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Abstract 

Non-small cell lung cancer (NSCLC) harboring chromosomal rearrangements of the 

anaplastic lymphoma kinase (ALK) gene is treated with ALK tyrosine kinase inhibitors 

(TKIs), but is successful for only a limited amount of time; most cases relapse due to the 

development of drug resistance. Here we show that a vaccine against ALK induced a 

strong and specific immune response that both prophylactically and therapeutically 

impaired the growth of ALK-positive lung tumors in mouse models. The ALK vaccine was 

efficacious also in combination with ALK TKI treatment and significantly delayed tumor 

relapses after TKI suspension. We found that lung tumors containing ALK rearrangements 

induced an immunosuppressive microenvironment, regulating the expression of PD-L1 on 

the surface of lung tumor cells. High PD-L1 expression reduced ALK vaccine efficacy, 

which could be restored by administration of anti-PD-1 immunotherapy. Thus, 

combinations of ALK vaccine with TKIs and immune checkpoint blockade therapies might 

represent a powerful strategy for the treatment of ALK-driven NSCLC. 
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Introduction 

Lung cancer is the leading cause of cancer-related mortality worldwide. In recent years, 

the identification of key genetic alterations in non-small-cell lung cancer (NSCLC) has 

prompted the use of rationally targeted therapies, which showed unprecedented clinical 

benefits (1,2). Approximately 5-6% of NSCLC have chromosomal rearrangements of the 

anaplastic lymphoma kinase (ALK) gene that generate different chimeric proteins, such as 

EML4-ALK, TFG-ALK, and KIF5b-ALK (3-5). In all such fusions, constitutively active ALK 

acts as a potent tumorigenic driver that activates downstream oncogenic signals, leading 

to increased cell proliferation and survival (4).  
Experimental and clinical data show that ALK-rearranged NSCLCs respond to treatment 

with specific tyrosine kinase inhibitors (TKIs), such as crizotinib (6,7). Despite a high rate 

of initial response, the development of resistance to crizotinib almost invariably leads to 

tumor relapse and eventually to the patient’s death (8,9). Next-generation ALK TKIs, such 

as ceritinib and alectinib, have been developed to overcome crizotinib resistance and can 

further extend survival in crizotinib-resistant patients (10-12). Resistance to ALK TKIs is 

mediated by point mutations of the ALK kinase domain, by ALK gene amplification, or by 

activation of other compensatory pathways, so-called bypass tracks, such as EGFR, c-KIT, 

c-MET, and IGF-R1 (8,13-16). Thus, additional therapies to be combined with ALK TKIs 

are needed to further prolong remission or clinical response in NSCLC patients with ALK 

rearrangements.  

Immunotherapy aimed at enhancing the immune response against tumor cells shows 

promising efficacy in a fraction of NSCLC (17,18). In this context, the ALK protein has 

many features of an ideal tumor oncoantigen that can be exploited to design specific 

immunotherapies, such as a cancer vaccine. ALK is required for tumor survival and growth 

and expressed minimally in some nervous system cells (4,19). ALK is also antigenic in 

humans, as lymphoma patients with ALK rearrangements mount spontaneous B- and T-
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cell responses against the ALK protein, with measurable antibodies (20), cytotoxic T 

lymphocytes (CTLs), and CD4+ T helper effectors to ALK epitopes (21-24). A robust 

immune response to ALK is associated with a decreased risk of relapse in lymphoma 

patients (25). Our previous ALK vaccine in pre-clinical mouse models of lymphoma 

containing ALK rearrangements induced specific and potent immune responses that 

provided strong and durable tumor protection (19).  

We here test the efficacy of ALK vaccination in lung cancer. Grafted or primary mouse 

models of ALK-positive lung tumors demonstrated that an ALK vaccine elicited a strong, 

ALK-specific CTL response in both mouse models, efficiently blocking tumor growth.  

 

Materials and Methods 

 

Cell Lines and Reagents.  

Human ALK-rearranged NSCLC cell lines, H2228 (variant 3, E6;A20), DFCI032 and 

H3122 (variant 1, E13;A20) were obtained from the ATCC collection and were passaged 

for fewer than 6 months after receipt and resuscitation. These cell lines were further 

internally tested for the presence of EML-ALK rearrangement. The murine ASB-XIV cell 

line was purchased from Cell Lines Service (CLS) and was passaged for fewer than 6 

months after receipt and resuscitation.  

ALK TKIs, NVP-TAE684 was purchased from Axon Medchem and crizotinib (PF-

02341066) was kindly gifted by Pfizer.  

 

Mice. Strains of mice used in this study include K-RasLSL/G12V and Tg EGFRL858R, as 

previously published (26,27), and BALB/c mice (Charles River). Mice were handled and 

treated in accordance with European Community guidelines. 

 



 6

Generation of ALK Transgenic Mice. A cDNA fragment encoding EML4-ALK (variant 1, 

E13;A20) or TFG-ALK was ligated to the human SP-C promoter as well as to a 

polyadenylation signals (Supplementary Figure 1A). The expression cassette was injected 

into pronuclear-stage embryos of FVB/N mice. The presence of the transgene was 

examined by PCR analysis with DNA from the tail of founder animals. Mice were handled 

and treated in accordance with European Community guidelines. Methods are further 

described in Supplementary Materials and Methods.  

 

DNA Vaccination and In Vivo Cytotoxicity Assay. For DNA vaccination, 50 µg of 

pDEST or pDEST-ALK plasmids were used as previously described (19). The In Vivo 

Cytotoxicity Assay was previously reported(19). 

 

Antibody dosing for in vivo treatment 

For CD4+ and CD8+ cell depletion, anti-CD4 (clone GK1.5) and anti-CD8 (clone 2.43) 

antibodies were purchased from BioXcell. For depletion mice were injected i.p. with 100µg 

of anti-CD4 or anti-CD8 at day -1, +5, +15 and +25.  

For PD-1 blockade, anti-PD-1 (clone J43) and control anti-hamster polyclonal IgG for the 

in vivo experiments were purchased from BioXcell. Mice received 200µg of each anti-PD-1 

and anti-PD-L1 or 200µg of anti-hamster IgG i.p. every 3 days for a total of 5 injections.  

 

Magnetic Resonance Imaging. MR images were acquired on a Bruker Avance 300 

spectrometer operating at 7 T and equipped with a microimaging probe (Bruker Bio-Spin), 

as described in the Supplementary Materials and Methods.  

 

Histology and Immunohistochemistry. For histological evaluation, tissue samples were 

fixed in formalin, embedded in paraffin, stained and visualized as previously described(19). 
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T lymphocytes and Treg cells were quantified by measuring the number of CD3+, CD8+, 

CD4+ and Foxp3+ cells, respectively, among the total tumor cells. 

 

Intratumoral Cell Characterization. For flow cytometry analysis, lung cell infiltrate was 

obtained using the Lung Dissociation Kit (Miltenyi Biotec) following manufacturer’s 

instructions. Cells were resuspended in phosphate buffer and stained with antibodies 

described in Supplementary Materials and Methods. 

 

Statistical Methods. Kaplan-Meier analyses for survival curves were performed with 

GraphPad Prism 5 and p values were determined with a log-rank Mantel-Cox test. Paired 

data were compared with the Student’s t test. P values of <0.05 were considered to be 

significant. Unless otherwise noted, data are presented as means ± SEM.  

 
 
Results 
 

ALK vaccination elicits a specific cytotoxic response and prevents tumor growth in 

an orthotopic model of ALK-positive lung cancer.  

To test the efficacy of the ALK vaccine against lung cancer, we developed an orthotopic 

mouse model of ALK-positive lung cancer by ectopic expression of EML4-ALK in the 

syngeneic BALB/c murine lung cancer cell line ASB-XIV. We transduced ASB-XIV cells 

with a retroviral vector containing the EML4-ALK cDNA (variant 1) and green fluorescent 

protein (GFP) as a reporter. Protein expression in transduced ASB-XIV cells was 

comparable to EML4-ALK expression in human ALK-rearranged NSCLC cells (variant 1 in 

H3122 and 3 in H2228) (Fig. 1A). ASB-XIV cells express MHC class I and thus are 

suitable for tumor immune studies (Fig. 1B). Within 3 weeks after i.v. injection of 5 x 105 

ASB-XIV cells into the mouse tail vein, tumor nodules were detected in both lungs (Fig. 1, 
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E and F). We vaccinated BALB/c mice with a DNA plasmid coding for the intracytoplasmic 

domain of ALK (19) (Fig. 1C).  

ALK vaccine induced a strong ALK-specific immune response as measured by an in vivo 

cytotoxic assay (19) (Fig. 1D). Ten days after the second vaccination, we injected EML4-

ALK or GFP ASB-XIV cells. GFP ASB-XIV cells gave equal numbers of tumors in mice 

vaccinated with either a control or the ALK plasmid (Fig. 1E). In contrast, tumors of EML4-

ALK ASB-XIV cells had impaired growth in ALK vaccinated mice (Fig. 1F). Thus, ALK 

vaccination induced an ALK-specific immune response that efficiently prevented the 

growth of ALK-positive lung tumors.  

 

ALK vaccination delays tumor growth and increases the overall survival of EML4-

ALK-rearranged NSCLC Tg mice.  

To test the efficacy of the ALK vaccine as a therapy for primary lung tumors, we generated 

two transgenic (Tg) mouse models of ALK-driven lung cancers. Two rearrangements of 

ALK (EML4-ALK, variant 1, or TFG-ALK) were expressed under the human lung-specific 

surfactant protein-C (SP-C) promoter (Supplementary Fig. S1A), because human ALK-

rearranged NSCLC are often SP-C positive (28), and the expression of EML4-ALK by the 

SP-C promoter can induce efficient lung tumor formation in mice (29). Both transgenic 

mouse models expressed the ALK fusion selectively in lung epithelial cells, in amounts 

comparable to human NSCLC with rearranged ALK (Supplementary Fig. S1. B-D) and 

rapidly developed multifocal ALK+ tumors few weeks after birth, with 100% penetrance 

(Supplementary Fig. 1, E and F). Tumors were mainly well-differentiated adenocarcinoma 

growing as papillary, acinar, or more solid carcinoma (30). Ki-67 immunostaining showed 

that these tumors had a proliferation rate of 10.5% ±1.4 for EML4-ALK and 8.5% ±1.9 for 

TFG-ALK (Supplementary Fig. S1G). At 4 weeks of age, a few tumor nodules in both ALK 

mice (Supplementary Fig. S1, H and I, left panels) were detected by magnetic resonance 
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imaging (MRI). Existing nodules rapidly expanded in volume and new nodules appeared in 

the lungs over time (Supplementary Fig. S1, H and I, central and right panels). No tumor 

metastases were detected by examination of other organs with MRI or histology in ALK 

mice at any age, consistent with other constitutive or ALK-inducible mice (29,31). Both 

EML4-ALK and TFG-ALK mice died within 50 weeks, with a mean survival of 33.25 weeks 

for EML4-ALK mice and 37 weeks for TFG-ALK mice (Supplementary Fig. S1L).  

To test the efficacy of the ALK vaccine, we screened ALK mice by MRI to stratify them 

according to their tumor burden. ALK mice were vaccinated at 4 weeks of age, when 

tumors were detectable in the lungs (Supplementary Fig. S1, H and I), according to the 

protocol in Fig. 2A. The ALK vaccine generated strong ALK-specific cytotoxic activity in 

both ALK models, comparable to WT littermates (Fig. 2B). In EML4-ALK mice, the average 

number of tumors detected in control mice was 58±6.0 by week 20, whereas ALK 

vaccinated mice had only 16±3.5 at the same time point (Fig. 2, C and D). Similar results 

were observed in TFG-ALK mice at 20 weeks of age (67±6.0 nodules in control mice 

compared to 20 ±3.5 nodules in vaccinated mice; Fig. 2E and Supplementary Fig. S2A). 

Correspondingly, the overall tumor burden calculated in terms of tumor volumes by serial 

MRI was significantly lower in ALK vaccinated than in control mice (Supplementary Fig. S2, 

B and C). Survival of ALK vaccinated mice was significantly extended by at least 18 weeks 

in EML4-ALK and by 12 weeks in TFG-ALK mice (Fig. 2, F and G). The ALK vaccine was 

still efficacious against larger tumors in older mice (Supplementary Fig. S2D). Thus, ALK-

DNA vaccination was a potent controller of growth of primary ALK-rearranged lung tumors. 

 

ALK-DNA vaccination increases the number of intratumoral T cells and requires 

CD8+ T lymphocytes. 

Next, we examined how the ALK vaccine shaped the intratumoral immune infiltrate. The 

ALK vaccine increased the number of intratumoral T cells in both EML4-ALK and TFG-
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ALK mice, which was associated with a reduced tumor size (Fig. 3, A and B). Both CD4+ 

and CD8+ T cells were significantly increased in ALK vaccinated mice (Fig. 3C). In ALK 

vaccinated mice tumor-infiltrating T cells had a significantly higher CD8+/CD4+ ratio 

compared to controls, due to the DNA vaccine preferentially stimulating a CD8+ T cell 

immune response (Fig. 3C) (32). We also observed an increase in intratumoral Treg cells 

(Fig. 3, D and E), suggesting that the ALK vaccine induces both Teff and Treg cells, as 

described for other tumor vaccines (33). Nonetheless, the ratio CD8+/Foxp3+ was higher in 

vaccinated mice than in control mice (Fig. 3E).  

To confirm that the ALK vaccine required Teff for its anti-tumor functions, we used repeated 

injections of antibodies specific for CD4+ and CD8+ T cells to deplete them in the orthotopic 

model based on EML4-ALK ASB-XIV cells (Fig. 3F). The depletion of CD8+ T cells, but not 

CD4+ T cells, significantly reduced the ALK vaccine efficacy (Fig. 3, G and H). Therefore, 

in mice bearing ALK-positive tumors, ALK vaccination elicited a cytotoxic response largely 

mediated by CD8+ T cells. However, in mice depleted of CD8+ T cells the vaccine still 

appeared to retain some activity, suggesting that other factors may be involved in the 

immune response elicited by the vaccine. 

 

Immunosuppressive lung microenvironment in ALK-rearranged lung cancer. 

We showed that the ALK vaccine stimulates a potent immune response against ALK-

rearranged lung tumors. However, the ALK vaccine did not cure the mice, which died after 

a delay in tumor growth (Fig. 2). Because ALK was still expressed in late tumors, we 

asked whether the efficacy of the ALK vaccine would diminish over time due to an 

immunosuppressive microenvironment that progressively develops in lung tumors with 

ALK rearrangements. Indeed, oncogenic activation of EGFR in lung cancers induces an 

immunosuppressive lung microenvironment by induction of PD-L1 expression on the 

surface of tumor lung epithelial cells (34).  
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First, we better characterized the immune infiltrate in mice bearing ALK lung tumors and 

observed that overall the percentage of B and T lymphocytes, natural killer (NK) cells and 

granulocytes were comparable between WT and EML4-ALK mice (Supplementary Fig. S3, 

A-D). However, T cells in tumor bearing EML4-ALK mice displayed a significantly higher 

expression of PD-1 on both CD4+ and CD8+ T cells (Fig. 4A and Supplementary Fig. S3E) 

and PD-1+CD3+ T cells also expressed other T cell inhibitory molecules such as LAG-3 

and TIM-3 in higher amounts (Supplementary Fig. S3E). In addition, Foxp3+ Treg cells were 

also increased in EML4-ALK mice over time (Supplementary Fig. S3F). These data 

suggest that tumor lungs bearing EML4-ALK develop an immunosuppressive 

microenvironment reminiscent of that seen in EGFR-driven lung cancer models (34).  

We also characterized the immune microenvironment in human ALK-rearranged NSCLC. 

NSCLC patients with ALK rearrangements had lower percentages of CD3+, CD4+, and 

CD8+ intratumoral T-cell infiltrate than EGFR-mutated NSCLC (Fig. 4B). These findings 

were further extended by interrogating gene-expression profiling data from larger series of 

human NSCLC with different oncogenic mutations. By gene set enrichment analysis, we 

found lower expression of tumor-infiltrating T-cell related molecules in EML4-ALK NSCLC 

compared to EGFR-mutated, K-RAS-mutated or ALK/RAS/EGFR non-mutated NSCLC 

(Fig. 4C). In particular, in ALK-rearranged tumors we observed significant depletion of 

TCR-related molecules such as TCRβ chain, CD3δ, CD3γ, CD3ζ, Lck, of the T cell 

costimulatory molecules ICOS and CD28, as well as of CD80 and CTLA-4 (Supplementary 

Fig. S4, A-D).  

 

Blockade of PD-1/PD-L1 pathway restores ALK vaccine efficacy against tumor cells 

with high levels of PD-L1. 

We asked whether oncogenic ALK could also regulate PD-L1 expression on lung tumors. 

Tumors derived from EML4-ALK mice had higher levels of PD-L1 expression than tumors 
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originating in mice carrying other NSCLC recurrent mutations, such as the K-RasG12V (26) 

and EGFRL858R (27) mice (Supplementary Fig. S5A). Next, we analyzed PD-L1 expression 

by flow cytometry and showed that tumor epithelial cells (CD45-/EpCAM+) and associated 

hematopoietic cells (CD45+) in EML4-ALK mice expressed PD-L1 (Supplementary Fig. 

S5B). To determine whether ALK oncogenic activity directly controlled PD-L1 expression 

in NSCLC, we treated three ALK-rearranged NSCLC cell lines (H3122, H2228 and 

DFCI032) with crizotinib to inhibit ALK activity (Fig. 5A and Supplementary Fig. S5C). 

Expression of PD-L1 was detectable in all ALK-rearranged cell lines tested and was 

reduced upon ALK inhibition in all three cell lines (Fig. 5B and Supplementary Fig. S5D). 

Consistently, also PD-L1 mRNA was down-regulated (Fig. 5C and Supplementary Fig. 

S5E). To further confirm that PD-L1 expression was driven by ALK activity, and to exclude 

that PD-L1 down-regulation was mediated by crizotinib inhibition of MET, ROS1, or other 

off-targets, we knocked down EML4-ALK by a doxycycline inducible shRNA system (16). 

Again, PD-L1 expression was down-regulated upon EML4-ALK knock-down 

(Supplementary Fig. S5, F and G). We conclude that in ALK-rearranged NSCLC, PD-L1 

mRNA and protein was regulated by ALK activity. Another group has recently confirmed 

these findings (35).  

The expression of PD-L1 of the surface of tumor cells impairs anti-tumor activity of the 

immune system (36). We investigated whether the efficacy of the ALK vaccine could be 

diminished by the expression of PD-L1 on the surface of the target lung tumor cells. 

EML4-ALK mice express moderate, but detectable PD-L1, and we observed similar 

intensity of expression by flow cytometry in EML4-ALK ASB-XIV (Fig. 5D). We reasoned 

that ALK vaccine efficacy could be hampered when target tumor cells express more PD-L1. 

We engineered EML4-ALK ASB-XIV cells to express more PD-L1 than parental cells by 

transduction with a lentivirus containing a murine PD-L1 construct (Fig. 5D). Vaccinated 

mice were injected with control EML4-ALK ASB-XIV cells or EML4-ALK ASB-XIV cells 
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expressing high PD-L1. In presence of high PD-L1 expression, the ALK vaccine was less 

effective in preventing lung tumor growth (Fig. 5E), suggesting that the function of ALK-

specific Teff cells was modulated by the amount of PD-L1 on the surface of target lung 

tumor cells.  

To test whether administration of antibody to PD-1 could restore a full efficacy of the ALK 

vaccine, we treated mice with anti-PD-1 or control IgG (Supplementary Fig. S6A). The 

treatment with anti-PD-1 alone, as well as control IgG, did not have significant effect on 

tumor growth and mice developed tumors comparable to controls. In contrast, anti-PD-1 

treatment almost completely restored the efficacy of the ALK vaccine (Fig. 5F). These 

results are consistent with findings that immune checkpoint therapy restores an adaptive 

immune response best in patients with high PD-L1 expression (37,38). 

To show that blockade of the PD-L1/PD-1 immune checkpoint was effective with 

physiological expression of PD-L1, we tested anti-PD-1 treatment in EML4-ALK mice 

(Supplementary Figure S6B). We observed a stabilization of tumors immediately at the 

end of treatment (Fig. 5G) followed by a slower growth rate as compared to control mice 

(Fig. 5H). These data suggest that immune checkpoint blockade therapy could be 

efficacious in the physiological tumor microenvironment of ALK-rearranged lung tumors.  

 

ALK vaccination is effective in combination with ALK TKIs.  

Crizotinib treatment of NSCLC patients with ALK rearrangements has had success in 

clinical trials, supporting the use of ALK TKIs as main therapy for NSCLC (39). A 

combination of ALK TKIs with the ALK vaccine could be an attractive therapeutic 

possibility for NSCLC patients. In this context, ALK TKIs could reduce the tumor burden to 

facilitate the activity of the ALK vaccine. We tested this combination in our ALK mouse 

models. ALK mice were treated with crizotinib (PF-02341066) for 2 weeks (100mg/kg) and 

concurrently vaccinated with the ALK or control vaccine (Fig. 6A). The immune response 
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elicited by the vaccine was not affected by administration of crizotinib, as an equally strong 

ALK-specific cytotoxic immune response in vivo was also detected in ALK-vaccinated mice 

treated with crizotinib (Fig. 6B). As expected, treatment with crizotinib induced the 

regression of tumors in both groups within 2 weeks (Fig. 6C, left and central panels, and 

6D). At 6 weeks from treatment suspension, tumors relapsed at the same sites in crizotinib 

treated mice (Fig. 6C, top right panels), while the combination of crizotinib and ALK 

vaccine delayed tumor recurrence (Fig. 6C, bottom right panels). Indeed, mice treated with 

crizotinib showed relapses and new tumors at 10 weeks from treatment suspension, 

whereas in ALK-vaccinated mice relapses and new tumors were less numerous and 

significantly smaller (Fig. 6, D and E).  Similar results were obtained when EML4-ALK 

mice were vaccinated during treatment with TAE684 (25mg/kg) (Supplementary Fig. S7, 

A-C). Thus, the ALK vaccine might be efficiently combined with ALK TKI treatment to 

delay tumor relapse after crizotinib suspension. 

 

ALK vaccination prevents growth of tumors expressing crizotinib-resistant ALK 

mutations.  

Human NSCLC patients treated with ALK TKI almost invariably develop resistance. 

L1196M, C1156Y, and F1174L are common ALK mutations found in patients relapsing 

under treatment with crizotinib (8,13,40). Point mutations in the ALK kinase domain have 

the potential to alter the antigenicity of ALK as they can modify its protein structure. To test 

the activity of the ALK vaccine against these mutants, we transduced ASB-XIV cells with a 

retroviral vector containing either the EML4-ALK wild-type (41) or the EML4-ALK mutants 

(Fig. 7A). Control mice injected with ASB-XIV cells expressing the L1196M, C1156Y or 

F1174L EML4-ALK mutants rapidly developed tumors in the lungs, whereas ALK 

vaccination almost completely prevented tumor growth of EML4-ALK WT and all mutants 

(Figures 7B-E). Therefore, the ALK vaccine is not only efficacious against the EML4-ALK 



 15

WT but also against some of the most common EML4-ALK mutants that develop in 

patients during treatment with crizotinib or ceritinib. 

 

Discussion 

In this work we extended our previous findings on the efficacy of a DNA ALK vaccine 

against ALK-positive lymphoma to ALK-rearranged lung cancers. Compared to our 

previous work, we showed that the ALK vaccine is active not only in tumor grafts but also 

in primary ALK-rearranged NSCLC. Because the SP-C promoter is active since embryonic 

development (42), these mice are likely tolerant to human ALK. Thus, an important 

advance from this work is the demonstration that an ALK vaccine can overcome tolerance 

in mice.  

In addition, we showed that the ALK vaccine could be combined with either ALK TKI 

treatment or the anti-PD-1 antibody. These combinatorial therapies make the ALK vaccine 

attractive for potential clinical use. Current therapies for ALK-rearranged NSCLC, based 

on crizotinib or next-generation ALK TKIs, achieve a clinical response by arresting tumor 

progression or inducing tumor regression. However, all patients eventually relapse and die 

due to development of TKI resistance (11,43). 

In this work, we set the stage for the application of an ALK vaccine to further extend 

progression-free survival in NSCLC patients. The ALK vaccine induced a strong systemic 

and intratumoral immune response in mouse models of ALK-rearranged NSCLC, 

significantly reducing tumor growth and extending survival of treated mice, regardless of 

the type of ALK translocation (EML4-ALK or TFG-ALK). Simultaneous treatment during 

vaccination with crizotinib or TAE684 did not affect the ALK immune response achieved by 

the vaccine. Thus, these data indicate the feasibility of administering an ALK vaccine to 

NSCLC patients during ALK TKI treatment, possibly when the response is maximal in 

terms of tumor burden reduction.  
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Additional advantages of such combination could stem by the potential activity of ALK 

TKIs in the regulation of the tumor immune microenvironment. We showed that the 

oncogenic activity of ALK directly regulated PD-L1 expression of the surface of tumor cells. 

High PD-L1 expression impaired the immune response against ALK elicited by the vaccine 

(Fig. 5). Therefore, PD-L1 down-regulation by ALK TKI treatment could relieve the 

inhibitory feed-back on intratumoral T cells and facilitate ALK-specific immune responses. 

Tumor cell death induced by ALK TKIs could release additional tumor neoantigens, 

including ALK itself, and thus enhance antitumor immune response  (44,45). Further 

investigation to elucidate the effect of ALK TKIs on the tumor microenvironment is required, 

but it is intriguing that studies in mouse models and metastatic melanoma patients showed 

an enhanced anti-tumor immune response after treatment with the selective B-RAF 

inhibitor (vemurafenib) alone, or in combination with MEK inhibitors (41,46).  

The immune microenvironment in ALK-rearranged tumors could be, therefore, a critical 

factor to the ALK-specific immune responses. We presented data indicating that ALK-

rearranged mice indeed progressively develop an immunosuppressive tumor 

microenvironment similar to that induced in mice by oncogenic EGFR (34). Compared to 

WT mice, ALK-rearranged lungs accumulated higher numbers of PD-1+ T cells that also 

expressed the exhaustion markers TIM-3 and LAG-3, and showed increased numbers of 

tumor infiltrating Treg cells. ALK-rearranged NSCLC patients also showed a likely 

immunosuppressive microenvironment in the lungs with reduced tumor infiltrating T cells. 

In ALK-vaccinated lungs, the tumor infiltrating Treg cells were increased and we detected a 

population of intratumoral CD8+ T cell with high expression of PD-1 (Supplementary Fig. 

S8, A and B), that we interpreted as exhausted CD8+ T cells, that had been elicited by the 

ALK vaccine to recognize the ALK antigen (47). In mice with advanced tumors, the ALK 

vaccine elicited a weaker ALK-specific cytotoxic response (Supplementary Fig. S8C) and 

decreased anti-tumor activity (Supplementary Fig.S2D). In these settings, Treg depletion by 
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an antibody to CD25 could partially restore the impaired cytotoxic activity generated by the 

ALK vaccine (Supplementary Fig. S8C), indicating that Treg cells could also play a critical 

role in the immunosuppressive tumor environment seen in ALK-rearranged lung tumors. 

Similarly, the restoration of the ALK vaccine efficacy by administration of antibody to PD-1 

in high-PD-L1 EML4-ALK ASB-XIV xenografts (Fig. 5) suggests that blockade of immune 

checkpoint molecules could powerfully potentiate the ALK vaccine. 

Overall, these data suggest that combination therapy of ALK TKIs and ALK vaccine could 

work efficiently in the clinical setting to generate a strong and long-lasting immune 

response to ALK in NSCLC. The benefit from combined ALK TKI and ALK vaccine therapy 

can be enhanced by additional immunotherapies, such as anti-PD-1/PD-L1 and anti-CTLA 

to block immune checkpoints (17,18) or through Treg depletion by antibodies to CD25 (48). 

Thus, the development of an ALK vaccine for clinical use together with additional 

immunotherapeutic tools provides exciting therapeutic options for the treatment of ALK-

rearranged NSCLC. 
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Figure Legends 

 

Figure 1. Prophylactic ALK vaccine prevents the growth of ALK-positive lung 

tumors in an orthotopic model.  A, EML4-ALK expression in ASB-XIV infected cells and 

in human EML4-ALK NSCLC cell lines (H3122 and H2228) was evaluated by 

immunoblotting with the indicated antibodies. B, Analysis of the Major Histocompatibility 

Complex (MHC) Class I (PE-H2Dd Ab) antigen expression on ASB-XIV cells by flow 

cytometry. C, Schematic representation of ALK vaccination protocol in BALB/c mice. 

Control mice were vaccinated with empty pDEST (Ctrl) and ALK vaccinated mice were 

vaccinated with pDEST-ALK (Vax). D, Cytotoxic activity in ALK vaccinated mice evaluated 

by an in vivo cytotoxicity assay. Horizontal bars represent means. E and F, Representative 

hematoxilin-eosin (H&E) sections of lungs injected with GFP-ASB-XIV cells (E) or EML4-

ALK ASB-XIV cells (F). Histograms represent the number of tumors in control (Ctrl; n=3 

mice) and ALK vaccinated mice (Vax; n=3 mice). Scale bars, 1mm (top) and 50µm 

(bottom). The total number of tumors was counted in the whole lung of each mouse. Data 

are represented from three independent experiments as mean (±SEM). ***, P<0.0001. 

 

Figure 2. Therapeutic ALK vaccine delays tumor progression in ALK-rearranged 

NSCLC. 

A, ALK vaccination protocol in ALK Tg mice. MRI, Magnetic Resonance Imaging. B, 

Cytotoxic activity in control mice (○) and ALK vaccinated (Vax) WT mice (□) or Tg mice 

(■). Horizontal bars represent means. C, Representative coronal MRI sections of lungs 

from EML4-ALK mice. D and E, Number of tumors in control (Ctrl) and ALK vaccinated 

(Vax) mice as measured by MRI at the indicated time points. EML4-ALK mice (D, Ctrl = 24 

mice; Vax = 26 mice) from three independent experiments. TFG-ALK mice (E, Ctrl = 5 

mice; Vax = 9 mice) from two independent experiments. The average number of tumors 
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for each cohort (± SEM) is displayed. F and G, Overall survival by Kaplan-Meier curves in 

EML4-ALK mice (F) and TFG-ALK mice (G). **, P<0.005; ***, P<0.0005; ****, P<0.0001. 

 

Figure 3. ALK vaccine increases the number of intratumoral T lymphocytes and 

depends on cytotoxic CD8+ T cells. A, Representative hematoxilin-eosin (H&E) and 

immunostaining with anti-CD3 antibody of lung sections from control (Ctrl) and ALK 

vaccinated (Vax) EML4-ALK mice. Scale bars, 100µm. B, Histograms represent the 

percentage of CD3+ cells infiltrating the tumors in control (Ctrl) and ALK vaccinated mice 

(Vax) in EML4-ALK (left) and in TFG-ALK (right) mice at 12 weeks of age. C, Histograms 

represent the mean percentages of CD8+ and CD4+ T cells infiltrating the tumors and the 

CD8+/CD4+ ratio in control and vaccinated EML4-ALK mice at 12 weeks of age. D, 

Representative immunostaining with anti-Foxp3 antibody of lung sections from EML4-ALK 

control (Ctrl) and ALK vaccinated (Vax) mice (left). Scale bars, 100µm. E, Mean 

percentages of intratumoral Treg cells (Foxp3+ cells; left) and CD8+/Foxp3+ cell ratio (right) 

in control and vaccinated EML4-ALK mice. F, Schematic representation of the vaccination 

protocol in combination with CD4+ or CD8+cell depletion. G, Mean lung tumor numbers (n= 

5 mice for each group). Data are from two independent experiments. H, Representative 

lung sections of ALK vaccinated mice in combination with CD4+ cell depletion or CD8+cell 

depletion. Data are represented as mean (±SEM). *, P<0.05; ****, P<0.0001. 

 

Figure 4. ALK induces an immunosuppressive microenvironment in ALK-rearranged 

NSCLC. A, Lung immune infiltrates were stained with antibodies to CD3, CD4, CD8, PD-1 

and analyzed by flow cytometry. Histograms show the mean percentage for each indicated 

population in WT mice (□, n= 5 mice), 12-week-old EML4-ALK mice (□, n= 5 mice) and 

16-week-old EML4-ALK mice (■, n=9 mice). B, Immunohistochemistry for CD3, CD4 and 

CD8 on a representative mutated EGFR (ex19del) patient (left panels) and a 
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representative EML4-ALK positive NSCLC case (right panels). Scale bars, 100µm. Graphs 

show the percentages of CD3+, CD4+ and CD8+ cells in EML4-ALK positive NSCLC vs 

EGFR mutated patients. Horizontal bars represent means. C, Gene Set Enrichment 

Analysis (GSEA) for T cell markers based on gene expression profiling of human EML4-

ALK NSCLC vs EGFR mutated NSCLC (L858R or EGFR-Del19) (FDR q-Value: 0.008, top 

panel) or vs K-RAS mutated NSCLC (FDR q-Value: 0.001, central panel) or vs K-

RAS/EGFR/ALK negative NSCLC (FDR q-Value: 0.00046, bottom panel). *, P<0.05; **, 

P<0.005; ***, P<0.0005. 

 

Figure 5. Blockade of the PD-1/PD-L1 pathway restores the efficacy of the ALK 

vaccine against cells expressing high PD-L1. A, Western blot of H3122 cells treated 

with different crizotinib concentrations and collected at the indicated time points. 

Membranes were blotted with the indicated antibodies. B, PD-L1 protein expression was 

evaluated by flow cytometry in H3122 cells treated with 150nM crizotinib for 24 hours. C, 

PD-L1 mRNA expression was evaluated by qRT-PCR in crizotinib-treated cells. D, PD-L1 

expression was evaluated by flow cytometry in ASB-XIV cells (Ctrl), EML4-ALK ASB-XIV 

(EML-ALK) and in EML4-ALK ASB-XIV transduced with PD-L1 (EML4-ALK/PD-L1). E, 

Mean tumor numbers in lungs from mice injected with the indicated ASB-XIV cells (n= 5 

mice for each group). F, Mean tumor numbers in lungs from mice with the indicated 

treatments (n= 6-8 mice for each group). Data are represented as mean (±SEM). G and H, 

Quantification of volume changes compared to baseline tumors in ALK mice treated with 

control IgG (n=6 mice) or anti-PD-1 antibody (n=7 mice) at the end of treatment (G) and at 

4 weeks after treatment suspension (H). Horizontal bars represent means. Data are from 

two independent experiments. *, P<0.05; **, P<0.005; ***, P<0.0005. 
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Figure 6. ALK vaccine is efficacious in combination with crizotinib treatment. A, 

Schematic representation of the ALK vaccination combined with crizotinib treatment in 

EML4-ALK mice. B, Cytotoxic activity in ALK vaccinated mice in combination with 

crizotinib. Horizontal bars represent means. C, Representative MRI of crizotinib-treated 

mice and crizotinib-treated plus vaccinated mice. Arrows indicate tumor recurrence in the 

same position. Arrowheads indicate new tumors. D and E, The number of tumors (D) and 

the tumor volume (E) were measured by MRI analysis at the indicated time points. Data 

are from two independent experiments. Data are represented as mean (±SEM). **, 

P<0.005; ***, P<0.0005. 

 

Figure 7. ALK vaccine is effective in tumors with crizotinib resistant EML4-ALK 

mutants. A, Western Blot shows the expression of EML4-ALK wild-type or the EML4-ALK 

mutants (C1156Y, F1174L and L1196M) in ASB-XIV infected cells and in human ALK-

rearranged NSCLC cell line (H3122). The lines between the blots indicate cut lanes on the 

same gel. B-E, Representative H&E sections of the lungs of control (Ctrl) and ALK 

vaccinated (Vax) mice at day 21 after injection i.v. of ASB-XIV cells infected with a GFP 

plasmid expressing EML4-ALK WT (B) or the EML4-ALK mutants C1156Y (C), L1196M 

(D) or F1174L (E). Histograms represent the number of tumors in control (Ctrl; n=3 mice 

for each EML4-ALK construct) and ALK vaccinated mice (Vax; n=3 mice for each EML4-

ALK construct). Scale bars, 1mm. Data are from two independent experiments. Data are 

represented as mean (±SEM). *, P<0.05; **, P<0.005; ***, P<0.0005. 
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