
1 g ⇐⇒ f �∗

2 g. (6)

We immediately obtain:

Proposition 7 (GMM, Proposition 12) Let �1 and �2 be MBA preferences and let
�1 and �2 reveal identical ambiguity in the sense of Eq. (6). The following conditions
are equivalent:

1. �1 is more ambiguity averse than �2;
2. α1(u ◦ f ) ≥ α2(u ◦ f ) for all f ∈ F .

Notice that since as observed the function α may be dependent on the normalization
of utility, we need to normalize the two utility functions, u1 and u2, to be identical
before performing the comparison of the α functions.

Turning to an absolute notion of ambiguity aversion, we recall that GM (in this
differing from Epstein 1999) suggest using subjective expected utility preferences as
benchmarks for ambiguity neutrality. They propose the following axiomatic definition
of ambiguity aversion:

Axiom 6 (Ambiguity Aversion) There exists a non-trivial SEU preference � such
that for each g ∈ F and each x ∈ X

x � g �⇒ x � g.

That is, a preference is ambiguity averse if it is more ambiguity averse than some SEU
preference that displays the same risk attitudes.8

The characterization of ambiguity aversion given by GM immediately generalizes
to MBA preferences. We first need some more terminology. Given an MBA preference
with a representation (I, u), define

Core(I ) = {P ∈ ba1(�) : ∀a ∈ B0(�, u(X)), I (a) ≤ P(a)} and

Eroc(I ) = {P ∈ ba1(�) : ∀a ∈ B0(�, u(X)), I (a) ≥ P(a)} .

7 This is equivalent to the definition found in GM. For when �1 and �2 are MBA preferences (in an
Anscombe–Aumann setting), it can be seen that f �1 x ⇒ f �2 x is equivalent to f �1 x ⇒ f �2 x
and to (its contra-positive) x �2 f ⇒ x �1 f .
8 To further clarify, we consider SEU preferences à la Anscombe–Aumann, rather than à la Savage.
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These notions correspond to the game-theoretic notions when the preference, �, is
CEU.

Even for MBA preferences, absolute ambiguity aversion corresponds to non-emp-
tiness of Core(I ). (The symmetric property of ambiguity love is analogously charac-
terized as non-emptiness of Eroc(I ).)

Proposition 8 (GM, Theorem 12) Let � be an MBA preference. � is ambiguity averse
if and only if Core(I ) �= ∅.

It is also easy to extend Proposition 16 of GMM to show that such sets must be
contained in the set of relevant priors C . This result follows from Proposition 5 and
standard separation arguments.

Proposition 9 (GMM, Proposition 16) Let � be an MBA preference. Then

Core(I ) ∪ Eroc(I ) ⊂ C.

The GM proposal is not the most popular definition of ambiguity aversion in the
literature. The following notion, proposed by Schmeidler’s (1989), claims that title. It
imposes convexity of preferences.9

Axiom 7 (Convexity) If f, g ∈ F and α ∈ (0, 1) then

f ∼ g �⇒ α f + (1 − α) g � f.

For MBA preferences, these two notions of aversion to ambiguity are different.
Indeed, Example 5 below presents an ambiguity averse preference that does not sat-
isfy Convexity. On the other hand, the following is an example of a preference that is
not ambiguity averse but satisfies Convexity.

Example 2 Suppose X = R and consider S = {s1, s2}. Further, suppose � is the
power set. Then, we can identify each element P ∈ ba1(�) with the number P({s1}).
For this reason, without loss of generality, we denote by P both probability distri-
bution and number. Next, consider the binary relation � over F represented by the
functional V : F → R defined by

V ( f ) = min
P∈ba1(�)

((∫
f d P

)+

c1 (P)
−

(∫
f d P

)−

c2 (P)

)

where c1, c2 : ba1(�) → [0,∞] are such that c1(P) = P+1
2 and c2(P) = 1 + P .

It is immediate to see that c1 is affine and continuous and c2 is affine and con-
tinuous. Note also that u does not appear because it is chosen to be the iden-
tity. Moreover, minP∈ba1(�) c1(P) = 1

2 > 0 and maxP∈ba1(�) c1(P) = 1 while
minP∈ba1(�) c2 (P) = 1. By C3M, � is an MBA preference that satisfies convexity.
However, in light of the discussion in Cerreia-Vioglio et al. (2009), � is ambiguity
averse only if arg max c1 ∩ arg min c2 �= ∅, which is clearly not satisfied in our case.

9 Schmeidler calls this property “uncertainty aversion,” while GM call it “ambiguity hedging.”
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However, the next result shows that a connection exists between the two notions of
aversion to ambiguity: convexity amounts to ambiguity aversion holding “locally” for
all acts. For convenience, we restrict attention to MBA preferences for which there is
no worst consequence, that is, for each x ∈ X there exists y ∈ X such that x � y.
Given a representation (I, u) as in Proposition 1, this is equivalent to the condition
that infx∈X u(x) �∈ u(X).10

Theorem 10 Let � be an MBA preference that has no worst consequence. The fol-
lowing conditions are equivalent:

(i) � is convex;
(ii) for each f ∈ F there exists a SEU preference � f such that for each g ∈ F ,

f � f g �⇒ f � g.

In view of Theorem 10, Axiom 7 implies the following weak version of Axiom 6:
For each x ∈ X , there exists a SEU preference �x such that for each g ∈ F ,

x �x g �⇒ x � g.

Relative to Axiom 6, here the SEU preference �x depends on x . Hence, Axiom 7
implies Axiom 6 for all preferences for which this dependence can be removed. Con-
sider the sets

S�(x) = {�: � is SEU and for each g ∈ F , x � g ⇒ x � g} ∀x ∈ X.

In other words, S�(x) is the collection of all SEU preferences that are more ambiguity
averse than � at x . Axiom 7 implies that S�(x) �= ∅ for all x . On the other hand,
Axiom 6 is equivalent to

⋂

x∈X

S�(x) �= ∅.

As shown by Maccheroni et al. (2006, Proposition 7), a sufficient condition for the
above to hold is that the MBA preference relation satisfies their Weak Certainty
Independence axiom (i.e., that the representing I be translation invariant) as well as
Axiom 7.11

6 Ambiguity of acts and events

Having discussed ambiguity attitude, in this section we look at ambiguity itself. We first
propose a notion of unambiguous act that strengthens that of crisp act (see Sect. 4). We

10 The result is true, with a lengthier proof, without this assumption. Observe that the latter does not imply
that u(X) must be unbounded below. For example, consider X = (0, 1) and u(x) = x .
11 A functional I : B0(�) → R is translation-invariant if I (a + α1S) = I (a) + α for all a ∈ B0(�)

and α ∈ R.
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further characterize it for MBA preferences. Second, we employ this notion to define
unambiguous events and provide some characterizations. Armed with the characteriza-
tion of unambiguous acts and events for MBA preferences, we proceed to investigate
some consequences of the characterizations. In particular, we observe how, in the
spirit of Epstein and Zhang (2001), the derived set of unambiguous events can be
used to provide a “fully subjective” theory of expected utility (different from the one
they propose). We finally generalize Marinacci (2002) result on the consistency of
probabilistic sophistication and ambiguity aversion to non (α-)MEU preferences.

Throughout this section, it is convenient to adopt explicit notation for simple acts.
Fix a finite partition {E1, . . . , En} of S in � and corresponding prizes x1, . . . , xn ∈ X .
The act that delivers prize xi in states s ∈ Ei , for i = 1, . . . , n, will be denoted by
{x1, E1; . . . ; xn, En}. As before, if n = 2, then {x1, E; x2, S \ E} will be denoted
simply by x1 E x2

6.1 Unambiguous acts

We begin by motivating our definition of unambiguous acts. In keeping with the intu-
ition that ambiguity is revealed by non-neutral attitudes toward hedging, a starting
point is to require that unambiguous acts be crisp. To elaborate, we surely want the
set of unambiguous acts to include all constant acts. It seems plausible to require that
this set also includes acts that, like constants, are revealed not to provide any hedging
opportunities.

However, we would like the notion of unambiguous acts to capture an additional
intuition. Consider the three-color Ellsberg urn, containing 30 red balls and 60 green
and blue balls, in unspecified proportions. It is natural to regard a “bet on red” as
an unambiguous act, because the partition it induces on the state space S = {r, g, b}
the winning event {r} and the losing event {g, b}—consists of events whose relative
likelihood is intuitively clear. But, by the same token, a “bet on not red” should also
be regarded as unambiguous.

More broadly, if two acts f, g induce the same partition of the state space S, in the
sense that for all states s, s′ ∈ S, f (s) = f (s′) if and only if g(s) = g(s′), then either
they are both ambiguous, or else they are both unambiguous. In other words, the prop-
erty of being ambiguous or unambiguous depends upon the partition an act induces,
rather than on the specific assignment of distinct prizes to different elements of the
induced partition. The following example demonstrates that this additional, natural
requirement has bite.

Example 3 Let S = {s1, s2, s3} and consider an MBA preference with set C equal to
the convex hull of the two priors P = [1/3, 1/4, 5/12] and Q = [1/4, 5/12, 1/3].
Consider the act f = {x, {s1}; y, {s2}; z, {s3}}, with u(x) = 1, u(y) = 4, u(z) = 7.
Observe that P(u ◦ f ) = Q(u ◦ f ), so f is crisp (see Corollary 4). However, the
act g = {y, {s1}; z, {s2}; x, {s3}}, which “permutes” the payoffs delivered by f but is
measurable with respect to the same partition, satisfies P(u ◦ g) �= Q(u ◦ g): hence,
it is not crisp.
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Now, if unambiguous acts must be crisp (as we wish to assume), then g must be
deemed ambiguous. Since f and g induce the same partition of S, the preceding
argument then implies that we must deem f ambiguous as well.

Observe that, in Example 3, the prizes delivered by the acts f and g are the same.
This is the sense in which g is a “permutation” of f . We formalize this notion of
permutation below.

The discussion so far suggests the following loose provisional definition: an act is
unambiguous if all its “permutations” are crisp. However, a final difficulty must be
overcome. Acts map states to consequences, but hedging considerations involve utility
trade-offs. Hence, if we deem f unambiguous, and f (s) ∼ g(s) for all s ∈ S, we
should deem g unambiguous, too. Indeed, it turns out that, in the approach we pursue,
this is necessary in order to avoid paradoxical conclusions; see the next example.

Example 4 Consider again the 3-color Ellsberg urn, with S = {r, g, b}; consider
prizes x, y, z with x �= y �= z and u(x) = 1 > 0 = u(y) = u(z), and let f =
{x, {r}; y, {g}; z, {b}}, so f is, intuitively, a bet on red, even though strictly speak-
ing it is not a binary act. Finally, consider the set C generated by P = [1/3, 2/3, 0]
and Q = [1/3, 0, 2/3]. In keeping with the Ellsbergian intuition, we wish to deem
f unambiguous; however, consider the act f ′ = {y, {r}; x, {g}; z, {b}}, which deliv-
ers the same prizes as f and is measurable with respect to the same partition. Then
P(u ◦ f ′) = 2

3 > 0 = Q(u ◦ f ′), so f ′ is not crisp.
As in the previous example, f ′ must be deemed ambiguous, and hence the provi-

sional definition would deem f ambiguous as well, which seems counterintuitive.

Our definition of unambiguous act takes care of the difficulty illustrated in Exam-
ple 4 by defining permutations in terms of utility levels instead of payoffs.

Definition 2 An act g ∈ F is a �-permutation of another act f ∈ F if:

(i) for each s ∈ S there exists s′ ∈ S such that f (s) ∼ g(s′);
(ii) for each s ∈ S there exists s′ ∈ S such that g(s) ∼ f (s′);

(iii) for each s, s′ ∈ S, f (s) ∼ f (s′) if and only if g(s) ∼ g(s′).
An act f ∈ F is unambiguous if every �-permutation of f is crisp. The class of all
unambiguous acts is denoted by U .

Note that, if preferences are represented by a Bernoulli utility u on X , then conditions
(i) and (ii) above are equivalent to the statement that u ◦ f (S) = u ◦ g(S).

The following result shows that the set U is the largest set of crisp acts which is
“closed” with respect to �-permutations.

Proposition 11 Let � be an MBA preference. U is the largest set of crisp acts such
that if f ∈ U and g ∈ F is a �-permutation of f then g ∈ U .

The main result of this section shows that unambiguous acts have a sharp charac-
terization in terms of their expected utility with respect to probabilities in the set C .

Theorem 12 Let � be an MBA preference and f be an element of F . The following
conditions are equivalent:

(i) f ∈ U ;
(ii) P({s ∈ S : f (s) ∼ x}) = Q({s ∈ S : f (s) ∼ x}) for all x ∈ X, P, Q ∈ C;
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(iii) P({s ∈ S : u ◦ f (s) ≥ γ }) = Q({s ∈ S : u ◦ f (s) ≥ γ }) for all γ ∈ R,

P, Q ∈ C;
(iv) P({s ∈ S : u ◦ f (s) = γ }) = Q({s ∈ S : u ◦ f (s) = γ }) for all γ ∈ R,

P, Q ∈ C.

Statement (ii) is possibly the most useful, and powerful, characterization of unambig-
uous acts. In words, an act is unambiguous if and only if the events in the partition it
induces have the same probability according to all members of the set C . In particular,
this implies that if f is unambiguous and g induces the same partition as f (possibly
delivering entirely different prizes), then g is also unambiguous.

6.2 Unambiguous events

It is natural to define unambiguous any event with respect to which unambiguous
acts are measurable (a similar approach to defining unambiguous events was earlier
advocated by GM).

Definition 3 The class of unambiguous events is


 = {{s : f (s) ∼ x} : f ∈ U , x ∈ X} .

Analogously to what we had for unambiguous acts, we can offer two characteriza-
tion results for unambiguous events. The first is a behavioral result:

Proposition 13 For each A ∈ �, A ∈ 
 if and only if for each x, y ∈ X such that
x � y the act x A y is crisp.

By part (ii) of Theorem 12, arguing as we did after the statement of that theorem, the
part “for each x, y ∈ X such that x � y” could be changed to “for some x, y ∈ X
such that x � y ” without invalidating the result (see Appendix D.2.1). This makes the
behavioral identification of the set 
 conceptually easier, and it also conforms with
our intuition that ambiguity is a property of the event partition the act is based on.

Thus, an event A is unambiguous if it is such that any bet on such event—i.e., any
act of the form x A y with x � y—cannot be used to hedge the ambiguity in another
act [Nehring (2001) proposes a different definition which, under Certainty Indepen-
dence, turns out to be equivalent to Definition 3, and hence also to an earlier one he
presented in Nehring (1999)]. Conversely, A is ambiguous if x A y �∼∗ z for all z ∈ X .
For example, this is the case if x A y ∼ z but there exist λ ∈ (0, 1] and h ∈ F such
that λx A y + (1 − λ)h �∼ λz + (1 − λ)h.

The second result shows that unambiguous events have a simple and intuitive char-
acterization in terms of the probabilities in C . Notice that this is independent of the
normalization chosen for u. There is also a natural connection with the “local” will-
ingness to bet ρx,y defined in Eq. (5).

Proposition 14 For each A ∈ �, A ∈ 
 if and only if P(A) = Q(A) = ρx,y(A) for
all P, Q ∈ C and all x, y ∈ X with x � y.
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As a consequence, for all MBA preferences, the collection 
 has a simple and intuitive
structure (see Zhang 2002; Nehring 1999).

Corollary 15 
 is a (finite) λ-system. That is: (1) S ∈ 
; (2) if A ∈ 
 then Ac ∈ 
;
(3) if A, B ∈ 
 and A ∩ B = ∅ then A ∪ B ∈ 
.

It is natural to surmise that any act whose upper level sets are unambiguous events
should be deemed unambiguous (see, e.g., Epstein and Zhang 2001). Proposition 14,
paired with Theorem 11, allows us to show that this is indeed the case.

Corollary 16 For each act f ∈ F , f ∈ U if and only if its upper preference sets
{s ∈ S : f (s) � x} belong to 
 for all x ∈ X.

Nehring (1999) shows that, if S is finite and I is a Choquet integral (so that the set
C can be simply characterized; see Example 17 in GMM), the set 
 can be further
characterized as follows:


 = {A ∈ � : ρ(B) = ρ(B ∩ A) + ρ(B ∩ Ac) for all B ∈ �},

where ρ = ρx,y , which in the CEU case is independent of the choice of x and y. It
follows that for CEU preferences 
 is an algebra, a result that shows that such prefer-
ences cannot be used to model some potentially interesting ambiguity situations (see
for instance the 4-color example in Zhang 2002).

Klibanoff et al. (2005) propose a behavioral notion of unambiguous event and char-
acterize it in the context of their Smooth Ambiguity model. They discuss it further in
Klibanoff et al. (2011). Under mild additional conditions (for example those required
in Klibanoff et al. 2011, Theorem 2.1), it can be shown that for Smooth Ambigu-
ity preferences, their notion coincides with ours.12 Moreover, since Klibanoff et al.
(2011, Theorem 3.2) show the equivalence of their approach to the one of GM (to
be discussed below), for such preferences, the three approaches deliver the same set
of unambiguous events. But then by Corollary 16, they also deliver the same set of
unambiguous acts.

6.2.1 Ambiguity and willingness to bet

GM propose a behavioral notion of unambiguous event for a subclass of the bisepara-
ble preferences mentioned in Sect. 4.1. They show that it has a simple characterization
in terms of the willingness to bet set function ρ of Eq. (3). An event B is unambiguous
in their sense if and only if ρ(B) + ρ(Bc) = 1.

The definition given above enjoys two main advantages over this earlier proposal:
it is more general because it applies to any MBA preference; more importantly, it is
more accurate as it distinguishes between events that are truly perceived unambiguous
and those that appear to be because of the behavior of the decision maker’s ambiguity
attitude. The following result illustrates this point. Here, ρx,y(·) is the local willingness
to bet index defined in Eq. (5) and α(·) is the ambiguity index of Eq. (2).

12 A proof is available upon request.
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Proposition 17 Let � be an MBA preference and let x, y ∈ X be such that x � y.
The following conditions are equivalent for each A ∈ �:

(i) ρx,y(A) + ρx,y(Ac) = 1 (ρx,y is complement-additive);
(ii) either A ∈ 
, or A ∈ � \ 
 and α(u ◦ x A y) + α(u ◦ x Ac y) = 1.

Moreover, if � is ambiguity averse, then (i) and (i i) are equivalent to

(iii) ρx,y(A) = P(A) for all P ∈ Core(I ) and all A ∈ �.

To interpret, an event satisfies the condition ρx,y(A) + ρx,y(Ac) = 1 for some x and
y in exactly two cases: either 1) A is unambiguous or 2) A is not unambiguous but
the decision maker’s ambiguity index in evaluating the bets x A y and x Ac y behaves
so as to perfectly compensate the ambiguity aversion (resp. love) revealed in evaluat-
ing x A y by evaluating the complementary bet x Ac y in an ambiguity seeking (resp.
averse) fashion. That is, ρx,y(A) + ρx,y(Ac) = 1 could be satisfied by pure mathe-
matical accident, if the decision maker’s ambiguity attitude is “inconsistent” in just
the right way.

On the other hand, suppose that the preference satisfies, given x and y, for each
A ∈ � \ 


α(u ◦ x A y) + α(u ◦ x Ac y) �= 1 (7)

Then, ρx,y(A) + ρx,y(Ac) = 1 if and only if A is unambiguous. For instance, this is
the case of a decision maker for whom α > 1/2 uniformly. The following example
shows one case of such consistency of ambiguity aversion in a CEU preference.

Example 5 Consider the following variant of the Ellsberg “3-color” paradox. An urn
contains 120 balls, 30 of which are red, while the remaining 90 are either blue, green,
or yellow. Assume a decision maker facing this problem has a CEU preference �
represented by a (non-constant and convex-ranged) utility u and a capacity ρ on
S = {r, g, b, y},13 where

ρ (B) = 1

4
υ{r} (B) + 3

4
ν (B ∩ {g, b, y}) for all B.

υ{r} is such that υ{r} (B) = 1 if r ∈ B and υ{r} (B) = 0 otherwise. On the other hand,
ν is a capacity on {g, b, y} defined as follows: ν(∅) = 0, ν({g, b, y}) = 1 and

ν({g}) = ν({b}) = ν({y}) = 7

24
, ν({g, b}) = ν({g, y}) = ν({b, y}) = 1

2
.

Observe first that Core(ρ)(= Core(I )) contains (at least) the uniform probability on
S and ρ is not supermodular. Therefore, � satisfies Ambiguity Aversion, but not Con-
vexity. Observe next that ρ({r}) = 1/4 and ρ({g, b, y}) = 3/4. That is, {{r}, {g, b, y}}
is a candidate for being an unambiguous partition. According to Proposition 17, this

13 Notice that such preference is biseparable, so that ρ does not depend on the choice of x and y and
α(u ◦ x Ay) = α(u ◦ x ′ Ay′) ≡ α(A) for all x � y and x ′ � y′.
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will be the case if α({r}) + α({g, b, y}) �= 1. Using Example 17 of GMM, it can be
checked after some tedious calculation that for �

C = Conv
{
[1/4, x, y, z] ∈ R

4 : [x, y, z] ∈ Per({5/32, 7/32, 12/32})
}

.

It follows that 
 = {∅, S, {r}, {g, b, y}} as expected. Moreover,

α({y}) = α({b}) = α({g}) = 5/7, α({r, g, b}) = α({r, g, y}) = α({r, b, y}) = 1,

α({r, g}) = α({r, b}) = α({r, y}) = 5/8, α({b, y}) = α({g, y}) = α({g, b}) = 1.

That is, � satisfies α(A) + α(Ac) �= 1 for any B ∈ � \ 
.

It turns out that Eq. (7) has a simple behavioral characterization:

Proposition 18 Let � be an MBA preference and let x, y ∈ X be such that x � y.
Equation (7) holds for A ∈ � \ 
 if and only if

1

2
cx Ay + 1

2
cx Ac y �∼ 1

2
x + 1

2
y (8)

where for each f ∈ F we denote by c f one of its certainty equivalents.

We shall see that this result proves useful in characterizing situations in which com-
plement additivity is a full “marker” for the lack of ambiguity (see Proposition 21).

The equivalence of (iii) with (i) in Proposition 17 is also interesting. It shows that
for an ambiguity averse decision maker, the GM condition corresponds to agreement
of ρx,y with the members of Core(I ), rather than—see Proposition 14—with the
members of the (larger) set C .

We conclude this discussion by observing that the definition of the set 
 and some
of the notation and terminology introduced in the previous paragraphs allow us to
provide an alternative characterization of MBis preferences, complementing Propo-
sition 6. If there are “enough” unambiguous events, Savage’s Postulate P4—which is
in general weaker than Binary Certainty Independence—suffices to guarantee that the
preference is biseparable. We need some notation first. Given a set D ⊆ ba1(�) and
a collection ϒ ⊆ �, we denote D(ϒ) ≡ {P(A) : ∃P ∈ D, A ∈ ϒ}.

Proposition 19 Let � be an MBA preference with unambiguous events 
 such that
C(
) is dense in (0, 1). The following conditions are equivalent:

(i) there exists a unique capacity ρ such that Eq. (3) holds for all binary act x A y
and all normalized representation (I, u) of �;

(ii) � satisfies Savage’s P4 axiom. That is, for each A, B ∈ � and each
x, y, x ′, y′ ∈ X such that x � y and x ′ � y′, x A y � x B y if and only if
x ′ A y′ � x ′ B y′.
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6.3 A “fully subjective” expected utility model

As observed by Epstein and Zhang (2001), there is an important sense in which
Savage’s (1954) construction of subjective probability is not “fully subjective.”
In fact, Savage (and later Machina and Schmeidler 1992, in their extension of
Savage’s construction) assumes exogenously that the probability that represents the
decision maker’s beliefs is defined on the whole (σ -) algebra �. Examples like Ells-
berg’s paradox suggest that a natural extension of Savage’s philosophy might be to
define probabilities wherever the decision maker feels comfortable, and avoid doing so
otherwise, thus making also the domain of the probability charge “subjective.” Epstein
and Zhang propose a definition of unambiguous event, and in the spirit of Machina and
Schmeidler (1992) provide an axiomatization of preferences whose induced likelihood
relations are represented by a probability charge on the set of unambiguous events—
which under such axiomatic restrictions (with a minor amendment, see Kopylov 2007)
is a λ-system. Kopylov (2007) provides an analogous result using a slightly different
set of axioms, generating weaker structural restrictions on the set of unambiguous
events (it is what he calls a “mosaic”).

The results obtained thus far allow us to provide a different “fully subjective” ver-
sion of Savage’s model, summarized below (see also Nehring 2002, Proposition 1):14

Proposition 20 If � is an MBA preference on F , then there is a finite λ-system of
events 
 ⊆ � such that � has a SEU representation (with utility u) on the set U of
the 
-measurable acts. That is, there exists a probability charge P : � → [0, 1] such
that for each f, g ∈ U ,

f � g ⇐⇒
∫

u ◦ f dP ≥
∫

u ◦ g dP

Moreover, P can be chosen to be in C and in this case it is uniquely defined on 
.

We thus conclude that the sets of unambiguous events and acts derived above pro-
vide us with natural “endogenous” domains for a theory of subjective expected utility
maximization. The decision maker assigns sharply defined probabilities only to those
events that are revealed unambiguous by his behavior, assigning interval-valued prob-
abilities to all the other events. Observe that nothing in our analysis prevents the trivial
case 
 = {∅, S}, in which SEU maximization never really appears. This is a difference
with Epstein and Zhang’s analysis, in which the set of unambiguous events is very
rich by axiomatic requirement on the preferences.

As it is apparent from the statement, there is a sense in which our requirement on
preferences is more stringent than Epstein–Zhang’s. We look for a set of acts on which
the preference � satisfies the full-blown SEU model of Savage, rather than just being
probabilistically sophisticated in the sense of Machina and Schmeidler. The difference

14 As observed by Kopylov (2007), one can use Zhang’s (2002) definition of unambiguous event to obtain
a “fully subjective” SEU model, similarly to what we do here. The axiomatics and the sets of unambiguous
events being different, the results are not equivalent.
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has more than just theoretical significance. The Epstein–Zhang construction is based
on a definition of unambiguous event which implies that 
 = �, i.e., every event is
unambiguous, when the decision maker is probabilistically sophisticated. However,
as discussed at length in Ghirardato and Marinacci (2002), a probabilistically sophis-
ticated decision maker might still be reacting to the presence of ambiguity. The only
way to make sure that he is not, is to have a (rich enough) collection of events which
are exogenously known to be unambiguous as a calibration device. Therefore, the con-
clusion that all events are unambiguous to a probabilistically sophisticated decision
maker hinges on an exogenous notion of ambiguity of events that we dispense with.

A problem that is common to all such “fully subjective” approaches is that the
domain of the probability charge may be far from being unique. That is, while our
set 
 is certainly unique, it is not true that one cannot find another set of events
on which � has an SEU representation. Just to make a simple example, suppose
that � is a CEU preference on a finite S, and consider any monotonic class like
� = {{s1}, {s1, s2}, . . . , S}. Given the family of acts that are �-measurable, there is a
probability P that represents �, as all such acts are comonotonic. On the other hand,
one would have a hard time arguing that � is a natural domain for a “fully subjective”
theory. But even imposing structural requirements on the domain (e.g., that it be a
λ-system) is not enough to uniquely identify it in general.15 There might be a multi-
plicity of “endogenous domains” for subjective probability, so that the choice of one
must be motivated by considerations other than identifying where the decision maker
is capable of formulating sharp probabilities.

6.4 Unambiguous events and weak probabilistic sophistication

A result of Marinacci (2002) shows that preferences that 1) have an α-MEU rep-
resentation (with constant α �= 1/2) and 2) are probabilistically sophisticated with
respect to a non-atomic prior collapse to SEU as soon as the set of priors used in
the representation induces a “non-trivial” 
 (see below). Indeed, the result requires
an even weaker condition than probabilistic sophistication. We say that a probability
P ∈ ba1(�) is convex-ranged on � if for each B ∈ � and each α ∈ [0, P(B)] there
exists � � A ⊆ B such that P(A) = α.

Definition 4 A binary relation � on F has weak probabilistic beliefs if there exists
a convex-ranged P∗ ∈ ba1(�) and x � y such that for each A, B ∈ �,

P∗(A) = P∗(B) �⇒ x A y ∼ x B y.

Thus, a preference has weak probabilistic beliefs if the indifference sets of the
likelihood relation obtained by considering bets on events (with fixed payoffs x � y)
contain the level sets of the probability P∗. The condition is weaker than probabilistic

15 A similar observation is made by Kopylov (2007) about his results, although he uses the weaker notion
of mosaic.
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sophistication, as it does not require full agreement between the ranking induced by
P∗ and the likelihood ordering.16

We show that Marinacci’s result generalizes to a broad class of MBA preferences
violating the constant ambiguity index assumption.17 It is only needed that ambiguity
attitudes over bets do not fluctuate in an “inconsistent” fashion; that is, that condition
(8) holds.

Proposition 21 Let � be an MBA preference with unambiguous events 
 and let � be
a σ -algebra. Suppose that � satisfies condition (8) for all A ∈ � \ 
 and that C only
contains probability measures and satisfies C(
) �= {0, 1}. The following conditions
are equivalent:

(i) � has weak probabilistic beliefs;
(ii) � is a SEU preference whose beliefs are represented by a non-atomic proba-

bility measure P∗.

Marinacci’s original result is an impossibility statement: under the assumptions
of his theorem, probabilistic sophistication is compatible with α-MEU preferences
only in the degenerate case of EU preferences. Our extension shows that Marinacci’s
result is indeed much more sweeping than that. In particular, it applies also to CEU
preferences. Of course, the discussion in Marinacci (2002) on the importance of the
assumptions in the theorem still applies. In particular, we want to emphasize a simple
example of a class of CEU preferences which is probabilistic sophisticated without
being SEU.

Example 6 On an infinite state space (S, �), consider a non-atomic probability mea-
sure P and a strictly convex transformation function ϕ : [0, 1] → [0, 1], increasing
and satisfying ϕ(0) = 0 and ϕ(1) = 1. Then, a CEU preference � with (some util-
ity u and) capacity ρ = ϕ(P)—a subjective Rank-Dependent EU preference—is
probabilistically sophisticated and not SEU. Notice that � is MBA (indeed, invariant
biseparable) and satisfies condition (7), since it has α ≡ 1 by the strict convexity of
ϕ. However, it can be checked that for � we have 
 = {∅, S}, so that there is no
non-trivial unambiguous event.

We close by recalling an axiom from GMM which can be employed to ensure that,
as in the assumptions of Proposition 21, all the elements of the set C are probability
measures, rather than charges:

Axiom 8 (Monotone Continuity) For all x, y, z ∈ X such that y � z, if {An}n∈N is a
sequence in � such that An ↓ ∅, then there exists n̄ such that y �∗ x An̄ z.

It is immediate to see that Proposition B.1 in GMM extends to MBA preferences, show-
ing that in the presence of the previous axioms, Monotone Continuity is necessary and
sufficient for C to contain only probability measures.

16 Moreover, probabilistic sophistication imposes further requirements beyond the existence of probabi-
listic beliefs. While the requirement that P∗ be convex-ranged is not strictly speaking part of the definition
of probabilistic sophistication, all the existing axiomatizations of probabilistic sophistication in a fully
subjective setting—first and foremost Machina and Schmeidler (1992)—characterize preferences inducing
convex-ranged beliefs.
17 Similar results are proved by Cerreia-Vioglio et al. (2009) and Strzalecki (2010).
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Appendix A: Proofs of the results in Section 3

A.1 Proof of Proposition 1

We just prove the necessity part of the statement. Sufficiency follows from routine
arguments. Since � satisfies Weak Order, Risk Independence, Archimedean, by Kreps
(1988, Theorem 5.11) it follows that there exists an affine function u : X → R such
that x � y if and only if u (x) ≥ u (y). Since � in non-trivial and satisfies Monotonic-
ity, u is non-constant. We next show that each f in F admits a certainty equivalent.

Claim 1 For each f ∈ F there exists x f ∈ X such that x f ∼ f .

Proof of the Claim: Since f (S) is a finite subset of X and since � is a Weak Order
and it satisfies Monotonicity, it follows that there exist two consequences x1 and x0
in X such that x1 � f � x0. We denote by xα = αx1 + (1 − α) x0 for all α ∈ [0, 1].
If either x0 ∼ f or x1 ∼ f then the statement follows. Otherwise, we have that
x1 � f � x0. Define

U = {α ∈ (0, 1) : αx1 + (1 − α) x0 � f }
and

L = {β ∈ (0, 1) : f � βx1 + (1 − β) x0} .

Since � satisfies Archimedean, it follows that U and L are non-empty. Moreover,
since � satisfies Weak Order and u is affine, we have that

α > β ∀α ∈ U,∀β ∈ L . (9)

Define ᾱ = infα∈U α and β̄ = supβ∈L β. By (9), it is immediate to see that ᾱ ≥ β̄.
Since U and L are non-empty, we have that 1 > ᾱ ≥ β̄ > 0. Then, we have three
cases:

1. xᾱ ∼ f . The statement follows by imposing x f = xᾱ .
2. ᾱ ∈ U . It follows that xᾱ � f . Since � satisfies Archimedean, it follows that

there exists λ ∈ (0, 1) such that

xλᾱ = λxᾱ + (1 − λ) x0 � f,

thus λᾱ ∈ U and λᾱ < ᾱ. This is a contradiction with ᾱ = infα∈U α.
3. ᾱ �∈ U and xᾱ �∼ f . Since � satisfies Weak Order, it follows that f � xᾱ , that is,

ᾱ ∈ L . Since ᾱ ≥ β̄ = supβ∈L β ≥ ᾱ, this implies that ᾱ = β̄. Since � satisfies
Archimedean, it follows that there exists λ ∈ (0, 1) such that

f � λx1 + (1 − λ) xβ̄ = xλ+(1−λ)β̄ ,

thus λ + (1 − λ) β̄ ∈ L and β̄ < λ + (1 − λ) β̄. This is a contradiction with
β̄ = supβ∈L β. ��
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Notice that u (X) is an interval and B0 (�, u (X)) = {u ◦ f : f ∈ F }. We define
I : B0 (�, u (X)) → R by

I (a) = u
(
x f

)
where f ∈ F and u ◦ f = a.

In light of the previous claim, I is well defined. Indeed, pick a ∈ B0 (�, u (X)). Con-
sider f, g ∈ F such that u◦ f = a = u◦g. It follows that u ( f (s)) = a (s) = u (g (s))
for all s ∈ S. Since u represents � over X , it follows that f (s) ∼ g (s) for all s ∈ S. By
Monotonicity, we can conclude that f ∼ g. Since � satisfies Weak Order, it follows
that x f ∼ xg . Thus, we have that

u
(
x f

) = I (a) = u
(
xg

)
.

Consider a, b ∈ B0 (�, u (X)) such that a (s) ≥ b (s) for all s ∈ S. It follows that
there exist f, g ∈ F such that u ◦ f = a and u ◦ g = b. Since a ≥ b and � satisfies
Monotonicity, it follows that f � g. Since � satisfies Weak Order and u represents
� on X , we thus obtain that

x f � xg and I (a) = u
(
x f

) ≥ u
(
xg

) = I (b) .

Next, we show that I is normalized. Pick k ∈ u (X). By assumption, there exists x ∈ X
such that u (x) = k. Moreover, if a = k1S then a = u ◦ f where f = x . Notice that
x f can be chosen to be equal to x . By definition of I , it follows that

I (a) = u
(
x f

) = u (x) = k.

Pick f, g ∈ F . Since � satisfies Weak Order and u represents � on X , we have that

f � g ⇔ x f � xg ⇔ u
(
x f

) ≥ u
(
xg

) ⇔ I (u ◦ f ) ≥ I (u ◦ g) . (10)

Finally, we prove the continuity of I . Since I is normalized and monotonic,
I (B0 (�, u (X))) = u (X). Consider a, b ∈ B0 (�, u (X)) such that a ≤ b and
I (b) > k where k ∈ R. It follows that there exist f and g in F such that a = u ◦ f
and b = u ◦ g. We have two cases:

1. I (a) > k. In this case, B0 (�, u (X)) � αb + (1 − α) a ≥ a for all α ∈ (0, 1).
Since I is monotonic, it follows that

I (αb + (1 − α) a) ≥ I (a) > k.
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2. I (a) ≤ k. Since I (b) > k, we have that there exists k′ ∈ u (X) such that
I (b) > k′ > k ≥ I (a). This implies that there exists x ′ ∈ X such that u

(
x ′) = k′.

By (10), we have that g � x ′ � f . Since � satisfies Archimedean, it follows that
there exists α ∈ (0, 1) such that αg + (1 − α) f � x ′. Since u is affine and by
(10), we have that

I (αb + (1 − α) a) = I (u ◦ (αg + (1 − α) f )) > I
(
u

(
x ′)) = u

(
x ′) = k′ > k.

It follows that I satisfies condition (iv) in Lemma 45 of C3M. By Proposition 46
of C3M, I is lower semicontinuous. Upper semicontinuity follows by a symmetric
argument.

The uniqueness part of the statement follows from routine arguments.

Appendix B: Proofs of the results in Section 4

B.1 Proof of Proposition 6

Suppose � is biseparable, so ρx,y is independent of x, y. Then, for each x, y ∈ X
with x � y and each A ∈ �, I (u ◦ x A y) = ρ(A)u(x) + [1 − ρ(A)]u(y). Further-
more, if x ∼ y, I (u ◦ x A y) = I (u(x)) = u(x) = ρ(A)u(x) + [1 − ρ(A)]u(y)

where the first equality follows from the normalization and monotonicity of I . Thus,
I (u ◦ x A y) = ρ(A)u(x) + [1 − ρ(A)]u(y) whenever x � y.

Now, for any two binary acts f, g, we can always choose A, A′ ∈ � so that
f = x A y and g = x ′ A′ y′, with x � y and x ′ � y′. Then, for each z ∈ X and
λ ∈ (0, 1], λ f + (1−λ)z = (λx + (1−λ)z) A (λy + (1−λ)z) and so I (u ◦[λ f + (1−
λ)z]) = ρ(A)u(λx +(1−λ)z)+[1−ρ(A)]u(λy+(1−λ)z) = λI (u◦ f )+(1−λ)u(z)
and similarly for λg + (1 − λ)z. Axiom 5 follows.

In the opposite direction, suppose Axiom 5 holds. Fix A ∈ � and consider the
fictitious state space SA = {s, t} acts FA = X SA , and preferences �A on FA defined
by f A �A gA if and only if f A(s) A f A(t) � gA(s) A gA(t) for all f A, gA ∈ FA.
Then �A satisfies the GMM axioms and admits a representation (IA, u A), with IA

normalized, monotonic, and, constant-linear. Furthermore, we can assume w.l.o.g. that
u A = u, because �A and � agree on constant acts.

Now consider x, y, x ′, y′ ∈ X with x � y and x ′ � y′. There exist α, β ∈ R, with
α > 0, such that αu(x) + β = u(x ′) and αu(y) + β = u(y′): hence, if f A, gA ∈
FA are defined by f A(s) = x, f A(t) = y, gA(s) = x ′ and gA(t) = y′, we have
IA(u ◦ gA) = α IA(u ◦ f A) + β. Therefore, if c f A , cgA ∈ X are the �A–certainty
equivalents of f A and gA respectively then u(cgA ) = αu(c f A ) + β as well.

Now c f A ∼A f A if and only if c f A ∼ x A y and similarly cgA ∼A gA if and only
if cgA ∼ x ′ A y′. It follows that I (u ◦ x ′ A y′) = u(cgA ) = αu(c f A ) + β = α I (u ◦
x A y) + β. Equation (5) and the fact that αu(x) + β = u(x ′) and αu(y) + β = u(y′)
then imply that ρx,y(A) = ρx ′,y′(A).

Hence, a set function ρ : � → [0, 1] that satisfies Eq. (3) can be uniquely defined.
Since I is normalized and monotonic, it is straightforward to verify that ρ is in fact a
capacity.
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Appendix C: Proofs of the results in Section 5

C.1 Proof of Theorem 10

Assume that � satisfies Weak Order, Monotonicity, Risk Independence, and Archime-
dean (Continuity). By Proposition 1, it follows that � satisfies Continuity as defined
in C3M. Recall that � has no worst consequence.

(i) implies (ii). By Theorem 3 of C3M, if � satisfies Convexity then there exists
a non-constant affine function u : X → R and a function G� : u (X) × ba1 (�) →
(−∞,∞] such that the functional I : B0 (�, u (X)) → R, defined by

I (a) = min
P∈ba1(�)

G�

(∫
a dP, P

)
,

is normalized, well defined, and such that

f � g ⇔ I (u ◦ f ) ≥ I (u ◦ g) .

Moreover, G� (t, P) = suph∈F

{
u (xh) : ∫

u ◦ h d P ≤ t
}

for all (t, P) ∈ u (X) ×
ba1 (�). Fix an act f ∈ F . Consider Pf ∈ ba1 (�) such that G�

(∫
u ◦ f d Pf , Pf

) =
I (u · f ). Define t = ∫

u ◦ f d P . Assume that g ∈ F is such that
∫

u ◦ f d Pf ≥∫
u ◦ g d Pf . By the definition of G�

(
t, Pf

)
and since t ≥ ∫

u ◦ g d Pf , it follows that
u

(
xg

) ≤ G�
(
t, Pf

) = I (u ◦ f ). Since I is normalized, it follows that I (u ◦ g) =
I
(
u

(
xg

)) ≤ I (u ◦ f ), that is, f � g. Summing up, if we define the binary relation
≥ f on F by

f1 ≥ f f2 ⇔
∫

u ◦ f1 dP ≥
∫

u ◦ f2 d P

then we have that f ≥ f g implies that f � g. Since f was arbitrarily chosen, the
statement follows.

(ii) implies (i). By Proposition 1, it follows that there exists a non-constant affine
function u : X → R and a normalized, monotonic, and continuous functional I :
B0 (�, u (X)) → R such that f � g if and only if I (u ◦ f ) ≥ I (u ◦ g). We define
G� : u (X) × ba1 (�) → (−∞,∞] by

G� (t, P) = sup
h∈F

{
u (xh) :

∫
u ◦ h dP ≤ t

}
∀ (t, P) ∈ u (X) × ba1 (�) .

Notice that G� (·, P) : R → (−∞,∞] is an increasing function for all P ∈ ba1 (�).
Moreover, observe that I (u ◦ f ) = u

(
x f

) ≤ G�
(∫

u ◦ f d P, P
)

for all f ∈ F and
for all P ∈ ba1 (�). It follows that

I (u ◦ f ) ≤ inf
P∈ba1(�)

G�

(∫
u ◦ f dP, P

)
∀ f ∈ F .
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Pick f ∈ F . By assumption, there exists a non-trivial SEU preference ≥ f such that

f ≥ f g ⇒ f � g.

In other words, we have that there exists P̄ ∈ ba1 (�) such that

∫
u ◦ f d P̄ ≥

∫
u ◦ g d P̄ ⇒ I (u ◦ f ) ≥ I (u ◦ g) .

By definition of G�, this implies that

G�

(∫
u ◦ f d P̄, P̄

)
= I (u ◦ f ) .

Since f was arbitrarily chosen, we can conclude that

I (u ◦ f ) = min
P∈ba1(�)

G�

(∫
u ◦ f dP, P

)
∀ f ∈ F . (11)

Consider f, g ∈ F such that f ∼ g. Define k = I (u ◦ f ) = I (u ◦ g). Define

UP (k) =
{

h ∈ F : G�

(∫
u ◦ h dP, P

)
≥ k

}
.

Since G� (·, P) is an increasing function for all P ∈ ba1 (�), it follows that UP (k)

is closed under convex combinations for all P ∈ ba1 (�). By (11), it follows that
f, g ∈ UP (k) for all P ∈ ba1 (�). This implies that

G�

(∫
u ◦ (α f + (1 − α) g) dP, P

)
≥ k ∀α ∈ (0, 1) ,∀P ∈ ba1 (�) .

By (11), we can conclude that I (u ◦ (α f + (1 − α) g)) ≥ I (u ◦ f ), that is, α f +
(1 − α) g � f . Since f and g were arbitrarily chosen, it follows that � satisfies
Convexity.

Appendix D: Proofs of the results in Section 6

Throughout this appendix we write C(A) (resp. C(A)) in place of C(1A) (resp. C(1A)).
We also write αu ◦ f in lieu of α(u◦ f ). Notice that for expositional reasons, the results
are proved in a different order than that in the main text.

We also make a useful observation. Call reduced an act f such that f (s) ∼ f (s′)
implies f (s) = f (s′). Given any non-reduced act f , we observe that there is a reduced
act which, while being state-by-state indifferent to f , “simplifies” it by restricting its
range so that it only contains non-indifferent payoffs. A �-reduction g of f is a
reduced act g = {x1, A1; . . . ; xn, An}, with x1 � x2 � . . . � xn and {A1, . . . , An} a
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partition of S in � such that g(s) ∼ f (s) for all s ∈ S. Finally, given a reduced act
f = {x1, A1; . . . ; xn, An}, with x1 � x2 � . . . � xn and {A1, . . . , An} a partition
of S in �, and a permutation σ of {1, 2, . . . , n}. Define the permuted act fσ as
fσ = {xσ(1), A1; . . . ; xσ(n), An}. The following lemma is immediately verified.

Lemma 22 Let � be an MBA preference. f is unambiguous if and only if there exists
some �-reduction g of f for which gσ is crisp for all permutation σ of g’s payoffs.

Proof Note that a �-reduction of an act f is a �-permutation according to Defini-
tion 2. Hence, if f is unambiguous and g is a �-reduction of g , each permutation of
g is a �-permutation of f , and therefore, it is crisp. Conversely, let f̄ be a � -permu-
tation of f , and let g be a �-reduction of f for which gσ is crisp for all permutation
σ . In particular, there exists a permutation σ̄ such that gσ̄ (s) ∼ f̄ (s) for all s. By
assumption, gσ̄ is crisp, so gσ̄ ∼∗ x for some x ∈ X . But then, by monotonicity of
�∗, also f̄ ∼∗ x , that is, f̄ is crisp. Thus, f is unambiguous.

D.1 Proof of Proposition 11

Let U ′ be the set defined in the statement of the proposition. More precisely, let U ′
be the union of all sets V of crisp acts that are closed under � -permutations. Notice
that, if f is crisp, the set of all � -permutations of f is one such set V , because the
�-permutation relation is an equivalence. Furthermore, all constants are crisp; thus,
U ′ is both well defined and non-empty.

We will prove that U = U ′. We begin with the observation that any act f whose
�-permutations are all crisp must belong to U ′. In fact, if f /∈ U ′, one could add
f and all its �-permutations to U ′, thus obtaining a larger set and contradicting the
definition of U ′. Conversely, if f ∈ U ′, then any �-permutation of f must be in U ′,
hence crisp. This proves that f is unambiguous.

D.2 Proofs of Propositions 13 and 14, and of Corollary 15

We first prove a useful lemma:

Lemma 23 Let a1, a2, . . . , an, b1, b2, . . . , bn, c ∈ R be such that
∑n

h=1 ahbσ(h) = c
for all permutations σ ∈ Per(n). Then either a1 = a2 = · · · = an or b1 = b2 =
· · · = bn.

Proof By contradiction, assume that there exist i, j ∈ {1, . . . , n} such that ai �= a j

and k, l ∈ {1, . . . , n} such that bk �= bl . Consider a permutation σ such that σ(i) = k
and σ( j) = l, and the permutation σ ′ = σ(kl) obtained applying σ and then switching
around k and l. It follows that

ai bk + a j bl +
∑

h �=i, j

ahbσ(h) =
n∑

h=1

ahbσ(h) = c =
n∑

h=1

ahbσ ′(h)

= ai bl + a j bk +
∑

h �=i, j

ahbσ(h),
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whence ai bk + a j bl = ai bl + a j bk . That is, ai (bk − bl) = a j (bk − bl) which implies
ai = a j , a contradiction.

D.2.1 Proofs of Propositions 13 and 14

We prove the two Propositions by showing that the following statements are equivalent
for each A ∈ �:

(i) A ∈ 
;
(ii) P(A) = Q(A) = ρx,y(A) for all P, Q ∈ C and x � y;

(iii) For each x � y, the act x A y is crisp;
(iv) For some x � y, the act x A y is crisp.

Proposition 13 follows from point (i) being equivalent to point (iii). Proposition 14
basically follows from point (i) being equivalent to point (ii).

(i) ⇒ (ii): Suppose that A ∈ 
. Therefore, there exists f ∈ U and x ∈ X such that
A = {s ∈ S : f (s) ∼ x}. Since f ∈ U there exists a reduction {xi , Ai }n

i=1 of f (with
xi � x j for every i �= j) such that for every permutation σ ∈ Per(n), {xσ(i), Ai }n

i=1
is crisp. This implies that for each P, Q ∈ C

n∑

i=1

u
(
xσ(i)

)
P(Ai ) =

n∑

i=1

u
(
xσ(i)

)
Q(Ai ),

that is,

n∑

i=1

[P(Ai ) − Q(Ai )] u
(
xσ(i)

) = 0. (12)

By previous lemma, either P(A1) − Q(A1) = P(A2) − Q(A2) = · · · = P(An) −
Q(An) = b or u(x1) = u(x2) = · · · = u(xn). In the former case 1 = ∑n

i=1 P(Ai ) =∑n
i=1 Q(Ai ) + nb = 1 + nb. This implies that b = 0 and Ai satisfies condition (i i)

for all i = 1, 2, . . . , n. As A ∈ {Ai : i = 1, . . . , n}, the conclusion follows. In the
latter case, n = 1 and A = { f ∼ x} is then either S or ∅ (depending on whether
x ∼ x1 or not). Clearly P(S) = Q(S) = 1 and P(∅) = Q(∅) = 0 for all P, Q ∈ C ,
so that once again (i i) follows. Notice finally that if P(A) = Q(A) for all P, Q ∈ C ,
it then follows from the definition of ρx,y that ρx,y(A) = P(A) = Q(A).

(ii)⇒(iii): Let x � y. If x � y then

P(u(x A y)) = (u(x) − u(y)) P(A) + u(y) = (u(x) − u(y)) Q(A) + u(y)

= Q(u(x A y))

for all P, Q ∈ C . That is, x A y is crisp. If y � x then x A y = y Ac x . By the previous
part of the proof, it follows that
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P(u(x A y)) = P(u(y Ac x)) = Q(u(y Ac x)) = Q(u(x A y)),

proving the statement.
(iii)⇒(iv): Obvious.
(iv)⇒(i): Let x � y be such that x A y is crisp. We want to show that f = x A y ∈

U . This is the case if f has a �-reduction whose permutations are all crisp. But f is
a reduced act, and the only permutation of f is g = x Ac y. Since f is crisp,

P(u(x A y)) = (u(x) − u(y)) P(A) + u(y) = (u(x) − u(y)) Q(A) + u(y)

= Q(u(x A y))

which implies that P(A) = Q(A). In turn, this implies P(Ac) = Q(Ac), so that

P(u(x Ac y)) = (u(x) − u(y)) P(Ac) + u(y) = (u(x) − u(y)) Q(Ac) + u(y)

= Q(u(x Ac y))

and g is also crisp.

D.2.2 Proof of Corollary 15

Since constant acts belong to X , it is immediate to check that S ∈ 
. On the other
hand, by Proposition 14, it follows that if A ∈ 
 then Ac ∈ 
. Finally, again by
Proposition 14, if A, B ∈ 
 and A ∩ B = ∅ then for each P, Q ∈ C

P(A ∪ B) = P(A) + P(B) = Q(A) + Q(B) = Q(A ∪ B).

It is immediate to check that this implies that ρx,y(A ∪ B) = P(A ∪ B) for all P ∈ C ,
proving that A ∪ B ∈ 
.

D.3 Proofs of Theorem 12 and Corollary 16

Using the definition of 
 and the characterizations of Propositions 13 and 14, the
statements to be shown equivalent are reformulated as follows:

(i) f ∈ U ;
(ii) {s ∈ S : f (s) � x} ∈ 
 for all x ∈ X ;

(iii) {s ∈ S : f (s) ∼ x} ∈ 
 for all x ∈ X ;
(iv) {s ∈ S : u ◦ f (s) ≥ γ } ∈ 
 for all γ ∈ R;
(v) {s ∈ S : u ◦ f (s) = γ } ∈ 
 for all γ ∈ R;

(vi) For each�-reduction {xi , Ai }n
i=1 of f (with xi �∼ x j if i �= j), {A1, A2, . . . , An}

is a partition of S in 
;
(vii) There exists a �-reduction {xi , Ai }n

i=1 of f , with {A1, A2, . . . , An} a partition
of S in 
 (and xi �∼ x j if i �= j).

The equivalence of (i) and (vii) follows immediately from the argument used to
show (i)⇒(ii) in Appendix D.2.1 and from Proposition 14. We shall now prove that
statements (ii)–(vii) are equivalent.
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(vii)⇒(ii): Given f , let g ={xi , Ai }n
i=1 be its �-reduction with {A1, A2, . . . , An}

a partition of S in 
 (and xi �∼ x j if i �= j), so that u ◦ f = u ◦ g = �n
i=1u (xi ) 1Ai

and, in particular, u ◦ f (s) = u ◦ g(s) for all s ∈ S. Since u represents � on X , it
follows that {s ∈ S : f (s) � x} = {s ∈ S : u ◦ f (s) ≥ u(x)} for all x ∈ X . Hence,
{s ∈ S : f (s) � x} is a disjoint union of elements of 
, which is a finite λ-system.

(ii)⇒(iv): Notice that u(X) is an interval. Let γ ∈ R. If γ ∈ u(X), say γ = u(x ′),
then {s ∈ S : u ◦ f (s) ≥ γ } = {s ∈ S : f (s) � x ′} ∈ 
. Else, either γ < t for all
t ∈ u(X), and then {s ∈ S : u ◦ f (s) ≥ γ } = S ∈ 
, or γ > t for all t ∈ u(X), and
then {s ∈ S : u ◦ f (s) ≥ γ } = ∅ ∈ 
.

(iv)⇒(v): Let u ◦ f = �n
i=1γi 1Ai , with {A1, A2, . . . , An} a partition of S in � and

γ1 > γ2 > . . . > γn . If γ /∈ {γ1, γ2, . . . , γn}, then {s ∈ S : u ◦ f (s) = γ } = ∅ ∈ 
.
The set A1 = {s ∈ S : u ◦ f (s) = γ1} = {s ∈ S : u ◦ f (s) ≥ γ1} ∈ 
. For each
i ≥ 2 then 
 � {s ∈ S : u ◦ f (s) ≥ γi } = {s ∈ S : u ◦ f (s) ∈ {γ1, γ2, . . . , γi }} =⋃i

j=1

{
s ∈ S : u ◦ f (s) = γ j

} = A1 ∪ A2 ∪ . . .∪ Ai . Therefore, for each i ≥ 2, {s ∈
S : u ◦ f (s) = γi } = Ai = (A1 ∪ A2 ∪ . . . ∪ Ai ) \ (A1 ∪ A2 ∪ . . . ∪ Ai−1) ∈ 
.
Indeed, remember that if 
 is a λ-system, B, C ∈ 
, and C ⊆ B then B \ C ∈ 
.

(v)⇒(iii): For each x ∈ X, {s ∈ S : f (s) ∼ x} = {s ∈ S : u ◦ f (s)
= u(x)} ∈ 
.

(iii)⇒(vi): Consider f ∈ F . let g = {xi , Ai }n
i=1 be any one of its �-reductions,

with {A1, A2, . . . , An} a partition of S in � (and xi �∼ x j if i �= j). It follows that
u ◦ f = u ◦ g = �n

i=1u(xi )1Ai . Therefore, Ai = {s ∈ S : u ◦ f (s) = u(xi )} = {s ∈
S : f (s) ∼ xi } ∈ 
 for all i = 1, . . . , n.

(vi)⇒(vii): Trivial.

D.4 Proofs of Propositions 17, 18 and 19

D.4.1 Proposition 17

Given x � y, define ρx,y via Eq. (4). Then ρx,y(A) + ρx,y(Ac) = 1 if and only if

[αu(x A y)(C(A) − C(A)) + C(A)] + [αu(x Ac y)(C(Ac) − C(Ac)) + C(Ac)] = 1

which, since C(Ac) = 1 − C(A) and C(Ac) = 1 − C(A), is equivalent to

αu(x A y)(C(A) − C(A)) + αu(x Ac y)(C(A) − C(A)) + (C(A) − C(A)) = 0.

In turn, this is equivalent to

(C(A) − C(A)) = (αu(x A y) + αu(x Ac y))(C(A) − C(A))

Therefore, ρx,y(A)+ρx,y(Ac) = 1 if and only if either C(A) = C(A) or αu(x A y)+
αu(x Ac y) = 1.

Next, under ambiguity aversion, we show the equivalence of (iii) with (ii), and thus
with (i). By Eq. (5) and given x � y, I (u ◦ (x A y))+ I (u ◦ (x Ac y)) can be rewritten
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as follows:

2u(y) + [u(x) − u(y)]
[
αu(x A y)(C(A) − C(A)) + C(A) + αu(x Ac y)(C(Ac)

−C(Ac)) + C(Ac)
]
.

After further rewriting and using the shorthand �C(A) = C(A) − C(A) and �u =
u(x) − u(y),18 we obtain

I (u ◦ (x A y)) + I (u ◦ (x Ac y)) = 2u(y) + �u
[
(αu(x A y) + αu(x Ac y) − 1)

(−�C(A)) + 1
]

= 2u(y) + �u
[
(1 − αu(x A y)

−αu(x Ac y))�C(A) + 1
]

= u(x) + u(y) + �u
[
(1 − αu(x A y)

−αu(x Ac y))�C(A)
]

(13)

If the decision maker is ambiguity averse then for each A ∈ � and P ∈ Core(I ), I (u◦
(x A y)) ≤ P(u ◦ (x A y)) and I (u ◦ (x Ac y)) ≤ P(u ◦ (x Ac y)), implying

I (u ◦ (x A y)) + I (u ◦ (x Ac y)) ≤ P(u ◦ (x A y))+P(u ◦ (x Ac y)) = u(x)+u(y).

If condition (ii) holds, then we have (1 − αu(x A y) − αu(x Ac y)) �C(A) = 0 and
hence I (u ◦ (x A y)) + I (u ◦ (x Ac y)) = u(x) + u(y). We can then conclude that
I (u ◦ (x A y)) = P(u ◦ (x A y)) and hence ρx,y(A) = P(A), as required.

Conversely, suppose that ρx,y(A) = P(A) hence I (u ◦ (x A y)) = P(u ◦ (x A y))

for all A ∈ � and P ∈ Core(I ). Then

I (u ◦ (x A y)) + I (u ◦ (x Ac y))= P(u ◦ (x A y)) + P(u ◦ (x Ac y))=u(x) + u(y)

which implies �u [(1 − αu(x A y) − αu(x Ac y))�C(A)] = 0; that is, condition (ii).

D.4.2 Proposition 18

By Eq. (13), we see that for the given x � y, Eq. (8) holds if and only if

1

2
u(x) + 1

2
u(y) �= 1

2
u(x) + 1

2
u(y) + 1

2
�u

[(
1 − αu(x A y) − αu(x Ac y)

)
�C(A)

]

18 Notice that x � y implies u(x) > u(y) which in turn delivers �u > 0.
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which, in turn, holds if and only if

(
1 − αu(x A y) − αu(x Ac y)

)
�C(A) �= 0.

which proves the statement.

D.4.3 Proposition 19

We begin by recalling that, given a normalized representation (I, u) and x �
y, x A y � x B y if and only if

αu(x A y)(C(A) − C(A)) + C(A) ≥ αu(x B y)(C(B) − C(B)) + C(B)

with the left-hand (resp. right-hand) side collapsing to P(A) = C(A) = C(A) (resp.
P(B) = C(B) = C(B)) if A ∈ 
 (resp. B ∈ 
). Clearly, if there is a unique ρ for
which Eq. (3) holds, αu(x A y) does not depend on x or y. Hence, the implication (i)
⇒ (ii) is trivial. We prove that (ii) ⇒ (i).

It is enough to show that αu(x A y) = αu(x ′ A y′) for each u and x � y, x ′ � y′:
this implies that ρx,y(A) = ρx ′,y′(A) whenever x � y, x ′ � y′, so a set function
ρ : � → [0, 1] that satisfies Eq. (3) can be uniquely defined; it is then straightforward
to verify that ρ is a capacity.

Thus, argue by contradiction and suppose w.l.o.g. that αu(x A y) > αu(x ′ A y′). By
the richness assumption on C(
), there exists B ∈ 
 such that P(B) = C(B) = C(B)

satisfies

αu(x A y)(C(A) − C(A)) + C(A) < P(B) < αu(x ′ A y′)(C(A) − C(A)) + C(A)

but then we have a violation of P4, since the first inequality implies x B y � x A y, and
the second implies x ′ A y′ � x ′ B y′. Thus, we must have αu(x A y) = αu(x ′ A y′).
This completes the proof.

D.5 Proof of Proposition 21

The implication (ii) ⇒ (i) is trivial. We prove (i) ⇒ (ii). By weak probabilistic beliefs
(assumption (i)), there exists x � y and a convex-ranged probability charge P∗ such
that for all A, B ∈ �

P∗(A) = P∗(B) �⇒ ρx,y(A) = ρx,y(B)

Consider now A ∈ 
 such that C(A) = C(A) = ρx,y(A) ∈ (0, 1). It follows that
P∗(A) ∈ (0, 1), since P∗(A) = 0 (resp. P∗(A) = 1) implies P∗(A) = P∗(∅) (resp.
P∗(A) = P∗(S)), which in turn implies by (i) that ρx,y(A) = ρx,y(∅) = 0 (resp.
ρx,y(A) = ρx,y(S) = 1), a contradiction.
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Let B ∈ � be such that P∗(B) = P∗(A), so that (i) implies ρx,y(B) = ρx,y(A)

and (since P∗(Bc) = P∗(Ac) as well) ρx,y(Bc) = ρx,y(Ac). It follows that

ρx,y(B) + ρx,y(Bc) = ρx,y(A) + ρx,y(Ac) = 1

where the last equality follows from Proposition 17.
We also know that � satisfies condition (8) for all A ∈ � \ 
. It therefore follows

from Propositions 17 and 18 that ρx,y(B) + ρx,y(Bc) = 1 implies B ∈ 
, so that
ρx,y(B) = P(B) for all P ∈ C . We can thus conclude that with the chosen A ∈ 


we have for each B ∈ � and each P ∈ C ,

P∗(B) = P∗(A) �⇒ P(B) = P(A)

so that P∗ = P follows from Theorem 2 of Marinacci (2002). Since this is true for
each P ∈ C—that is, C = {P∗}—we conclude that � is a SEU preference with
probability P∗.
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