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1. Introduction

More than thirty years ago, Bjorken suggested a possible way to detect the creation of decon-
fined QCD matter in collisions of ultrarelativistic nuclei: due to interactions with the medium con-
stituents, a hard parton propagating through the quark-gluon plasma (QGP) at a given temperature
T would experience energy loss and momentum broadening, and this would result in the suppres-
sion of final-state hadrons with large transverse momentum and of back-to-back correlations [1].
This prediction was eventually confirmed by experiments [2].

Providing a firm theoretical description for this beautiful physical idea is, however, chal-
lenging, as it involves an interplay of both perturbative and non-perturbative physics effects [3].
Even if one focuses only on the short-distance interactions between the hard parton and QGP con-
stituents [4], the problem is still complicated by the fact that, for temperatures within the reach
of present experiments, the QCD coupling g is not very small, so perturbative computations may
not be reliable. On the other hand, strong-coupling approaches based on the gauge/string dual-
ity, like the ones carried out for a massless hard parton [5] or for the drag force experienced by
a heavy quark [6], are not based on the QCD Lagrangian. Finally, non-perturbative lattice QCD
computations are not straightforward for this real-time problem.

In this contribution, however, we would like to discuss some recent progress in the latter
direction [7], based on an idea proposed in ref. [8]. Related studies include refs. [9 – 11], whereas
a different way to study the jet quenching phenomenon on the lattice was proposed in ref. [12].

2. Soft contribution to jet quenching from a Euclidean lattice

Jet quenching can be described in terms of a phenomenological parameter q̂, defined as the
average increase in the squared transverse momentum component p⊥ of the hard parton per unit
length. This quantity can be expressed in terms of a differential collisional rate between the parton
and plasma constituents C(p⊥):

q̂ =
〈p2
⊥〉

L
=
∫ d2 p⊥

(2π)2 p2
⊥C(p⊥). (2.1)

In turn, C(p⊥) is related to the two-point correlation function of light-cone Wilson lines. Although
the full computation of this correlator cannot be carried out on a Euclidean lattice, it is possible to
extract the non-perturbative contributions to it from the soft sector, i.e. from physics at momentum
scales up to gT , which can be proven to be time-independent [8, 9]. Evaluating the non-perturbative
contribution from soft (and ultrasoft, of order g2T/π) modes is important, since they are responsi-
ble for the peculiar analytical structure of weak-coupling computations in thermal QCD and for the
large corrections affecting the corresponding perturbative series. A proper systematic framework
to deal with these problems can be formulated in terms of dimensionally reduced effective theo-
ries [13]. In particular, the soft-scale dynamics can be described by electrostatic QCD (EQCD): an
effective theory for the static QGP modes, given by three-dimensional Yang-Mills theory coupled
to an adjoint scalar field,

L =
1
4

Fa
i jF

a
i j +Tr

(
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0
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0
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Figure 1: The “decorated” Wilson loop W (`,r) describing a two-point correlation function of light-cone
Wilson lines involves Hermitian parallel transporters H(x) along the real-time direction.

Its parameters (the 3D gauge coupling gE and the mass- and quartic-term coefficients) can be fixed
by matching to the physics of high-temperature QCD, and the theory can be regularized on a lattice.
We chose a setup corresponding to the dimensional reduction of QCD with n f = 2 light dynamical
quark flavors, at two temperatures (T ' 398 MeV and 2 GeV) approximately twice and ten times
larger than the deconfinement temperature [14].

We simulate this theory and study (a gauge-invariant generalization of) the two-point correlator
of light-cone Wilson lines, defined in terms of a lattice operator which involves parallel transporters
H(x) = exp[−ag2

EA0(x)] along real time, which are Hermitian—rather than unitary—operators.
This results in a “decorated” Wilson loop W (`,r) (see fig. 1) with well-defined renormalization
properties [15]. From its expectation values (computed with the multilevel algorithm [16]) we
extract a “potential”

V (r) =−1
`

ln〈W (`,r)〉, (2.3)

which is equal to the transverse Fourier transform of C(p⊥).
At short distances our results for V (r) (shown in fig. 2) are compatible with perturbative ex-

pectations, which involve, in particular, a delicate cancellation between gluon and scalar propa-
gators [8, 9]. The non-perturbative contributions to V (r) can be related to q̂: the latter is given
by the second moment of the distribution associated with C(p⊥), which corresponds to curvature
terms in V (r). Following an approach similar to ref. [10], we arrive at quite large values for the
soft NLO contribution to the jet quenching parameter: 0.55(5)g6

E for T ' 398 MeV, and 0.45(5)g6
E

for T ' 2 GeV. In turn, these numbers lead to a final estimate for q̂ around 6 GeV2/fm for RHIC
temperatures, comparable with those from holographic estimates [5] and from computations with
phenomenological input [17].

3. Conclusions and outlook

We have shown that, contrary to naïve intuition, the lattice study of certain real-time phenom-
ena involving physics on the light cone is possible. Here we have discussed the phenomenon of jet
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Figure 2: The “potential” V (r) extracted from the expectation values of W (`,r), at T ' 398 MeV (left-hand-
side panel) and at T ' 2 GeV (right-hand-side panel). Both V and r are shown in the appropriate units of the
dimensionful 3D gauge coupling gE. The slope predicted perturbatively for the potential at values rg2

E & 1 is
also displayed.

quenching in thermal QCD, but related ideas have also been proposed for QCD at zero tempera-
ture [18].

By construction, the bosonic effective theory that we simulated in our approach allows one to
separate the soft contributions to q̂ from those due to hard thermal modes, with momenta of order
πT . It does so in a controlled, systematic way, consistent with the modern theoretical framework
to study finite-temperature QCD [13, 19].

In the near future, we plan to improve our extrapolation of the potential V (r) to the contin-
uum limit at short r by carrying out further simulations on finer lattices, and/or using improved
actions [20]. It would also be interesting to study the dependence of q̂ on T , and on the number of
color charges N. As it is well-known, the large-N limit is characterized by a rich and interesting
phenomenology [21], and lattice studies have shown that the static equilibrium properties of the
QGP have very little dependence on N, both in four [22] and in three [23] spacetime dimensions.
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