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Reaching consensus on rumors 

U. Merlone, , D. Radi 

 

 

Abstract 

An important contribution in sociophysics is the Galam’s model of rumors spreading. This model provides 

an explanation of rumors spreading in a population and explains some interesting social phenomena such 

as the diffusion of hoaxes. In this paper the model has been reformulated as a Markov process highlighting 

the stochastic nature of the phenomena. This formalization allows us to derive conditions for consensus to 

be reached and for the existence of some interesting phenomena such as the emergence of impasses. The 

proposed formulation allows a deeper and more comprehensive analysis of the diffusion of rumors. 
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1. Introduction 

Consensus in groups has attracted interest from different disciplines, namely social psychology, economics, 

sociology and political sciences. For example, the influence of social pressure exercised by a minority is 

studied in Ref.  [1] where the authors analyze how behavioral style may be a general source of influence. 

The process by which a group reaches consensus has been formalized and mathematically analyzed in 

Refs. [2] and [3] providing also simple conditions determining whether it is possible for the group to reach 

consensus. Another important contribution is provided by  [4] which introduces a time-changing influential 

matrix and provides a sufficient condition to obtain convergence on the influential weights. More recent 

contributions based on the same modeling framework account for strategic interaction and study the 

existence of possible consensus equilibria when strategic interaction and social influence are combined 

together. For example,  [5] incorporates in a DeGroot-like model, see again  [2], the possibility that agents 

misrepresent their opinion with the intent of reaching a conformity. Indeed, adopting a behavior that is 

different from the others might cause disutility. In this case, the combination of this strategic acting and the 

social influence requires additional conditions to reach consensus. Following a similar idea,  [6] introduces 

an extension of the classical DeGroot model of opinion formation for studying the transmission of cultural 

traits in an overlapping generation setting, where parents strategically display a cultural trait to influence 

their children. 

Sociophysics as well, has devoted a lot of attention to social influence, starting from the pioneering works 

by Galam (see, e.g., Ref.  [7]) to recent contributions, such as  [8]; for a review see Refs.  [9] and [10]. In his 

contributions  [11] and [12], Galam moves the perspective from within the group to a whole population 

whose individuals try to choose an opinion (true or false) on a rumor on the basis of repeated discussions in 

social gatherings. At each of them, a small group of people get together and line up with a consensual 

opinion in which everyone agrees with the majority inside the group. His model provides a plausible 

explanation for the diffusion or self-propagation of rumors through free public debates, such as the 

temporary diffusion of the so called Pentagon French hoax, according to which no plane crashed on the 

Pentagon on September the . Indeed, although initially supported only by a minority of the 

population, this rumor started to propagate with an astonishing and unexpected adhesion till the moment 

in which a strong media campaign carried out by newspapers reversed the process. 

In the Galam’s formulation of the model the binomial distribution has been used to approximate the 

probability of having a specific table seating configuration. The use of the binomial distribution is a good 

modeling approximation as long as populations with a large number of agents and small size discussion 

groups are considered. Nevertheless, this approach may create distortions in the prediction of the 

dynamics of rumors in small communities. In order to deal with this problem, we formalize the process as 

an absorbing Markov chain, in which the states of the process correspond to the number of agents holding 

one opinion. Our approach extends Galam’s analysis providing further results and precision. The goal is to 

have further information about the process of diffusion of opinions which are not possible to obtain using 

the original Galam’s formulation. In particular, we aim to investigate thoroughly the evolution of the 

rumors spreading process identifying all the absorbing states and computing the probability to reach each 

of them. 

The structure of the paper is the following: In Section  2 the model is described as an absorbing Markov 

chain. In Section  3 the stochastic killing point is defined. This is the stochastic version of the killing point 

introduced in Ref.  [12]. In Section  4 the formula for the conditional expected values is provided. Finally, in 

Section  5 further possible developments of the model are suggested. 
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2. Formalization of the process 

Consider a N person finite population and assume that only two opinions, ‘+’ and ‘−’, are possible. Assume 

that at time t=0,1,… each individual holds either one or the other opinion and Yt denotes the number of 

those holding opinion ‘+’ at time t. The set of possible states of the population with respect to opinion ‘+’ is 

therefore S={0,1,…,N}, where state 0 means consensus has been reached on opinion ‘−’ while, on the 

contrary, state N means consensus has been reached on opinion ‘+’. Not all the states in S are necessarily 

feasible. State feasibility depends on aspects, which will be introduced later, such as social 

space and discussion functions. 

As in Refs.  [12], [13] and [14] the interaction takes place at different size tables. Thesocial space  , where 

the discussion takes place, is the set of tables N={T1,T2,…,TL}with1L<N. Let |Tr| be the size of 

table Tr with ∑Tr∈N|Tr|=N. The table sizes, i.e., the number of people that can be seated at a given table, can 

be summarized in vector . As the number of seats at each table is the 

only relevant variable, the social space can be denoted either by N or ; furthermore we assume as in 

Ref.  [12] that the social space remains the same during the whole process. 

Given a social space N, we can determine how may tables have size k as follows 

 

where δk,|Tr| is the Kronecker’s delta. 

As we assume the social space being fixed over time, the probability ak to be seated at a size k table is 

stationary and can be determined as follows 

 

where K is the number of seats of the largest size table in the social space. Given the social 

space N={T1,T2,…,TL}, vector  indicates a generic seating configuration where y1 agents 

with opinion ‘+’ are seated at table T1, y2 are seated at table T2,… and yL are seated at table TL, with the 

obvious feasibility conditions 0≤yr≤|Tr|, r=1,2,…,L. Therefore entries in  depend2 on the social space. 

Assuming y∈S agents with opinion ‘+’, let us introduce the set Ωy as 

 

This set consists of all possible seating configurations of y agents with opinion ‘+’ given the social space. 

The probability of each seating configuration , ∀y∈S can be computed as follows 

Proposition 1. 

Assuming all seating configurations are equiprobable, then the probability of configuration  

,  ∀y∈Sis 
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where  is a multinomial coefficient.  is a probability mass function. 

Proof. 

Given a N-agents population and a social space . The number of all the possible 

combinations of the N agents at the L tables of social space is  and the number of possible 

combinations of y agents with opinion ‘+’ andN−y agents with opinion ‘−’ for which we have the seating 

configuration  is 

 

Since all the  possible combinations are equiprobable, the probability of the seating 

configuration  is given by 

 

By multinomial coefficients properties and Chu–Vandermonde’s identity, it is clear 

that  is a probability mass function.  

As in Ref.  [12] the dynamics of the system evolves at discrete times, t∈N. At each iteration, agents are 

randomly seated at the tables. At the different tables, individuals line up with a consensual opinion in 

which everyone agrees with the majority inside the group and afterwards they leave the tables. As in 

Ref.  [12], when an opinion is exactly split at an even size table the outcome is determined assuming a bias 

in favor of opinion ‘−’. A single step of the opinion dynamics is illustrated in the example provided in Fig. 1. 

 

Fig.  1 A one step opinion dynamics. First stage, people sharing the two opinions are moving around. Gray have opinion ‘+’ while 
black have opinion ‘−’. No discussion is occurring with 2 gray and 2 black. Second stage right, people are partitioned into groups of 
various sizes from one to three and no change of opinion occurs. Third stage, within each group consensus has been reached. As a 
result, they are now 1 gray and 3 black. Last stage, people are again moving around with no discussion. 
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The described mechanism of diffusion of rumors can be formalized as a memoryless stochastic 

process (Yt)t≥0 where Yt is a random variable representing the number of agents with opinion ‘+’ at time t. 

To this purpose we formalize the change of opinion among agents seated at table Tr by introducing the 

majority rule discussion function D: 

 

where ⌊⋅⌋ gives the greatest integer less than or equal to the argument. 

The step function D describes the biased discussion rule as in Ref.  [12]. Different opinion formation rules 

within groups can be modeled with appropriate discussion functions. For example, when the discussion is 

not biased it is sufficient to consider: 

 

In the following, consistently to Ref.  [12], we will consider only discussion function (4). 

The social space and the majority rule discussion function determine the set of feasible states . 

According to function D, at each table Tr the discussion ends with either|Tr| or 0 agents with opinion ‘+’. It 

follows that state s is feasible if and only if there exists at least a table combination Cs⊆N such 

that s=∑Tr∈Cs|Tr|. Generally, there are more than one table combination giving state s. 

The next step to formalize the stochastic process is to define the transition probability  from one state to 

another in the state space  under majority rule discussion functions. Consider the set ωi,j⊆Ωi of seating 

configurations such that, starting with i agents with opinion ‘+’, after the discussion j agents end up with 

opinion ‘+’ (under majority rule discussion function); formally 

 

Therefore, starting with i agents with opinion ‘+’, the probability of ending up after a discussion 

with j agents having opinion ‘+’ is 

 

where  is defined as in Proposition 1. It is clear that pi,j is the transition probability   from state i to 

state j, with . 
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From the transition probability measure pij, , it is possible to define the transition 

matrix , from which we have 

Theorem 2. 

The stochastic process  (Yt)t≥0on  described by the pair  is an absorbing Markov chain such that 

states 0 and  Nare always absorbing. There exists one additional absorbing state  s=(N/2)if and only if the 

social space is composed exclusively of two odd-size tables of the same size. 

See Appendix for the proof. 

This is the main result of the paper as it provides the conditions for reaching consensus. In particular, it 

states that the two states representing consensus either in opinion ‘−’ or ‘+’, i.e., 0 and N, are always 

absorbing. Furthermore, excluding the very specific case of two odd tables of equal size, it is always 

possible to reach consensus starting from a mixed opinion, that is, from states different from 0 and N. This 

result confirms the findings of Ref.  [12]. However, it is worth observing that, due to the random nature of 

the process, the dynamics of convergence towards consensus is not necessarily monotonic as indicated in 

Ref.  [12] and impasses, i.e., states (s=(N/2)) where consensus is not reached, may emerge for specific 

configurations of the social space. Such impasses were overlooked in previous contributions. We provide a 

simple example showing how impasses can occur depending on the structure of the social space. 

Example 3. 

Consider the case of 10 agents with two different social spaces:  and . Since at 

the end of each turn we have tables with homogeneous opinions, only states 0, 3, 4, 6, 7 and 10 are 

feasible in social space  and 0, 5, 10 are feasible states in . It is clear that starting from states 0 and 1 

the only possible evolution is to state 0 in both cases. As it concerns the other states, applying formula (3), 

we can compute the transition probability matrices: 
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In the first case, the dynamics is consistent to Galam’s model prediction, see, e.g.  [12]. By contrast, in the 

second case, as we have only two odd-size tables of the same size, the transition matrix has three 

absorbing states as pointed out in Theorem 2. Therefore the dynamics described by the Markov process is 

different from the one of Ref.  [12]. 

Remark 4. 

In the transition matrices of the previous and the following examples the zero columns correspond to 

states that are not feasible, i.e.  . Nevertheless, as these states can be the initial condition of the 

process, they are not omitted from our analysis. 

Obviously, even when considering a non-biased discussion function such as (5), absorbing states different 

from consensus states (0 and N) are possible. 

 

3. Stochastic killing point and quantitative illustration 
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Using the results of the previous section, we are able to analyze the diffusion of rumors. Indeed, given the 

initial distribution vector , the absorbing Markov chain describes the dynamics of rumors under 

majority rule in an N person-population with social space . Once the absorbing states of the Markov chain 

have been determined, it is possible to analyze the process in more detail. In fact, by simple algebra it is 

possible to provide some important statistics, such as the expected time of convergence and the probability 

to reach consensus on each of the two opinions. However, in order to perform this analysis and to 

understand the rule of the social space in the convergence to consensus, it is first useful to define the 

equivalent of the so called killing point   for the Markov chain . In Ref.  [12] the killing point is the 

point where the monotonic flow–towards one of two stable fixed points–changes direction. The killing 

point is important to characterize the rumor dynamics as it determines the border of the basin of 

attractions of the two stable fixed points 0 and 1. 

To extend this notion to our formalization recall that now the fixed points 0 and 1 correspond to the 

absorbing states 0 and N. Focusing on the case of two absorbing states only, i.e. excluding the cases of 

social spaces made up of only two odd-sized tables of the same dimension, and denoting with pij(t) the t-

step transition probability, it is possible to define an analogue of the killing point for the absorbing Markov 

chain proposed here. Let us call it stochastic killing point. 

Definition 5. 

Excluding the cases for which the stochastic matrix  is characterized by more than two absorbing states, 

we define the stochastic killing point   of  as k∗=Y0, such 

thatlimt→∞pY
0

,0(t)≥limt→∞pY
0

,N(t) and limt→∞pY
0

+1,0(t)<limt→∞pY
0

+1,N(t), with Y0∈S. 

The value of k∗ can be easily calculated. Let us rewrite the transition matrix in the normal form: 

 

where  is the identity matrix identifying the absorbing states related to the social space , in our case 0 

and N,  gives the transition probabilities between transient states and  transition probabilities to 

absorbing states. We compute the fundamental matrix3  and , where  is 

the identity matrix identifying the transient states related to  and  indicates the probability to end 

up at the absorbing state j when starting from transient state i. Since we are considering transition matrices 

with two absorbing states (0 and N),  has two columns. Let us introduce the following matrix 

 

where entries b1,j (with j=0,…,N) give the probability that state j will be absorbed in state 0, while 

entries b2,j give the probability that state j will be absorbed in state N,∀j∈S. Under the majority rule 

dynamics, b1,j is monotonically non-increasing with respect to j and b2,j is monotonically non-decreasing 

with respect to j, therefore the stochastic killing point is  where  is such 

that  and . 

The stochastic killing point is important to understand the effects of different social spaces on the 

probability of reaching consensus either for opinion ‘−’ or ‘+’. We report some examples which illustrate 
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this aspect providing the average ρ=N/L and the variance σ2=∑Tr∈N(|Tr|−(N/L))2 of the size of the tables of 

the considered social spaces. In particular, let us consider a population of 10 agents as in Example 3 with 

social space  and two additional ones,  and . For each 

social space, we compute the stochastic matrix  in normal form, vector , 

where z0=zN=0 and , and matrix . These cases are represented 

in Fig. 2, Fig. 3 and Fig. 4. The left side of these figures represents the probabilities b1,j and b2,j to converge, 

starting from state j∈S, respectively to absorbing states 0, and N. Probabilities for state 0, i.e., consensus on 

opinion ‘−’, are depicted with black dots; those for state N, i.e., consensus on opinion ‘+’, are depicted with 

gray dots. The right side of the figures represents the expected time, zj, of convergence to consensus 

(either 0 or N) for each initial state j∈S. As we are considering discrete states the dashed lines are there for 

illustrative purpose only. The caption of each figure also provides the average ρ and the variance σ of the 

size of the tables in the social space. 

 

Fig.  2 Case , ρ=10/9, σ
2
≈0.8889 and k∗=9. Depending on the initial state j∈S: (a) probability 

to converge to the absorbing states 0 (black circles) and N (gray circles); (b) expected time of convergence to consensus (either 0 
or N). 

 

Fig.  3 Case , ρ=10/3, σ
2
≈0.6667 and k∗=6. Depending on the initial state j∈S: (a) probability to converge to the 

absorbing states 0 (black circles) and N (gray circles); (b) expected time of convergence to consensus (either 0 or N). 
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Fig.  4 Case , ρ=10/3, σ
2
≈32.6667 and k∗=5. Depending on the initial state j∈S: (a) probability to converge to the 

absorbing states 0 (black circles) and N (gray circles); (b) expected time of convergence to consensus (either 0 or N). 

In the following, we show how the average and the variance of the size of the tables in the social space 

affect the diffusion of rumors. 

In Fig. 2 and Fig. 3 we consider two social spaces with the same N and similar in terms ofσ2. As ρ increases 

from ρ=10/9 to ρ=10/3 the stochastic killing point shifts to the left (compare Figs. 2(a) and 3(a)), and the 

expected time required to reach consensus decreases, (compare Figs. 2(b) and 3(b)). 

The interpretation is straightforward: an initial minority supporting the rumor has less probability to 

influence the majority (which does not support the rumor) and to change the common opinion about a fact 

when the discussion takes place in large groups (large ρ). In other words, encouraging debate with many 

people serves as a deterrent for the diffusion of rumors. 

A similar effect is observed increasing σ2 and keeping ρ constant. Considering two social spaces with the 

same N and ρ, increasing σ2, i.e., people gather either in very large groups or very small groups, the 

stochastic killing point tends to shift to the left, compare Figs. 3(a) (σ2≈0.6667) and 4(a) (σ2≈32.6667). This 

means that the possibility that the rumor spreads across the population decreases and the expected time 

of convergence to consensus reduces, compare Figs. 3(b) and 4(b). These examples suggest that the larger 

the average ρ and the variance σ2 of the size of the tables, the lower the probability for a rumor to spread 

across the population. The reason for this is that when ρ and σ2 are large, interactions among agents take 

place in few large tables and the effect of the majority rule, i.e. the assumed propensity of agents to believe 

in rumors when at a table agents with opposing opinions match in number, has a lower weight. More 

generally, when the tables are large, the weight of an agent in influencing others reduces and the opinion 

of the majority prevails on the one of the minority more easily. The analysis we conducted suggests that, 

when discussion takes place in large groups, the majority rule works well and prevents the diffusion of 

rumors. 

 

4. Conditional expected value 

In Section  2 we proved that the stochastic process (Yt)t≥0 describing the dynamics of rumors under majority 

rule dynamic is an absorbing Markov chain. In this section we show that, given the state of the process at 

time t, it is possible to calculate the conditional expected value of the process at time t+1. Here we provide 

a closed form solution for E[Yt+1|Yt=y]. To this purpose, let us define the set  as 
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This is the event “given y agents with opinion ‘+’, at table Tr the majority of agents have opinion ‘+’ ”. 

Moreover, let us provide the following results: 

Lemma 6. 

Given the absorbing Markov chain  and the probability measure  ∀y∈Sand  , then 

 

is the probability of the event  . 

Proof. 

According to Proposition 1, the probability of the event  is 

 

which in an explicit form becomes: 

 

Multiplying and dividing by  and after some rearrangements, it is easy to obtain: 

 

where the quantity inside the brackets is equal to 1 by Chu–Vandermonde’s identity. From which the claim 

follows. ■ 

It is worth noting that  if Tr,Tq∈N and |Tr|=|Tq|. Using the results of the previous 

lemma and given Yt=y, it is possible to derive the conditional expected value for the random variable Yt+1. 

Proposition 7. 

Given the absorbing Markov chain  and  Yt=y, the conditional expected value of the random 

variable  Yt+1is 
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where  Kis the number of seats of the larger table of the social space  N. 

Proof. 

The conditional expected value of Yt+1 can be easily written as 

 

Collecting the same size tables by (1) and let  if |Tr|=k, we have 

 

which can be rewritten as follows 

 

and by (2) and Lemma 6 the thesis follows. 

The closed form solution of the conditional expected value of the stochastic process is particularly useful 

for calibrations and can be used as an alternative to Galam’s formula when the social space is large and the 

calculations to obtain the transition matrix are cumbersome. 

 

5. Conclusion 

In this paper, we propose an exhaustive formulation for rumors spreading described in Ref.  [12]. 

Specifically, the paper shows that the diffusion of rumors follows an absorbing Markov chain which partially 

confirms the results provided in Ref.  [12]. 

The mathematical formulation of the model we propose is particularly suitable for studying the diffusion of 

opinions in small communities. When the number of people in the communities is relatively small the 

calculations required to obtain the transition matrix are still tractable and a complete description of the 

phenomena can be provided. For bigger groups of people, the transition matrix requires a cumbersome 

calculation to be defined and the conditional expected values derived in Proposition 7 can be used as an 

alternative to the Galam’s formula to obtain a prediction for the dynamics of the phenomena. 

Our approach extends Galam’s analysis providing further results and precision. Using a Markov chain helps 

to have further information about the process of diffusion of opinions which are not possible to obtain 

using the original Galam’s formulation. In particular, it is possible to compute the expected time of 

absorption for each transient state and the probability to reach a specific absorbing state starting from a 
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transient state. Finally, using the more precise formalization that we provide, it is possible to prove the 

existence of impasses, i.e., absorbing states different from 0 and N, which were impossible to detect with 

the original formalization. Moreover, the approach we propose is also useful for other reasons. First of all, 

it provides some consistency to existing literature on opinion dynamics, such as the DeGroot type models, 

as we illustrate that even Galam’s model can be formalized as Markov chains. Secondly, formulating 

Galam’s model as a Markov process provides a starting point to compare Galam’s and DeGroot’s models 

and to understand their differences. In particular, contributions such as  [16] are steps in this direction, as 

their approach provides a flexible tool to model people inclinations towards two binary choices “yes” or 

“no” and to transform a discrete opinion model in a continuum of opinions. The framework provided in 

Ref.  [16] is so general that it can even be used to model an inclination of agents towards the opinion of the 

minority. However, the gap between the two approaches is still not completely closed as the subgroup 

structure of the Galam’s model is an essential feature to explain the phenomenon of minority opinion 

spreading that is not considered in Ref.  [16]. 

With further research it will be possible to extend the analysis in several directions. First of all, starting from 

the formalization we provide, it would be interesting to analyze the role that the social space has on the 

final outcome,4 then some of the assumptions can be relaxed in order to make the model more realistic, for 

example modeling individual influence and introducing a more complex-network structure for connecting 

individuals as in Ref.  [17]. In addition, it would be interesting to assume that the process by which 

individuals reach consensus within the group is similar to the one considered in Ref.  [2]. Moving further on 

in this direction, another line of research is modeling interactions other than discussions. For example, in 

Ref.  [13], the interactions among agents may consist of binary choices (see, for instance, Schelling’s 

seminal contribution  [18]) as formalized in Ref.  [19]. Yet, binary choices are just one possibility among the 

others, as several other interactions can be considered, see for example  [6] and references therein. Finally, 

it will be interesting to analyze the dynamics when some individuals dismiss opposite opinions no matter 

how valid as this will prevent full polarization and would be more realistic. 
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Appendix.  

Proof of Theorem 2. 

By Proposition 1 and the transition probability formula, it is clear that  is a Markov chain and 

states 0 and N are always absorbing, i.e.  p0,0=1 and pN,N=1. In the following, we will prove that there is at 

most another absorbing state and all the other states are transient. 

As we have mentioned above, the same state v may be the result of reaching the majority at different 

combinations of tables. Let us denote Cv the set of all the table combinations giving state v. 

In order to investigate the existence of other possible absorbing states different from 0 and N, let us 

consider an arbitrary feasible state  such that v≠0 and v≠N. Consider an arbitrary Cv∈Cv and other 

two states u and w, such that: 

 

where Tq is the minimal size table in Cv, and Tz is the minimal size table in (N/Cv). It is clear that , 

i.e., they are feasible states. 

These table combinations are illustrated in Fig. A.5; the gray regions respectively 

represent N/Cu, N/Cv and N/Cw. 

 

Fig.  A.5 Table combinations for states u<v<w: (a) Cu, (b) Cv, and (c) Cw. 

 

If v is an absorbing state then it must be pv,u=pv,w=0; we will show that this cannot hold and 

therefore v cannot be an absorbing state.5 

Let us consider pv,u=0, this means that from state v it is impossible to reach state u, that is, for all the table 

combinations Cu∈Cu, relative to state u, it is impossible that the majority of opinion ‘+’ is reached only at 

the tables in Cu. This means that even if all the seats at tables in Cu are taken by the v agents with opinion 

‘+’, the remaining v−uagents with opinion ‘+’ cannot be seated at tables in N/Cu, without reaching the 

majority on at least one of these tables.6 Formally 
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where  is the maximum number of agents that can be seated at tables in N/Cu without 

reaching the majority of opinion ‘+’. As |Tq|=v−u, Eq. (A.1) can be rewritten as 

 

From Fig. A.5(a) and (b), we can see that, table combinations giving states v and u differ by table Tq only. 

Therefore, it follows that N/Cu={Tq}∪N/Cv and that, in order not to reach the majority of opinion ‘+’ at 

tables in N/Cu, such a majority must not be reached neither at table Tq nor at tables in N/Cv, that 

is . As a consequence Eq. (A.2) can be rewritten as: 

 

Let us consider the table combinations giving states u<v<w; we already know  

. 

Furthermore,  as Tz∈(N/Cv); therefore, (A.3) can be 

rewritten as 

 

We can observe that if |Tq|<|Tz|, (A.4) does not hold. Now let us examine the two remaining 

cases |Tq|>|Tz| and |Tq|=|Tz| separately. 

1.|Tq|>|Tz|. Consider the feasible state u′=u+|Tz|<v; taking into account the table combinations we have 

 

as |Tq|>|Tz|. Obviously if v is an absorbing state, then it must also be pv,u
′=0. 

If pv,u
′=0 then, for all Cu

′∈Cu
′, after u′ agents are seated at the tables in Cu

′, the majority is reached on at least 

one of the tables in N/Cu
′, and therefore 

 

which can be rewritten as: 
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Since Tz∈(N/Cv), it holds , and we have: 

 

Now consider state w; as v is assumed to be an absorbing state, it must be pv,w=0as well. 

If pv,w=0 then, for all Cw∈Cw, v is smaller than the minimal number of agents with opinion ‘+’ to have the 

majority at each of the tables in Cw=Cv∪{Tz}. Formally: 

 

Rearranging some terms, condition (A.7) can be rewritten as 

 

which is equivalent to 

 

Since Tq∈Cv, the condition (A.9) can be rewritten as 

 

From pv,u
′=0 and pv,w=0 respectively follow conditions (A.6) and (A.10); now we show that from these latter 

conditions a contradiction follows. In fact, condition (A.6)can be rewritten 

as , which plugged in (A.10) gives: 

 

which can be simplified to 
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Since  and , it follows that(A.12) is never 

satisfied. Therefore, conditions (A.6) and (A.10) cannot both hold at the same time and then, in this 

case, v cannot be an absorbing state. 

 

2.|Tq|=|Tz|. When |Tq| and |Tz| are even, condition (A.4) cannot hold. On the other hand, 

when |Tq| and |Tz| are odd, from condition (A.4) it follows that 

 

Furthermore, rearranging terms in condition (A.10) we obtain 

 

As, in this case, Tq and Tz are two same odd size tables, it holds  

, and therefore (A.14) becomes 

 

As , from condition (A.15) it follows: 

 

This condition holds if and only if all tables in Cu have size not larger than 2. 

Let us discuss (A.13) and (A.16) first when both Cv and N/Cv are nonempty sets and then when 

both Cv and N/Cv are empty sets: 

(a) In the first case we can distinguish between two situations (remember that by assumption Tq and Tz are 

the smaller size tables in Cv and (N/Cv)respectively): 

i. Let us consider the case |Tq|=|Tz|=1; as we rule out the trivial case discussed in Footnote 1, there exists 

at least a table Tg∈N such that |Tg|≥2. If Tg∈N/Cv, then Tg∈N/Cw as |Tz|=1; therefore, 
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condition (A.13)cannot hold. On the other hand, if Tg∈Cv, then Tg∈Cu as |Tq|=1. Since condition (A.16) holds 

if and only if all the tables in Cu have a size not larger than 2, it must be |Tg|=2. We show that even in such 

a case v cannot be an absorbing state. Indeed, consider table 

combination ; as |Tg|=|Tz|+|Tq| it follows that . We showed 

that, if pvu=0, then for all Cu∈Cu condition (A.2) holds. In particular, considering  we have 

 

As  it follows that  and 

 

Therefore, it follows that, when |Tq|=|Tz|=1 and Cv and N/Cv are two nonempty sets, v cannot be an 

absorbing state. 

ii. Let us consider the cases |Tq|=|Tz|≥3. As pvu=0 implies (A.13), ifN/Cw≠0 ̸then state v is not absorbing, 

since condition (A.13) does not hold. Similarly, as pvw=0 implies (A.16), if Cu≠0 ̸then, again, state v is not 

absorbing since (A.16) does not hold. 

 

(b)Finally, let us consider the interesting case in which Cu and N/Cw are two empty sets. It is clear that 

conditions (A.13) and (A.16) are trivially satisfied. 

Moreover, N={Tq,Tz} and u=0, v=|Tq|=|Tz| and w=|Tq|+|Tz|=N are the only feasible states. This implies 

that pv,u=0 and pv,w=0 become sufficient conditions to prove that v is an absorbing state. Since the two 

conditions are satisfied, we can conclude that the Markov chain  has a third absorbing state 

when N={Tq,Tz} with Tq and Tz two odd size tables and two absorbing states 0 and N in all the other cases. 

 

 

We showed that  has an inner minimal closed set when the social space consists of two same odd-

sized tables. In this case the inner minimal closed set is an absorbing state, and all the other feasible states, 

i.e. 0 and N, are also absorbing states; here the minimal closed sets consist of one single state. 

In all the other cases, we have proved that no inner absorbing states can exist. It is possible to prove that 

minimal closed sets which are not absorbing states cannot exist either. In fact, their presence would require 

both conditions to have an inner absorbing state as those discussed above and more stringent ones. As it is 

well known, in Markov chains all states not belonging to minimal closed sets are transient, see, e.g.  [20], 

and we can conclude that  is an absorbing Markov chain. 
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Notes 

1 The case L=N, i.e. all table of dimension 1, is trivial and therefore will not be considered. 

2 For the sake of simplicity we can avoid using the heavier notation  as the social space is assume fixed. 

3 In this section, some classical results on absorbing Markov chains are used without explanation, for a 

general treatment see Ref.  [15]. 

4 We are grateful to an anonymous referee for this suggestion. 

5 Therefore, to prove that v is not an absorbing state, it will be sufficient to see that, for an arbitrary Cv∈Cv, 

holds either pv,u≠0 or pv,w≠0. 

6 Obviously, this condition must hold ∀Cu∈Cu. 
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