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Abstract 

 

We present a study of high-temperature, uniaxial deformation experiments of natural, 

partially-crystallized magma from the Monte Nuovo (1538 AD) trachytic eruption. The experiments 

were performed using a high-temperature uniaxial Geocomp LoadTrac II press at dry atmospheric 

conditions and under controlled deformation rates. Each experiment involved deforming cores of 

natural (i.e., crystal- and vesicle-bearing) scoriaceous samples isothermally (600 to 800° C) at 

constant displacement rates (CDR) corresponding to strain rates between 10
-7

 and 10
-4

 s
-1

. Measured 

viscosities vary between 10
10

 and 10
13

 Pa s. The flow behavior of these complex natural materials 

are fully described by a simplified Herschel-Bulkely equation in terms of consistency K and flow 

index n. We estimate the combined effects of crystals and pores on the rheology of these multiphase 

suspensions. Our results demonstrate that the presence of pores has a major impact on the 

rheological response of magmas and may produce a marked decrease of their viscosity. At the same 

time, the presence of pores leads to a strong decrease in the strength of the magma inducing local 

and temporal variation in the deformation regimes (ductile vs. brittle). Brittle failure was in fact 

observed at T=600°C and strain rates of 10
-5

 s
-1

 and at T=800°C for the highest applied strain rate 

(10
-4

 s
-1

), respectively. This study constitutes an important step toward the estimation of multiphase 

rheological evolution of Monte Nuovo magmas and toward the general understanding of the full 

complexities governing the dynamics of magma transport in natural systems. 
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1. Introduction 

 

The styles, dynamics and intensity of volcanic eruptions are strongly controlled by the 

properties and behavior of magmas during transport. Consequently, computational models intended 

to simulate the behavior and hazards of potential eruptions from specific volcanoes depend on 

detailed, accurate knowledge of the rheology of magmas under volcanic conditions. 

Over the past several years, a large number of experimental studies (e.g., Dingwell and 

Virgo, 1987; Dingwell et al., 1996; Richet et al., 1996; Stevenson et al., 1998; Whittington et al., 

2000, 2001; Romano et al., 2001, 2003; Giordano et al., 2004, 2009; Vetere et al., 2007, 2008; 

Ardia et al., 2008; Misiti et al., 2009) and numerical models (e.g., Russell et al., 2002, 2003; 

Giordano and Dingwell, 2003; Giordano et al., 2006, 2008; Hui and Zhang, 2007) have improved 

our understanding of the dependence of silicate liquid viscosity on P-T-X-fO2. Silicate melts are 

Newtonian liquids over a wide range of stress and strain rates, and they behave as non-Newtonian 

fluids only when the shear rate approaches the structural relaxation rate (Webb and Dingwell, 

1990a). The viscosity of pure liquids can be calculated to a good approximation as a function of 

temperature and composition, and may vary by several orders of magnitude for geologically 

relevant conditions (Giordano et al., 2008). 

Natural magmas, however, are commonly transported and erupted at temperatures below 

their liquidus; consequently, they contain suspended crystals and, in the case of near-surface 

magmas and lavas, bubbles. The presence of suspended solids and bubbles strongly affects the 

viscosity of magmas and can transform their behavior from simple Newtonian fluids to more 

complex rheological materials (e.g. Krieger, 1972; Lejeune and Richet, 1995; Bruckner and 

Deubener, 1997; Deubener and Bruckner, 1997; Manga et al., 1998; Lejeune et al., 1999; Stein and 

Spera, 2002; Llewellin et al., 2002; Sato, 2005; Caricchi et al., 2007; Lavallée et al., 2007; 

Cordonnier et al., 2009; Vona et al., 2011). Factors influencing multiphase magma rheology and 
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eventually the onset of non-Newtonian behavior are the chemical and thermal evolution of the host 

melt during crystallization and/or bubble segregation, the concentration, shapes, size distributions 

and maximum packing fraction of suspended particles, as well as the pore fluid pressure and the 

shear strain rate undergone by magmas.  

Moreover, it is known that one major effect of magma degassing is to trigger microlite 

crystallization due to a sudden increase in the liquidus temperature (Sparks and Pinkerton, 1978). 

By changing the rheological response of the magma, crystallization can, in turn, inhibit bubble 

growth and bubble coalescence and segregation, hence affecting eruptive styles. This complex 

interplay between crystallization and bubble segregation indicates that for a full comprehension of 

magma eruptive dynamics, the combined rheological effects of crystals and bubbles should be both 

taken into account. 

Most rheological studies of natural multiphase suspensions, with few exceptions (e.g., 

Lavallée et al., 2007; Harris and Allen, 2008; Avard and Whittington, 2012), have focused on the 

separate effects of crystals and bubbles on magma rheology. These studies have independently 

modeled crystal-bearing (e.g., Ryerson et al., 1988; Pinkerton and Stevenson, 1992; Pinkerton and 

Norton, 1995; Sato, 2005; Ishibashi and Sato, 2007; Caricchi et al., 2008; Ishibashi, 2009; 

Cordonnier et al., 2009; Whittington et al., 2009; Vona et al., 2011) or bubbles/pores-bearing 

suspensions (e.g., Bagdassarov and Dingwell, 1992, 1993; Stein and Spera, 1992, 2002; Lejeune et 

al., 1999; Rust and Manga, 2002; Llewellin et al., 2002; Robert et al., 2008a, b).  

In this study we use high-temperature deformation experiments to investigate the 

multiphase (liquid + crystals + bubbles) rheology of natural samples from the Monte Nuovo 

trachytic eruption (1538 AD, Phlegrean Fields). The 1538 eruption of Monte Nuovo was 

characterized by two phases with contrasting eruptive styles. The first stage of eruption was 

characterized by phreato-magmatic activity, generating pumice-bearing pyroclastic density currents 

and forming a 130-m-high tuff cone (Lower Member deposits). The second phase was characterized 
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by two discrete Vulcanian explosions whose scoriaceous products were emplaced on the top of the 

tuff cone (Upper Member deposits, Di Vito et al., 1987; Piochi et al., 2005, 2008; D’Oriano et al., 

2005). The second phase was more markedly magmatic and, despite similar chemistry, the textures 

of the scoria and the micro-crystals content were more variable with respect to the first phase of 

activity, reaching in some cases 100 vol. % (D’Oriano et al., 2005). These differences in physical 

properties of magmas are due to different processes occurring during the rise inside the volcanic 

conduit, and reflect changes in the rheology of the erupted materials. 

In order to characterize the rheology of partially crystallized trachytic magmas from the 

second phase of activity of the 1538 AD Monte Nuovo eruption, we performed a series of 

controlled deformation rate experiments using an unconfined uniaxial deformation apparatus. The 

rheological properties of the remelted sample and of melt+crystal mixtures are known from 

previous studies (e.g., Giordano et al., 2004, 2009; Caricchi et al., 2008). Thus, our experimental 

data provide a good opportunity to estimate the effects of crystals and vesicles on the rheology of 

these multiphase suspensions. 

 

2. Rheology of magmatic suspensions 

 

Viscosity is defined as the resistance to flow under specific applied stress (σ) conditions 

and it is expressed by complex functions of applied stress and resulting strain (ε) and strain-rates 

(e.g., Herschel and Bulkley, 1926). For a Newtonian liquid,   where η is the Newtonian 

viscosity. The presence of a solid phase or a gaseous phase to form a solid or bubble suspension can 

yield non-Newtonian behavior, expressed in the more general equation: 

 

0

nK               (1) 
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where 0  is a stress threshold to be overcome in order to have flow, namely the yield stress; K is 

the flow consistency (which corresponds to shear viscosity at   =1 s
-1

) and n is the flow index which 

describes the degree of non-Newtonian behavior, being equal to 1 for Newtonian fluids, n>1 for 

shear-thickening and n<1 for shear-thinning fluids. For non-Newtonian fluid,    changes as a 

function of the deformation rate and if 0 0  , is equal to 1nK . In this case, it is convenient to use 

an apparent viscosity defined as 
app     measured at a particular stress or strain rate. 

From Eq. (1), assuming zero yield stress (e.g., Lavallée et al., 2007; Avard and 

Whittington, 2012), the relative viscosity (ratio between stress and strain rate divided by the 

viscosity of the suspending liquid, ηl) can be written as: 

 

1n

r

l

K   


           (2) 

 

where Kr = K/ηl represents the relative consistency. 

 

2.1 Crystal-melt suspensions 

 

A number of experimental and modeling studies have investigated the rheological 

properties of different crystal-bearing natural magmas at subliquidus temperatures (e.g., Shaw, 

1969; Gay et al., 1969; Spera et al., 1988; Ryerson et al., 1988; Pinkerton and Stevenson, 1992; 

Pinkerton and Norton, 1995; Sato, 2005; Ishibashi and Sato, 2007; Caricchi et al., 2008; Ishibashi, 

2009; Picard et al., 2011; Vona et al., 2011) or of synthetic silicate suspensions (e.g., Lejeune and 
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Richet, 1995; Costa, 2005; Caricchi et al., 2007; Costa et al., 2009; Mueller et al., 2010; Cimarelli 

et al., 2011). 

In crystal-melt suspensions, the dispersed phase acts as a ‘hard’ (non-deformable) 

inclusion which increases the viscosity of the suspension through both hydrodynamic and 

mechanical interaction among crystals. For low solid fractions, the viscosity increases slowly with 

the particle volume fraction (ϕ), and the suspension maintains a Newtonian rheological behavior 

(strain-rate independent). When ϕ exceeds a critical value (ϕc), particles start to interact with each 

other and a solid network of particles begins to form, causing a strong increase in viscosity and the 

onset of non-Newtonian flow, characterized by Bingham-like rheology and/or shear thinning effects 

(Eq. (1)). As the solid fraction is further increased, the system reaches another rheological 

threshold, corresponding to the maximum packing density of solid particles (ϕm), which causes the 

transition from melt and melt+crystal to solid-state creep rheology (e.g., Kohlstedt and Zimmerman, 

1996; Kohlstedt and Holtzman, 2009; Lavallée et al., 2007; 2008; 2012).  

The increase in viscosity and the non-Newtonian flow depend on textural features (crystal 

and bubble distribution) and deformation regimes (e.g., Costa et al., 2009; Petford, 2009; Mueller et 

al., 2010). Several parameterizations have been proposed to model the effects of crystals on the 

rheology of suspensions (e.g., Einstein, 1906; Krieger and Dougherty, 1959; Shaw, 1965; Frankel 

and Acrivos, 1967; McBirney and Murase, 1984; Stickel and Powell, 2005; Costa, 2005; Caricchi et 

al., 2007; Costa et al., 2009; Ishibashi, 2009; Mueller et al., 2010; Cimarelli et al., 2011; Vona et al., 

2011). Costa et al. (2009) proposed an empirical parameterization of relative viscosity as a function 

of strain rate (  ) for low to medium-high concentrated suspensions of spherical particles. Recently, 

Cimarelli et al. (2011) extended the application of the parameterization to account for bimodal 

shape polydispersion. The relationships for the variation of the relative viscosity as a function of the 

solid fraction (ϕ), as used by Costa et al (2009) and Cimarelli et al. (2011), have the following 

structure:  
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 
 

*

1

1 , ,
B

F






  

     

          (3) 

 

where 

 

 
 

 1 1
2 1

F erf 
 

     
   

 (4) 

 

with 
*     where 

* , ξ,  and  are empirical parameters that depend on the deformation rate 

(Costa et al., 2009; Cimarelli et al., 2011) and B is the Einstein coefficient. This model can 

successfully predict the multiphase rheology of suspensions varying from  = 0.1 - 0.8 isotropic 

particles over a wide range of strain rates and includes parameters to account for a bimodal 

distribution of spheres and elongate crystal of a specific aspect ratio. .  

Other authors (e.g Ishibashi, 2009; Mueller et al., 2010; Vona et al., 2011) proposed 

parameterizations obtained by modifications of the strain rate independent KD equation (Krieger 

and Dougherty, 1959) 

 

1

mB

r

m

 

 
   

 
  (5) 

 

to take into account the shear thinning effect on the rheology of suspensions. Ishibashi (2009) 

provided a modified strain rate dependent KD equation based on rheological measurements on 

natural basaltic magmas at T from 1177 to 1237 °C: 
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   1 1 ln 1 ln

1

m mB

r

m

     

 
   

 
       (6) 

 

where ϕm = 0.6 (as in the ER equation), B1 = 5.46 represents the intrinsic (melt) viscosity at  =1 s
-1

 

and λ = 0.118 is an empirical constant which takes the shear thinning effect into account. However, 

the fitting parameters are not related to the textural features of the suspensions (e.g., crystal shape, 

crystal shape dispersion, crystal size dispersion and orientation dispersion), such that the 

parameterization cannot be applied to other suspensions.   

On the basis of their study on monodisperse suspensions with different aspect ratios, 

Mueller et al. (2010) provided relationships for K and n as a function of ϕ/ϕm and particle aspect 

ratio (R), respectively: 

 

2

1
l m

K


 
  

  
           (7) 

 

4

1 0.2
m

n R
 

   
 

  (8) 

 

where the dependence of the ϕm from R-parameter is given by: 

 

2

0.321 3.02
m

R
 


           (9) 
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With these expressions the relative consistency of monodisperse suspensions is completely 

described by the Maron-Pierce equation (which correspond to the KD, Eq. (5), with exponent equal 

to 2; Maron and Pierce, 1956), while the flow index n captures the role of shear thinning on the 

suspension rheology. 

Finally Vona et al. (2011) on the basis of rheological measurements on crystallizing 

polydispersed crystal-rich basalts provided a similar KD-derived parameterization  

 

 2 1 log

1r

m

  

 
   

 
          (10) 

 

in which α is an empirical parameter equal to 0.06 and the effect of crystal shape can be evaluated 

using the equation proposed by Mueller et al. (2010) (Eq. (9)) to derive the value of ϕm, assuming a 

mean aspect ratio R  calculated as: 

 

ii
R

R






           (11) 

 

where ϕ i and 
iR  are the crystal fraction and the mean aspect ratio of phase i. The model by Vona et 

al. (2011) is able to describe the rheological behavior of suspensions as a function of strain rate and 

textural features (i.e., crystal fraction, aspect ratios and shape polydispersion) and can be therefore 

applied to the complexities of natural magmas. 

  

2.2 Bubble-melt suspensions 
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The presence of bubbles can either increase or decrease the viscosity of a suspension 

depending on the dynamic regime (Manga et al., 1998; Stein and Spera, 2002; Llewellin et al., 

2002; Rust and Manga, 2002; Llewellin and Manga, 2005). Similarly to solid particles, bubbles 

deform flow lines within the suspending medium, which tends to increase the viscosity. However, 

at the same time, they provide free-slip surfaces which favor flow. If the bubbles are spherical, 

flow-line distortion is great and free-slip surface area is small, hence the overall effect is to increase 

the suspension viscosity. In contrast elongate bubbles provide small flow-line distortion and great 

free-slip surface area, yielding a decrease in suspension viscosity (Llewellin and Manga, 2005). 

Manga and Loewenberg (2001), Llewellin et al. (2002), Rust and Manga (2002) and Stein 

and Spera (2002) observed that the viscous regime is controlled by the capillary number Ca, given 

by: 

 

0rCa
 




           (12) 

 

where r is the undeformed bubble radius and Γ is the bubble–liquid interfacial tension. For Ca<1, 

interfacial tension forces (which favor sphericity) dominate and bubbles are approximately 

spherical (e.g., Taylor, 1932). This regime, is usually achieved for small deformation rates and 

bubble size. For Ca>1, viscous forces (which tend to deform the bubbles) dominate and bubbles 

will elongate (e.g., Hinch and Acrivos, 1980). These conditions are achieved commonly for high 

deformation regimes and large bubble diameters. 

However, the capillary number implies an equilibrium between viscous and interfacial 

forces, hence it can be applied only for steady flows, in which the conditions of shear have 

remained constant for a long enough time to make the bubbles reach their equilibrium shape under 
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deformation (Llewellin et al., 2002). The timescale over which a bubble can reach this equilibrium 

shape represents its relaxation time (). For a single bubble in an infinite medium this is given by: 

 

0r
 


           (13) 

 

In steady flow, constant shear conditions must exist for times (t) higher than the relaxation 

times of the bubble ( t  ). (Llewellin et al., 2002; Rust and Manga, 2002). However, if the shear 

strain rate is changing, the flow is unsteady. To describe the steadiness of a flow, Llewellin et al. 

(2002) introduced the dynamic capillary number Cd, given by: 

 

Cd


 


           (14) 

 

where   is the rate of change of strain-rate. For 1Cd , the changes in shear environment are slow 

enough to allow the bubbles to reach their equilibrium shape, hence flow is steady and the dynamic 

regime is controlled by the capillary number Ca. On the other hand, if 1Cd , the bubbles are not 

able to reach their equilibrium shape in response to fast  , they are therefore unrelaxed (they are 

actively deforming) and the flow is described as unsteady. In other words, in these conditions the 

rate of bubble deformation is large compared with the bulk strain rate and, therefore, most of the 

strain is accommodated by deformation of the gaseous phase. Since the gaseous phase has a 

negligible viscosity, this leads to a decrease of viscosity as the bubble content increases. 

Llewellin and Manga (2005) parameterized the effect of bubbles on the relative viscosity 

of a bubbly suspension, considering a single equation for the positive dependence of r on  and a 

single equation for the negative dependence of r on , regardless of whether the decrease in 
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viscosity in the latter case is related to steady (Ca>1) or unsteady (Cd>1) flow. Based on existing 

literature models, the authors suggested two different parameterizations for each viscous regime 

(increasing and decreasing r), considering two limiting cases corresponding to a minimum and a 

maximum effect of the bubbles on the viscosity of the suspensions. For Ca<1 (increasing r): 

 

 
1

1r


      :MIN        (15) 

1 9r       :MAX        (16) 

from a simplification of Pal (2003) equation (MIN) and Llewellin et al. (2002) (MAX). For Ca>1 or 

Cd>1 (decreasing r): 

 
5

31r      :MIN        (17) 

1

1 22.4
r 

 
  :MAX        (18) 

from a simplification of Pal (2003) equation (MIN) and Bagdassarov and Dingwell (1992) (MAX). 

 

2.3 Three phase mixtures 

 

Only few studies have explored the rheology of crystal and bubble-bearing magmas.  

Lavallée et al. (2007), and Avard and Whittington (2012) have investigated natural lavas from 

domes by uniaxial deformation experiments. The authors have observed pseudo-plastic behavior 

with a strong shear thinning component for all the investigated magmas and provided equations 

describing the apparent viscosity as a function of temperature and strain rate for the multiphase 

magmas.  

The individual effect of crystal and bubbles was theoretically parameterized by Phan-Thien and 

Pham (1997) and later applied by Harris and Allen (2008) for the study of basaltic magmas from 
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Mauna Loa and Mount Etna. Phan-Thien and Pham (1997) considered three cases as a function of 

relative size of crystals and bubbles and express the relative viscosity as a function of variable 

crystal and bubble fraction. In case 1, crystals are smaller than bubbles: 

 

     
5

1
2, 1 1 1r xls bub xls bub bub

 
              (19) 

 

In case 2, crystals and bubbles are of the same size range 

   
   5 2 2

, 1
xls bub xls bub

r xls bub xls bub

     
           (20) 

 

In case 3, crystals are larger than bubbles 

     
5

1
2, 1 1 1r xls bub bub xls xls

 
              (21) 

 

This treatment does not take into account the effect of textural variability, being applicable to 

spherical particles only, and strain rate dependency on the rheology. 

 

3. Experimental methods 

 

3.1. Sample selection and characterization 

 

Scoriaceous products of 10 to 50 cm in diameter were collected from the so-called Lower 

Member unit (LM; D'Oriano et al., 2005) and the two sub-units (UM1 and UM2) of the Upper 

Member (UM), corresponding to the first (LM) and second (UM) stages of activity of the 1538 AD 

Monte Nuovo eruption, respectively. 
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The juvenile products from both UM and LM units exhibit very similar K-phonolitic bulk 

compositions. Groundmass is formed by variable proportions of K-feldspar and glass, with minor 

sodalite and Fe-Ti oxide in the most crystallized samples. In the LM clasts groundmass, crystal 

content increases from 13 to 28 vol% from the base to the top of the sequence. Products of the UM 

consist of clasts with a groundmass crystal content from 30 and 40 vol% to totally crystallized 

fragments. Crystal size distributions of groundmass feldspars goes from a single population at the 

base of the Lower Member to a double population in the remaining part of the sequence. Crystal 

number density increases by two orders of magnitude from the Lower to the Upper Member, 

suggesting that nucleation dominated during the second phase of the eruption (D’Oriano et al., 

2005). Alkali feldspar are generally elongate and have an average aspect ratio of about 1:10. The 

overall data, morphological, compositional and textural, suggest variations of the magma properties 

within the conduit.  

In order to characterized the samples and to choose the best representative product for 

rheological characterization, we performed density and vesicularity measurements on both samples 

from Lower member and Upper Member deposits. Approximately 150 cylindrical cores of 22-26 

mm in diameter and 35–50 mm in length were drilled from the Monte Nuovo sample. The measured 

values of bulk (ρB), skeletal (ρsk) and dense rock equivalent (ρDRE) densities and the computed 

values of connected (C), total (T) and isolated (I) porosities are related by formulas provided in 

Appendix A. All the analyzed specimens showed a bulk density ranging from 1.28-1.64 g/cm
3
 (Fig. 

1a). Samples from the LM unit showed the lower average density ranging from 1.28-1.51 g/cm
3
, 

compared to sample from the UM unit (UM1 and UM2) ranging from 1.32-1.64 g/cm
3
. The dense 

rock equivalent density (DRE), measured on sample powders, provides a value of 2.65 g/cm
3
 and 

2.63 g/cm
3
 for the LM and the UM units, respectively, in good agreement with values reported by 

D’Oriano et al. (2005) and Piochi et al. (2005, 2008). From Fig. 1a, we can observe a linear relation 

between the connected porosity and the skeletal density, which predicts very well our DRE density 
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measurements. The equivalency of DRE density for both UM and LM products indicates very 

similar crystal fractions for both investigated samples.  

Connected porosity (C) ranged from 0.42 to 0.51 for LM samples and from 0.37 to 0.50 

for UM samples, while isolated porosity (I) is always smaller than 0.02 for both units. Fig. 1b 

shows the total porosity (T) distributions for LM and UM units. Both distributions are unimodal 

and symmetrical, with the LM sample showing a slight higher mean porosity (as indicated by 

distributions’ peak) and a slight lower dispersion as indicated by its variance σ
2
 = 3.2 x 10

-4
 

compared to UM curve variance (σ
2
 = 7.4 x 10

-4
). The two sets of samples present overall similar 

absolute porosity and porosity distributions values, and equal DRE. For this, we did not deem 

necessary to perform rheological investigation on both UM and LM products, and we decided to 

focus our attention on samples from UM, which is representative of the magmatic phase of activity 

during the Monte Nuovo eruption and had previously been investigated by Caricchi et al. (2008) in 

a study on the effect of crystals on magma rheology. The overall crystal fraction determined from 

image analyses on pre-run samples of UM products is ϕxls = 0.47 ± 0.03 on a vesicle-free basis. 

Products have a bimodal distribution of sizes ranging from 10 to 200 μm. 

The experimental investigations were conducted on eight cores from the Upper Member 

(UM1) with a variation in total porosity ranging between 0.41 and 0.48 (Table 1). For the 

deformation experiments, we used samples with aspect ratio close to 2:1 values, an optimum 

configuration for rock deformation mechanic tests (Mogi, 1966; Hess et al., 2007). The chemical 

analyses of the UM samples are reported in Table 2. Both bulk rock and matrix glass compositions 

are trachytic; the glass contains 1.2 ± 0.3 wt.% dissolved H2O (Caricchi et al. 2008).  

 

3.2. Experiments  
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Measurements on Monte Nuovo trachytic samples were performed using the parallel-plate 

method in the volcanology deformation rig (VDR: Quane et al., 2004) at the Volcanology & 

Petrology Laboratory of the University of British Columbia (Vancouver, Canada) and at the 

Experimental Volcanology and Petrology Laboratory (EVPLab) of Roma Tre University (Rome, 

Italy). A detailed description of the VDR is summarized in Appendix B and can also be found in 

Quane et al. (2004) and Robert et al. (2008a, b). Viscosity calibration using NIST (NBS) standard 

reference material 717a has evaluated the accuracy of the method to 0.2 log units (Robert et al., 

2008a). Prior to deformation experiments, temperature profiles were measured by drilling holes in 

the center of UM cores and inserting an external thermocouple at different depth throughout their 

length. A symmetrical gradient of 8-12 °C was obtained across a 4 cm core for the selected 

insulation setup at T=650 °C after 2 h dwell time (see Quane et al., 2004, and Robert et al., 2008a, 

for procedure details). This gradient translates to a vertical viscosity change of 0.2 log units, which 

is within the experimental error of the measurements.  

We have calculated the viscosity (η) of the residual liquid matrix (Tab. 2) as a function of 

temperature and dry conditions using the Vogel-Fulcher-Tammann (VFT) expression [log η = 

AVFT+BVFT/(T-CVFT)] obtained by Giordano et al. (2009), who measured the viscosity of Monte 

Nuovo magmas. The obtained values of viscosity were used to estimate the characteristic structural 

relaxation timescales (τ) as the ratio of the interstitial liquid’s Newtonian viscosity to bulk shear 

modulus of silicate melts (G∞=10
10.5

 Pa; Whittington et al., 2012), following Maxwell’s (1867) 

relationship (e.g., Dingwell and Webb, 1990). For both hydrous and anhydrous conditions, τ is 

always < 1 h, over the temperature interval investigated in this study (T=600-800°C; Fig. 2a). The 

original water content measured in the natural samples varies from 0.9 to 1.5 wt.% (cf. Caricchi et 

al., 2008). We performed a “zero time” experiment at 600°C and observed, by loss of ignition 

measurements, that all of the dissolved water is released during the pre-heating and dwell time 

stages of the experiments (e.g., > 2 hrs at 600-800 °C). Thus, for the purposes of computing the 
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structural relaxation time and characteristic relaxation rate (Dingwell and Webb, 1990) the 

melt/glass can be considered anhydrous. Hence we set for each experiment an equilibration dwell 

time of 2 h after the heating stage in order to allow for thermal equilibration and degassing of the 

sample. After the beginning of the experiment, an additional 1 h time was allowed for structural 

relaxation before viscosity determinations. 

Uniaxial deformation experiments were performed under isothermal conditions by 

deforming the crystal- and vesicle-bearing cylindrical specimen at constant displacement rates 

(CDR). The experiments were carried out at temperatures between 600 and 800 °C and applied 

strain rates between 10
-7

 and 10
-4

 s
-1

. Fig. 2b shows the relaxation time (τ) and the characteristic 

relaxation strain rate ( 1

relax

   ) for the anhydrous Monte Nuovo liquid matrix as a function of 

temperature. In order to be in the viscous regime at a given temperature, the experimental 

deformation rate must be slower than the characteristic structural relaxation rate. According to 

Dingwell and Webb (1990), brittle failure occurs when the applied strain rate (  ) is higher than 

0.01 relax   , and non-Newtonian behavior occurs when it is higher than 0.001 relax   . (Dingwell 

and Webb, 1990; Papale, 1999) (Fig. 2b). Most of the experimental conditions pertain to the 

Newtonian viscous regime for the liquid matrix (T ≥ 700 °C). Only for the two experiments 

conducted at 640 °C and 600 °C, the liquids approach the non-Newtonian viscous (T = 640 °C) and 

brittle (T = 600°C) fields (Fig. 2b). 

 

4. Results 

 

4.1 Rheology 
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On each measured core of the UM1 subset, from 1 to 7 consecutive segments of 

deformation were performed at different strain rates. The results of the measurements are reported 

in Table 3. As an example, Fig. 3a shows the stress – strain paths for experiment runs at T = 750 °C 

(UM1_E10 and UM1_B14). On sample UM1_B14, three deformation segments (I-III) were 

conducted at increasing strain rates ( I III  = 3-10 x 10
-5

 s
-1

, Table 3). Seven deformation segments 

(I-VII) were performed on sample UM1_E10, at increasing or decreasing deformation rates ( I VII  

= 0.001-5.3 x 10
-5

 s
-1

, Table 3). In Fig. 3b, a detail of the first deformation segment on UM1_E10 is 

shown ( I  = 1 x 10
-5

 s
-1

). The sample shows an initial increase in stress with increasing strain (and 

time), followed by flow at constant stress. The apparent viscosity, also shown in Fig. 3b,  remains 

constant during flow of the material. 

In order to evaluate the influence of sample heterogeneity on the deformation behavior of 

the material, we compare in Fig. 3a the stress-strain path of two different cores deformed at T = 750 

°C. The sample UM1_B14 shows higher stresses for the same values of strain rate and strain, 

probably due to a slightly lower initial porosity (Table 3). This difference translates into a viscosity 

difference of 0.02 log10 units, well within the experimental error. In order to investigate possible 

strain or time-dependent behaviors, we evaluated the stress response of the material to step-wise 

increase or decrease of strain rate for sample UM1_E10. From segment I to segment V, at 

increasing strain, we observed similar stress values for similar strain rates. For instance segment I 

and IV have similar values of stress and strain rate, but different strains, and the same can be 

observed for segment II and IV.  This indicates that no strain or time-dependent behavior is taking 

place in this strain-time range. For total strain higher than about 0.13, however, a different behavior 

is observed. In segment VII, we observe a stress value comparable to segment I and IV, but a lower 

strain rate (segment VII: VII = 3.3 10
-6

 s
-1

). In this case, we suggest that the increasing strain leads 

to an accumulation of stress not recovered by the sample which could be associated with a strain 
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hardening process. The cristallinity was checked by SEM imagin before and after the experiment 

(Fig. 5). No detectable change in cristallinity was observed for any of the samples. Degassing is 

completed in the pre-heating stage, as confirmed by “zero time” experiments. Therefore, we suggest 

that the strain hardening process is related to a strain dependent compaction of the samples, 

observed by post-run density measurements. 

All samples were subjected to different deformation histories, with steps of increasing or 

decreasing strain rates. All samples, regardless of the deformation paths, reached flow at constant 

strain rate conditions. Two exceptions are represented by experiment UM1_E4 (run at T = 600 °C 

the lowest investigated temperature) and by experiment UM1_A12 (T = 800 °C) (Fig. 4). In 

UM1_E4 (Fig. 4a) brittle failure was achieved at a strain rate of about 10
-5

 s
-1

 and an applied stress 

of 25 MPa (Table 3), resulting in the failure of the sample. In contrast, the last deformation segment 

(IV) in experiment UM1_A12 (Fig. 4b) was performed at strain rate of 10
-4

 s
-1

 and lasted until the 

achievement of a total strain ε = 0.43, much higher than those obtained on the rest of the 

experimental dataset (ε < 0.07 for each segments). The test showed stress increase up to a peak at 

2.86 MPa followed by a continuous decrease with increasing deformation (strain weakening) and a 

stable value of stress was not achieved.  

In the two measurements performed at the lowest strain rate at T = 700 °C and T = 750 °C 

(UM1_E1B:   = 1.1 x 10
-7

 s
-1

; UM1_E10:   = 1.2 x 10
-7

 s
-1

), the displacement recorded by the 

device transducer was close to the instrumental resolution (appendix B). As a consequence, the 

measurements show high signal/noise ratio which  translates into large relative errors (>80%) on the 

strain rate determination. For this reason, those values were discarded.   

 

4.2. Textural and structural analysis of experimental cores  
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At the end of each measurement, the experimental cores were analyzed to determine the 

change in core geometry and porosity due to deformation, as illustrated in Appendix A. The results 

are reported in Table 1. Thin sections of the post-run products were also prepared parallel to the 

direction of loading to allow for analyses of morphology and features of vesicles and crystals by 

optical inspection and SEM imaging (Fig. 5a). The crystal content was analyzed prior and after the 

experiments and no detectable change in crystallinity was observed for any of the sample. In both 

the pre-run and post-run products, the microlite shape is mostly tabular to acicular. Microlites are 

generally between 50 to 100 μm long, with average axial ratio 10:1, in agreement with previous 

studies (D’Oriano et al., 2005; Piochi et al., 2005).  

Given the low total strain investigated and the possible small scale heterogeneities of 

natural samples (pre-run in Fig. 5b; D’Oriano et al., 2005; Piochi et al., 2005), it is difficult to 

address the contribution of deformation at the microscopic scale. Clear changes in the textural 

features can only be detected for the high-strain sample run at T=800 °C (UM1_A12, Fig. 5a, c). 

This sample presents a higher fraction of large vesicles, compared to the non-deformed, indicating a 

shear induced coalescence. At the macroscopic scale, the large strain may also be responsible for 

the development of visible fractures (Fig. 5a). Crystal alignment and feldspar microlites curved by 

flow are also visible (Fig.5c). Curved microlites have been observed also in natural samples by 

Piochi et al. (2005) who correlates their position along the border of vesicles as an indicator of 

contemporary growth of microlites and bubbles. In our cases however, curvature of microlite 

appears to be independent of bubble growth and is possibly related to strain accommodation during 

deformation. 

Fig. 6a shows that the total porosity decreases both in terms of isolated and connected 

porosity. The effect of deformation on the porosity is quite small, as evidenced by changes of 0-

1.5%. The only exception is the high strain experiment UM1_A12, for which a decrease in porosity 

of about 12% was measured. With this exception, in all other experiments, the total porosity 
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reduction experienced by our samples is well within the range of porosity distribution of the starting 

material (Fig. 1). We can conclude that, at the experimental conditions of this study (i.e. low strain), 

the evolution of porosity with time during deformation remains within values of the natural samples 

and have a secondary role in determining the rheology of the material.  

During uniaxial deformation experiments on porous rocks, strain is manifested by a 

reduction of  sample length (i.e., shortening), a change of core geometry (e.g., barreling),and a 

reduction of primary porosity (i.e., volume loss). Moreover, the observed reduction of core length, 

and hence the total strain, can be described by two components: (1) axial strain (εa), accommodated 

by the reduction of sample length; and (2) radial strain (εr), accommodated by change of core 

geometry (e.g., bulging). For low amount of total strain, the volume change can be considered to be 

accomodated by axial strain mainly due to a decrease in porosity, while the radial strain causes no 

appreciable volume variation. For these conditions, these components can be calculated 

independently (Quane et al., 2004; Quane and Russell, 2005; Quane and Russell, 2006). The axial 

strain is given by: 

 

1

i f

a

f

 
 


           (22) 

 

where i is the initial sample porosity and f is the porosity of the run product. Radial strain is given 

by: 

 

2

2
1 i

r

f

r

r
              (23) 

 

where ri is the pre-run core radius and rf is the mean radius of the post-run core. 
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Fig. 6b shows the total sample strain versus the sum of the two independent components 

(axial and radial). The linear relationship shows that Eqs. (22) and (23) can be used to describe the 

volume changes related to compression at low strain conditions. However, for high strain ( > 0.4), 

the relationship is not consistent anymore, as the volume change is not longer accomodated only by 

porosity reduction and the radial strain induces volumetric changes. In Fig. 6c the individual 

contribution of axial and radial strain are compared. For high strain (UM1_A12) however, the 

increase in the contribution of radial strain (accommodated by core radius increase) is related to 

microfracturing of the sample which marks the transition from ductile to brittle state. 

 

5. Data Analysis 

 

The flow behavior of natural, partially-crystallized samples from the Monte Nuovo (1538 

AD) trachytic eruption was investigated  by compression experiments at dry atmospheric conditions 

and under controlled deformation rates. A variety of rheological responses to deformation was 

observed, from ductile to brittle behavior as a function of temperature and strain rate conditions. In 

order to parameterize the flow behavior of these complex natural materials, we consider the stress-

strain rate relationships under flow conditions (Fig. 7a). In this figure, data obtained at   = 10
-7

 s
-1

, 

close to the experimental resolution limit, were not included. In general, we observe a linear trend 

between applied stress and strain rate in the temperature interval investigated, so that at higher 

applied stresses correspond to higher strain rate values. The measurements at 800 °C show again a 

log linear correlation, before the onset of strain weakening at   = 10
-4

 s
-1

, but they are characterized 

by a shallower slope. 

The effect of strain rate on the apparent viscosity of natural magma from Monte Nuovo is 

illustrated in Fig. 7b. For all temperatures, the viscosity decreases monotonically with increasing 

strain rate. A maximum decrease was observed for experiment UM1_E10 run at T = 750 °C where 
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viscosity at  = 10
-6

 s
-1

 is 1.1 log10 units higher than at   = 5.3 x 10
-5

 s
-1

. For the purpose of 

comparison, lines corresponding to the Newtonian viscosity of the suspended liquid calculated after 

Giordano et al. (2009) for Monte Nuovo total rocks samples, are also shown. At the lowest 

temperature investigated (T = 640 °C) we observed little or no difference between the liquid 

viscosity and the crystal- and vesicle-bearing magma. The behaviors start to diverge as the 

temperature increases, with the multiphase magma showing apparent viscosity higher than the 

suspending liquid. A maximum difference of 2.62 log units can be observed at the highest 

temperature (800 °C), translating in a maximum relative viscosity (calculated as the ratio between  

the measured apparent viscosity, relative to  liquid + crystals + pores magma,  and the calculated 

viscosity of the anhydrous liquid). 

In the range of  deformation rates of this study (   = 10
-6

 - 10
-4

 s
-1

) Monte Nuovo magma 

behaves as a non-Newtonian (shear thinning) fluid at T = 640-750 °C. Only one experiment 

(UM1_E4) performed at lower temperature (T=600 °C) and   = 10
-5

 s
-1

, showed purely brittle 

behavior. At the highest investigated temperature (T=800 °C), close to the estimated temperature of 

the Monte Nuovo eruption (850±40 °C, Piochi et al., 2005; Caricchi et al., 2008), the onset of strain 

weakening (continuous decreasing of stress with increasing deformation) was observed at a strain 

rate of 10
-4

 s
-1

. Knowing the onset of strain weakening is very important because it may represent a 

runaway process during eruptions. Post-run analyses of the sample where strain weakening was 

observed showed evidence of strain localization, revealed by the preferential alignment of crystals 

(Fig. 5c). Macroscopic fractures were also observed, indicating that the measurement was 

performed at the limit between the ductile and brittle fields (e.g., Lavallée et al., 2008).  

Caricchi et al. (2008) studied the net effect of crystals on the rheology of non-porous cores 

of the same Monte Nuovo samples used in this work. Those measurements were performed with a 

Paterson apparatus, at slightly lower temperatures (T = 550-630°C) and higher strain rates (between 

10
-6

 and 4 x 10
-4

 s
-1

). The measurements were performed under a confining pressure of 300 MPa, 
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hence avoiding the loss of the original eruptive H2O content from the glass (0.86-1.54 wt%). The 

results of their experiments indicated Newtonian behavior at   < 10
-4

 s
-1

, followed by non-

Newtonian (shear thinning) and finally brittle behavior at higher shear rates. In our study we never  

observe Newtonian behavior, even for those measurements performed at similar temperature and 

strain rate (i.e. UM1_E7; T = 640°C). Possibly, the presence of vesicles could lead to an increase of 

the T-   region of shear thinning.  

 

5.2 Fitting of experimental data 

The stress – strain rate data obtained at flow conditions and at a constant temperature were 

firstly fitted using the Herschel-Bulkley model (Eq. (1)). The results of the data fitting are reported 

in Table 4. Data for strain > 0.15 (UM1_E10-VII and UM1_A12-IV; Figs. 3 and 4), affected by 

strain dependent rheology (hardening and weakening), were not included. Overfitting with a three-

parameter equation lead to very high standard errors. At all temperatures, the calculated values of 

yield stress 0 from the regression approximately equal zero, except for T = 725 °C and T = 750 °C 

where they equal 0.99 and 0.16 MPa, respectively. Assuming 0 = 0, we have re-fitted the data to 

the following simplified power law expression (e.g., Lavallée et al., 2007; Avard and Whittington, 

2012): 

 

nK            (24) 

 

Fitting can be expressed in log terms for stress (Fig. 7a) or for apparent viscosity (Fig. 7b): 

 

log log logK n           (25) 

 log log 1 logapp K n            (26) 
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The fitting is good across the whole dataset (R
2 

= 0.94-0.98). The results of the fits are 

reported in Table 4 and in Fig. 8 as a function of temperature. A linear relationship can be observed 

between flow parameters (log K and n) and T (Fig. 8). Flow consistencies decrease with increasing 

temperature from log K = 9.60 at T = 640°C to log K = 7.67 at 800°C (Fig. 8a). Flow index n varies 

from 0.4 and 0.3 in the temperature interval considered, and a slight decreasing trend can be 

recognized (Fig. 8b), with the exception of the outlier point at T = 750°C. Simple linear regressions 

for flow parameters as a function of T yield the following relationships: 

 

log 16.722 0.0113K T          (27) 

1.0255 0.0009n T           (28) 

 

By substituting Eqs. (27) and (28)  into (25) and (26), flow curves and apparent viscosity 

can be derived for the multiphase Monte Nuovo UM magma as a function of temperature and strain 

rate. Fig. 8c shows calculated vs. measured apparent viscosities using Eqs. (27-28). Prediction error 

are below 0.3 log units for shear viscosity obtained with Eqs. (27-28) for all but sample UM1E10 

taken at 750°C, which shows a slightly higher deviation (<0.5 log units). 

 

5.2 The combined effect of crystal and pores on the rheology of Monte Nuovo magmas. 

The values of relative viscosity (r), calculated as the ratio of the measured apparent 

viscosity (liquid + crystals + pores) and the viscosity of the anhydrous liquid calculated after 

Giordano et al. (2009) on Monte Nuovo liquids, are reported in Table 3 and plotted in Fig. 9a as a 

function of temperature. Giordano et al. (2009) measured the viscosity of the Monte Nuovo 

remelted bulk rock and provided a parameterization for this specific composition. The interstitial 
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liquid of our samples is slightly more evolved compared to the bulk rock analyzed by Giordano et 

al. (2009) (Tab. 2). In order to correct for the evolution of the residual liquid, we calculated, based 

on the GRD model (Giordano et al., 2008) the viscosity of the bulk matrix and of the residual liquid 

and a difference of about 0.2 log units was derived at all temperatures. We corrected the liquid 

viscosities for this value and calculated the relative viscosity accordingly. 

From the Fig. 9a, it is apparent that crystals and vesicles increase the viscosity of the 

magma, with respect to that of the interstitial liquid at 700-800 °C and at the investigated strain 

rates. The amount of increase is clearly a function of applied strain rate (owing the shear thinning 

behavior) and of temperature. In fact, the maximum increase can be observed at 800 °C where 

relative viscosities are between log10 1.50 and log10 2.39, depending on the applied strain rate, and 

then it decreases with decreasing temperature. The temperature dependence of the relative viscosity 

cannot be an artifact of the normalization procedure, as this has been performed on the same melt 

composition (Monte Nuovo) with respect to that investigated in this study, so other explanations 

may be invoked to explain this apparent anomaly. A similar behavior was reported by Caricchi et al. 

(2008) where the highest relative viscosity values were associated with the lowest viscosity of the 

melt phase. According to the Caricchi et al. (2008), the enhanced rheological difference between 

crystals (i.e. feldspar, the dominant phase) and interstitial liquid at high temperature may be 

responsible for the increase of relative viscosity. Given the similarity of the activation energy of 

liquid and crystals plastic flow at low T (303 and 332±32 KJ/mol at T = 500-600 °C, respectively; 

Rybacki and Dresen, 2004; Giordano et al., 2009), the authors argued that part of the deformation 

could be taken up by the suspended crystals. On the contrary, at higher temperatures the difference 

between the activation energies become more marked and the deformation would be mostly 

concentrated on the melt phase, hence enhancing the effect of crystals as non-deformable solids 

increasing the relative viscosity. Alternatively, the presence of bubbles could generate this 
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temperature dependence. At this stage, it is difficult to separate these effects and further discussion 

would be too speculative.  

At T = 640 °C we obtain a relative viscosity value lower than unity (log10 r= 0.3 ± 0.1) 

(i.e. the viscosity of the suspension is approximately the same as the viscosity of the interstitial 

liquid). At T = 640 °C, the conditions of suspension deformation overlap with the glass transition 

interval (Tg = 630-650 °C) based on calorimetric measurements at cooling rate between 5-20 

°K/min (Giordano et al., 2005). If the glass transition region is reached, the applied stress could be 

essentially accommodated by brittle failure, lowering the relative viscosity values. However, no 

induced fractures were recognized from the post run textural analysis, probably due to the small 

amount of strain suffered by the sample (εm < 0.06). As shown in Fig. 2b, even if the glass transition 

is not crossed, at T = 640 °C and at the applied strain rates (  = 3-6 x 10
-6

 s
-1

), the suspension may 

be approaching the non-Newtonian field. In this case, a liquid viscosity lower than that calculated 

from Giordano et al (2009) would be expected due to liquid shear thinning (Dingwell and Webb, 

1990), resulting in relative viscosities greater than those shown in Fig. 9. For these reasons, data at 

T = 640°C should be treated cautiously. 

In Fig. 9b, the relative viscosity of the multiphase suspension is shown as a function of 

crystal fraction and strain rate. The crystal fraction xls  is equal to 0.47 ± 0.03, calculated with 

respect to the solid fraction from SEM image analyses. The effective crystal content is then 

obtained by sample porosity as: ϕxls* = ϕxls(1- ϕT). The variability observed is due to the original 

porosity hetereogeneity of the samples. 

The relative viscosities of  two phases crystal bearing suspension calculated after Vona et 

al (2011) (Eq. 10) are also reported in the Figure, calculated for three different strain rates (10
-6

, 10
-

5
, 10

-4
 s

-1
) and a mean crystal aspect ratio of R  = 10 (D’Oriano et al., 2005).  
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The Vona et al (2011) parameterization for crystal-bearing suspensions yields values equal 

or higher compared to our results. From the data in Fig.9b, the decrease in relative viscosity 

compared to Vona et al. (2011) appears to be related to the presence of pores. Pores/bubbles seems 

to have a major impact on rheology decreasing relative viscosity of more than one order of 

magnitude. A quantitative evaluation of the effects of bubbles on the multiphase rheology of Monte 

Nuovo magma is hampered by the paucity of data and very little exists in the literature regarding 

the combined effects of bubbles and crystals on the viscosity of magmas. In Fig.9b, we show the 

only (to our knowledge) theoretical treatment for a three-phase mixtures by Phan-Thien and Pham 

(1997) (Eq. 19, 20, 21) applicable to a suspension of rigid spheres and bubbles. The three equations 

differ for the relative sizes of crystals and bubbles. Our results are comprised between the 

parameterization of Vona et al. (2011) for the effect of crystals only and the parameterization of 

Phan-Thien and Pham (1997) for the effect of crystals and bubbles, indicating a mixed contribution 

of the two phases in the viscosity of the magmas. However, Phan-Thien and Pham (1997) treatment 

does not take strain rate or crystal distribution and shape into account, particularly important in our 

case given the marked elongation of K-feldspar crystals. Moreover, bubbles are considered 

spherical and always increasing the viscosity of the liquid, which is not presumably true in our case. 

Those approximations limit the applicability of this treatment to our magmas or to natural magmas 

which display different textural features compared to those analyzed in the treatment. Additional 

studies are necessary to further explore and quantify the multiphase rheology of natural magmas, 

whose knowledge is of primary importance for our understanding of the dynamic of volcanic 

processes. 

 

 

6. Volcanological implications 
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This investigation has been conducted on natural samples at atmospheric pressure 

conditions. Therefore, the pores, which are interconnected, are filled with air. In natural pre-

eruptive magmatic environments, magma bubbles may be filled with pressurized fluids with a pore 

pressure equivalent to confining pressure (assuming equilibrium), counteracted by the efficiency of 

degassing processes. Our investigation, conducted at ambient conditions, is especially applicable to 

lava flow emplacement and to upper conduit flow where degassing is efficient and permeability is 

high enough to maintain connected pore pressure close to atmospheric pressure. According to 

Piochi et al. (2008), the high vesicle connectivity (>95%) associated with the vesicularity (~ 0.4) 

of material from Monte Nuovo scoriae is characteristic of vesiculation under open-system 

conditions and efficient outgassing. 

In our study, we observe that the presence of suspended crystals and bubbles induces 

complex rheological behavior. In particular, sample UM1_E4 (T= 600°C) undergoes pure brittle 

failure at 25 MPa and 10
-5

 s
-1

. Sample UM1_A12, (T=800°C,  = 10
-4

 s
-1

) shows a ductile behavior 

followed by strain weakening at 2.9 MPa. The ultimate stresses before failure in sample UM1_E4 

and before strain weakening in sample UM1_A12 correspond to the uniaxial compression strength 

of the material. Caricchi et al. (2008) for pore-free Monte Nuovo magmas, reported values of stress 

at the onset of strain weakening, for comparable strain rates, approximately two orders of 

magnitude higher (180 MPa at 575 °C to 258 MPa at 630°C) than the measured values in the 

present work.  Extrapolation of their data at 800 °C, yields values of about 900 MPa, much higher 

than those found in our study. The large difference between the two sets of studies may be due to 

the presence of pores which decreases substantially the strength of the magma. However, confined 

pressure and different temperatures could also play an important role.  

From fiber elongation studies, Webb and Dingwell (1990b) found that the tensile strength 

of magmas range from 350 MPa for rhyolitic compositions to approximately 250 MPa for more 

mafic melts. Similar values have been found in other studies (Romano et al., 1996; Mungall et al., 
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1996) and, despite the different experimental conditions, they are in good agreement with the results 

from Caricchi et al. (2008). In our case, brittle failure occurs at approximately 2 MPa and 800 °C 

and 25 MPa at 600°C. This extremely low strength is compatible with the behavior observed for 

vesicle- bearing magmas and glasses at different shear stress-shear strain rate conditions (Romano 

et al., 1996; Mungall et al., 1996; Stevenson et al., 1998) which was related to the concentration of 

stress at the vesicle-melt interface which favors brittle failure.  

We therefore observe that the presence of pores enhances the fluidity of the magma yet at 

the same time decreases the strength of magmas and leads to rapid onset of brittle fragmentation. 

Switching between glassy and liquid behavior may occur during lava flow emplacement of acidic 

magmas due to local variation in stress conditions (output rates, topography, Tuffen et al., 2003; 

Gonnermann and Manga, 2005; Dingwell, 2006). According to this mechanism, magma fragments 

can weld and flow if shear stress decreases or break if the stresses increase. In addition to stress 

variation, local heterogeneities in the pores/bubble distribution due to variable degassing and 

crystallization kinetics can lead to regions of flow and/or brittle behavior and temporal crossing of 

the glass transition, giving rise to morphological heterogeneities observed in many lava flows.  

 

 

7. Summary 

 

The multiphase rheology of natural vesicle- and crystal- bearing magmas from Monte 

Nuovo was investigated by uniaxial deformation experiments in the T range 600-800 °C and at 

strain rates between 10
-7

 and 10
-4

 s
-1

. Brittle behavior was observed at 600°C and 10
-5

 s
-1

, and at 

800°C and 10
-4

 s
-1

. All the other experiments were performed in the ductile regime where non-

Newtonian shear thinning behavior was observed in the apparent viscosities range of 10
10

-10
13

. A 

parameterization of the flow behavior in terms of consistency K, flow index n and temperature was 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

32 

 

performed. After normalizing the measured multiphase viscosity (liquid+crystal+vesicles) to the 

calculated viscosity of the suspending liquid, the net combined effect of crystals and pores on the 

rheology was determined. The relative viscosities displayed a dependence on both experimental 

temperature and applied strain rate. Higher relative viscosities (up to 2.4 log10 units) were observed 

with increasing temperature and decreasing strain rates. Relative viscosity values close to unity 

were observed at T = 640 °C, close to the glass transition temperature (Giordano et al., 2005). The 

comparison with crystal-bearing  models of viscosity (Vona et al., 2011), show that the presence of 

pores has a major impact on the rheology of magmas and can lead to a decrease of viscosity of  

more than one order of magnitude. At the same time, the presence of pores leads to a strong 

decrease in the strength of the magma inducing local and temporal variation in the deformation 

regimes (ductile vs. brittle) during lava flow emplacement. which may result in the textural 

heterogeneities (flow banding) observed in many silicic obsidian lava flows. 
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Appendix A. Pre- and Post-experimental sample characterization. 

Volcanic rocks contain two types of porosity: connected and isolated. Connected is defined 

as the volume fraction of pores that are connected to each other and can be physically accessed by 

gas or fluid. Isolated porosity is defined as the volume fraction of porosity that is isolated by the 
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skeletal framework. The total porosity of a rock (ϕT) is given by the sum of connected and isolated 

porosities and is: 

 

 
T

T

T

DRE

V

V V





 


         (A.1) 

 

where VDRE is volume of the dense rock equivalent (e.g., powder) and VΦT is the volume of 

the total pore space in the sample. Connected (ϕC) and isolated (ϕ I) porosities are given by: 
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        (A.2) 
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         (A.3) 

 

The corresponding densities are defined on the basis of how they are measured. The dense 

rock equivalent (DRE) density of the sample (ρDRE) is the density of the rock framework of the 

sample alone (e.g., no porosity) and was measured on samples of rock powder by He-pycnometry. 

Powdering the sample ensures that there are no pores and that the He-pycnometry experiment 

measures the true volume (VDRE) of a fixed mass of rock powder (MR). 

 

R
DRE

DRE

M

V
            (A.4) 
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The skeletal density (ρsk) is the density of the rock and the isolated porosity. Using He-

pycnometry, the gas infiltrates the samples connected pores but cannot access the isolated pores. 

Therefore, the He-pycnometry experiment measures the volume of the rock/solid framework and 

the isolated (inaccessible) pores (e.g., the skeletal volume: VDRE + VϕI). 

 

 
I

R
sk

DRE

M

V V

 


         (A.5) 

 

For pre-run samples, the bulk density (ρB) was measured on cylindrical cores of rock 

samples using the mass (MR) and a bulk volume estimated from the geometry of the core (π*L*r
2
), 

from the averages of replicate measurements of diameter and length. For post-run cores, which 

underwent compression and bulging or failure, the bulk volume was determined by two methods: 

(1) archimedean buoyancy on the samples coated with paraffin and (2) image analysis 

measurements on thin sections cut through planes parallel to the direction of loading. In the first 

case, the paraffin coatings were performed by immersing the sample in a bath of liquid paraffin (T 

= 100 °C). Samples were weighed before and after the paraffin coating, in order to calculate the 

mass of the applied paraffin. The paraffin density (0.834 g/cm
3
) was used to extract the bulk volume 

of the samples. In the second case, the post run length was measured directly on scaled scanned 

images of the thin section (Fig. 5a) and an average (equivalent) final radius was obtained by the 

ratio between the two-dimensional area and the length. The two methods gave similar results 

(discrepancy less than 3%), however we believe that the image analysis is more accurate. Hence, we 

adopted this method for all samples, except for UM1_E4 sample which was broken in several 

irregular shaped chips (brittle failure) and the archimedean buoyancy was used (Fig. 5a). 

The bulk volume incorporates the volume of the rock (VDRE), as well as, the volume of 

connected (VϕC) and isolated (VϕI) porosity. 
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 
C I

R
B
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M

V V V 

 
 

        (A.6) 

 

The values of bulk density (ρB), skeletal density (ρsk) and dense rock equivalent density 

(ρDRE) of the samples were finally used to extract the values of connected (ϕC), total (ϕT) and 

isolated (ϕ I) according to the following relationships: 

1 B
C

sk


  


          (A.7) 

1 B
T

DRE


  


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B B
I

sk DRE

 
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 
         (A.9) 

 

Appendix B. The Volcanology Deformation Rig (VDR) 

The unit performs both constant displacement rate and constant load tests. Displacement is 

achieved by controlling the position of the bottom platen using an electronic stepper motor with a 

displacement speed range from 5 × 10
–6

 to 2.5 × 10
–2

 cm/s and measured using a built-in linear 

variable differential transformer (LVDT) displacement transducer with a 7.6 cm travel range and 

0.00013 cm resolution. Load is measured using an S-type load cell attached to a fixed crossarm.  

Samples can be loaded at rates from zero to 1.9 kg/s, and the maximum attainable load is 

1136 kg with 0.086 kg resolution. High temperatures are attained by a Zircar-type FIH fiber 

insulated heater tube furnace. The furnace has helically wound, Fe-Cr-Al alloy resistance wire 

elements embedded in a rigid body of high-temperature refractory fiber.  It is 30.5 cm long, and has 

inner and outer diameters of 7.6 and 15.25 cm, respectively. It is seated on the steel base and 

surrounds the lower piston, the sample and most of the upper piston. The furnace generates 
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temperatures up to 1100 °C. A K-type thermocouple is used to monitor and control temperature 

during the experiment.  

The press was calibrated on solid glass cores (10 × 25 mm) of NIST (NBS) standard 

reference material (SRM) 717a (borosilicate glass) under constant load and dry conditions at 

temperatures (550–600 °C; see Robert et al., 2008a). The resulting experimental accuracy 

corresponds to 0.2 log units (Robert et al. 2008a). 
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Figure Captions 

 

Fig. 1. Density and porosity characterization of the analyzed specimen from Monte Nuovo. (a) Bulk 

density (ρB) vs. connected porosity (ϕC). Connected porosity was calculated taking the difference 

between the core volume and the volume measured by pycnometry. Bulk density is the ratio 

between the sample weight and the volume of the core. Grey circles: LM samples; empty squares: 

UM (UM1+UM2) samples. Filled squares represent the UM1 samples used for deformation 

experiments. Star symbol represents the value of dense rock equivalent (DRE) density measured by 

pycnometry on both LM and UM sample powders. (b) Total porosity distributions for LM and UM 

cores.  

 

Fig. 2. (a) Characteristic relaxation timescale (τ) – temperature relationship for Monte Nuovo 

anhydrous trachytic liquid determined using the Maxwell relationship (Dingwell and Webb, 1990) 

Monte Nuovo liquid viscosity refers to the fitting of measured data by Giordano et al. (2004; 2009) 

Vertical dashed lines represent experimental temperatures from this study. Gray horizontal bars 

shows characteristic relaxation timescales used to define minimum experimental dwell times. (b) 
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Characteristic relaxation timescale (τ) – characteristic relaxation rate ( 1

relax

   ) - temperature 

relationship for Monte Nuovo anhydrous trachytic liquids. Brittle failure (dark grey) and Non-

Newtonian behavior (light grey) fields are calculated according to Dingwell and Webb (1990) as 2 

and 3 log10 units above the relaxation curve, respectively. The vertical dashed lines represent 

experimental temperatures from this study. Horizontal dashed lines are iso-strain-rate curves at 

relax = 10
-4

, 10
-5

, 10
-6

, 10
-7

 s
-1

. Black dots indicate the strain rate and temperature conditions of the 

deformation experiments. 

 

Fig. 3. Results of constant displacement rate experiments. (a) Stress (due to the applied load) 

plotted against instrumental strain (εm) for experiments involving different constant displacement-

rates (idenitified as I - VII for UM1_E10 and I-III for UM1_B14) and run at T=750°C (UM1_E10: 

black line and segments I-VII; and UM1_B14: gray line and segments I-III). The corresponding 

strain rates for UM1_E10 are: (I)  =1.0 x 10
-5

 s
-1

; (II)  =1.0 x 10
-6

 s
-1

; (III)  =5.3 x 10
-5

 s
-1

; (IV) 

 =1.1 x 10
-5

 s
-1

; (V)  =1.1 x 10
-6

 s
-1

; (VI)  =1.2 x 10
-7

 s
-1

; (VII)  =3.3 x 10
-6

 s
-1

. For UM1_B14 

sample, strain rates are: (I)  =2.9 x 10
-5

 s
-1

; (II)  =5.6 x 10
-5

 s
-1

; (III)  =9.6 x 10
-5

 s
-1

. (b) First 

deformation segment for sample UM1_E10 (I) conducted at T=750°C and at a constant 

displacement rate translating to strain rate of 1.0 x 10
-5

 s
-1

 (Strain vs. Time curve slope in the inset). 

Apparent viscosity is calculated as  . 

 

Fig. 4. Evolution of applied stress and apparent viscosity with increasing strain and time at (a) 

T=600°C (UM1_E4 (I)) and (b) T=800°C (UM1_A12 (IV)). In (b), strain axis starts from = 0.04, 

as previous deformation steps for this sample amounted to = 0.04. 
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Fig. 5. (a) Post-run characterization of experimental cores. Photograph of sample core (UM1_E4) 

and scanned image of thin sections (UM1_E1B; UM1_B14; UM1_A12) at the end of high 

temperature deformation experiments. Dashed rectangles represent pre-run core geometry; arrows 

indicate direction of load: The total strain () undergone by samples is also reported. (b-c) Optical 

photomicrographs of UM1 sample (b) before deformation and (b) at the end of deformation 

experiment at T=800°C (UM1_A12). 

 

Fig. 6. (a) Connected (c; circles) and isolated (i; triangles) porosity distribution in pre- and post-

run sample cores (empty and filled symbols, respectively) as a function of total porosity (T). Gray 

shaded areas define the distribution of all the analyzed material (see Fig. 1). (b-c) Partitioning of 

strain analysis according to Quane and Russell (2006): (b) manually measured strain (εs) compared 

to the sum of axial (εa) and radial (εr) strain. (c) Comparison of axial (εa) and radial (εr) strain 

components. Dashed lines are iso-strain. With increasing total strain, radial component becomes 

dominant (grey arrow). 

 

Fig. 7. (a) Stress vs. strain rate plot for UM1 samples at different temperatures and (b) variation of 

apparent viscosity as a function of applied strain rate. Horizontal error bars denote uncertainties on 

shear rate determination due to instrumental displacement resolution and core length determination; 

if not reported, error bars are smaller than symbols. Black lines represent the fitting results using 

Eq. (24). Grey horizontal lines in (b) indicate pure liquid viscosity after Giordano et al. (2009) at 

experimental temperatures. 

 

Fig. 8. Summary of relationships between flow parameters and temperature. (a) Consistency K – 

temperature and (b) flow index n – temperature plots. Symbols denote values obtained from Eq. 

(24). Linear regression (solid line) parameters are reported in Table 5. (c) Measured viscosity 
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compared to viscosity calculated with Eqs. (25-28). Solid line represent 1:1 relationship, dashed 

lines indicate ± 0.25 and ± 0.50 log10 units discrepancies. 

 

Fig. 9. Combined effect of pores and crystals on the rheology of Monte Nuovo magmas as a 

function of (a) temperature and (b) crystal fraction. Relative viscosity (r) is calculated by 

normalizing the measured values of apparent viscosity to the viscosity of the pure liquid after 

Giordano et al. (2009) (dashed line). (a) Logarithm of relative viscosity vs. temperature at different 

strain rates (  ). (b) Relative viscosity as a function of sample crystal fraction (xls). Two (liquid + 

crystals; black lines) and three phases (liquid + crystals + bubbles; blue lines) parameterizations are 

also shown for comparison. Two phases parameterization is calculated after Vona et al. (2011) (Eq. 

10) at   = 10
-6

, 10
-5

 and 10
-4

 s
-1

. Three phases mixture viscosities are calculated after Phan-Thien 

and Pham (1997) (Eqs. 19-21). 
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Tables 

 

Table 1  

Pre- and post-run characterization of investigated materials. 
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4 

Pre- and post – run core geometry (length L and radius r) is expressed in mm. Densities (ρB and ρsk) are expressed in 

g/cm3. Strain parameters are: instrumental strain (εm), sample strain (εs), axial strain (εa) and radial strain (εr). Values in italics print 

represent measurements with high uncertainities. 
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Table. 2 

Electron microprobe analyses (wt% 

oxides) of UM samples. 

   
 B

ulk Rocka 

Matr

ix Glassa 

   
SiO2 60

.33 

61.6

6 

TiO2 0.

43 

0.57 

Al2O3 19

.39 

19.4

8 

FeO 3.

23 

3.55 

MgO 0.

24 

0.34 

MnO 0.

22 

0.25 

CaO 1.

79 

1.11 

Na2O 5.

85 

4.85 

K2O 7.

21 

7.85 

P2O5 0.

02 

0.04 

Total 98

.70 

99.6

9 
a
Chemical analyses from Caricchi et 

al. (2008) 
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Table 3 Summary of the performed experiments 
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.1E-05 

1

.16 

0.048 1

0.10 

1

1.02 

0

.92 

   V 1

.1E-06 

0

.49 

0.005 1

0.10 

1

1.65 

1

.55 

   VI 1

.2E-07 

0

.34 

0.001 1

0.10 

1

2.45 

- 

   VII 3

.3E-06 

1

.33 

0.063 1

0.10 

1

1.61 

1

.50 

U

M1_B14 

7

50 

0.

44 

I 2

.9E-05 

2

.44 

0.038 1

0.10 

1

0.92 

0

.82 

   II 5

.6E-05 

3

.24 

0.033 1

0.10 

1

0.76 

0

.66 

   III 9

.6E-05 

4

.16 

0.056 1

0.10 

1

0.64 

0

.54 

U

M1_E1A 

8

00 

0.

43 

I 2

.9E-06 

1

.00 

0.025 9

.15 

1

1.54 

2

.39 

   II 5

.7E-06 

1

.53 

0.023 9

.15 

1

1.43 

2

.28 

U

M1_A12 

8

00 

0.

42 

I 1

.1E-05 

1

.79 

0.016 9

.15 

1

1.21 

2

.06 

   II 3

.1E-05 

2

.23 

0.011 9

.15 

1

0.86 

1

.71 

   III 5

.8E-05 

2

.59 

0.014 9

.15 

1

0.65 

1

.50 
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   IV 1

.0E-04 

2

.86 

0.432 9

.15 

1

0.46 

- 

Values in italic print represent measurements at which a constant stress at flow was not achieved due to the failure of the 

sample (UM1_E4) or the onset of shear weakening (UM1_A12). In this case, peak stress is reported. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

52 

 

 

 

 

Table 4  

Fitting parameters of experimental data 
       

  Herschel- Bulkely fit  Power Law fit  

  σo 

log 

K 

n 

R

2 

 

log 

K 

n 

R

2 

 

T

 (°C) 

 

(

MPa) 

s

.e. (%) 

(

Pa s) 

s

.e. (%) 

 

s

.e. (%) 

  

(

Pa s) 

s

.e. (%) 

 

s

.e. (%) 

  

6

40 

 

9

.40e-9 

>

100 

9

.56 

>

100 

0

.470 

>

100 

0

.955 

 

9

.60 

6

.76 

0

.48 

2

4.97 

0

.941 

 

7

00 

 

3

.74e-9 

>

100 

8

.53 

>

100 

0

.353 

>

100 

0

.964 

 

8

.67 

4

.15 

0

.38 

1

6.95 

0

.972 

 

7

25 

 

0

.988 

7

5.04 

9

.94 

9

3.05 

0

.741 

2

.63 

0

.999 

 

8

.23 

2

.15 

0

.36 

9

.30 

0

.975 

 

7

50 

 

0

.161 

>

100 

9

.00 

9

9.45 

0

.595 

1

6.63 

0

.986 

 

8

.49 

1

.98 

0

.47 

7

.17 

0

.970 

 

8

00 

 

1

.00e-10 

>

100 

7

.55 

>

100 

0

.267 

>

100 

0

.962 

 

7

.67 

2

.77 

0

.29 

1

4.74 

0

.939 
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Table 5  

Flow parameter (log K and n) vs. temperature fitting results 

log K  

c

k 

s

.e. (%)a 

m

k 

s

.e. (%)a 

R

2 

 

1

6.722 

8

.84 

-

0.0113 

1

7.70 

0

.911 

 

n  

c

n 

s

.e. (%)a 

m

n 

s

.e. (%)a 

R

2 

 

1

.0255 

1

0.52 

-

0.0009 

1

6.53 

0

.964 

 

c and m represent intercept and slope of the linear regressions.  

a standard error expressed as percentage of fitting parameter. 
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Highlights 

 

 

We performed experiments to estimate the rheological evolution of Monte Nuovo magmas 

 

We examine how crystals and bubbles influences the rheological behavior of magmas 

 

The presence of pore may produce a marked decrease of their viscosity. 

 

The presence of pores leads to a strong decrease in the strength of magmas 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 

 


