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Abstract 

Whereas preclinical investigations and clinical studies have established that CD8 T cells can 

profoundly affect cancer progression, the underlying mechanisms are still elusive. 

Challenging the prevalent view that the beneficial effect of CD8 T cells in cancer is solely 

attributable to their cytotoxic activity, several reports have indicated that the ability of CD8 T 

cells to promote tumor regression is dependent on their cytokine secretion profile and their 

ability to self-renew. Evidence has also shown that the tumor microenvironment can disarm 

CD8 T cell immunity, leading to the emergence of dysfunctional CD8 T cells. The existence 

of different types of CD8 T cells in cancer calls for a more precise definition of the CD8 T 

cell immune phenotypes in cancer and the abandonment of the generic terms “pro-tumor” and 

“anti-tumor”. Based on recent studies investigating the functions of CD8 T cells in cancer, we 

here propose some guidelines to precisely define the functional states of CD8 T cells in 

cancer. 
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1) Introduction: the relevance of CD8 T cells in cancer 

CD8 T cells are essential for clearing viral, protozoan, and intracellular bacterial 

infections1. Multiple lines of evidence show that CD8 T cells are also a key component of 

anti-tumor immunity. Initial studies in preclinical cancer models showed that CD8 T cells 

have a role in the prevention of tumor growth. Uyttenhove et al showed that escape of P815 

mastocytoma was due to loss of distinct CD8 T cell specificities2 and Nakayama and Uenaka 

showed that antibodies against CD8 effectively blocked the spontaneous rejection of 

transplantable tumors3. Shankaran et al. and Smyth et al. later showed that adaptive immune 

responses were essential to prevent growth of mutagen-induced spontaneous tumors4,5. 

Interestingly, Shankaran et al. further reported that TAP1-transfected transplantable sarcomas 

were eliminated in wild-type mice in a CD8 T cell dependent-manner, suggesting that high 

expression of tumor antigens could drive activation of anticancer CD8 T cell responses4. 

Subsequent work from Koebel et al. showed that during the equilibrium phase of cancer 

growth, where cancer cells persist but are kept in check by the immune system6, depletion of 

CD8 T cells drives cancer cell growth, underscoring the importance of CD8 T cells in 

controlling cancer growth over long time periods7.  

CD8 T cells have also been shown to be essential effector cells in the context of 

anticancer therapies. Depletion of CD8 T cells has been shown to abrogate the anticancer 

efficacy of oxaliplatin and doxorubicin against EL4 thymoma and MCA2 fibrosarcoma 

tumors, respectively8, 9. Similarly, the therapeutic effect of local radiotherapy in melanoma, of 

interferon therapy in leukemia, and of bacille Calmette-Guerin therapy in bladder cancer is 

abrogated in the absence of CD8 T cells10-12. Altogether, these results establish that CD8 T 

cells can control spontaneous and carcinogen-induced tumor growth, invasiveness of 

transplantable cell lines as well as the therapeutic efficacy of some anticancer treatments. 

In line with this substantial amount of preclinical work, it has been established in 

human cancers that CD8 T cell infiltrates can predict patients’ survival. While in kidney 

cancer CD8 T cell infiltrates have been associated with worse outcome and with higher tumor 

grade13, 14, they are linked to a better clinical outcome in the vast majority of other cancer 

types. In ovarian cancer, the presence of CD3 T cell infiltrates have been shown to correlate 

with improved survival rates15. In colon cancer, tumors without signs of metastatic invasion 

exhibit increased numbers of effector- memory CD8 T cells, thereby indicating that the 

presence of effector-memory CD8 T cells in the tumor microenvironment correlates with a 

better prognosis16. These findings were subsequently confirmed in other cohorts and an 
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international consortium is currently evaluating the possible utilization of immune infiltrate 

data to predict patient survival in routine clinical settings17, 18. The favorable prognostic value 

of CD8 T cell infiltrates has also been documented in other cancer types, such as breast 

cancer and epithelial ovarian cancer 19, 20. These findings suggest that, in humans, even in 

situations when tumors are detectable, CD8 T cells can control tumor progression. The 

clinical relevance of CD8 T cells in human cancer is further underscored by recent studies in 

breast cancer patients showing that the combination of high CD8 and low FOXP3 cell 

infiltrates after chemotherapy was significantly associated with favorable clinical responses21. 

These results were confirmed in two other studies, where CD8 tumor infiltrating T cells were 

found to be an independent predictive factor for pathological complete response after 

anthracycline or anthracycline-taxane-based chemotherapy9, 22. Collectively, these preclinical 

and clinical observations indicate that CD8 T cells should not only be contemplated as a 

putative therapeutic tool but also as a biomarker to monitor the efficacy of cytotoxic 

chemotherapy. However, recent data also indicate that intra-tumoral CD8 T cells often lose 

their effector functions and exhibit a dysfunctional state. Accordingly, the terms “anti-tumor” 

and “pro-tumor” have been used in the literature to describe CD8 T cells in cancer. Given the 

advances in our knowledge of CD8 T cell phenotypes in cancer, these terms are clearly an 

oversimplification. Here, we discuss the different functional states of CD8 T cells in cancer 

and propose some guidelines for more accurate designation of CD8 T cells that exhibit 

different functional phenotypes. 

2) CD8 effector T cells in cancer 

Naïve CD8 T cells that undergo priming in vivo in the presence of helper factors 

produced by CD4 T cells differentiate into effector T cells that express high levels of perforin 

and granzymes 23, 24. The coordinated delivery of these cytotoxic molecules to cancer cells can 

drive caspase activation and ultimately cell death23, 25-27 (Figure 1a). Given the demonstrated 

potential of CD8 T cells to kill cancer cells, CD8 T cells are often refered to as cytotoxic T 

lymphocytes (CTLs). Several different methods can be employed to assess CD8 T cell 

cytotoxicity: direct measurement of target cell killing (for example by the chromium 51 

release (51Cr) assay28), flow cytometry based or ELISPOT measurement of granzyme B, a 

component of lytic granules in CD8 T cells29, 30, and detection of the expression of CD107a, 

which is present on the cell surface of degranulating CD8 T cells. While the individual merits 

of these different methods have been debated, they have all been used to demonstrate CTL 

activity in cancer. Using quantification of CD107a, Rubio et al. showed that tumor-cytolytic T 
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cells could be elicited in patients after vaccination and that tumor cell killing is associated 

with the ability of CD8 T cells to recognize their targets31. Using a 51Cr release assay, 

Takeshima et al. showed that in tumor-bearing mice local radiotherapy could elicit cytotoxic 

tumor-specific CD8 T cells that prevent tumor growth32. Importantly, they further 

demonstrated the importance of CD8 T cells in mediating tumor regression following 

radiotherapy in vivo by using a neutralizing CD8 antibody. This key experiment, which was 

replicated in other studies10, was essential because the detection of activated or even antigen-

specific cytotoxic T cells in ex vivo/in vitro assays does not necessarily ensure that CD8 T 

cells drive tumor regression in vivo.  

CD8 T cells can also kill tumors via the Fas/Fas ligand pathway. Indeed, it has been 

proposed that FasL-driven CD8 T cell killing could be essential for the elimination of large 

and/or disseminated tumors33-35. However, it should be noted that tumors can lose Fas 

expression or develop mutations in the cell death pathway engaged by FasL, thus developing 

resistance to FasL/Fas-mediated CD8 T cell cytotoxicity. Other mechanisms by which tumors 

can resist CD8 T cell cytotoxicity are increased expression of anti-apoptotic molecules such 

as Bcl-2, Bcl-xl, and Mcl-1 and changes in components of the cytoskeleton that impair the 

formation of stable immunological synapses between cytotoxic CD8 T cells and tumor cells36, 

37.  

Strategies have also been developed to assess CTL activity in vivo. For this, the 

selective elimination of adoptively transferred carboxyfluorescein diacetate succinimidyl ester 

(CFSE)-labeled target cells bearing a specific CD8 T cell peptide has been examined in 

preclinical models 38. While this technique has the major advantage of assessing CD8 T cell 

cytotoxicity in vivo, it does not inform as to the killing mechanism employed nor does it allow 

for visualization of the killing process. In regards to the latter, the development of intra-vital 

imaging represents a major advance in monitoring T cell anticancer functions in vivo in mice 

at the single-cell level. Using this technology, the group of Amigorena has found that 

activated cytotoxic CD8 T cells can infiltrate tumors and arrest in close contact to and kill 

tumor cells provided that the tumor cells express cognate antigen39. Using a similar 

methodolgy, Breart et al. found that in contrast to in vitro cytotoxic assays where tumor cell 

death occurs within minutes after incubation with cytotoxic T cells, the in vivo destruction of 

1 tumor cell by a cytotoxic T lymphocyte in the tumor bed took on average six hours, possibly 

explaining the limited ability of CD8 T cells to eradicate established tumors40.  

While the cytotoxicity of CD8 T cells against tumor cells has been a major focus, it is 

important to note that some studies suggest that direct tumor cell killing may not be the major 
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or only mechanism responsible for tumor regression. It has been shown that CD8 T cells can 

also recognize tumor antigens processed by the stroma41 and studies using longitudinal 

confocal microscopy imaging have shown that vessel regression occurs immediately 

following CD8 T cell entry from the blood stream into the tumor42. Thus, cytotoxicity against 

tumor stroma may also be a major mechanism of tumor regression.  

Although much attention has been given to the cytotoxic function of CD8 T cells, it is 

not the sole mechanism responsible for the anti-cancer activity of CD8 T cells. Activated CD8 

T cells also secrete cytokines like TNFα and IFNγ, which can induce cancer cell senescence 

and play essential roles in the control of anticancer immune responses and tumor growth43 

(Figure 1a). IFNγ has indeed been shown to be critical for cancer immunosurveillance and its 

secretion by CD8 T cells can enhance antigen presentation, the anti-tumor functions of 

macrophages, and limit tumor angiogenesis44-46. CD8 T cell-derived IFNγ was further shown 

to be critical for the anti-cancer efficacy of chemotherapeutic drugs such as doxorubicin and 

oxaliplatin8. Importantly, the ability of these drugs to prevent tumor outgrowth was not 

compromised in perforin-deficient mice, suggesting that in this system CD8 T cells do not 

prevent tumor growth through direct cytotoxic activity. Accordingly, immunization of mice 

with chemotherapy-treated dying tumor cells failed to elicit CD8 T cell cytotoxicity but 

instead induced their secretion of IFNγ. Thus, in some contexts the ability of CD8 T cells to 

produce IFNγ may be more critical than their cytolytic function for anti-tumor efficacy8. 

These observations are in line with previous studies that identified IFNγ-dependent anti-

angiogenesis as a general mechanism involved in tumor rejection by CD8 T cell effectors47.  

Altogether, these observations underscore that the “anti-tumor” activity of effector 

CD8 T cells in tumor tissue can be ascribed to both their direct cytolytic activity and their 

cytokine secretion. Indeed, poly-functional CD8 T cells that exhibit cytotoxicity along with 

production of TNFα and IFNγ  may be the most robust anti-tumor effectors. In this regard, it 

is also important to note that the efficacy of effector CD8 T cells in the tumor 

microenvironment may be limited as they undergo terminal differentiation and lose their 

ability to self-renew. The “anti-tumor” potential of CD8 T cells that retain self-renewing 

capacity is discussed below. 

 

 
3) Cancer-driven CD8 T cell dysfunction 
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Although effector CD8 T cells can be found in the tumor microenvironment, it is also 

well-established that tumors can drive CD8 T cell dysfunction. In the literature, the terms 

“anergic” and “exhausted” have both been used to describe dysfunctional CD8 T cells. 

Whether the CD8 T cells in cancer are anergic or exhausted has been a matter of debate. Here 

we will discuss the use of these terms to describe dysfunctional CD8 T cells in cancer. 

Anergy typically refers to a general state of diminished function of a given immune 

response. In the 1980s, the term was applied to T cells induced into a state of non-

responsiveness in vitro upon engagement of the T cell receptor (Signal 1) in the absence of a 

costimulatory signal (Signal 2). In a number of in vivo settings, such as tolerance induction by 

i.v. injection of antigens without adjuvants, it was hypothesized that T cell unresponsiveness 

was similarly induced by antigen recognition without appropriate co-stimulatory signals48. 

Anergic T cells fail to proliferate and produce effector cytokines in response to subsequent 

stimulation. T cell anergy is believed to be operative in cancer given that tumors often poorly 

express co-stimulatory molecules such as B7-1/B7-2, that dendritic cells present in tumor 

tissue express low MHC and low B7-1/B7-2 but high PD-L1 (B7-H1)49, and that myeloid-

derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) contribute to 

sub-optimal antigen presentation in the tumor environment50. Moreover, MDSCs and TAMs 

can produce arginase-1 and TGF-β and drive oxidative stress, all of which drive suppression 

of CD8 T cell responses51. 

The term “exhaustion” comes from the study of the CD8 T cell response to chronic 

viral infections in mouse models where antigen is not cleared despite ongoing stimulation. 

There is also evidence for virus-specific T cell “exhaustion” in humans in the setting of 

chronic HCV and HIV. Similar to anergic T cells, “exhausted” T cells exhibit defective 

responses to antigen stimulation; however, unlike anergy which develops as a result of a sub-

optimal first encounter of T cells with cognate antigen, exhaustion develops progressively as a 

result of chronic stimulation of T cells in the face of high antigen burden52. Indeed, the T cells 

that develop an “exhausted” phenotype are those that undergo robust activation in the acute 

phase of the anti-viral response.  

“Exhausted” CD8 T cells express high levels of co-inhibitory receptors such as PD-1, 

Lag-3, CD244, CD160, and Tim-3, and it has been shown that interfering with the signaling 

through one or more of these receptors can improve anti-virus CD8 T cell responses53, 54. CD8 

T cells that express inhibitory molecules and exhibit severe functional deficits have also been 

described in cancer55-59 (Figure 1b). These observations have led to the widespread use of the 



12	
  
	
  

term “exhaustion” to describe the dysfunctional CD8 T cells in cancer. However, whether the 

dysfunctional CD8 T cells observed in cancer are truly analogous to those that arise in chronic 

viral infection is an open question. Resolution of this issue awaits elucidation of the molecular 

programs specifically associated with dysfunctional T cells in cancer. These studies are 

currently at an early stage. An initial study of the dysfunctional CD8 T cells from the tumor-

infiltrated lymph nodes of melanoma patients indicates that the gene profile of these cells is 

significantly enriched for genes identified in exhausted LCMV-specific murine CD8 T cells; 

however, these cells fail to up-regulate Batf, a key driver of T cell exhaustion in HIV 

infection57. 

Moreover, it has recently been suggested that “exhaustion” is a misnomer as 

“exhausted” cells are not completely devoid of function as the term “exhaustion” implies. 

Rather these cells exhibit an attenuated response that is optimized for minimizing tissue 

damage while still preserving some level of response against abnormal cells (virally infected 

or cancerous)60. Indeed, a key function of co-inhibitory receptor expression on highly active T 

cells is to contract ongoing T cell responses in order to restore immune homeostasis and 

prevent immunopathology. Unfortunately, tumors have taken advantage of this mechanism to 

dampen anti-tumor T cell responses.  

At this juncture, we recommend against ascribing the CD8 T cells in cancer as either 

“anergic” or “exhausted”. This terminology is not useful as these states have been defined and 

largely studied in other T cell types, such as CD4 T cells, or in disease conditions that differ 

significantly from cancer, namely chronic viral infection. We recommend that the term 

dysfunctional instead be used to describe the poorly functional CD8 T cells in cancer61. We 

further caution against ascribing cells as dysfunctional based on expression of co-inhibitory 

receptors alone as these molecules are also found on effector T cells that retain functional 

properties62. Indeed, expression of these inhibitory receptors could also reflect a state of 

previous activation of CD8 T cells indicating that expression of these receptors may identify 

anti-tumor specific T cells associated with a good prognosis63, 64 . Dysfunctional CD8 T cells 

should be defined as cells that exhibit defects in proliferation, lack of inflammatory cytokine 

production and/or cytotoxic functions, together with expression of one or more co-inhibitory 

receptors (Figure 1b).  

It is important to note that CD8 T cell dysfunction in the tumor microenvironment is 

believed to be reversible, at least to some extent. In pre-clinical cancer models, blockade of 

signaling through CTLA-4, PD-1, Tim-3, and Lag-3 have been shown to improve CD8 T cell 

responses (reviewed in 65). Accordingly, the current success of strategies that interfere with 
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signaling through the PD-1 inhibitory receptor in the clinic is believed, at least in part, to be 

due to the ability of PD-1 blockade to re-invigorate CD8 T cell responses.  

 

4) CD8 T cell senescence in cancer  

Senescent CD8 T cell phenotypes can also arise in the tumor microenvironment. 

Senescence refers to an irreversible state of growth arrest that develops in cells upon repeated 

cellular division, termed replicative senescence, or in response to DNA damage. General 

characteristics of senescent cells include: short telomeres, irreversible cell cycle-arrest, 

activation of DNA damage response (DDR) genes, robust secretion of factors that constitute 

the senescence-associated secretory phenotype (SASP), and accumulation of senescence 

associated heterochromatin foci (SAHF)66. Specific cell surface markers ascribed to senescent 

T cells are loss of CD28 and CD27 and high expression of CD57 and KLRG-1 (Figure 1c).  

While senescence has historically been associated with aging, it is now recognized that 

replicative senescence also develops in the context of chronic antigen stimulation, such as that 

which occurs in cancer. Indeed, it has been shown that culture of tumor cells with normal 

healthy human T cells in low tumor to T cell ratios can induce a phenotype consistent with T 

cell senescence in vitro67. These cells exhibit decreased CD28 and CD27 expression along 

with concomitant up-regulation of γH2AX (H2A histone family member X) and ATM (ataxia 

telangiectasia mutated), both of which are induced as part of the DDR to double strand DNA 

breaks (Figure 1c). A recent study further reported the presence of CD8 T cells that exhibit 

characteristics of senescence in vivo in human lung cancer tissue68. These cells are CD28-

CD57+ and exhibit accumulation of heterochromatin protein-1 gamma foci, a component of 

SAHF. 

Although senescent T cells are irreversibly cell-cycle arrested, it is important to note 

that they are not completely devoid of function. The senescent CD8 T cells found in lung 

cancer tissue produce IL-6 and IL-8, two hallmark SASP factors68. These two features 

distinguish senescent CD8 T cells from dysfunctional CD8 T cells (Figure 1b and c) as the 

dysfunctional T cells are not irreversibly cell-cycle arrested they exhibit severely impaired 

production of pro-inflammatory cytokines and other effector molecules. 

The two SASP factors that are reported to be expressed by senescent CD8 T cells, IL-6 

and IL-8, are both pro-inflammatory cytokines. IL-6 can suppress regulatory T cell function 

(Treg)69 and promote the differentiation of IL-17-producing Th17 cells70. The dampening of 

Treg function could benefit anti-tumor immunity by relieving an important mechanism of 

immune suppression in tumor tissue. However, the outcome of promotion of Th17 cells in 
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tumor tissue is less clear as both “pro-tumor” and “anti-tumor” properties for Th17 cells have 

been described71. Notwithstanding how IL-6 may shape anti-tumor T cell responses, IL-6 can 

promote tumorigenesis through its effects in driving cellular proliferation, promoting cell 

survival by delivering anti-apoptotic signals, and augmenting MDSC suppressive functions72, 

73. Indeed, high levels of IL-6 have been associated with multiple cancers and are associated 

with poor prognosis74. IL-8 also exhibits pleiotropic tumor promoting effects. It can promote 

angiogenesis, cancer cell survival, proliferation, migration, and resistance to chemotherapy75. 

Thus, by virtue of their production of IL-6 and IL-8 senescent CD8 T cells could be 

considered “pro-tumor”. 

It is also important to note that terminal effector CD8 T cells can also exhibit loss of 

CD28 and up-regulation of KLRG-1. Moreover, vaccine-induced CD8 T cells with optimal 

anti-tumor effector function have been noted to express high levels of KLRG-176. Thus, 

senescent phenotype cannot be ascribed solely on the basis of loss of CD28 and expression of 

KLRG1. Senescent cells must further exhibit SAHF and activation of DDR genes (Figure 

1c).  

 

5) Stem-cell like memory CD8 T cells  

Terminal effector CD8 T cells limit tumor outgrowth. However, these cells can become 

dysfunctional or senescent in the tumor microenvironment. Recent studies that examine the 

efficacy of ex vivo generated CD8 T cells on tumor clearance after adoptive transfer into 

tumor-bearing hosts show that terminally differentiated effector CD8 T cells are ineffective at 

eliminating tumors in vivo compared to less differentiated T cells77, 78 (Figure 1a, Figure 2). 

This occurs in spite of their higher secretion of IFNγ and cytolytic activity. Instead, it has 

been suggested that CD8 T cells that share properties with naïve T cells such as CCR7 and 

CD62L expression and have the ability to self-renew are more potent for fighting tumors 

(Figure 2). Because of their ability to self-renew and persist for long periods of time, these 

CD8 T cells have been termed stem-cell like memory T cells. Unfortunately, in contrast to 

terminal effector CD8 T cells, stem-cell like memory CD8 T cells are predominantly found in 

lymphoid tissue and not in the tumor microenvironment. 

It is well known that the omnipotency of naïve T cells is progressively lost with T cell 

differentiation to memory and effector T cells. Among antigen-experienced T cells, the stem-

cell like memory T cells are the ones with the highest potency, producing progeny for both 

immediate immunity and its long-term maintenance, based on self-renewal. It is likely that 

tumor-antigen specific effector T cells depend on continuous differentiation from self-
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renewing memory T cells. Therefore, it remains a major aim to develop methods inducing 

self-renewing T cells in vitro for adoptive transfer, or in vivo by active immunization. In this 

regard, the recent identification of IL-7 and IL-15 as molecular signals guiding human naive 

T lymphocytes to differentiate into stem-cell like memory CD8 T cells in vitro provides 

impetus to investigate their anticancer potential in clinical trials79, 80. Progress in basic 

research, bioengineering, and therapy development will likely further exploit the potential of 

T cell stemness, as a fundamental basis of robust and long-term T cell responses including the 

capability to home to tumors and exert effector functions therein.  

6) CD8 T cells as regulatory cells in cancer? 

The existence of several types of CD8 T cells with regulatory or suppressive properties in 

cancer has been proposed. These include: CD8+ CD28-, CD8+ CD25+, CD8+ CD122+, and 

CD8+ IL-10+ T cells 81, 82. At present, there seems to be no consensus in the field as to 

whether these are overlapping or dissimilar subsets and, moreover, whether these are truly 

distinct from other cell types that express some of the same surface markers. For these 

reasons, this potential class of CD8 T cells will not be further discussed here. 

7) Conclusion 

Our understanding of the CD8 phenotypes that arise in cancer necessitates that we 

move beyond the simplified nomenclature of “pro-tumor” vs “anti-tumor” T cells. We, and 

others, have now identified stem cell-like, terminal effector, dysfunctional, or senescent CD8 

T cells that are functionally and in many cases molecularly distinct. Currently, there are no 

unique surface markers that allow for easy discrimination between these CD8 phenotypes. 

Thus, accurate identification requires a more in depth analysis that includes examination of 

cell surface phenotype, functional phenotype, and expression of intracellular markers. Here, 

we have summarized the current knowledge of CD8 phenotypes in cancer (Box 1). We 

recommend avoiding the use of broad terms like “pro-tumor” or “anti-tumor” CD8 T cells 

without providing information on their functional state. We further propose that the term CTL 

should only be employed when corresponding cytotoxic functions have been experimentally 

demonstrated and that the term “dysfunctional” rather than “anergic” or “exhausted” be used 

to describe CD8 T that exhibit functional deficits in cancer. Importantly, we caution against 

ascribing CD8 T cells as dysfunctional based on the expression of co-inhibitory receptors 

alone. Future studies incorporating T cell analyses should include appropriate markers and 
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functional assays to better define the phenotypes of T cells in peripheral blood, peripheral 

lymphoid tissues, and tumor biopsy samples.	
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Figure 1. CD8 T cell phenotypes in the tumor microenvironment 

a) Effector CD8 T cells that undergo terminal differentiation are characterized by low IL-2, 

strong IFNγ and TNFα release as well as high expression levels of the transcription factors 

Eomes and Id283-85. They do not express the surface markers CD62L, CCR7, CD27 but 

express killer cell lectin-like receptor G1 (KLRG-1) and PD-163, 86-89. While terminal effector 

CD8 T cells exhibit strong cytolytic functions in vitro, their anticancer activity in vivo is 

limited because of their inability to self-renew compared to stem-cell like memory CD8 T 

cells78, 90, 91.  

b) Dysfunctional CD8 T cells are characterized by cocomittant expression of two or more 

inhibitory receptors such as CTLA-4, PD-1, Lag-3, Tim-3 and BTLA65, 92, 93. These cells 

exhibit defects in cytotoxicity, proliferative capacity, and secretion of pro-inflammatory 

cyotkines: IL-2, TNFα and IFNγ55, 56, 94.  

c) Senescent CD8 T cells express killer cell lectin-like receptor G1 (KLRG-1) and CD57 but 

not CD27 or CD2887, 95. They are characterized by short telomeres, poor proliferative capacity 

and activation of DNA damage response (DDR) genes 66, 68, 95, 96. These cells were also shown 

to express PD-1 in chronic lymphocytic leukemia patients95. Senescent CD8 T cells lack 

cytotoxicity96, and were shown to express the proinflammatory mediators Il6 and Il8 in lung 

cancer tissue68. 

 

Figure 2. Features of stem-cell like CD8 T cells.   

Stem-cell like memory CD8 T cells share many phenotypic features with naïve T cells 

(reviewed in 97). They typically express the CD45RA phosphatase, the lymph node homing 

molecules CCR7 and CD62L as well as the costimulatory receptors CD27 and CD2877, 98. 

These cells express the transcription factors Id377 and Tcf791, secrete IL-2 and low levels of 

TNFα or IFNγ. These cells also have the ability to self-renew and exhibit potent anticancer 

responses in vivo78, 90.  
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