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Abstract
We performed a genome-wide association study of IgA nephropathy (IgAN), a major cause of
kidney failure worldwide. Discovery was in 1,194 cases and 902 controls of Chinese Han
ancestry, with targeted follow-up in Chinese and European cohorts comprising 1,950 cases and
1,920 controls. We identified three independent loci in the major histocompatibility complex
(MHC), a common deletion of CFHR1 and CFHR3 at Chr. 1q32 and a locus at Chr. 22q12 that
each surpassed genome-wide significance (p-values for association between 1.59 × 10−26 and 4.84
× 10−9 and minor allele odds ratios of 0.63–0.80). These five loci explain 4–7% of the disease
variance and up to a 10-fold variation in interindividual risk. Many of the IgAN–protective alleles
impart increased risk of other autoimmune or infectious diseases, and IgAN risk allele frequencies
closely parallel the variation in disease prevalence among Asian, European and African
populations, suggesting complex selective pressures.

Chronic kidney disease is a major cause of morbidity and mortality affecting 10–20% of the
world population, with glomerulonephritis accounting for a significant proportion of
cases1−3. IgA nephropathy (IgAN) is the most common form of glomerulonephritis and the
most common cause of kidney failure among Asian populations2,4. The diagnosis of IgAN
requires documentation by kidney biopsy demonstrating proliferation of the glomerular
mesangium with deposition of immune complexes predominantly composed of
Immunoglobulin A (IgA) and complement C3 proteins3,5,6. Registry data as well as autopsy
and kidney-donor biopsy series suggest significant variation in prevalence among different
ethnicities: IgAN is most frequent among Asians, with a disease prevalence as high as 3.7%
detected among Japanese kidney donors7, but is rare among individuals of African ancestry5

and of intermediate prevalence among Europeans (up to 1.3%)6.
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The pathogenesis of IgAN is uncertain8,9. The finding of IgA1 glycosylation abnormalities
among European, Asian, and African-American populations has suggested a shared
pathogenesis among different groups10–15. Moreover, familial aggregation of IgAN has been
reported among all ethnicities, suggesting a genetic component to disease8,16. To date
linkage studies have identified several loci predisposing to IgAN, but underlying genes are
not known8,16–18. A single, unreplicated genome-wide association study (GWAS) in a small
European cohort (533 cases) has reported association of IgAN with the MHC complex19.

We report a GWAS for IgAN in a cohort of 3,144 IgAN cases of Chinese and European
ancestry, leading to the identification of five loci for this disease.

RESULTS
Study design and genotyping of discovery cohort

To detect loci conferring susceptibility to IgAN, we performed a two-stage GWAS (Table
1). In the discovery phase, genome-wide genotyping was performed on the Illumina 610
quad platform in 1,228 biopsy-proven IgAN cases and 966 healthy controls of Chinese Han
ancestry recruited from Beijing (Table 1 and Supplementary Table S1). The top signals in
the discovery phase were further evaluated in an independent cohort of Han Chinese descent
(Shanghai cohort, 740 cases and 750 controls) and a European cohort of Italian and North
American origin (combined by stratified analysis, 1,273 cases and 1,201 controls).
Subsequently, we analyzed the Beijing, Shanghai and European cohorts together to identify
genome-wide significant loci.

Genome-wide association analysis
In analysis of genome-wide genotyping data we applied stringent quality control filters,
resulting in elimination of 5% of samples due to low call rate, duplication, cryptic
relatedness or gender mismatch and 16.8% of markers primarily due to low minor allelic
frequency (<0.01, see supplementary notes and Supplementary Table S2). After quality
control, the genotyping call rate was 0.9992. We next applied the standard 1-degree of
freedom Cochran Armitrage (CA) trend test to analyze 498,322 SNPs in the discovery
cohort of 1,194 cases (650 males/544 females, average age 31.1 years) and 902 controls
(608 males/294 females, average age 31.5 years). The quantile-quantile plot showed no
global departure from the expected distribution of p-values and the inflation factor (λ) was
1.024, indicating negligible population stratification (Supplementary Figure S1 and Figure
1). Accordingly, principal component analysis (PCA) demonstrated that cases and controls
were matched along the axes of significant principal components, and PCA correction did
not substantially change the distribution of the association statistic or the genomic inflation
factor (λ= 1.022, Supplementary Figure S2, Supplementary Table S3). We concluded that
our association results were not biased by differences in ancestry or population structure
between cases and controls.

The genome-wide association analysis revealed 27 SNPs exceeding genome-wide thresholds
for significance (p ≤ 5 × 10−8, Figure 1). These 27 signals all resided in a 0.54 Mb interval
within the major histocompatibility complex (MHC) on Chr. 6p21, with the top signal at
rs9275596 (p = 1.9 × 10−12). Interestingly, fourteen MHC SNPs with suggestive p-values (5
× 10−6 to 1 × 10−4) showed little or no linkage disequilibrium with rs9275596 (Figure 2a).

Follow-up of top signals from discovery stage
After removal of MHC SNPs, there remained additional loci showing departure from the
expected p-value distribution. We ranked signals based on the false discovery rate and chose
to follow-up loci with p-value ≤ 1.3 × 10−5, corresponding to a q-value ≤ 0.10

Gharavi et al. Page 3

Nat Genet. Author manuscript; available in PMC 2012 August 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(Supplementary Figure S3)20. Power calculations indicated that this strategy would provide
80% power to detect loci with allelic frequencies > 0.10 and relative risk > 1.5 with genome-
wide significance (p < 5 × 10−8) in the combined cohort (Supplementary Table S4). In total,
65 SNPs from 10 distinct loci met these criteria (including three potentially independent loci
in MHC and two in the Chr. 22q12.2 interval). We genotyped the top-scoring SNP's and one
additional SNP from each of these intervals in follow-up cohorts (total 20 SNPs in 3,870
individuals after quality control, table 1). Tests of association were performed within each
cohort, followed by a combined analysis with the discovery cohort using Mantel's extension
of CA trend test (Table 2 and Supplementary Table S5).

Five of the ten loci selected for follow-up surpassed the threshold for significant genome-
wide association - three loci within 6p21, one locus at 1q32, and one locus at 22q12.2 (Table
2, Supplementary Table S5, S6). Each signal demonstrated significant association with
consistent effect size for the same risk allele in each individual cohort, with little evidence
for heterogeneity.

The strongest association in the combined cohort was located within a ~170 kb interval that
includes the HLA-DRB1, -DQA1, and -DQB1 genes (rs9275596, OR = 0.63, p=1.6 ×
10−26). This SNP achieves genome-wide significance with a consistent effect size in each
cohort (Table 2, Figure 2b) and has strong supporting association from a nearby SNP in
strong LD (rs2856717).

This locus, however, did not explain all of the signal at 6p21. Conditioning for the effect of
rs9275596 eliminated evidence for association for the majority of SNPs in close proximity,
however two distinct loci maintained genome-wide significance. The second independent
locus is defined by rs9357155 (which has an r2 = 0.01 with rs9275596 in the combined
cohort) and shows an OR = 0.74 and a p-value of 6.9 × 10−9 for association with IgAN after
conditional analysis (Table 3, Figure 2c). This SNP lies in a ~100 kb segment of LD and lies
128 kb centromeric to rs9275596. This LD segment contains the genes TAP2, TAP1,
PSMB8, and PSMB9, and the supporting SNPs in this region (rs2071543) is a missense
variant in PSMB8 (Q49K) that is at a position completely conserved among all orthologs
(most distantly related ortholog is in platypus; Tables 2 and 3, Figure 2c and Supplementary
Tables S7, S8).

After conditioning for the effects of both rs9275596 and rs9357155, a third locus within
MHC, defined by rs1883414, which lies 400 kb centromeric to rs9275596 (and which shows
r2=0.005 and 0.002 with rs9275596 and rs9357155, respectively), shows a conditioned OR
of 0.77 and p-value of 3.1 × 10−8 for association (Table 3). This signal in the HLA-DPA1 –
DPB1 –DPB2 region is supported by a second SNP (rs3129269) and demonstrated
consistent effect size across cohorts (Tables 2, 3, Figure 2d, and Supplementary Tables S7,
S8).

To better delineate the risk associated with the MHC region and detect potential functional
variants, we imputed classical HLA alleles in the discovery cohort21 (Supplementary Table
S9). This demonstrated a genome-wide significant association with a protein-altering variant
of known functional significance, the DQB1*0602 allele (OR = 0.47, p = 6.6 × 10−9).
DQB1*602 is in strong LD with another functional allele, DRB1*1501, but conditional
analysis suggested that DQB1*602 best explains this association signal (Supplementary
Table S10). The strength of the DQB1*602 association is probably underestimated due to
the limitations of current imputation algorithms (sensitivity of 56.6% for detection of the
DQB1*602 allele, Supplementary Table S11).
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A major signal outside the MHC locus resided in a 100-kb segment on Chr. 1q31-q32.1
containing complement factor H (CFH) and the related CFHR3, CFHR1, CFHR4, CHFR2,
CFHR5 genes (rs6677604, OR = 0.68, p = 3.0 × 10−10 in the combined cohort). This locus
was also the top signal in our genome-wide CNP analysis (Supplementary Figure 4,
Supplementary Table S12). The top SNP, rs6677604, is located in intron 12 of CFH and is
supported by multiple highly correlated SNPs (Figure 3a, Table 2). After controlling for
rs6677604, there were no other independent signals in the entire CFH region. The
association results at rs6677604 were far less significant under a recessive model (p=5.6 ×
10−5), supporting an additive risk. The rs6677604-A allele is protective in all three cohorts
but has a much higher allele frequency in Europeans (0.23 in European controls vs. 0.07 in
Chinese controls, Table 2). This allele perfectly tags a common deletion spanning the
CFHR1 and CFHR3 genes (CFHR1,3Δ)22,23. We confirmed the association of rs6677604-A
allele with CFHR1,3g=D in our cohort: PCR of multiple amplicons within CFHR1 and
CFHR3 failed and the CFHR1 protein could not be detected in serum from all A/A
homozygotes tested (Supplementary Figure S5). We carefully evaluated evidence for
association of IgAN with alleles in CFH that confer risk of macular degeneration (AMD)
and found no contribution to risk (e.g., the Y402H variant, tagged by rs10801555, showed
OR=1.0, p=0.99 in discovery cohort; Figure 3b). Haplotype-based analysis in the Beijing
discovery cohort demonstrated protection by the haplotype containing the rs6677604-A
allele (OR= 0.56, p=1×10−6 vs. all other haplotypes in the discovery cohort, Figure 3b,
Supplementary Figure S6) but no significant effect of other haplotypes.

The fifth signal in the GWAS resided in an intronic SNP in HORMAD2 on Chr. 22.q12.2
(rs2412971, OR = 0.80, p = 1.9 × 10−9) and was supported by a second SNP within 35kb of
this signal (rs2412973, OR = 0.80, p = 4.5 × 10−9). After controlling for rs2412971, there
were no other independent signals in this region. The association extends across a large LD
segment that encompasses genes including HORMAD2, MTMR3, LIF, and OSM (Figure
3c).

Cumulative effects on disease risk
To determine the cumulative risk conferred by these loci, we computed a genetic risk score,
calculated as the weighted sum of the number of protective alleles multiplied by the log of
the odds ratio for each of the individual loci (Table 4, Supplementary Table S13, S14). The
disease risk varied up to 10-fold between individuals with no protective alleles compared
those with five or more. The risk score model was similar in all cohorts and collectively
explained 5–7% of the variation in disease risk in the Chinese cohorts and ~4% of the risk in
the European cohort (Table 4). The risk score did not reproducibly correlate with any of the
parameters of disease severity, such as estimated GFR, degree of proteinuria, or histologic
severity grade.

Most interestingly, consistent with the known higher prevalence of IgAN in Asians, the
frequency of protective alleles was significantly lower in the Chinese cohort compared to the
European group. The differences in the distribution of protective alleles were highly
significant between the Asian and European cohorts (Figure 4a, p = 4.8 × 10−72 and p = 6.4
× 10−60 for differences within cases and controls, respectively). To confirm this finding in
independent populations, we examined three HapMap groups and similarly found that
frequencies of risk alleles correlate with disease frequency among these populations: risk
allele frequencies were highest in Asians, intermediate in Europeans, and lowest in Africans
(Figure 4b, Supplementary Figure S7). For example, the protective allele at the chromosome
1 locus shows a frequency of 0.08 in Asians, 0.24 in Europeans and 0.49 in Africans.
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DISCUSSION
In this GWAS, we identified five loci imparting significant and consistent effects on the risk
of IgAN across three independent cohorts. These five loci explained up to a ten-fold
variation in interindividual risk and cumulatively accounted for 4–7% of the disease
variance. The effect sizes at these loci are relatively large and consistent across the European
and Chinese cohorts, with four having inverse OR ≥ 1.4, which is comparable to those
detected in previous studies of autoimmune or inflammatory diseases21,24–30. The risk allele
frequencies also strongly paralleled the prevalence of IgAN among different populations.

We detected a major signal in the MHC region, which was identified but not localized in a
recent GWAS with 533 affected subjects19. Close scrutiny in the markedly larger cohorts
reported here revealed that this signal originated from three distinct loci within HLA and we
also identified two additional non-HLA loci. Evidence supporting the presence of three
independent risk loci on Chr. 6p21 includes their position within distinct LD segments, as
well as genome-wide significance after conditioning for the other two loci, with consistent
effects within each cohort.

The strongest HLA signal was in the HLA-DRB1/DQB1 region. Imputation of classical
alleles suggested that this signal is fully or partially conveyed by a strong protective effect of
the DRB1*1501-DQB1*0602 haplotype; the strength of this association was likely
underestimated by limitations of imputation. This haplotype is relatively common in the
European and Asian populations (frequency ~ 0.1-–0.2) and in contrast to its protective
effect for IgAN has been associated with increased risk of SLE25, multiple sclerosis31,
narcolepsy32 and hepatotoxicity from COX2 inhibitors30 but is also highly protective for
type I diabetes mellitus26. This haplotype is also protective in selective IgA deficiency27, yet
we found no association with IgA levels at this locus among cases (Supplementary Table
S15). This region has a complex LD structure, and our conditional analysis suggests the
possibility of an independent signal within this region (at rs9275424, Supplementary Table
S7, S8). High-resolution mapping and direct genotyping of classical alleles will be required
to further dissect this interval and identify the functional variant(s).

The second independent interval at 6p21 contained TAP2, TAP1, PSMB8, and PSMB9,
interferon-regulated genes that have been implicated in antigen generation and processing
for presentation by MHC I molecules; they also play an important role in modulation of
cytokine production and cytotoxic T-cell response33,34. PSMB8 expression is increased in
PBMCs from IgAN patients, motivating further investigation 35. To our knowledge, this
locus has not been identified in any prior GWAS.

The third signal at 6p21 comprised the HLA-DPA1, -DPB1, and -DPB2 genes. This locus is
associated with risk of chronic hepatitis B infection29 (a major clinical problem in China)
and systemic sclerosis stratified for anti-DNA topoisomerase I or anticentromere
autoantibodies 31, but the risk alleles associated with these phenotypes are not in LD with
any of the IgAN risk alleles.

The CFH protein plays a critical role in dampening the alternative complement cascade via
inhibition of the C3 and C5 convertases36. The functions of the CFH-related proteins are
less well understood36,37. Loss of function mutations in CFH produce uncontrolled C3
activation, leading to membranoproliferative glomerulonephritis type II, which is
pathologically distinct from IgAN36. Other rare CFH mutations can produce hemolytic
uremic syndrome, a thrombotic disorder36, while distinct common haplotypes predispose to
AMD and susceptibility to meningococcal infection22–24. Interestingly, the CFH haplotype
bearing the CFHR1,3Δ variant may be protective in AMD, but detection of an independent
effect has been complicated owing to the presence of additional haplotypes imparting both
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high and low risk22,23. Here, we found an unambiguous protective effect of the CFHR1,3Δ-
containing haplotype in IgAN, strongly suggesting that CFHR1,3Δ is the functional variant.
Nevertheless, it is not clear how loss of CFHR1 and/or CFHR3 may confer protection for
IgAN. The protective effects may be due to the competing roles of CFH and CFHR1
proteins37, such that loss of CFHR1 enhances CFH effects, reducing inflammation at tissue
surfaces.

The Chr. 22q12.2 locus spans a large interval that contains OSM and LIF, encoding
cytokines implicated in mucosal immunity and inflammation. Of particular interest,
inactivation of Osm results in autoimmune glomerulonephritis in the mouse38. The functions
of other genes such as HORMAD2 and MTMR3 have not been as well characterized39.
Interestingly, the rs2412973-A allele, which is protective for IgAN, has also been associated
with increased risk of early-onset inflammatory bowel disease (IBD) and altered expression
of MTMR3 expression in individuals with ulcerative colitis28. This finding is of interest
given the known clinical association between IBD and secondary forms of IgAN, but the
underlying signal within this locus remains to be clarified. Lastly, the protective allele at this
locus is also associated with lower serum IgA levels among cases (p = 3.9 × 10−3,
Supplementary Table S15, Supplementary Figure S8).

It is noteworthy that many of the protective alleles for IgAN have been implicated as risk
factors other immune-mediated and infectious disorders, demonstrating that complex
selection pressures (potentially balancing selection) influence the frequencies of these alleles
among world populations. Statistical proof of balancing selection on allele frequencies or
genotypes may be particularly challenging if alleles have been maintained in the population
over very long evolutionary periods. Interestingly, a recent genome-wide survey detected a
signal of selection in the vicinity of the CFH gene cluster40 and there is a large difference in
the frequency of the rs6677604-A allele among world populations (Supplementary Table
S16).

The loci identified in this study provide significant insight into the genetic architecture of
sporadic IgAN, identifying novel pathogenic pathways and connections to other immune-
mediated disorders. Based on our power calculations, we identified virtually all loci
imparting an OR ≥ 1.5 in the Chinese discovery cohort but additional loci with large effects
may be present among Europeans. Considering the effectiveness of GWAS for studies of
immunologic disorders22,27–31,41 and the increased power imparted by larger sample size42,
genome-wide examination of larger cohorts will likely define additional genetic components
of IgA nephropathy.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manhattan plot of p-values for SNP associations to IgAN
Plot of the observed p-values versus chromosomal location; highlighted are the ten
independent loci followed up in additional cohorts. The dashed line corresponds to the
follow-up threshold.
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Figure 2. High resolution view of the MHC locus
The X-axis represents physical distance (kb). The left Y-axis represent the −log(p-values)
for the association statistics. The −log(p-values) in the discovery and combined cohorts are
shown as blue circles and red diamonds, respectively. The right Y-axis represents the
average recombination rates based on the phased HapMap haplotypes. The recombination
rates are shown by the light blue line (a) The three intervals associated with IgA
nephropathy reside within a 0.54 Mb segment on chromosome 6. The shaded areas
correspond to regional plots in lower panels; (b) Regional plot for the interval containing
HLA-DQB1, DQA1, and DRB1. The classical HLA alleles imputed in the discovery cohort
(green triangles) formed a protective haplotype DQB1*0602-DQA1*0102-DRB1*1501. (c)
Regional plot for the second MHC interval: SNPs typed in the combined cohorts reside
within the PSMB8 gene. (d) Regional plot for the HLA-DPB2, DPB1, and DPA1 interval.
The lower panels for (b–d) represent LD heatmaps (D') calculated based on the actual
genotype data of the Beijing cohort.
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Figure 3. Analysis of the Chr. 1 and Chr 22. loci
(a) Regional association plot of the chromosome 1q32 locus; while the most strongly
associated SNP resides within the CFH gene, it is a perfect proxy for CFHR1,3Δ. The lower
panel represents the LD heatmap (D') calculated based on the genotype data of the Beijing
cohort. (b) Haplotype analysis revealed five common haplotypes (H-1 to H-5) in the Beijing
discovery cohort (freq. > 0.01). The haplotype frequencies, corresponding tag-SNPs and
reported disease associations are shown22–24,36,37,41,43. The H2 haplotype perfectly tags
CFHR1,3Δ. The odds ratios (ORs) and 95% confidence intervals (95% CIs) are calculated
in reference to H-1, which has an identical frequency among cases and controls. *** p=7.7 ×
10−6 for comparison of H-2 versus all other haplotypes. (c) Regional association plot of the
chromosome 22 locus: the strongest association stems from the SNPs residing within
HORMAD2, but the area of association spans over ~ 0.7 Mb region containing multiple
genes.
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Figure 4. Differences in the distributions of protective alleles by ethnicity
(a) Distributions of protective alleles by ethnicity and case-control status. Numbers of
protective alleles were scored for the combined Asian (N=3,556) and European (N=2,410)
cohorts. Europeans harbor much greater numbers of protective alleles. The differences in the
distribution of protective alleles between Asians and Europeans are highly significant within
both case and control groups (Chi-square p=4.9 × 10−72 and p=6.4 × 10−60 for cases and
controls, respectively). (b) Distributions of protective alleles among the three HapMap
populations: there were highly significant differences between Asian (CHB+JPT) vs.
Europeans (CEU, p=1.3×10−3) and Asian vs. Yorubans (YRI, p=7.1×10−6) populations.
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