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In several manufacturing systems found in the automotive, food and semiconductor industries, product
quality or value deterioration due to excessive residence time in the system are observed. This phenomenon
generates defective or low value products, thus undermining the performance of these systems. In this paper,
a method to compute the lead time distribution under a wide set of system architectures is proposed. The
method is based on the analysis of the probability that a part enters the system in a certain position in the
buffer and on the calculation of the distribution of the time to absorption of a Markov chain representing the
states of the downstream portion of system. Then, considering a function that expresses how the product
deteriorates with the residence time in the system, the main performance measures are derived. Numerical
results show previously uninvestigated behaviors of manufacturing systems under lead time constraints and
provide insights on the design of these complex systems. In particular, the method supports the optimal
selection of buffer sizes to achieve the target effective throughput in these systems.
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1. Introduction, Motivation and Objectives
Product quality and value deterioration due to excessive residence times, or lead times, during
production is a significant phenomenon in several industries, including antomotive, food man-
ufacturing, semiconductor, electronics manufacturing and in polymer forming. For example, in
automotive paint shops a car body that is affected by prolonged exposure to the air in the shop
floor caused by excessive lead times between operations, is prone to particle contamination, lead-
ing to unacceptable quality of the output of the painting process. Moreover, food production is
pervaded by strict requirements on hygiene and delivery precision requiring a maximum allowed
storage time before packaging (Wang et al. 2014). If the production lead-time exceeds this limit,
the product has to be considered as defective and cannot be delivered to the customer. In these
systems, higher inventory increases the system throughput but also increases the production lead
times, thus increasing the probability of producing defective items. Therefore, a relevant trade-off
is generated between production logistics and quality performance that requires advanced system
engineering methods to be profitably addressed (Colledani et al. 2014b), (Inman et al. 2013). The
same situation is found in production systems where strict lead time constraints are imposed by
the customers (Biller et al. 2013).

The first model considering this phenomenon is proposed in (Liberopoulos and Tsarouhas 2002).
The installation of a properly sized in-process buffer led to a reduction in failure impact on product
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Figure 1 Examples of serial lines, assembly systems and closed-loop systems.

quality and an increase of the system efficiency in a croissant production line. In (Liberopoulos et al.
2007), the authors focused on the production rate of asynchronous production lines in which long
failures cause the material under processing in the upstream machines to be scrapped by the system.
Moreover, in (Biller et al. 2013) raw material release policies have been proposed to maximize the
throughput under an average lead time constraint. In these contributions, the analysis is focused
on the average lead time and the distribution of lead time is not taken into consideration. More
recently, the calculation of the distribution of the residence time in manufacturing systems have
attracted increasing attention. In (Shi and Gershwin 2012) a procedure to numerically compute the
distribution of the lead time in two-machine lines with machines having one operational state and
one down state has been proposed. In (Colledani et al. 2014a) the analysis of manufacturing systems
under lead time dependent product deterioration has been proposed for two-machine lines with
general Markovian machines. Finally, the performance of serial lines with product deterioration is
analyzed by calculating the distribution of the residence time in Bernoulli lines in (Naebulharam
and Zhang 2014). Although these contributions are important to highlight the relevance of the
problem, they do not provide methods to predict and control production lead time distributions
under realistic manufacturing system features.

In this paper, we propose an exact analytical method for the calculation of lead time distribution
under a large set of different system architectures, including serial lines, closed-loop systems and
assembly lines. Therefore, the method makes it possible to evaluate the performance of a system
under token-based production control policies. Moreover, general Markovian machines are consid-
ered, thus enabling to model a wide set of machine behaviors. The lead time distribution is used
to calculate the thronghput of conforming parts in systems subject to product deterioration.

2. System Modeling
2.1. System Architectures
We consider manufacturing systems formed by K machines and L buffers under three different
architectures, namely serial lines, closed-loop systems and assembly systems, as represented in
Figure 1. For each system, the material flow is modeled as a discrete flow of parts and the Blocking
Before Service (BBS) assumption is considered. Each buffer B, ;, located between machine M; and
machine M;, has finite capacity denoted as N; ;. System topology considerations are given below.
e Serial lines. In serial lines, machines are connected in an open and linear architecture and the
parts visit all the machines, from M, to My, before leaving the system as final products. The first
machine M, is never starved and the last machine M} is never blocked. The system architecture
can be represented in form of a directed graph as the set of connections between generic stages i
and j. For serial lines this set is Qi = {(i,§)[j =i+ 1,¥i=1,.., K —1}.
e Closed-loop systems. In closed-loop systems, machines are connected in a closed and linear
architecture with a fixed and invariant population N, which is the total number of parts circulating
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in the system. Parts visit all the machines, from M, to My and go back from My to M,;. The set
of connections between generic stages M; and M; is expressed by the set Qp0, = Qppiar U (K, 1),
therefore there are K buffers are in the system. It is worth to mention that under these modeling
features, several token based production control policies, among which kanban, conwip and base
stock can be analyzed.

e Assembly systems. Assembly systems are tree-structured networks in which input sub-
components are assembled to form the final output product. For each machine M;, the set of buffers
from which M; takes parts is denoted as T,;. If at least one buffer in the set T; is empty, then
machine M; is starved. For assembly systems the set of possible connections between generic stages
is Qassemb!y = {(?"J)ll < :'!J <K,ie TJ'}’

2.2. Machine Behavior

The dynamics of each stage is modeled by a discrete-time and discrete-state Markov chain of general
complexity. This setup allows one to analyze a wide set of different stage models within a unique
framework. For example, stages with unreliable machines characterized by generally distributed up
and down times and also stages with non-identical processing times can be considered within the
same framework, thus making the proposed approach applicable to a wide set of real manufacturing
systems. In detail, each stage M) is represented by [, states, and thus the state indicator o,
assumes values in [1, ..., I;]. The set containing all the states of M is called Si. The dynamics of
each stage in visiting its states is captured by the transition probability matrix A, that is a square
matrix of size I.. Moreover, a quantity reward vector g, is considered, with I, entries. While in
the generie state i, M), produces pi;; parts per time unit. Therefore, state i with u,.; =1 can be
considered as an operational state for stage M}, while state i with p;,; =0 is a down state for stage
M,.. The set of operational states for M; is denoted as U; and the set of down states is denoted
as D,;. Stages with the same features have been considered for the first time in (Gershwin and
Fallah-Fini 2007), and, later, in (Colledani 2013).

2.3. Part Quality Deterioration

The quality of parts deteriorates with the time parts spend in a critical portion of the system,
denoted by two integers, e and ¢ with 1 <e < ¢ < K, and composed of those buffers that are
between stages M, and M,, in the direction of the material flow. We will refer as lead time of a
part to the time spent in the buffers between stages M, and M,. If e=1 and ¢ = K, then the
time spent in the whole system is considered (see for example the serial line in Figure 1). Without
loss of generality, we assume that the machines are indexed in such a way that the critical portion
contains machines with consecutive indices. This means that the critical portion is composed of
stages M., M., ..., M, and the involved buffers are B, .1, By 042, ..., By_1,4. The probability that
a part is defective at the end of the line is a non-decreasing function of its lead time. The function
~(h) indicates the probability that a part released by the system is defective given that it spent h
time units in the critical portion of system. Defective parts are scrapped at the end of the line.

2.4. Performance Measures

The main performance measures of interest for this set of systems are:
e Average total production rate of the system, denoted by ET°.
e Probability that the lead time, LT, is equal to the number of time units, h, i.e, P(LT = h).
e Average effective production rate of conforming parts, E¥//, which is given by:

EEIS = pTot i P(LT = h)[1 —(h)] (1)

h=1

e System yield, Y*¥sf*™ i e. fraction of conforming parts: (E®/f / ET°t),
e Total average inventory of the system, WIP.
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3. Lead Time Distribution
The (i,) entry of a matrix, M, will be referred to as M (7, 7). Similarly, the ith entry of a vector,
v, is denoted by wv(7).

3.1. Discrete time Markov chain of the system

The state of the system is given by a vector, s = (ay,...,ax,b;,...,b;), that contains an entry for
each machine, namely, the state of the machine, and an entry for each buffer, namely, the number
of parts of the buffer. Considering every combination, there are (Hle LI, peal(Nij+1)) states.
Some of these states are transient and have zero probability in steady state. For example, every
state in which M, is up and its output buffer is empty is transient because while M, is operational
its output buffer cannot get empty. A machine is blocked if it has an output buffer and the output
buffer is full. A machine is starved if at least one of its input buffers is empty. The overall behavior
of the system can be described by a Discrete Time Markov Chain (DTMC). We denote by R its
transition probability matrix and by = its steady state probability vector, which can be obtained
by standard techniques, (Stewart 2009). The set of states is denoted by S.

3.2. Probability of the states when a part enters the critical portion of system
The first step is to calculate the probability of the states of the system at the moment when an
arbitrary part enters the critical portion, i.e., when an arbitrary part is put into B, .. Le., we
need to determine

me(s) = Pr{system is in state s|part entered B, .1}

To this end, we define a modified transition probability matrix, Rg, that contains the probability
of those transitions only along which a part is put in B, ... Its entry Rp(s,s’) for two states,
s={(ay,....ax,by,....,by) and s' = (af,...,a%, b}, ....b}), is given as

Rp(s,s') = R(s,s") if M, is neither starved nor blocked in s and it is up in &’
EZEIT 0 otherwise

With the above quantities we have
ThRg
g =

- TR ;-.;]].
where 1 is a column vector with all entries equal to 1. The denominator is also the total throughput
of the system.

3.3. Lead time distribution in serial and assembly systems

Consider a part that has just been put in B, .., by M,. The lead time of this part cannot be affected
by parts that are put in B, .., afterwards. Consequently, the state of machines and buffers that are
upstream of B, ., (including M,) do not affect the lead time of the considered part. The portion
of the system that is downstream M, can affect the lead time through backward propagation of
blockages. The part that is neither upstream nor downstream, which can exist in case of assembly
systems, can affect the lead time by forward propagation of starvation. Accordingly, in order to
compute the lead time distribution, we need to consider the subsystem that contains those machines
and buffers that are not upstream of B, .,,. We refer to this subsystem as S’. Accordingly, a state
of S’ is given by a vector s = (a.+1,...,ax, by, ...,by) where by refers to B, .. The set of states is
denoted by Sy and the transition probability matrix by Ry. Note that, since there is no machine
that puts parts in B, .., all buffers in S’ will eventually become empty. The initial probability
vector, 7w, will be set in such a way that it reflects the steady state probabilities of the whole system
at the moment when an arbitrary part enters B, ... Therefore, for s = (aey,...,ax,by,...,b) we

have
mr(s) = > (s

Vs'=(al,....al b, b )ES such that Vie+1<i<Kial=a; A Vi, f<i<Libi=b;
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Consider the part that is last in buffer B, ... Note that, due to starvation of the involved machines,
it is not possible that a part enters one of the buffers of the critical portion after the considered part.
Consequently, the lead time of this part ends when all buffers in the critical portion become empty
and after that these buffers remain empty permanently. Denoting by 7wy, the n-step transient
probabilities of the DTMC started according to 7 and evolving according to Ry (i.e., 77, = mr R})
we have

P{LT <n}= Z Trn(8)

Wa=(aes1,entpe by b )EST such that vi0<i<q—e—1libyg, ;=0

i.e., the probability that the lead time is smaller or equal to n equals to the probability that S’
reached in n step a state in which buffers B, .1, Boy1.042, ..., By—1, are empty.

3.4. Lead time distribution in closed-loop systems

As before, consider a part that has just been put in B, .. In case of machines organized in a
loop, parts that enter B, .., afterwards can affect the lead time of the considered part by backward
propagation of blockings. This means that the whole system must be considered in order to evaluate
the lead time in the critical portion. Moreover, the end of the lead time of the considered part
cannot be identified based on testing that the buffers in the critical portion are empty. This implies
that we need a model in which the position of the considered part is represented and thus allows us
to identify the moment when the considered part leaves the critical portion. In order to have such
a model, we will distinguish the parts that are in the eritical portion when the considered part
enters B, .., called inner parts (including the considered part), from those that are elsewhere,
called outer parts. Moreover, when an inner part leaves the critical portion it will become an outer
part. On the other hand, a part that enters the critical portion remains outer part. Note that
this way every part becomes eventually outer part. Consequently, the lead time of the considered
part ends when there are no inner parts in the model. The state of the model is described by a
vector s = (ay,....,ak, b1, ... b, Ce. ... ,cq1) Where a; is the state of M;, b; is the number of outer
parts in B; i1 (mod i), and ¢; is the number of inner parts in B, ;1 (mod x)- (The set of states is
Sr.) Note that there cannot be inner parts out of the critical portion. The initial probabilities
of the model, 7r, will again be set to reflect the state of the system when a part enters B, .4y
and keeping in mind that parts inside and outside the critical portion are distinguished. For s =
(ar,...ap,by,....bic,ce. .. cq—q) we have

mr(s) =mr(s’)

with s’ € S and s’ = (ay, ...,ar, b1, ...,be_1,Cey vy €g—1, by .o, b ). The transition probability matrix,
Ry, has to take into account both classes of parts. The formal definition of Ry is not provided in
this paper, due to space limitations. We make however two remarks. Ry must be such that if an
inner part moves from B,_, , to B, 441 (i.e., it leaves the critical portion) then it becomes an outer
part (i.e., the number of inner parts is decremented and the number of outer parts is incremented).
In the case when there are both inner and outer parts in a buffer (it can happen to buffers in the
critical portion) then the inner parts leave the buffer first, because they entered the buffer first.
Based on the n-step transient probabilities, 77, = mr R}, we have

P{LT <n}= > Tr.n(s)

Vs(ay.nage by b cenneg—1 JEST such that vie<i<g—1ie;=0

i.e., the probability that the lead time is smaller or equal to n equals to the probability that the
system reached in n step a state in which there are no inner parts.
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Figure 2 Lead Time distribution for a 5 machine line with identical machines and buffers, p = 0.01, r =0.1, N =5.
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Figure 3 Lead time distribution: other cases with 5 machine lines.

4. Numerical Results
In this section, the proposed method is used to gather insights on the distribution of the lead time
and the effective throughput behavior under different system architectures and parameters.

4.1. Multi-stage Serial Lines

In the first experiment, a serial production line formed of 5 identical machines and 4 buffers is
considered. Machines are characterized by one operational state and one down state with failure
probability p = 0.01 and repair probability » = 0.1. Buffers have identical size equal to 5. The
distribution of the lead time between the first and the last machines (e =1 and g =5) for this
system is shown in Figure 2.

As it can be noticed the lead time distribution is multi-modal with a number of peaks
equal to the number of production stages included in the portion of line where the lead time
is calculated, i.e. g — e+ 1. The peaks appear for the following reasons. The first peak corresponds
to the situation where the system is empty and the parts, after being processed by stage M.,
cross the remaining g — e stages without waiting in the intermediate buffers. The j — th peak,
with j=2,...,¢ — e+ 1, corresponds to the situation where stage M., ;_; failed for sufficiently long
time to fill up all the upstream buffers and empty all the downstream buffers. After the stage is
recovered from the failure, an incoming part has to wait Ni . — 1 time units in each upstream
buffer, with e <k <e+j—1, and 1 time unit in each of the ¢ — e — j 4+ 1 downstream stages, if no
other failure occurs. The j—th peak, with j=1,...,d —e+ 1, is located in correspondence
to the following number of time units, h;:

jte-2

hi=q—e+1—j+ Y (Niz1—1) )

Other examples are reported in Figure 3, respectively for a 5 machine line with the same machine
parameters of the previous experiment and identical buffers of size 10, and for a 5 machine line
with identical machines with parameters p =0.05 and r = 0.5 and identical buffers of size 10. As it
can be noticed, the curves confirm the previous statement.

The impact of the buffer size on the effective throughput is considered next. The first 5 machine
line of the previous experiment is taken into account and the sizes of buffers B, », By 3 and Bj 4
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Figure 4 Effective throughput curve as a function of
the buffer size in serial lines.

are increased independently from 2 to 15. The effective throughput is calculated by considering a
quality deterioration function v(h) which assumes value zero for h =1,...,h* and value 1 for h > h*,
with h* = 35. In other words, if the parts spend more than 35 time units in the system, they turn
into defective. The resulting effective throughput curves are shown in Figure 4.

As it can be noticed, although the line is composed of identical machines, each buffer has a
different effect on the effective throughput. In particular, increasing the first buffer in the
line has a detrimental effect on the effective throughput, while the effective throughput
curve is concave if N3, 18 increased, presenting a maximum corresponding to a buffer capacity
equal to 8. This behavior is due to the fact that increasing the size of the buffer B; , has a positive
impact on the total throughput of the system, but also a negative impact on the distribution of the
lead time that parts spend in the system. When the first effect is more important than the second,
i.e. for small buffers, the effective throughput curve increases with the buffer size. However, when
the second phenomenon is more important, the probability that the lead time exceeds the threshold
gets considerably higher and the yield reduction causes a drop in the effective throughput. The
positive impact on the total throughput is less relevant than the negative impact on the yield if B, »
is increased. Indeed, according to equation 2, the capacity of the first buffer moves all the peaks in
the lead time distribution to higher lead time values, thus considerably affecting the probability of
exceeding the fixed lead time limit. This phenomenon leads to a very interesting consideration. It
is well known that, since the line has identical machines, increasing the size of B, 3 and the size of
B3 4 is equivalent in terms of total throughput. However, they are not equivalent in terms of lead
time distribution and, thus, in terms of effective throughput. In lines with identical machines
and lead time dependent qualily deterioration, large buffers should be located in the
last stages of the system as this results to be beneficial in terms of effective throughput. The
line reversibility principle is indeed not verified in terms of effective throughput.

Furthermore, we analyzed the effect of the number of machines in the line, K, on the average
lead time and the 95th percentile of the lead time, for lines with identical machines with p=0.01
and r = 0.1. The results are shown in Figure 5. As it can be noticed, both the mean and the
95th percentile of the lead time increase almost linearly with the line length. However, the 95th
percentile shows a higher slope. This experiment shows that in systems with severe constraint on
the lead time the average lead time itself cannot be considered in the prediction of the system
performance, since the tail of the distribution is much more sensitive to the line length. The entire
lead time distribution should be considered for a reliable prediction of the system performance.
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4.2, Assembly Systems

In this experiment, the assembly system represented in Figure 1 is considered. The upper branch
is formed by 5 machines that are identical to the machines of the line considered in the first
experiment of the previous section. The lead time distribution of the components crossing the
upper branch is reported in Figure 6.

As it can be noticed, the probability peaks are observed for the same time units of the serial
line case. However, the lower branch affects the lead time of parts crossing the upper
branch, due to the fact that the buffer By ; can be empty, thus causing starvation at the assembly
machine M;. As a consequence, the most probable peak is observed at h = 10 for the serial line
while it is moved to h = 13 for the assembly line. This peak corresponds to the situation where M,
is either down or starved (buffer Bg 4 is empty) and then it gets recovered.

Another interesting behavior can be observed by investigating the effective throughput curve
as a function of the buffer size. In this analysis, two buffer sizes are independently increased,
namely buffer B;, in the upper branch of the assembly system and buffer Bg 4 in the lower branch.
The effective throughput is calculated by considering the same quality deterioration function used
for the experiment in section 4.1, for the branch with e =1 and ¢ = 5. The resulting effective
throughput curves are shown in Figure 7.

As it can be noticed, the effective throughput curve is a concave function of Nj 4, presenting
a maximum corresponding to a buffer capacity equal to 6. This behavior is due to the same
phenomenon explained in the previous section, since the buffer B; 4 is part of the branch considered
for the calculation of the lead time. However, this phenomenon is not visible in the curve reporting
the effective throughput as a function of the buffer Bg 4. Indeed, increasing Ng 4 is beneficial both in
terms of total throughput and of system yield. The lead time calculated in the upper branch
of the system is, in fact, reduced while increasing N; 4, as the probability of starvation
of M, is reduced. This causes a significant positive impact on the effective throughput of the
system. A counter effect is the increase of the lead time of the lower branch of the assembly
system, which is not shown here due to space limitation. This experiment proves that, in assembly
systems, the effect of buffers on the lead time distribution and on the effective throughput is driven
by complex dynamic phenomena which require the availability of a modeling tool to be properly
addressed during the system design phase.

4.3. Closed-loop Systems

The last set of experiments is related to closed-loop systems. The considered system is obtained
by adding one buffer, namely B; ;. to the five machine serial line considered in the first experiment
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Figure 8 Lead time distribution: closed loop systems. N, =10 and N, = 15.
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3510.6944 | 0.699 +0.7%
2510.6503 | 0.674 +3.7%

Tablel  Comparison between effective throughput of serial and conwip controlled lines.
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Figure 9  Effective throughput as a function of the population N, for three different sizes of B, for h* =35
(left) and h* =25 (right).

of section 4.1. The capacity of this buffer, N5, is set to 5. The lead time distributions with e =1
and ¢ =5 for two different population levels, N, =10 and N, = 15 are shown in Figure 8. As it can
be observed, the distribution of the lead time is considerably different from the case of
serial and assembly lines. Indeed, if N;; < N, a part entering the first buffer will never see the
critical portion of system empty, but at least N, — N5, + 1 time units are needed before the part
can leave the eritical portion of system.

The effective throughput as a function of the loop population for three different values of the
size of the buffer B;; is reported in Figure 9. The same quality deterioration function as the
previous experiments is considered, with two values of h*, namely 25 and 35. Both figures show
that, differently from the total throughput curves, the effective throughput curves are not
symmetric with the loop population N,. Indeed, small populations are preferable to large
populations since the lead time reduces and it gets less probable to exceed the lead time limit.

An interesting consideration can be drawn by comparing the effective throughput of the serial
line with identical buffers equal to 5 and the throughput of the corresponding loop system, with the
same buffer sizes in the critical portion of system. Indeed, this second configuration corresponds
to a serial line where the conwip token-based production control policy is applied. The serial line
effective throughput is compared to the optimized conwip line effective throughput in Table 1, for
both h* equal to 25 and 35. The results show that the conwip line outperforms the serial line
both for less critical and more critical lead time constraints, although the main benefit is
found in the second condition.
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5. Conclusions and Future Research

This paper has presented a general methodology to compute the lead time distribution in manu-
facturing systems where machines undergo general Markovian behavior and are connected as serial
lines, assembly systems and closed-loop systems. The lead time distribution is useful to compute
the throughput of conforming products, namely effective throughput, in systems processing parts
which are subject to lead time dependent product deterioration or in systems with severe lead
time constraints due to strict customer due date performance requirements. Several previously
unknown system behaviors have been demonstrated and discussed showing the important effect
of buffers on the throughput of conforming products for this set of systems. The proposed theory
and methodology pave the way to the formulation and solution of new important system design
problems. For example, the problem of designing the buffers in a manufacturing system under spe-
cific lead time constraints imposed by the product deterioration or by the market due-dates could
be solved with the approach presented in this paper. Moreover, new production planning methods
that exploit the availability of an exact prediction of the lead time distribution could be developed,
thus enabling manufacturers to benefit increased robustness in production planning. Finally, new
lead time oriented production control and part release policies can be formulated and solved with
the proposed approach, aiming at limiting the lead time in the system.
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