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ABSTRACT. This paper analyzes the emergence of new technology-based sectors at 

the regional level focusing on nanotechnology, an infant technology whose evolution 

can be traced on the basis of patent application filings. We employ a methodological 

framework based on the ‘product-space’ approach, to investigate whether the 

development of new technologies is linked to the structure of the existing local 

knowledge base. We conduct a 15 EU country analysis at NUTS 2 level using patent 

data for 1986-2006. The results of the descriptive and econometric analysis supports 

the idea that history matters in the spatial development of a sector, and that the . 
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1 Introduction 
 

The mechanisms involved in the emergence and evolution of new industries over time have 

for long been attracting the interest of economics scholars. There is a stream of research 

inspired by Klepper’s work highlighting the role of cumulated technological competences in 

specific sectors within local contexts. In this view, technological competence is seen as a 

determinant of successful entry, exit and survival of firms in new industries (Klepper, 2007, 

2011; Buenstorf and Klepper, 2009; Klepper and Simons, 2000).  

Klepper’s theory stresses the importance of accumulated competences for the entry of new 

firms in specific sectors at the local level. However, there is no systematic evidence on the 

effects of the existing industrial structure on the probability of observing the birth of new 

industries in similar contexts. The ‘product-space’ approach has been proposed (Hidalgo et 

al., 2007; Hausmann and Klinger, 2007; Hausmann and Hidalgo, 2010) to support the 

hypothesis that the patterns of product diversification observed in different countries are 

driven by existing patterns of revealed comparative advantage. In other words, countries tend 

to diversify in productions which, in the product-space, are close to those in which they 

already have a comparative advantage. Boschma et al. (2013) implemented a regional level 

analysis to investigate the emergence of new industries in Spain. They propose a framework 

for empirical investigation of the emergence of new industries at the regional level, adapted 

from the country level product-space approach. However, the focus is on products and does 

not take account of technological aspects, and especially the role of accumulated 

technological competences emphasized in the ‘heritage’ theory.  

In this paper, we attempt draw on both heritage theory and the product-space approach to 

analyze the emergence of a new technology-based sector focusing on the path-dependent 

nature of this process. There is a large theoretical literature in the economics of innovation 
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which originated in the seminal contribution of Paul A. David (1985), that investigates the 

mechanisms underlying path-dependence in different contexts and at different levels of 

analysis. This body of work emphasizes that history matters in economic, social and 

technological change processes. However, in-depth analysis of these issues is lacking, and 

more work is needed especially on how new technology-based sectors emerge at the regional 

level. The present paper is contributing to this research agenda. 

We analyse the path-dependent emergence of new technological fields, with a special focus 

on the nanotechnology sector,
1
 in the EU 15 countries in the period 1986-2006. There are 

several studies of nanotechnology but to the best of the authors’ knowledge, there is no 

evidence on the path-dependent dynamics of its evolution or on how cumulated technological 

competences within a local context sustain (or not) the continuing development of the sector. 

We use patent data from the Patstat database to implement a ‘technology-space’ analysis at 

NUTS 2 level. We investigate whether the development of revealed technology advantage 

(RTA) in nanotechnology is related to the structure of the technological competences already 

developed in the region, that is, whether regions with RTA in technologies that are close to 

nanotechnology in the technology space are more likely to or more able to develop RTA in 

nanotechnology in the future. The results of the descriptive and econometric analyses suggest 

that history matters in the spatial development of technology based sectors. In general, regions 

tend to develop new RTA in technologies that are close to those already part of the local 

technology base. These results also hold if the analysis is restricted to the emergence of a new 

sector, such as nanotechnology.  

                                                           
1
Although many developments take time to develop into marketable products, patenting of 

nanotechnology is underway and primarily involves universities and research institutes, small firms 

related to academia, and some large R&D companies (Schellekens, 2010). Note that the analysis 

focuses on the generation of technological knowledge in the field of nanotechnology, and not 

primarily on its application within the geographical areas in which it is developed. 



5 
 

The rest of the paper is structured as follows. Section 2 presents the theoretical framework for 

analyzing the emergence of new industries based on technological diversification at the local 

level. Section 3 discusses the evolution of the nanotechnology sector and Section 4 describes 

the data and the methodology. Section 5 presents the empirical results of the descriptive and 

econometric analyses. Section 6 concludes. 

2 Theoretical Framework 
 

Since Marshall’s (1919) seminal contribution, the dynamics underpinning the evolution of 

industries at the local level have been studied by economics scholars, leading to an increasing 

overlaping between industrial dynamics and economic geography. Marshall’s work looks at 

the mechanisms that promote the clustering of industries in some specific regions based on 

agglomeration externalities. A key process in this respect is represented by the birth of new 

industries, as “subsidiary trades grow up in the neighbourhood, supplying it with implements 

and materials, organizing its traffic, and in many ways conducing to the economy of its 

material” (Marshall, 1890: 225). The localization of industry enhances the division of labour 

at the industry level promoting horizontal and vertical diversification. Marshall’s arguments 

were developed by Allyn Young (1928), who grafted Adam Smith’s analysis of division of 

labour onto a dynamic Marshallian framework in which specialization leads to speciation of 

new closely intertwined industries. Young stressed that the main effect of the growth of 

production is industrial differentiation, which leads to the diversification of the production of 

both final goods and intermediate goods.  

Boschma and Frenken (2007) suggest a possible integration of these issues within an 

evolutionary approach to economic geography. Their starting point is the dynamics by which 

organizational routines affect the spatial evolution of economic activities (Nelson and Winter, 
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1982). Building on the work of Penrose (1959) and Richardson (1960, 1972),
2
 routines are 

defined as consisting mainly of tacit knowledge, and represent the basic competencies that 

shape the competitiveness of economic agents. In this respect, dynamic capabilities stand for 

the “ability to integrate, build, and reconfigure internal and external competences to address 

rapidly changing environments” (Teece et al., 1997: 516). Routines, and hence competencies 

or capabilities, are developed over time as a result of costly efforts that represent a major 

element of dynamic irreversibilities. Thus regional development emerges out of a process of 

industrial diversification, in which the introduction of new varieties is constrained by the 

competencies accumulated at the local level. From the spectrum of possible new activities, the 

birth of industries that are closely related to already existing local production is more likely. 

The new activities exploit (at least in part) already developed routines.  

Similar concepts are contained in ‘heritage theory’, according to which the spatial evolution 

of industries is shaped by the set of technological, organizational and institutional 

competencies accumulated at the local level. Previous experience matters and affects the 

emergence and performances of new industries (Buenstorf and Klepper, 2009; Klepper and 

Simons, 2010). In studies of the television, automobile, and tyre industries, Klepper and co-

authors discuss the agglomeration effects claimed in the literature. In these three industries, 

which are characterized either by a concentration of firms in areas where production was 

                                                           
2
According to Penrose (1959), production activities require appropriate experience and skills. Companies grow 

along the directions set by their capabilities and the development of competitive advantages requires the 

exploitation of existing and newly developed internal firm-specific capabilities. Richardson (1972) suggests 

considering an industry as conducting several activities that are carried out by organizations with the appropriate 

capabilities, knowledge, experience and skills. He proposes a distinction between similar and complementary 

activities: activities that require the same capabilities are similar activities while activities that represent different 

phases in the production process (and consequently, do not necessarily require the same capabilities) are 

complementary activities. The dynamic capabilities literature has developed this idea (Loasby, 1991, 1999; 

Teece and Pisano, 1994; Langlois and Roberston, 1995; Teece, 1996; Krafft, 2010).  
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initially negligible or by a progressive dispersion of firms leaving formerly highly 

concentrated areas, the agglomeration effect does not apply. To explain this, they propose a 

hypothesis based on the ideas of organizational birth and heredity. 

The key role of the competencies accumulated in the past on the future development of the 

region points to the importance of path-dependence in regional development processes, as 

well as to the need to adopt a historical approach to their analysis. In path-dependent 

phenomena history matters in a very peculiar way, as the phenomenology at the time t is 

dependent on the choices made at the time t-1. At each point in time individuals are able to 

make choices that are likely to influence the transition to the new state. The existence of a 

multiplicity of alternatives makes the new state only one of several possible outcomes, which 

makes it impossible to fully anticipate the final outcome based on the initial state. Path-

dependent processes are different from past-dependent processes. The latter are a kind of 

processes which are strongly shaped by the initial conditions; the former are instead processes 

which are reshaped at each moment in time as the result of changing local conditions (David, 

2001; Antonelli, 2006; Antonelli et al., 2013). 

The notion of path-dependence is linked strictly to the notion of lock-in that traps the region 

in a “basin of attraction that surrounds a (locally) stable equilibrium” (David, 2001: p. 25). 

When idiosyncratic and irreversible decisions are made, agents are likely to base their future 

choices on existing endowments, which results in convergence towards a specific path from 

which it is difficult to escape (Colombelli and von Tunzelmann, 2011). The path-dependent 

emergence of new industries therefore is constrained by the capabilities developed in the past. 

The concept of optimal cognitive distance (Noteboom, 2007) is particularly relevant in this 

case, and regional growth can be expected to be driven more by diversification in related 

domains than by the emergence of radically different activities (Frenken et al., 2007; 

Boschma and Iammarino, 2009; Quatraro, 2010).  
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On the basis of the arguments elaborated so far, we can formulate our basic working 

hypotheses: 

a) The emergence of new industries in local contexts is a persistent process.  

b) The persistent process of emergence of new industries is path-dependent; it depends 

on the competencies accumulated over time. Path-dependence influences the process 

of new industry emergence such that the new industries are likely to be closely related 

to the already existing local level sectors. 

 

Based on these working hypotheses, we analyse the path-dependent mechanisms in the 

emergence of new sectors, and investigate the pattern of evolution in the nanotechnology 

sector to identify commonalities and peculiarities. 

 

3 Evolution of the nanotechnology sector: An overview 
 

The focus on nanotechnology has been nurtured over the last years by the body of work on 

innovation investigating the implications of specific features of technologies on innovation 

dynamics. This work includes analysis of: i) methodological issues concerning the 

implications for the classification systems of patents and scientific publications (Leydesdorff 

and Zhou, 2007; Leydesdorff, 2008; Mogoutov and Kahane, 2007); ii) industrial organization 

of firms involved in nanotechnology R&D, in terms of alliances and university-industry 

collaborations; (Thursby and Thursby, 2011; Mangematin et al., 2011); iii) the properties of 

the knowledge base of nanotechnology firms and the diversification and scope of applications 

(Avenel et al., 2007; Graham and Iacopetta, 2009; Graham et al. , 2008); iv) the intellectual 

property rights system (Mowery, 2011). 
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It is difficult to define nanotechnology which includes a wide set of complex technologies and 

applications. However, the US National Nanotechnology Initiative 2000 defines it as: 

Research and technology development at the atomic, molecular or 

macromolecular levels, in the length scale of approximately 1 - 100 

nanometer range, to provide a fundamental understanding of 

phenomena and materials at the nanoscale and to create and use 

structures, devices and systems that have novel properties and 

functions because of their small and/or intermediate size. The novel 

and differentiating properties and functions are developed at a critical 

length scale of matter typically under 100 nm. Nanotechnology 

research and development includes manipulation under control of the 

nanoscale structures and their integration into larger material 

components, systems and architectures. Within these larger scale 

assemblies, the control and construction of their structures and 

components remain at the nanometer scale. 

Darby and Zucker (2005) identify two key enabling technologies that allow the emergence of 

nanotechnology, that is, the invention of the scanning tunnelling microscope (STM) in IBM’s 

Zurich Research Laboratory by the inventors Gerd Karl Binning and Heinrich Rohrer, and the 

invention of the atomic force microscope (AFM) by Binning, Calvin Quate and Christophe 

Gerber (1986) which overcomes the shortcomings of the STM that it can be used only for 

particular materials. 

Commercialization of the relevant enabling innovations for nanotechnology occurred about 

five years after their introduction. Darby and Zucker (2005) analysed scientific publications 

and patent applications placing the birth of the nanotechnology sector around the end of the 
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1980s and the beginning of the 1990s. Since then, nanotechnologies have been found a wide 

range of applications in scientific domains ranging from physics to chemistry to biology. 

Since this new technology emerged as a new method of inventing, its utilization across 

different fields make them a good example of general purpose technologies (GPTs) (Graham 

and Iacopetta, 2009), showing some interesting key properties. Similar to other GPTs, 

nanotechnologies foster convergence between previously distinct technology-driven sectors 

(Rocco and Bainbridge, 2007). They allow the emergence of new combinations, such as 

microelectronics and biotechnology in nanobiotechnologies (Mangematin et al., 2011).  

The wide applicability of nanotechnologies has resulted in the creation of new processes and 

products and improvements to existing products and processes (Bozeman et al., 2007; 

Rothaermel and Thursby, 2007). Thus, they can be considered both competence-enhancing 

and competence-destroying technologies (Tushman and Anderson, 1986). They highlight two 

aspects of innovation, that is, the enhancement of competences based on cumulative 

knowledge and experience, and the destruction and renewal of existing capabilities (Linton 

and Walsh, 2008).    

The introduction of nanotechnology therefore represents a technological discontinuity, 

although not a dramatic break with the past. This makes them an interesting object for the 

analysis of path-dependent dynamics in regional branching, and the role of existing 

competencies at the local level. In that perspective, we intend to analyse the emergence of 

new technological activities at the local level and compare the general evidence with the 

results obtained with the specific analysis of the nanotechnology sector.  

4 Methodology and data  

4.1 Methodology 
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The main idea underlying our methodology is that the emergence of new industries is 

influenced by the local availability of related competencies which are likely to foster their 

emergence. Proximity is assessed in relation to an abstract space (Boschma, 2005), and 

especially the technological space.  

The concept of technological proximity was implemented empirically by Jaffe (1986, 1989), 

who analysed the proximity of firms’ technology portfolios. The idea is that each firm is 

characterized by a vector V of the k technologies that occur in its patents. Technological 

proximity can then be calculated for a pair of technologies l and j as the angular separation or 

uncentred correlation of the vectors Vlk and Vjk. That is, the two technologies l and j are close 

if they are regularly used in combination with the same third technology k. 

While this approach has been useful for the analysis of proximity between pairs of 

technologies (Breschi et al., 2003), and the degree of internal dissimilarity of knowledge 

bases at different levels (Krafft et al., 2009; Colombelli et al., 2013 and 2014), in this paper 

we adopt a different methodology which was proposed to analyse the role of the existing 

production structure on the process of economic diversification at both country and regional 

levels (Hidalgo et al., 2007; Hausmann and Klinger, 2007; Hausmann and Hidalgo, 2010; 

Boschma et al., 2012, 2013). 

Hidalgo et al.’s (2007) proximity index follows a network-based conceptual representation of 

the product space of a country, in which each product is a node that is characterized by a 

specific set of linkages with the other nodes in the network. Some nodes show a high linkage 

density while others have less dense sets of links. This density of linkages varies across 

countries, so that the same product can show different values in different contexts. The 

density of linkages around a product is a proxy of its average proximity level. The authors 

show that countries are likely to diversify by developing goods that are close to what current 
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production. These dynamics explain persisting divergences between the leading and lagging 

countries (Hausmann and Klinger, 2007; Hausmann and Hidalgo, 2010). 

The proximity index is based on Balassa’s revealed comparative advantage (RCA) measure, 

according to which a country has comparative advantage when the share of a product in its 

exports is larger than the share of that product in world exports. Since we are interested in the 

dynamics of technology-based sectors, we implement the RTA metrics, which provide 

information on the relative technological strengths (or weaknesses) of a given geographic 

entity (Soete, 1987). This is defined as:  
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The RTA index varies around unity, such that values greater than 1 observed at the time t 

indicate that region i is relatively strong in technology s, compared to other regions and the 

same technological field, while values less than 1 indicate relative weakness. The proximity 

between two technologies s and z is related to the extent to which a region shows RTA in 

both. Indeed, in this case, we can say that the two technologies are based on the same (or 

similar) capabilities and hence can be said to be close to each other. The proximity between 

each pair of technologies therefore represents a distinctive feature of the local technology 

structure (Quatraro, 2012). 

To calculate the proximity between each pair of technologies s and z we need first to 

determine whether the regions have RTA in technology s according to equation (1). We do 

the same for each of the other technologies z≠s. In what follows, for simplicity we focus on 

technology s. Next we calculate the probability of RTA in technology s at time t (P(RTAs,t)), 

which is the ratio between the number of regions showing the RTA>1 and the total number of 
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regions in the dataset. We calculate the joint probability of having RTA in technologies s and 

z (P(RTAs,t∩RTAz,t)), that is, the relative frequency of regions with RTA in both 

technologies. Finally we calculate the conditional probability for a region with RTA in the 

technology s given that it has RTA in the technology z. The conditional probability is 

calculated by dividing the joint probability by the probability of having RTA in technology z: 

𝑃(𝑅𝑇𝐴𝑠,𝑡|𝑅𝑇𝐴𝑧,𝑡) =
𝑃(𝑅𝑇𝐴𝑠,𝑡∩𝑅𝑇𝐴𝑧,𝑡)

𝑃(𝑅𝑇𝐴𝑧,𝑡)
        (2) 

We make the same calculations for all the other technologies observed in the sample. This 

implies that for each pair of technologies s and z we end up with two conditional probabilities, 

that is, the probability to have RTA in technology s given RTA in technology z and the 

probability to have RTA in technology z given RTA in technology s. Proximity between 

technologies s and z can then be defined as the minimum of the pairwise conditional 

probability of a region having RTA in a technology given that it has RTA in the other: 

𝜑𝑠,𝑧,𝑡 = min {𝑃(𝑅𝑇𝐴𝑠,𝑡|𝑅𝑇𝐴𝑧,𝑡), 𝑃(𝑅𝑇𝐴𝑧,𝑡|𝑅𝑇𝐴𝑠,𝑡)}     (3) 

In order to analyse the effect of the existing production structure on the development of new 

products, Hidalgo et al. (2007) elaborate a measure of average proximity of the new potential 

product to the existing productive structure. In our analysis this amounts to deriving an index 

of average proximity of the technology s to a region’s structure of technological activities. Let 

xi,s,t=1 if RTAi,s,t>1 and 0 otherwise. The average proximity or ‘density’ measure can be 

written as follows: 

𝑑𝑖,𝑠,𝑡 =
∑ 𝜑𝑠,𝑘,𝑡𝑥𝑖,𝑠,𝑡𝑘

∑ 𝜑𝑠,𝑘,𝑡𝑘
          (4) 

This measure is bounded between 0 and 1. If the region i has RTA in all the technologies at a 

proximity higher than 0 to technology s, the density will be equal to 1. In contrast, if the 
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region i has RTA in none of the technologies related to technology s, then the density will be 

equal to zero.  

The analysis is carried out in two stages. First, statistical analysis of the emergence of new 

technologies at the regional level. We follow Hidalgo et al. (2007) and Boschma et al. (2013) 

and consider a five-year time lag as reasonable for the technology structure to affect the 

emergence of new technologies. Statistical analysis is based on descriptive evidence and the 

calculation of transition probabilities to the emergence of new RTA at t+5 given the 

technology structure at time t.  

The second stage in the analysis provides econometric evidence of the effects of cumulated 

technological capabilities on the development of new RTA at the regional level. This involves 

estimation of the following econometric relationship: 

𝑥𝑖,𝑠,𝑡+5 = 𝛼 + 𝛾𝑥𝑖,𝑠,𝑡 + 𝛽𝑑𝑖,𝑠,𝑡 + ∑ ∑ 𝛿𝑖,𝑡𝑡𝑖 + ∑ ∑ 𝛿𝑠,𝑡𝑡𝑠 + 𝜀𝑖,𝑠,𝑡    (5) 

where xi,s,t+5 takes the value 1 if the region i has RTA in the technology s at time t+5, and 0 

otherwise. Similarly, xi,s,t takes the value 1 if the region i has RTA in the technology s at time 

t, and 0 otherwise; di,s,t is the density around technology s at time t in region i calculated 

according to equation (4). The estimation controls for time varying region characteristics and 

time varying technology characteristics. εi,s,tis the error term.  

In order to test the existence of path-dependence in the process of emergence of technology-

based industries at the regional level we need only γ≠0 and β≠0. However, our hypotheses 

suggest that the development of RTA in new technologies is favoured by the presence of 

accumulated capabilities in technological activities that are close in the technology space to 

the new ones. This requires that we refine our expectations of the sign of the coefficients so 

that γ>0 and β>0. 
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Estimation of equation (5) is not straightforward. It is characterized by a dichotomous 

dependent variable regressed against its lagged values (t-5) and other regressors. In line with 

previous contributions we first estimate a simple linear probability model. This is a special 

case of binomial regression in which the probability of observing 0 or 1 is modelled in such a 

way that ordinary least squares (OLS) can be used to estimate the parameters. However, this 

technique may be inefficient in the presence of dichotomous dependent variables and the 

estimated coefficients may imply probabilities that are outside the interval [0,1] (Cox, 1970). 

For this reason we also fit a Generalized Linear Model for the binomial family (McCullagh 

and Nelder, 1989). The presence of the lagged dependent variable in the regressor vector 

raises some further concerns that lead to the implementation of a dynamic panel data 

regression, using the generalized method of moments (GMM) estimator (Arellano and Bond, 

1991). This estimator is a convenient framework for obtaining asymptotically efficient 

estimators in the presence of arbitrary heteroschedasticity, taking into account the structure of 

the residuals to generate consistent estimates. In particular, in order to increase efficiency we 

use the GMM-System (GMM-SYS) estimator (Arellano and Bover, 1995; Blundell and Bond, 

1998). This approach instruments the variables in levels with lagged first-differenced terms, 

providing a dramatic improvement in the relative performance of the system estimator 

compared to the usual first-difference GMM estimator. 

4.2 The data 
 

The implementation of a measure of RTA represents a difficult task, due to the need for a 

classification of technological activities into different domains. In this paper we have opted 

for the use of patent data in order to analyse the path-dependent dynamics of emergence of 

technology-based sectors. The pros and cons of the utilization of patents as a measure of 

innovation have been largely debated in the literature (Pavitt, 1985; Griliches, 1990). 
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However, in this context the use of patents seems to be particularly appropriate for at least 

two reasons. First, recent literature has shown that they are reliable indicators as far as 

regional technological activities are concerned (Acs et al., 2002). Second, patent documents 

provide information on technological classes, which refer to a standardized classification that 

can be used in order to span patents in the space of technologies (Engelsman and van Raan, 

1994; Jaffe, 1986; Breschi et al., 2003). In this direction, technological classes may provide a 

reliable approximation for regional technological domains. 

Our primary source of data consists of the Patstat database updated to October 2011. The 

Patstat database is a snapshot of the European Patent Office (EPO) master documentation 

database which has worldwide coverage and contains tables of bibliographic data, citations 

and family links. These data combine applications to both the EPO and national patent 

offices, going back to 1920 for some patent authorities. This overcomes the limitations in 

EPO based longitudinal analyses related to its relatively young age. 

Patent applications were regionalized on the basis of inventors’ addresses. Applications with 

more than one inventor, residing in different regions, were assigned to each of the regions on 

the basis of the respective share in the patent. Our study is limited to the applications from the 

EU 15 countries, and uses the European Classification System (ECLA), which is an extension 

of the International Patent Classification (IPC) maintained by the EPO, to assign applications 

to technological classes. Therefore, the RTA indexes, as well as the subsequent proximity and 

density metrics are based on 4-digit technological classes. The final dataset includes some 

14,821,265 observations, amounting to 979,426 patent applications. The Table in Appendix 1 
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shows the regions included in the analysis, along with some key variables. Figure 1 shows the 

evolution of total and nanotechnology-based patent applications in the EU15 since 1977.
3
  

>>> INSERT FIGURE 1 ABOUR HERE <<< 

Consistent with work using United States Patent and Trademark Office (USPTO) data (Darby 

and Zucker, 2005), Figure 1 shows that there was marked growth in the number of 

nanotechnology patents in the second half of the 1980s and especially in the second half of 

the 1990s. Comparing with total patent applications we see a much faster growth for 

nanotechnology patents in the two relevant periods. Table 1 shows the distribution of patent 

applications across the EU 15 countries; Figure 2a shows the regional distribution of patent 

applications. 

>>> INSERT TABLE 1 AND FIGURE 2 ABOUT HERE <<< 

The bulk of nanotechnology-based applications are concentrated in Germany, followed at 

much lower levels by France and the UK: 71% of patent applications are concentrated on 

these three countries, with the remaining 29% spread across the other 12 countries. The map 

shows that, with the exception of Spain, the data are also characterized by marked within-

country variance. Regional concentration of technological activities is observed for Northern 

Italy, Central Germany, Southern England, Southern Sweden and Southern Finland. 

In relation to identification of the nanotech sector, we observed that nanotech discoveries 

have application used in a large number of sectors, so that defining its boundaries is difficult. 

A widely shared approach in the literature uses the information contained in patent 

applications to this purpose (Darby and Zucker, 2005; Rothaermel and Thursby, 2007; 

Mangematin et al., 2011). However, the relatively youth of the nanotechnology industry 

                                                           
3
We used the Patstat release updated to October 2011; in order to avoid right-truncation problems we use data 

patent applications submitted up to 2006.  
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presents some difficulties and in the past querying strategies were adopted to extract 

nanotechnology patent applications from the EPO database (Scheu et al., 2006; Mogoutov and 

Kahane, 2007). However, the EPO has implemented a tagging system to identify 

nanotechnology-related patent applications. They were initially identified by the code Y01N, 

but from 1
st
 January 2011 this code was replaced by the class B82Y, following worldwide 

efforts to classify nanotechnology uniformly under the IPC system. 

Selection of patent applications classified as B82Y leaves 5,605 patents. Table 2 shows their 

country distribution. The picture for nanotechnology-based patents is similar to the picture for 

all patents. Most applications (about 43%) are related to Germany followed by France and the 

UK:  nearly 73% of all nanotechnology-based application are concentrated in these three 

countries, with the remaining 27% shared across the remaining 12 countries. 

>>> INSERT TABLE 2 ABOUT HERE <<< 

Figure 2b shows the regional distribution of nano-patents which is quite similar to the 

distribution for all applications. There is a marked regional variety in terms of applications, 

with a concentration in Northern Italy, Southern France, Southern Sweden and Southern 

Finland. 

5 Empirical results 
 

5.1 Statistical evidence 
 

The purpose of the paper is to analyse the path-dependent dynamics of the emergence of new 

technology-based industries at the regional level. The term ‘new’ refers to the development of 

comparative advantage at the local level in technological activities where there was no 

comparative advantage in the past. Our main hypothesis is that the existing local technology 
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structure is likely to influence the emergence of RTA in new technologies. One way to 

investigate the historical grounds of the emergence of new technology-based industries 

consists of calculating the RTA for all technologies and considering that the region has 

comparative advantage in those technologies if RTA>1. Following Hausman and Klinger 

(2007) and Boschma et al. (2013) we divide the period of analysis (1986-2006) into five-year 

windows. This time span is considered long enough to enable the emergence of new 

industries, and short enough to provide a sufficient number of observations for parametric and 

non-parametric analysis. The number of technologies with comparative advantage is 

calculated as an average of the years 1986, 1991, 1996, 2001 and 2006. To calculate the 

number of new technologies with RTA, we took the average of the number of technologies in 

which regions had no comparative advantage in the years 1986, 1991, 1996 and 2001 but 

developed comparative advantage five years later. 

Figure 3 reports the relationship between technologies with RTA at time t and new 

technologies with RTA at t+5. Figure 3a can be considered a visual representation of the 

transition probability matrix. Each point on the scatter plot corresponds to one of the 225 

observed regions. It is clear that the relationship between these two dimensions is positive. 

For example, we observe that the Ile de France and the Oberbayern regions are those with the 

highest number of new technologies with RTA (128 and 116 respectively), and also the 

highest number of technologies with RTA at time t (313 and 323 respectively). In contrast, the 

Greek regions of Magnisia and Keffalonia are those with the lowest number of new 

technologies with RTA (both 6), and also the lowest number of technologies with RTA at 

time t (7 and 7.4 respectively). Overall, we observe that German regions are clustered in the 

top-right part of the diagram, along with some French and Italian regions, while peripheral 

regions are mostly located in the bottom-left part. 

>>> INSERT FIGURE 3 ABOUT HERE <<< 
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Following Antonelli et al. (2013), the transition probability matrix is split into two subperiods 

(1986-1996 and 1996-2006) in Figures 3b and 3c. This captures the effects of potential 

structural breaks on the persistent process of development of new RTAs. This type of analysis 

allows us to identify changes in the transition probabilities and to interpret them as clues to 

the effects of small external events that affect persistence. In other words, it allows us to infer 

the path-dependent character of RTA persistence. The diagrams reported in Figures 3b and 3c 

suggest that some changes can be detected in the relationship between RTA(t) and RTA(t+5). 

While in both cases RTA(t+5) increases at a less than proportional rate with respect to RTA, 

the graph in Figure 3c is flatter than the one in Figure 3b, suggesting that the response of 

RTA(t+5) to RTA was stronger in the first than in the second period. This can be interpreted 

as the outcome of a structural break that made the cumulative process less constraining.  

In order to understand whether this relationship is influenced by the regional technology 

structure, Figure 5 shows the relationship between the development of RTA in new 

technologies at time t+5 and the average density of the technologies at time t. Again, we 

observe a strong positive relationship. This suggests that regions that have cumulated 

competencies in technologies with higher average density are more likely to develop RTA in 

new technologies in the future. Indeed density is a synthetic measure of proximity, which 

accounts for the degree of connectedness of each technology. The more regions can 

incorporate technologies with high density in their portfolios, the higher their chances of 

developing RTA in new technologies. 

>>> INSER FIGURE 5 ABOUT HERE <<< 

The evidence so far provides support for the idea that cumulated technological capabilities are 

likely to shape the development of RTA in new technologies. We can obtain further 

information on the probability of the transition to a new technology at time t+5 for different 
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levels of density of technologies in which there was RTA at time t. We again divide the 

period 1986-2006 into five-year intervals. The results for the overall technology portfolio and 

nanotechnology-based patents are reported in Figures 6a and 6b respectively.  

>>> INSERT FIGURE 6 ABOUT HERE <<< 

The figures show that the probability of a new technology increases with the average level of 

density of the technology. Again, this suggests that the existing regional level technology 

structure, which is the outcome of a cumulative learning process, is likely to shape the 

emergence of new technological activities. This is even more evident in the case of 

nanotechnologies, where the lowest density classes show much lower probabilities of a 

transition. 

Another method to investigate whether higher density favours the emergence of new 

technological activities is to compare the probability density function of technologies with no 

RTA with the probability density function of technologies that gain RTA. Based on the 

previous analysis, which shows that the probability of a transition to a new technology is 

higher for high density values, we expect the bulk of the technologies with no RTA will be 

concentrated in the left of the distribution, while the technologies that develop RTA will be 

clustered mostly in the right of the distribution. To check these expectations we conduct 

kernel estimation of the probability density function for the distribution of technologies that 

developed RTA and for those that did not, for different density values. The results of these 

estimations are reported in Figures 7a and 7b which refer respectively to the overall sample 

and the sample of nanotechnology-based activities. The dashed line refers to the technologies 

in the region with no RTA at t+5 while the solid line represents technologies that developed 

RTA at t+5.  

>>> INSERT FIGURE 7 ABOUT HERE <<< 
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The diagrams suggest that most technologies that did not gain RTA are clustered in the region 

corresponding to the lowest density values. In relation to the results for the overall sample 

(Figure 7a) this corresponds roughly to the area for which 0<d<0.03. For technologies that 

developed RTA it is around d=0.25. For values of d>1.5 the probability density distribution 

for technologies that developed RTA is above the density distribution for technologies that 

did not. The evidence is similar though less pronounced for the nanotechnology sector. The 

development of new RTA in nanotech is more likely in regions that have accumulated 

competencies in high density technologies. 

5.2 Econometric analysis 
 

This section provides the results for the hypothesis that the technology structure at the 

regional level based on knowledge accumulation and learning dynamics affects the 

development of new technology-based activities at the local level. We implement econometric 

estimations of Equation (5) and report the results in Table 3. 

>>> INSERT TABLE 3 ABOUT HERE <<< 

According to the working hypotheses presented in Section 2, we formulate expectations of 

positive signs of both the lagged value of the dependent variable (i.e. the dummy that takes 

value 1 if the region i has RTA in the technology s) and the density variable. As already 

noted, the choice of estimation technique is not straightforward. First we implemented a linear 

probability model, to analyse the overall sample and the nanotechnology sector sample. The 

results of these estimations are reported in Table 3 columns (1) and (2). Recall that these 

estimations take account of time varying regional effects and time varying technological 

effects. The results for the overall sample provide support for our hypotheses in suggesting 

some persistence in the development of RTA at the local level, such that development of 

comparative advantage at time t enhances the likelihood that this advantage will continue at 
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time t+5. Moreover, the architecture of the technology structure in terms of average proximity 

in the technology space matters. The density of the technology at the local level has a positive 

coefficient, suggesting that development of RTA in one technology is more likely in the case 

of closely connected technologies, that is, if the new technology is closely related to the 

technologies already developed in the region.  

Table 3 column (2) shows that these results hold also for nanotechnology-based activities. 

The literature in this area underlines that these technologies can be regarded as competence-

enhancing and competence-destroying. The econometric results suggest that the competence-

enhancing effect prevails: the coefficient of the density variable is strongly significant. These 

results should be interpreted in the context of the wide number of applications of 

nanotechnologies, which reinforce the links between their development and the already 

existing local level technological activities. 

Estimation of linear probability models are often inefficient and can create problems related to 

predicted values. For this reason, Table 3 columns (3) and (4) show the results of the binomial 

generalized linear model (GLM) estimations. The results hold for the overall sample and the 

nanotechnologies sample. It is evident that having comparative advantage at the beginning of 

the period increases the probability of comparative advantage at the end of the period. 

Moreover, regions tends to develop new RTA in technologies with higher levels of density, 

that is, those technologies that show higher proximity in the technology space to the 

technological competencies accumulated at the local level. The results for nanotechnologies 

are in line with results at the general level. 

Finally, we observe that the inclusion of the lagged dependent variable in the regressor vector 

can lead to biased estimations. For this reason we implemented the GMM system estimator. 

The results are reported in Table 3 columns (5) and (6). The results are consistent with those 
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obtained from the other two estimation methods. The development of RTA in new 

technologies seems to be a path-dependent process in which competencies accumulated in the 

past are likely to shape future plans at the local level. Local agents cluster together based on 

the similarity of the capabilities needed for their implementation. This applies also to the case 

of new technologies such as nanotechnologies, as suggested by the results in column 6. 

5.2.1 Robustness check 

In order to check the robustness of our results, we follow Boschma et al. (2013) and 

Hausmann and Klinger (2007) and run econometric estimations using the RTA measure rather 

than a dummy variable that takes the value 1 at some arbitrary cut-off point. Note that 

including the RTA index in the econometric specifications could yield biased estimates 

because the index squeezes the values signalling non specialization between 0 and 1, while 

the values signalling specialization are between 1 and infinity. This gives rise to a skewed 

distribution which implies violation of the normality assumptions of the error term in the 

regression. For this reason it is recommended that some transformation of the index be used to 

make the distribution close to a normal one. In the econometric estimations reported in Table 

4 we use standardized values for RTA, the distribution of which approximates normality. 

>>> INSERT TABLE 4 ABOUT HERE <<< 

The results appear to be in line with what we have observed so far. Table 4 columns (1) and 

(2) show the OLS estimations, which correspond to the linear probability model in Table 3. 

The coefficients of the lagged dependent variable and the density variable are still positive 

and statistically significant for the overall sample. This supports the idea that the emergence 

of technological activities at the local level shows features of a path-dependent process. The 

results for nanotechnology-based activities (column (2)) are somewhat different in that the 

coefficient of the lagged dependent variable is not statistically significant. However, the 

coefficient of the density variable again is positive and statistically significant, signalling that 
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the branching process oriented towards the development of nanotechnology-based activities is 

driven by the competencies accumulated in the region in the past.  

Table 3 columns (3) and (4) present the results of the GMM-system estimation, which are 

fairly in line with the previous results. In the estimations for the overall sample both the 

coefficient of the lagged independent variable and the one of the density measure are positive 

and significant, suggesting the existence of some degree of persistence in the development of 

RTA, while in the estimation for nanotechnology-based activities only the latter is significant. 

Overall, the empirical evidence from the econometric estimation is coherent with the 

statistical analysis conducted in the previous section, and provides robust support for the 

hypothesis that the emergence of new technology-based industries at the local level appears to 

be path-dependent due to the dynamic irreversibilities engendered by learning and knowledge 

accumulation. 

Another possible bias in the regression results can be engendered by the fact that the density 

index is based on the co-location of technologies in the same region. In order to address this 

issue it would be useful to substitute the density measure by using an index which is 

independent from the spatial distribution of technologies. For this reason we decided to 

calculate the average technology proximity of technology s to all other sampled technologies. 

This index is based on the cosine index (Jaffe, 1986 and 1989), which is obtained as follows.  

Let Psk = 1 if the patent k is assigned the technology s [s= 1, …, n], and 0 otherwise. The total 

number of patents assigned to technology s is  k sks PO . Similarly, the total number of 

patents assigned to technology w is  k wkw PO . We can, thus, indicate the number of 

patents that are classified in both technological fields s and w as: 𝑉𝑠𝑤 = ∑ 𝑃𝑠𝑘𝑃𝑤𝑘𝑘 . By 

applying this count of joint occurrences to all possible pairs of classification codes, we obtain 
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a square symmetrical matrix of co-occurrences whose generic cell Vsw reports the number of 

patent documents classified in both technological fields s and s. 

Technologiocal proximity is proxied by the cosine index, which is calculated for a pair of 

technologies s and w as the angular separation or uncentred correlation of the vectors Vsm and 

Vwm. The similarity of technologies l and j can then be defined as follows: 
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This index is independent of the geographical location of technologies. Then the weighted 

average technology proximity of technology s from all other technologies in the region i is 

given by: 
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These new estimations are reported in Table 5
4
. The results appear to be very consistent with 

the empirical evidence discussed so far. 

>>> INSERT TABLE 5 ABOUT HERE <<< 

Column (1) shows the results obtained by applying the linear probability model, while 

columns (2) and (3) implements GLM and GMM estimators respectively. Once again the 

lagged RTA variable is positive and significant, suggesting that there is a strong persistence in 

the patterns of technological specialization. As discussed in the Section 5.1, this persistence 

appears to be path dependent. The positive sign on the TP index suggests instead that the 

emergence of new technology based sectors is shaped also by the knowledge and 

competences accumulated in the region over time. 

                                                           
4
 Due the loss of too many observations, this check has not been done on the nanotechnology subsample. 
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6 Conclusions 
 

The emergence and evolution of new industries has been at the forefront of economic 

speculation since the contributions of scholars such as Alfred Marshall, Joseph Schumpeter, 

Simon Kuznets, Allyn Young, Edith Penrose and George Richardson. The more recent 

evolutionary approach to economic geography emphasizes the importance of the branching 

process that occurs in regional diversification dynamics (Boschma and Frenken, 2007; 

Boschma et al. 2013). These developments highlight the role of routines and cumulated 

competencies in the process of diversification. Thus, regional branching occurs in domains 

that are close to the local areas of specialization. Based on these achievements, we applied the 

methodological framework developed by Hidalgo et al. (2007) to study the path-dependent 

dynamics of the emergence of new technology-based industries at the regional level, with a 

special focus on nanotechnologies. The focus on these technologies was motivated by their 

being relatively recent and of interest to scholars of innovation because of their ambiguous 

nature in terms of continuity with the existing technological competencies. 

The analysis was conducted on patent information drawn from the October 2011 release of 

the Patstat database. Patent applications were regionalized on the basis of inventors’ 

addresses. We focused on the NUTS2 regions in the EU15 countries. Both our data and 

previous analyses of nanotechnologies suggested the second half of the 1980s as the starting 

point. Our analysis covers the period 1986-2006 in order to avoid right-censoring problems. 

The empirical results of our statistical analysis and econometric tests provide robust support 

for our working hypotheses. The emergence of new technology-based activities is likely to be 

a path-dependent process in which the capabilities cumulated over time may constrain future 
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developments at the local level. In other words, the set of activities that constitutes the 

technological specialization of a given geographical aggregate matters for planning future 

diversification strategies. Regions that are specialized in technologies with higher degrees of 

density will find it easier to diversify and adopt new technologies. Conversely, peripheral 

regions with technological comparative advantages that are not close in the technological 

space will find it more difficult to diversify in core technologies. 

It should be noted that the path-dependent nature of the emergence of new technology-based 

sectors does not imply an endless process of cumulative causation à la Myrdal (1957). On the 

contrary, in path-dependent processes the final outcome is highly unpredictable. At any 

moment in time, unexpected events and changing local conditions can modify the economic 

agents’ trajectories. Also, at each moment in time, the set of attainable multiple equilibrium 

points changes. This makes the final outcome definitely uncertain (David, 1994, 1997; 

Colombelli and von Tunzelmann, 2011). As a consequence, the dynamic irreversibilities due 

to local technological specialization can represent a strength or a weakness, depending on the 

nature of the search processes underlying the introduction of the new technologies. The 

introduction of radically new technologies or new technological standards to replace old ones 

can render initial technological advantage an obstacle rather than a resource.
5
 

The analysis has important implications for regional technology policy. Actions to encourage 

the emergence of new technology-based industries at regional level, such as nanotechnologies 

or ‘green technologies’, should be based on the accurate analysis of both the comparative 

advantages developed over time in the area and of the relative position of such technologies in 

the technological landscape. Stimulating local agents to jump to new activities far away from 

                                                           
5
An example of these dynamics is provided in Nelson (1993), who observed that no firm managed the double 

transition from valves to transistors and transistors to integrated circuits. Once the future of high tech was 

obviously along Route 128, created by researchers and entrepreneurs from MIT; no-one thought about 

Californian drop-outs.  
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their cumulated competencies can be inefficient and unsuccessful. This evidence is especially 

important in the context of recent interest at European level in stimulating new activities. The 

results in this paper call for targeted measures to promote the process of local technological 

differentiation that take account of the history of the region and its distinctive advantages and 

cumulated knowledge.  

The scope for application of the methodology developed in this paper to investigate the 

emergence dynamics of new technology-based sectors goes beyond analysis of the path-

dependent character of this persistent process. Recent research shows that the properties of 

knowledge bases in terms of coherence, variety and cognitive distance affect economic and 

technological performances at different levels of aggregation (Colombelli et al., 2013, 2014; 

Antonelli and Colombelli, 2013; Quatraro, 2010). Future research should study the effects of 

the properties of local knowledge bases on the differential patterns of emergence of new 

technological activities at the local level. 
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Table 1 – Distribution of Patent Applications, by Country 

Country Freq. Percent 

Austria 24,121 2.46 

Belgium 24,288 2.48 

Germany 422,752 43.16 

Denmark 15,506 1.58 

Spain 14,086 1.44 

Finland 19,633 2 

France 156,904 16.02 

Great Britain 120,772 12.33 

Greece 1,176 0.12 

Ireland 3,624 0.37 

Italy 75,823 7.74 

Luxembourg 1,498 0.15 

Netherlands 57,353 5.86 

Portugal 794 0.08 

Sweden 41,096 4.2 

Total 979,426 100 

 

  



38 
 

Table 2 – Distribution of nanotechnology-based patent applications, by country 

Country Freq. Percent 

Austria 108 1.93 

Belgium 184 3.28 

Germany 2,441 43.55 

Denmark 56 1 

Spain 78 1.39 

Finland 70 1.25 

France 994 17.73 

Great Britain 752 13.42 

Greece 12 0.21 

Ireland 26 0.46 

Italy 279 4.98 

Luxembourg 6 0.11 

Netherlands 407 7.26 

Portugal 8 0.14 

Sweden 184 3.28 

Total 5,605 100 
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Table 3 - Econometric results for the estimation of Equation (5) 

Dependent 
variable xi,s,t+5 

Linearprobability model GLM System GMM 

 Overall 
(1) 

Nanotechnology 
(2) 

Overall 
(3) 

Nanotechnology 
(4) 

Overall 
(5) 

Nanotechnology 
(6) 

       
xi,s,t 0.202*** 

(0.003) 
0.285*** 

(0.059) 
1.217*** 
(0.023) 

1.391*** 
(0.209) 

0.071*** 
(0.002) 

0.221*** 
(.052) 

di,s,t 1.095*** 
(0.011) 

1.678*** 
(0. 157) 

9.920*** 
(0.227) 

8.535*** 
(0.632) 

1.033*** 
(0.008) 

0.617*** 
(0.128) 

constant -0.104*** 
(0.002) 

0.045 
(0.056) 

-4.186*** 
(0.043) 

-3.523*** 
(0.178) 

-0.030*** 
(0.001) 

0.047* 
(0.027) 

       
R² 
 

0.22 0.629     

Optimization   MQL Fisher 
scoring 

MQL Fisher 
scoring 

  

(1/df) Pearson 
 

  0.832 0.831   

Hansen J 
(p-value) 

    1059.88 
(0.000) 

88.08 
(0.000) 

AR(1) 
(p-value) 

    -181.50 
(0.000) 

-8.90 
(0.000) 

AR(2) 
(p-value) 

    9.17 
(0.000) 

0.08 
(0.935) 

Observations 977902 1832 977902 1832 977902 1832 

Note: regional clustered standard errors between parentheses. GLM estimation shows nonexponentiated coefficients. 
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Table 4 – Econometric results, estimation using the RTA index 

Dependent 
variable RTAi,s,t+5 

OLS System GMM 

 Overall 
(1) 

Nanotechnology 
(2) 

Overall 
(3) 

Nanotechnology 
(4) 

     
RTAi,s,t .0255** 

(0.011) 
-0.001 
(0.006) 

0.011* 
(0.006) 

0.003 
(0.003) 

di,s,t 0.769*** 
(0.040) 

0.865** 
(0.346) 

1.413*** 
(0.067) 

1.087*** 
(0.574) 

constant -0.136*** 
(0.008) 

-0.206 
(0.217) 

-0.176*** 
(0.008) 

-0.178** 
(0.085) 

     
R² 
 

0.007 0.522   

Hansen J 
(p-value) 

  225.09 
(0.000) 

33.36 
(0.007) 

AR(1) 
(p-value) 

  -4.68 
(0.000) 

-1.99 
(0.046) 

AR(2) 
(p-value) 

  -0.09 
(0.929) 

1.10 
(0.270) 

Observations 977902 1832 977902 1832 

Note: regional clustered standard errors between parentheses.  
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Table 5 - Econometric results, estimation using the TP index 

Dependent 
variable xi,s,t+5 

Linearprobability model GLM System GMM 

  (1)  (2)  (3) 

    
xi,s,t 0.168*** 

(0.006) 
0.717*** 
(0.027) 

0.035*** 
(0.005) 

TPi,s,t 0.126*** 
(0.038) 

0.633 
(0.163) 

0.738*** 
(0.073) 

constant 0.297*** 
(0.007) 

-0.936*** 
(0.030) 

0.253*** 
(0.0114) 

    
R² 
 

0.040   

Optimization  MQL Fisher scoring  
(1/df) Pearson 
 

 0.999  

Hansen / Sargan 
test 
(p-value) 

  877.465 
(0.000) 

AR(1) 
(p-value) 

  -77.70 
(0.000) 

AR(2) 
(p-value) 

  1.429 
(0.152) 

Observations 209576 209576 132077 

Note: regional clustered standard errors between parentheses. GLM estimation shows nonexponentiated coefficients. 
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Figure 1 – Evolution of patent applications in the EU 15 regions over time 

 

Note : Total Patents applications on the left y-axis. Nanotechnology-based patents applications on 

the right y-axis 
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Figure 2 – Regional distribution of patent applications 

 
a) Overall 

 
b) Nanotechnology 
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Figure 3 - Relationship between technologies with RTA at time t and new technologies with RTA at time t+5 in European regions (average values; 5-years interval) 

 

a) Overall period 

 

b) Before 1996 

 

c) After 1996 

Note :  each circle in the scatter plot represents a sampled region. 
A region has a comparative advantage in a given technology if the calculated RTA > 1.  
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Figure 4 - Relationship between the average density of technologies with RTA at time t and new technologies with RTA at 
time t+5 in European regions (1986-2006 average; 5-years interval) 

 
Note :  each circle in the scatter plot represents a sampled region.  

A region has a comparative advantage in a given technology if the calculated RTA > 1.  
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Figure 5 - Probability of transitioning into new technologies in European regions (period 1986-2006; 5-years interval) 

 
a) Overall 

 
b) Nanotechnologies 
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Figure 6 – Kernel density estimation for new technologies with RTA at t+5 and for technologies with no RTA (period 1986-2006; 5-years interval). 

 
a) Overall 

 
b) Nanotechnologies 

Note: A region has a comparative advantage in a given technology if the calculated RTA > 1.  
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Appendix 1- Regions included in the analysis (average values) 

Nuts Code 

 

Region 

 

R&D Expenditurea 

(Share of GDP) 

Employmenta  

(thousands) 

Patents Countb 

 

AT11 Burgenland (AT) 0,597 111,933 34,266 

AT12 Niederösterreich 0,970 660,250 391,600 

AT13 Wien 3,437 899,183 490,502 

AT21 Kärnten 2,267 256,717 94,499 

AT22 Steiermark 3,370 575,733 297,413 

AT31 Oberösterreich 1,940 687,017 431,001 

AT32 Salzburg 0,990 286,033 115,388 

AT33 Tirol 2,143 352,350 168,939 

AT34 Vorarlberg 1,320 169,617 215,844 

ATZZ Extra-Regio NUTS 2 NA NA 17,095 

BE10 Région de Bruxelles-Capitale  1,234 655,083 294,810 

BE21 Prov. Antwerpen 2,250 719,400 538,857 

BE22 Prov. Limburg (BE) 0,930 305,550 133,810 

BE23 Prov. Oost-Vlaanderen 1,840 519,517 335,095 

BE24 Prov. Vlaams-Brabant 3,090 402,517 477,143 

BE25 Prov. West-Vlaanderen 1,000 481,283 212,000 

BE31 Prov. Brabant Wallon 6,850 128,017 244,048 

BE32 Prov. Hainaut 1,030 400,283 148,048 

BE33 Prov. Liège 1,510 357,150 209,095 

BE34 Prov. Luxembourg (BE) 0,520 86,583 45,381 

BE35 Prov. Namur 1,060 150,550 74,667 

BEZZ Extra-Regio NUTS 2 NA NA 60,667 

DE11 Stuttgart 5,075 2105,517 3635,915 

DE12 Karlsruhe 3,920 1383,817 2835,570 

DE13 Freiburg 2,345 1048,867 1795,774 

DE14 Tübingen 3,960 872,567 1428,328 

DE21 Oberbayern 4,715 2318,533 3752,210 

DE22 Niederbayern NA 570,033 360,972 

DE23 Oberpfalz NA 536,700 540,871 

DE24 Oberfranken 1,240 534,117 518,565 

DE25 Mittelfranken 2,775 899,883 1259,559 

DE26 Unterfranken 1,985 649,850 919,561 

DE27 Schwaben 1,145 859,150 1054,471 

DE30 Berlin 3,915 1549,050 993,941 

DE41 Brandenburg - Nordost (NUTS 2006) 0,620 432,200 139,688 

DE42 Brandenburg - Südwest (NUTS 2006) 1,580 588,300 251,358 

DE50 Bremen 2,440 384,883 134,932 

DE60 Hamburg 1,890 1049,833 675,133 

DE71 Darmstadt 3,100 1992,333 3642,735 

DE72 Gießen 1,885 463,333 588,431 

DE73 Kassel 0,940 588,150 321,328 

DE80 Mecklenburg-Vorpommern 1,335 717,967 108,185 

DE91 Braunschweig 7,300 761,217 676,478 

DE92 Hannover 2,155 1018,433 907,004 

DE93 Lüneburg 0,625 644,917 565,583 

DE94 Weser-Ems 0,565 1113,367 548,551 

DEA1 Düsseldorf 1,615 2533,700 3423,704 

DEA2 Köln 2,960 2083,000 2999,385 

DEA3 Münster 0,935 1138,000 1076,655 

DEA4 Detmold 1,325 991,950 817,424 

DEA5 Arnsberg 1,410 1696,633 1589,248 



49 
 

Nuts Code 

 

Region 

 

R&D Expenditurea 

(Share of GDP) 

Employmenta  

(thousands) 

Patents Countb 

 

DEB1 Koblenz 0,625 668,233 623,227 

DEB2 Trier 0,640 229,450 99,670 

DEB3 Rheinhessen-Pfalz 2,810 883,167 2200,433 

DEC0 Saarland 1,065 506,017 290,341 

DED1 Chemnitz (NUTS 2006) 1,385 673,483 153,177 

DED2 Dresden 3,355 752,617 589,057 

DED3 Leipzig (NUTS 2006) 1,775 487,633 115,385 

DEE0 Sachsen-Anhalt 1,155 1009,983 222,274 

DEF0 Schleswig-Holstein 1,130 1233,000 788,446 

DEG0 Thüringen 1,825 1018,200 444,585 

DEZZ Extra-Regio NUTS 2 NA NA 403,095 

DK01 Hovedstaden NA 940,333 738,738 

DK02 Sjælland NA 329,000 184,548 

DK03 Syddanmark NA 583,667 194,349 

DK04 Midtjylland NA 636,333 227,151 

DK05 Nordjylland NA 281,667 72,786 

DKZZ Extra-Regio NUTS 2 NA NA 21,524 

ES11 Galicia 0,823 1034,867 21,190 

ES12 Principado de Asturias 0,697 397,633 16,150 

ES13 Cantabria 0,535 232,833 8,000 

ES21 País Vasco 1,428 1001,217 102,190 

ES22 Comunidad Foral de Navarra 1,460 303,100 43,600 

ES23 La Rioja 0,663 138,467 6,875 

ES24 Aragón 0,738 581,817 43,238 

ES30 Comunidad de Madrid 1,748 2900,417 255,190 

ES41 Castilla y León 0,875 1020,550 42,190 

ES42 Castilla-la Mancha 0,408 717,000 22,611 

ES43 Extremadura 0,602 369,417 4,125 

ES51 Cataluña 1,267 3285,317 510,476 

ES52 Comunidad Valenciana 0,848 1892,700 104,238 

ES53 Illes Balears 0,252 450,183 9,650 

ES61 Andalucía 0,755 2679,983 56,143 

ES62 Región de Murcia 0,662 504,600 13,667 

ES70 Canarias (ES) 0,567 751,017 9,737 

ESZZ Extra-Regio NUTS 2 0,000 NA 10,143 

FI13 Itä-Suomi (NUTS 2006) 1,582 260,967 70,868 

FI18 Etelä-Suomi (NUTS 2006) 3,543 1260,733 1077,602 

FI19 Länsi-Suomi 3,462 568,517 433,042 

FI1A Pohjois-Suomi (NUTS 2006) 4,547 256,983 163,112 

FI20 Åland 0,145 17,233 4,000 

FIZZ Extra-Regio NUTS 2 NA NA 9,611 

FR10 Île de France 3,243 5404,850 5418,524 

FR21 Champagne-Ardenne 0,710 528,283 180,714 

FR22 Picardie 1,355 667,217 395,000 

FR23 Haute-Normandie 1,455 700,200 393,143 

FR24 Centre (FR) 1,538 986,983 519,952 

FR25 Basse-Normandie 0,970 566,517 172,810 

FR26 Bourgogne 0,980 646,717 312,524 

FR30 Nord - Pas-de-Calais 0,698 1440,900 382,333 

FR41 Lorraine 1,115 844,817 347,810 

FR42 Alsace 1,520 726,700 679,143 

FR43 Franche-Comté 1,993 452,467 245,143 

FR51 Pays de la Loire 0,943 1392,083 362,476 



50 
 

Nuts Code 

 

Region 

 

R&D Expenditurea 

(Share of GDP) 

Employmenta  

(thousands) 

Patents Countb 

 

FR52 Bretagne 1,643 1211,817 398,143 

FR53 Poitou-Charentes 0,810 655,567 175,524 

FR61 Aquitaine 1,610 1185,917 326,619 

FR62 Midi-Pyrénées 3,653 1076,567 478,667 

FR63 Limousin 0,780 285,117 67,952 

FR71 Rhône-Alpes 2,590 2440,317 2227,238 

FR72 Auvergne 2,445 525,267 224,524 

FR81 Languedoc-Roussillon 2,090 853,350 274,810 

FR82 Provence-Alpes-Côte d'Azur 1,888 1785,233 713,905 

FR83 Corse 0,293 100,600 4,441 

FR91 Guadeloupe (FR) 0,000 135,717 3,733 

FR92 Martinique (FR) 0,000 125,067 2,197 

FR93 Guyane (FR) 0,000 50,400 1,738 

FR94 Réunion (FR) 0,000 207,917 5,590 

FRZZ Extra-Regio NUTS 2 142,838 NA 47,476 

GR11 Anatoliki Makedonia, Thraki 0,365 237,900 2,000 

GR12 Kentriki Makedonia 0,590 753,733 15,662 

GR13 Dytiki Makedonia 0,155 103,817 2,400 

GR14 Thessalia 0,285 295,567 4,556 

GR21 Ipeiros 0,615 128,850 2,778 

GR22 Ionia Nisia 0,105 91,883 1,000 

GR23 Dytiki Ellada 0,690 280,567 6,780 

GR24 Sterea Ellada 0,125 218,883 3,875 

GR25 Peloponnisos 0,200 252,517 2,822 

GR30 Attiki 0,760 1661,500 58,857 

GR41 Voreio Aigaio 0,390 71,267 1,000 

GR42 Notio Aigaio 0,105 122,617 1,833 

GR43 Kriti 0,860 268,433 8,474 

GRZZ Extra-Regio NUTS 2 NA NA 2,667 

IE01 Border, Midland and Western 1,166 459,567 71,143 

IE02 Southern and Eastern 1,198 1409,533 219,952 

IEZZ Extra-Regio NUTS 2 NA NA 14,714 

ITC1 Piemonte 1,663 1948,083 958,030 

ITC2 Valle d'Aosta/Vallée d'Aoste 0,367 58,383 11,947 

ITC3 Liguria 1,230 645,900 169,048 

ITC4 Lombardia 1,120 4471,000 2359,619 

ITD1 
Provincia Autonoma Bolzano/Bozen 
(NUTS 2006) 0,377 244,467 46,619 

ITD2 

Provincia Autonoma Trento (NUTS 

2006) 1,083 226,700 45,333 

ITD3 Veneto (NUTS 2006) 0,620 2210,267 803,810 

ITD4 Friuli-Venezia Giulia (NUTS 2006) 1,153 564,950 262,444 

ITD5 Emilia-Romagna (NUTS 2006) 1,170 2045,450 1057,905 

ITE1 Toscana (NUTS 2006) 1,100 1633,767 385,238 

ITE2 Umbria (NUTS 2006) 0,813 368,517 63,857 

ITE3 Marche (NUTS 2006) 0,587 698,367 135,810 

ITE4 Lazio (NUTS 2006) 1,803 2352,050 401,476 

ITF1 Abruzzo 1,057 501,683 91,571 

ITF2 Molise 0,440 116,833 6,579 

ITF3 Campania 1,123 1823,133 104,952 

ITF4 Puglia 0,637 1295,750 66,095 

ITF5 Basilicata 0,523 210,533 13,737 

ITF6 Calabria 0,387 632,500 16,994 

ITG1 Sicilia 0,833 1485,950 80,857 
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Nuts Code 

 

Region 

 

R&D Expenditurea 

(Share of GDP) 

Employmenta  

(thousands) 

Patents Countb 

 

ITG2 Sardegna 0,650 598,500 25,315 

ITZZ Extra-Regio NUTS 2 NA NA 54,524 

LU00 Luxembourg 1,625 297,350 132,143 

NL11 Groningen 1,680 209,900 81,938 

NL12 Friesland (NL) 0,690 227,733 69,634 

NL13 Drenthe 0,725 167,083 74,340 

NL21 Overijssel 1,420 427,750 216,508 

NL22 Gelderland 1,770 756,817 462,912 

NL23 Flevoland 4,688 109,283 48,198 

NL31 Utrecht 1,880 541,983 334,358 

NL32 Noord-Holland 1,678 1169,150 540,985 

NL33 Zuid-Holland 1,650 1390,050 817,844 

NL34 Zeeland 0,775 135,800 58,248 

NL41 Noord-Brabant 2,900 994,500 1671,849 

NL42 Limburg (NL) 1,918 422,033 333,858 

PT11 Norte 0,567 1728,733 17,333 

PT15 Algarve 0,230 204,017 3,111 

PT16 Centro (PT) 0,655 1203,300 19,875 

PT17 Lisboa 1,155 1447,633 22,000 

PT18 Alentejo 0,790 312,683 4,800 

PT30 Região Autónoma da Madeira (PT) 0,278 120,150 2,143 

PTZZ Extra-Regio NUTS 2 NA NA 36,524 

SE11 Stockholm 4,250 1048,533 1003,376 

SE12 Östra Mellansverige 4,025 682,617 518,518 

SE21 Småland med öarna 0,970 395,950 143,737 

SE22 Sydsverige 4,285 600,017 633,401 

SE23 Västsverige 5,600 879,067 680,160 

SE31 Norra Mellansverige 1,315 367,317 194,500 

SE32 Mellersta Norrland 0,690 173,933 62,617 

SE33 Övre Norrland 2,490 228,767 92,668 

SEZZ Extra-Regio NUTS 2 0,000 NA 23,143 

UKC1 Tees Valley and Durham 0,950 491,083 156,333 

UKC2 Northumberland and Tyne and Wear 1,060 611,800 156,238 

UKD1 Cumbria 0,630 225,583 49,667 

UKD2 Cheshire (NUTS 2006) 4,225 473,900 384,905 

UKD3 Greater Manchester 1,025 1160,950 271,286 

UKD4 Lancashire 2,635 655,400 139,952 

UKD5 Merseyside (NUTS 2006) 1,690 564,233 215,000 

UKE1 

East Yorkshire and Northern 

Lincolnshire 0,540 405,150 101,571 

UKE2 North Yorkshire 1,650 374,267 148,095 

UKE3 South Yorkshire 1,055 570,417 87,667 

UKE4 West Yorkshire 0,715 992,000 243,048 

UKF1 Derbyshire and Nottinghamshire 2,170 943,417 300,238 

UKF2 

Leicestershire, Rutland and 

Northamptonshire 1,645 790,083 295,048 

UKF3 Lincolnshire 0,395 312,950 42,286 

UKG1 

Herefordshire, Worcestershire and 

Warwickshire 1,815 615,150 311,857 

UKG2 Shropshire and Staffordshire 0,510 724,033 150,286 

UKG3 West Midlands 1,300 1107,233 261,524 

UKH1 East Anglia 5,140 1076,333 765,762 

UKH2 Bedfordshire and Hertfordshire 3,490 822,383 550,333 

UKH3 Essex 3,390 799,950 346,143 
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Nuts Code 

 

Region 

 

R&D Expenditurea 

(Share of GDP) 

Employmenta  

(thousands) 

Patents Countb 

 

UKI1 Inner London 1,135 1341,717 454,048 

UKI2 Outer London 0,755 2153,700 564,286 

UKJ1 

Berkshire, Buckinghamshire and 

Oxfordshire 3,160 1134,050 907,810 

UKJ2 Surrey, East and West Sussex 1,305 1263,750 653,619 

UKJ3 Hampshire and Isle of Wight 3,695 910,467 473,524 

UKJ4 Kent 2,405 753,317 281,714 

UKK1 

Gloucestershire, Wiltshire and 

Bristol/Bath area 3,015 1123,750 542,619 

UKK2 Dorset and Somerset 0,875 566,550 140,905 

UKK3 Cornwall and Isles of Scilly 0,265 228,450 43,000 

UKK4 Devon 0,780 511,650 74,905 

UKL1 West Wales and The Valleys 0,680 786,417 117,000 

UKL2 East Wales 1,660 494,167 157,476 

UKM2 Eastern Scotland 2,285 933,083 237,619 

UKM3 South Western Scotland 0,930 1026,350 144,143 

UKM5 North Eastern Scotland 1,625 251,700 90,857 

UKM6 Highlands and Islands 0,785 192,967 21,810 

UKN0 Northern Ireland (UK) 1,045 724,633 62,143 

Notes :  a) Own elaborations on Eurostat Data (average 1996-2006) 

 b) own elaborations on PATSTAT Data (average 1986-2006) 

 


