The effects of microfinance on child schooling: a retrospective approach

This is a pre print version of the following article:

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/120825 since 2017-05-22T17:08:37Z

Published version:
DOI:10.1080/09603107.2013.856998

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
The controversial effects of microfinance on child schooling: A retrospective approach

Leonardo Becchetti
Pierluigi Conzo

ECINEQ WP 2010 – 173
The controversial effects of microfinance on child schooling: A retrospective approach*

Leonardo Becchetti†
Pierluigi Conzo
University of Rome “Tor Vergata”

Abstract
Two crucial problems when research agencies or donors need to assess empirically the microfinance/children education nexus on already operating organizations are lack of availability of panel data and selection bias. We propose an original approach which tackles these problems by combining retrospective panel data, fixed effects and comparison between pre and post-treatment trends. The relative advantage of our approach vis-à-vis standard cross-sectional estimates (and even panels with just two observations repeated in time) is that it allows to analyse the progressive effects of microfinance on borrowers. With this respect our paper gives an answer to the widespread demand of impact methodologies required by regulators or by funding agencies which need to evaluate the current and past performance of existing institutions. We apply our approach to a sample of microfinance borrowers coming from two districts of Buenos Aires with different average income levels. By controlling for survivorship bias and heterogeneity in time invariant and time varying characteristics of respondents we find that years of credit history have a positive and significant effect on child schooling conditional to the borrower’s standard of living and distance from school.

Keywords: child schooling, microfinance, retrospective data, impact evaluation.
JEL classification: D13, G20, I21, J22, J24, O12, O16, O18, O54

* We thank Kaushik Basu and Howard White for their useful comments and suggestions. We are also gratefully indebted to Adriana Abardia for her precious assistance in collecting data for the research. The grant of the Euricse foundation is gratefully acknowledged.
† Address of correspondence: leonardo.becchetti@uniroma2.it and pierluigi.conzo@uniroma2.it
1. Introduction

In a globally integrated world economy in which labor inputs and resources to finance physical capital investment are abundant and extremely mobile across countries a crucial constraint which prevents from achieving full output potential is lack of equal opportunities. For equal opportunities we mean the situation under which each individual, whatever her/his initial endowment of wealth, is allowed to develop her/his talent (and productive skills) by having access to education and credit or, from another perspective, the situation under which individual economic achievements are independent from inherited starting conditions. Since in any economy there is partial mismatch between those having productive ideas and those having the financial resources needed to fund them, the role of credit is fundamental and that of modern microfinance even more so. This is because the traditional banking system has serious limits in financing uncollateralized borrowers and therefore in allowing credit access to talented poor. The role of modern microfinance has been that of easing such access by replacing the role played by collateral on the borrowers’ incentives with other mechanisms such as group lending (Banerjee, Besley and Guinnane, 1994; Besley and Coate, 1995; Ghatak, 1999) with joint liability, progressive individual loans and the threat of social sanctions (Wydick, 1999; Karlan, 2005a).

More in detail, the literature has defined four main channels (income, smoothing, gender and child labour demand) through which microfinance can affect child education (Maldonado and Gonzalez-Vega, 2008). First, if microfinance borrowers use their loans for financing projects which yield returns above the lending rate their income increases and, under the assumption of parental altruism (Basu and Van, 1998), the additional income may allow to overcome the threshold which triggers parents’ decision to send their children to school. Consider however that this mechanism has its fragility since, if the project returns are delayed in time, income may fall and not rise in the short run due to the burden of loan repayments. Furthermore, the parental agency literature argues that parents may prefer to behave strategically not channeling the additional income on children education. In such case the impact of the income effect on child education will depend on the bargaining process between parents and children (Basu, 2002, Moehling, 2006).

The second channel argues that if loans assist consumption smoothing (Pitt and Khandker, 1998; Khandker, 2005; Islam, 2007) microfinance borrowers should not need to smooth consumption by withdrawing children from school (Kanbur and Squire, 2001).

The third channel states that microfinance promotes children education when, as in many cases, microfinance borrowers are mainly women since the latter have relatively stronger preferences for education than men (Pitt and Khandker 1998; Behrman and Rosenzweig 2002; Thomas, 1990; Behrman and Rosenzweig, 2002; Sallee, 2001). Consider however that this channel works only
when the formal loan entitlement coincides with an effective shift of power toward women within the family.

Finally, the fourth channel (child labor demand effect) identifies an unequivocally negative impact of microfinance on children education. If microfinance leads to an expansion of household productive activity, and if children can usefully be employed in it, the loan may increase the opportunity cost of sending children to school. The same result can be obtained if the loan leads to an increase in hours worked by parents therefore making children more necessary to perform household chores. In both cases credit access may increase demand of child labor thereby reducing child schooling (Psacharopoulos, 1997; Jensen and Nielsen, 1997; Patrinos and Psacharopoulos, 1997; Grootaert and Patrinos, 1999; Trigueros, 2002).\(^1\)

Given these conflicting effects in the relationship between microfinance and child labour, it is of foremost importance to develop sound empirical research verifying whether microfinance performs the task of promoting equal opportunities through easier access to education for borrowers’ children.

Surprisingly there are not many papers looking at the general issue of microfinance and children wellbeing and very few of them look explicitly at children education. This is probably not due to lack of interest but to the daunting task of developing a convincing impact analysis which overcomes methodological problems of selection bias, particularly severe in microfinance studies.\(^2\)

Among the existing papers negative associations between child labor and access to credit are found by Dehejia and Gatti (2005) and Jacoby and Skoufias (1997).\(^3\) Yamauchi (2007) finds that investment in household enterprise does not necessarily eliminate child labour or promote children’s education in rural Indonesia, while Hazarika and Sarangi (2008) report that, in rural Malawi, children tend to work more in households that have access to microcredit.\(^4\) In other

1 Consider however that in many cases the increased demand for child labor may lead to forms of part time work and school, thereby not affecting directly schooling choices even though such option has been shown to affect negatively children schooling performance (Edmonds, 2007).

2 In microfinance selection bias is embedded in the screening process of lenders who have to select most talented borrowers with profitable projects. A successful screening process is therefore automatically expected to produce heterogeneity between accepted and excluded loan applicants.

3 Dehejia and Gatti (2005) use cross-country panel data and find a negative association between financial development and child labor. Such effect is showed to be particularly stronger in developing countries because of higher income variability. The authors conclude that credit markets allow households and firms to smooth shocks in the economy. Jacoby and Skoufias (1997) examine how child school attendance reacts to seasonal fluctuations in the rural households’ income. Their conclusion is that unanticipated income shocks significantly affect children's school attendance and therefore uninsured households withdraw children from school in response to unanticipated income shocks, but not in response to anticipated shocks.

4 Hazarika and Sarangi (2008) find that, in the season of higher labor demand, children’s propensity to work is increasing in household access to microcredit (measured as self-assessed credit limits at microcredit organizations) in rural Malawi. Their school attendance is however not reduced, suggesting that increased
papers the nexus is shown to depend on various factors such as the type of microfinance institution (hereon MFI) (Pitt and Khandker, 1998), the type of investment and borrower activity.5

Our paper aims to provide an original contribution to this literature by testing the impact of microfinance on child education with a novel methodology. The originality of our approach is in the creation of retrospective panel data and in the use of fixed effects and pre-formation trends in estimates where the *length-of-access effect* is estimated on a sample of microfinance borrowers. In our opinion, the combination of these elements aims to solve two main problems common to many impact studies: i) selection bias when the researcher want to analyse the performance of an already existing organization and it is impossible to run randomized experiments. In this sense our paper gives an answer to the widespread demand of impact methodologies required by regulators or by funding agencies which need to evaluate the performance of existing institutions; ii) dynamic analysis when repeated observations in time require too much time and costs to be collected and in many cases are not available because data collection was not planned ex ante. With respect to this point our approach allows to explore an otherwise fundamental and unobservable effect of the impact of our treatment (microfinance), that is, its progressive effect across years for the same individual.

The rest of the paper is organized as follows. In the second section we describe the characteristics of the microfinance institution under scrutiny. In the third section we explain the sampling procedure and in the fourth we illustrate the characteristics of our database, commenting some descriptive findings. In the fifth section we explain our econometric approach and robustness checks and discuss the obtained findings. The sixth section concludes.

2. The main features of the MF institution under scrutiny

“[...] The help we received from Protagonizar was enormous. I felt that not everything was lost. On some occasions we tried to get a bank loan but they asked for a credit card and wages receipt; impossible. Here instead, we go with our word, they believe and trust us. This is beautiful and I feel we are not alone [...]”. 6

Protagonizar is a young and small microfinance organization with six years of life and more than 3,000 disbursed uncollateralised loans. It is a non-profit foundation operating in Argentina in the

5 Wydick (1999) finds that the relationship between child education and microfinance is not univocal and reports that the probability of child work is higher if the loan finances capital equipment and not working capital investment. Maldonaldo and Gonzalez-Vega (2008) find that households demand more child labour if they cultivate land and operate labour-intensive microenterprises.

6 Extracted from the “microentrepreneurs’ stories” section of the *Protagonizar* handbook (2005).
second belt of Gran Buenos Aires (area of San Miguel) with small businesses (bakeries, textile enterprises, beehives or basketworks) of poor microentrepreneurs. *Protagonizar* performs its activity with credit agencies located in the three “villas” (densely populated sub-urban areas) of *Santa Brigida, Barrio Mitre* and *Villa de Mayo*.

The organization claims that its competitive advantages are the low operative costs (modest facilities, low installation and reduced functioning costs), the reduced distance from borrowers and the time dedicated in counselling and assisting them by the bank mixed staff composed by volunteers and paid professional staff members.

An interesting feature of *Protagonizar* is that the organization moved in the opposite direction with respect to the well known Grameen case, since it started from staggered individual credits and moved more recently to a group lending mechanism with full joint liability.

The old staggered individual credit approach created a group of three entrepreneurs with independent projects giving credit sequentially to each member conditional to the repayment of the previous borrower. The *Protagonizar’s* group lending approach hinges on the creation of a group of 4-6 individuals to which money is given simultaneously. Group members have full joint liability. One of the group members, appointed group coordinator, is in charge of receiving the money from *Protagonizar*, distributing it among group members and collecting payments on behalf of the lender.

Eligibility criteria for group lenders are as follows. Borrowers are required *i)* to have at least six months of entrepreneurial experience, *ii)* not to be relative *iii)* to be located at no more than three blocks of distance from each other (a rule which aims to ease peer monitoring) and, *iv)* to have different business activities in order to diversify risk within the group. Among such activities only one street vendor per group is allowed. The microfinance institution charges 5% monthly over the debt balance for both (staggered individual and group) loans.8 Repayments take place on weekly basis.

A specificity of the *Protagonizar* group lending approach is its three-sided screening process. The first two checks are represented by the MF organization screening activity and other bank

7 Real interest rates seem high if we consider official, but less so if we consider unofficial inflation rates. Consider in fact that Argentinean poverty lines are considered grossly undervalued due to a downward bias in computing domestic inflation. One of the main independent research centers, Ecolatina, estimates that prices rose 65 percent from Dec. 1, 2006, to July 31, 2009, compared with the 20 percent increase calculated by the statistical institute (to follow this debate see: i) http://www.bloomberg.com/apps/news?pid=newsarchive&sid=aKQUilLozzZko and ii) http://www.bloomberg.com/apps/news?pid=newsarchive&sid=a5joiv5C_mXc.

8 The average lending rate charged by moneylenders in the three villas is around 50 percent monthly.
borrowers’ evaluation of the payment capacity of the prospective client. The third check is the group lending mechanism. The latter is expected to induce assortative matching (Armendariz and Morduch, 2005) since, for groupmate-neighbours, trust on borrower’s creditworthiness has pecuniary consequences and is demonstrated by accepting to create a group with her under joint liability.

During the screening process would be borrowers are visited by credit advisors to which they provide socio-demographic and business information by filling a standardized form. In a second step credit counsellors/advisors are asked to assess their credit capacity. The latter then formulate their proposal to the Credit Committee. If the lending decision is taken counsellors/advisors also perform monitoring activities with post-credit visits on weekly basis.

Most relevant to the object of our research, Protagonizar has a neutral attitude toward child schooling. Its approach is targeted to support with financial resources borrower’s business and growth in economic opportunities while the goal of child schooling is neither in its operating activity in the field nor in its declared principles. This neutral stance reduces the potential confusion between schooling effects generated by the need to comply ex ante with the MFI’s standards and those caused by the ex post effect of the microfinance loan.

3. The research design

Given the impossibility of running randomized control trials, we implement an ex-post impact evaluation based on quasi-experimental data. From June to September 2009 a questionnaire has been delivered to 360 micro-entrepreneurs located in proximity of the three agencies of Protagonizar (Santa Brigida, Barrio Mitre and Villa de Mayo) by two teams composed by one researcher and one field assistant each.9

A treatment group of 150 clients (in equal proportion from Barrio Mitre and Santa Brigida) is formed randomly from a list of all MFI borrowers by keeping into account the heterogeneous seniority of the membership.10

As a control sample, from the three areas of interest we randomly interview 150 eligible non participants micro-entrepreneurs who were not borrowers (neither of Protagonizar nor of any other MFI) at the moment of the interview.11

9 The questionnaire is omitted for reasons of space but is available from the authors upon request.
10 Borrowers’ seniority is evaluated according to their credit-cycle.
In addition to the treatment and control groups, we also create a sample of 60 Protagonizar’s former borrowers who dropped out from the program.12

By choosing members of the control group according to eligibility criteria we are able to reduce the potential heterogeneity between MFI and non-MFI types and thus the \textit{selection bias}. Moreover, the inclusion of drop-outs is aimed to tackle the effects of the \textit{survivorship bias} on our estimates (Karlan and Alexander-Tedeschi, 2009).

\section*{4. Database and descriptive findings}

A first descriptive element which gives us an idea of the local standard of living and of the distance of the respondents from the poverty line is the monthly mean and median household income in the whole sample which amounts to 4,096 and 3,000 pesos respectively. This implies that households live on average with around 136.53 pesos per day. Since the median number of members in the household is around 4, interviewed individuals live on with roughly 34.13 pesos/day, that is around 16.78 PPP US$ \textperday using the country’s implied PPP factor computed by IMF in 2009.13

Average schooling years of the respondent in the sample are quite low (8.4 years) and those of the partner even lower (5.8 years) (Table 1). Average total productivity (considering main and secondary jobs) is around 17 pesos per hour.

Microfinance clients repay on average 108 pesos each month, that is, 27 percent of median income. In spite of it around 20 percent of income is saved. Finally, MF borrowers’ productivity is 21 pesos per hour worked against 16 pesos of eligible non-participants (again the difference in means is not significant at 5 percent).

\begin{footnotesize}
\begin{itemize}
\item[11] Individuals who are not clients at the moment of the interview might instead have asked and received a loan in the last 20 years, the time span we consider for the retrospective panel. However, since Protagonizar is the first and the only organization providing micro-loans in the three villages, if (present) eligible non-participants asked for a loan in the past they must have received it from formal banks or moneylenders (but not from other MFIs). Such an event would, however, not change the core of our analysis about the dynamic impact of microfinance (specifically, the micro-financial services provided by Protagonizar) on children’s education.
\item[12] We selected a number of dropouts from each area which is proportional to the historical exit rates of borrowers from the organization.
\item[13] During the survey period (July-Sept. 2009), the average malnutrition and poverty thresholds were set by the INDEC (National Statistical Agency of Argentina) at 4.88 and 11.04 pesos/day respectively, which are in turn equivalent to 3.84 and 8.70 PPP \textperusd according the PPP country’s factor evaluated by the World Bank in 2005. When considering the country’s implied PPP factor in 2009 (US$ 2.033, source: IMF), both the malnutrition and poverty lines fall to 2.40 and 5.43 PPP-USD \textperday respectively. However, if we correct these lines for the unofficial and more realistic inflation rates discussed in footnote 7, Protagonizar borrowers are much closer to poverty.
\end{itemize}
\end{footnotesize}
To go beyond overall sample averages we present descriptive statistics dividing the sample in three groups in Table 2 (clients, eligible non-participants and dropouts) and in three groups in Table 3 (respondents living in Barrio Mitre, S. Brigida and Villa de Mayo).14

In Table 2 we observe that clients have higher mean household income than eligible non-participants (4,982 against 3,662 pesos) which have in turn higher income than dropouts (2,958 pesos). However, the difference between dropouts and clients is significant at 5 percent while that between them and eligible non-participants is not. Ranking and significance are substantially unchanged if we consider median household income. Such findings document that individuals who drop-out are likely to belong to such a group due to some form of underperformance. The same ranking can be observed when we look at productivity,15 highest for clients (20.60 pesos per hour worked) and lowest for dropouts (13.18 pesos), with eligible non-participants in the middle (15.75 pesos). The three groups are however substantially homogeneous in terms of demographic variables (household size, respondent education and age). Finally, clients have higher job experience and save more even though the differences among groups are not significant in this case.

In table 3 we observe that the geographical breakdown also matters. Individuals in Barrio Mitre are relatively poorer than those in S. Brigida — average household income is respectively 3,677 and 4,419 pesos. This implies that villagers from Barrio Mitre live on with 30.64 pesos/day (15.07 PPP-US$) whereas those of S. Brigida with 36.85 pesos/day (18.11 PPP-US$).16

There is also a marked difference between the two areas in terms of productivity (20.08 pesos in S. Brigida and 15.45 pesos in Barrio Mitre) and savings (238.9 and 178.9 pesos respectively). We expect that such differences in income, savings and productivity may affect the impact of microfinance on the probability of schooling of respondents’ children. Households in Villa de Mayo seems to perform better than households in Mitre but slightly worse than those in S. Brigida in terms of income and productivity (45.35 and 35.51 pesos respectively); their monthly savings (29.18 pesos) are however lower than those of the households in the other villages.17

14 We include a third village (Villa de Mayo) in which Protagonizar activity has just started and there are no treatment group observations (MFI borrowers). This is typically done in impact studies in order to reduce the noise generating potential spill-over effects from treatment to control group in the two other villages. The econometric results of the paper presented in section 5 are however robust in a check in which we exclude respondents of Villa de Mayo from the control sample. Results are omitted here for reasons of space and available upon request.

15 Measured as the ratio between respondent and her partner’s monthly income (from all their activities) and the hours they spend in each activity.

16 See footnote 7 and 13 for a discussion on poverty lines measurements in Argentina.

17 A further breakdown of descriptive statistics by geographical location and interviewed status is provided in tables A1-A3 of the appendix.
5.1 Econometric specifications

Two serious problems in impact analyses on development projects on existing organizations are the impossibility of running randomized experiments and the lack of time series data. More commonly researchers dispose of a cross-section or of just two observations (before and after a given treatment) for each individual. A possibility to overcome these limits is the reconstruction of detailed time series from a cross-sectional survey with retrospective data.

The retrospective reconstruction of time series is based on past information required from respondents in cross-sectional surveys and commonly adopted in the literature when costs of collecting data across time are too high or the researchers need to evaluate an economic phenomenon for which this information is not available. Among various examples see Peters (1988), McIntosh et al. (2010) and Becchetti and Castriota (2009)\(^\text{18}\).

The approach is reliable when past information demanded does not require unreasonable mnemonic effort and hinges on the identification of simple memorable events. As a matter of fact the three empirical contributions mentioned above ask respondents to identify years of events such as divorces and remarriages (Peters, 1988), house restructuring decisions (McIntosh et al., 2010) and schooling years and age of children (as in our case). In discussing such methodology McIntosh et al. (2010) include among memorable events major diseases, deaths, school enrolments, and major asset purchases, while consider changes in profits and revenues among those which are more difficult to remember with precision.

An important validating check for this approach is provided by Peters (1988) who compares the accuracy of retrospective information provided by respondents to a cross-sectional survey with panel data collected across time and demonstrates that both sources of data give substantially the same results when estimating hazard rates of divorce and remarriage. Finally, consider as well that retrospective data present some advantages even with respect to standard panel data since they do not suffer from attrition bias problems.

The use of retrospective data fits well the object of our inquiry. The information required from respondents to build the retrospective information is relatively easy to remember. We demand the

\(^{18}\) Other examples of the use of retrospective data are provided by i) Garces at al. (2002), who use PSID data with the addition of retrospective questions on early childhood education in order to assess the impact of a public preschool program for disadvantaged children; ii) Smith (2009), who examines impacts of childhood health on socioeconomic status outcomes observed during adulthood relying on retrospective self-evaluations of the general state of one’s health and iii) Ilahi et al. (2000) who, using unique retrospective data from Brazil, explore the relationship between child labor, future adult earnings and poverty status.
number of children in the family, their age and the number of school years they have attended. We also verify whether there have been exits and reentries in the schooling record, as well as repetitions. Based on the use of retrospective data we build time series of schooling decisions for each children in the respondent household in a 20-year time horizon.

We therefore test the effect of years of credit history (affiliation)\(^1\) with the MFI on schooling decision using a logit fixed effect on the following specification: \(^2\)

\[
\text{School}_{ijt} = \alpha_0 + \alpha_1 N\text{Children}_{jt} + \alpha_2 \text{JobExperience}_{jt} + \sum_{m=3}^{7} \alpha_m \text{ParentageCohorts}_{jit} + \alpha_8 \text{PreAffTrend}_{jt} + \alpha_9 \text{Childage}_{jt} + \alpha_{10} \text{AffilYears}_{jt} + \sum_t \alpha_t \text{DYears}_{jt} + \nu_i + \varepsilon_{ijt}
\]

where \((\text{School}_{ijt})\) is a dummy taking value of one if the \(i\)-th children of the \(j\)-th family went to school in the year \(t\) and zero otherwise. Among socio-demographic variables we introduced those for which theoretical and empirical literature on child schooling has extensively demonstrated relevance and significance on child schooling decisions (see among others, Edmonds, 2007, Islam and Choe, 2009 and Maldonado and Gonzalez-Vega, 2008). \(N\text{Children}_{jt}\) is the number of children in the family \(j\) at time \(t\), \(\text{JobExperience}\) is the respondent’s job seniority (number of years worked in the current (time of the survey) activity), \(\text{ParentageCohorts}\) are the respondents’ age categories,\(^2\) \(\text{PreAffTrend}\) is a (pre-affiliation) trend variable measuring the number of years for family \(j\) before becoming Protagonizar’s borrower, \(\text{Childage}\) is child’s age, \(\text{DYears}\) are time dummies (1989 is the omitted benchmark), \(\text{AffilYears}\) are the years of affiliation (years of uninterrupted lending relationship) of family \(j\) at time \(t\) for client and dropout samples.

\(^1\) We define for simplicity years of affiliation as the time length of uninterrupted relationship with the lender (i.e. the time distance between the first loan received and the year of the survey for current borrowers with subsequent credit cycles).

\(^2\) The approach is also known in the econometric literature as the conditional likelihood approach and allows to “difference out” individual effects in non-linear panels through a transformation that is the analogue of first differencing in the linear case. The basic idea is to consider the likelihood conditional on sufficient statistics for the individual effects (that is, the individual specific mean or, equivalently, the individual specific frequency in case of a logit link). Then, conditioning on the individual fixed effects, choices in the \(T\)-periods are independent. In this setting, a standard logit model is then obtained where the probability of the binary outcome does not longer depend on individual effects (which have been differentiated out) and where changes in the regressors between the \(T\)-periods allow to predict changes in the dependent variable. See Andersen (1970) and Chamberlain (1980) for a more detailed description of the technique. The main advantage of this approach is that neither distributional nor independence assumptions on the unobservable individual effects are required. However, this comes at the cost of having a sufficient number of units for which a change of state is observed; because of this requirement, only a small fraction of the sample might be used for the estimation.

\(^2\) In order to avoid perfect multicollinearity which would arise from including year effects, respondent parent age and fixed effects we create dummies for any two year interval and dummies for parent age categories. We split the respondents’ age into five cohort dummies: 29-33, 34-38, 39-43, 44-48 and over 49 years old. The omitted reference age category is 0-29.
In different specification of equation (1) (see Table 4) affiliation years are interacted with a village dummy (S.Brigida) and a distance dummy, Distant, equal to 1 if the child i lives above the median distance far from the school. We use such interactions in order to catch the progressive microfinance effect on wealthier borrower (the ones living in S. Brigida) and on families with higher indirect costs of schooling (proxied by the distance from the school).

With regard to child fixed effects v_i they incorporate (but do not allow to measure separately) important time invariant effects such as those of gender, parental education and district location. The specific impact of these variables will be evaluated with different estimating techniques in our robustness checks.

Note that we do not have data on household income, a variable which is often impossible to track or is highly imperfectly measured due to interview bias. As a consequence many papers use proxies which are more easily measurable and less subject to bias such as parental education. In addition to it, we use here years of experience in the current job which is another important proxy under the reasonable assumption of learning by doing and tenure effects on income.

Parental age is introduced here to measure something different from parental education (to which it is also correlated). Older parents may be less willing to send their children to school because they are linked to less schooling oriented traditions or because their age increases the need of being supported by children in their job activity.

The inclusion of the pre-treatment trend variable allows us to evaluate the effect of affiliation years on the treatment group by looking at the trend before and after the beginning of the bank-borrower relationship.

When estimated on the overall sample, our specification therefore allows us to compare outcomes of the treatment group (borrowers) with the control group represented by eligible non-borrowers by assuming that the two groups have homogeneous characteristics. We control for heterogeneity between the two groups determined by (children better than family) time invariant characteristics with child fixed effect, while we take into account time varying heterogeneity with comparison of pre-formation and post formation trends.

22 In a cross-sectional estimate we find that job experience and parental education account for a relevant part of the variability of current respondent’s income. The estimate is omitted for reasons of space and available upon request.

23 Eligibility criteria in Protagizar group lending require that borrowers i) have a minimum six month enterprise experience, ii) are not relative but iii) live at a maximum of three blocks of distance from each other (a rule which facilitates peer monitoring) and, in order to diversify risk within the group, iv) have different business activities (only one street vendor per group is allowed). We apply criteria i) and iii) to create the control group in our sample.
5.2 Econometric findings

Table 4 presents results from fixed effect estimates. In the first and second column the model is estimated on the whole sample and on the subsample of microfinance borrowers plus dropouts in order to evaluate the microfinance impact after controlling for survivorship bias (Karlan and Alexander-Tedeschi, 2009).

Such estimate also allows to tackle more effectively the problem of heterogeneity between treatment and control group and the related selection bias. As it is well known, even though we select local eligible non-borrowers in order to enhance homogeneity between treatment and control group, it is not possible in principle to exclude self selection effects, that is, ex ante factors correlated both with individual productivity and the decision to become borrowers. This problem would widen the gap between the first best comparison with the counterfactual (what would have been the child schooling performance of the borrower’s offspring if he had not borrowed from the MFI) and our approach. The estimate excluding the control group eliminates such problem and isolates the dynamic effect of the borrower-bank relationship on our dependent variable.

Consistently with what expected we find a significant negative relationship between parental age and child schooling, with a positive effect of parents below 43. Child age is negative as expected. The time varying regressor measuring parent’s years of experience in the job they are still performing at the time of the survey is positive and significant. Since it is reasonable to assume that, due to learning on the job and work tenure effects, the variable is a proxy of the respondent income, such a finding probably captures part of the positive effect of the unobserved income variable on child schooling.

Note that fixed effects incorporate the impact of all time invariant drivers of child schooling. As a consequence we cannot detect in this estimate the separate effect of child gender and parental education (invariant in our sample). Another proxy of income (parent education) is therefore incorporated in fixed effects. The unique counterintuitive result we have is that of the positive effect of the number of children on child schooling. Consider however that in fixed effect estimates this variable captures only within effects, that is the impact of a new birth on child schooling.

24 On the effect of children’s age on education attainments we expect that, the older the child, the more likely that she/he will show an education gap. Such a result is confirmed by Maldonado and Gonzalez-Vega (2008) and Islam and Choe (2009) who find children at primary-school age to have a higher enrolment rate compared to their older siblings, the latter being more likely to drop out from school and go to work.
The effect of affiliation years is not significant in this first estimate leading us to infer that the various effects (income, risk management, gender and child labour demand) compensate each other.

As discussed above, to understand more about what happens beyond the average overall sample effect we create two slope dummies interacting affiliation years with residence in the wealthier S. Brigida district and distance from school above the median distance in the sample. The rationale for the creation of this two variables is that: i) if the luxury axiom (Basu and Van, 1998) holds (see introduction), with higher income the child schooling effect should prevail; 25 ii) families who are more distant from school pay higher (pecuniary or just opportunity) cost of transport, especially in areas such as those included in our survey where problems of criminality verified by our interviewers are very serious (and children must presumably be accompanied by an adult, especially if they are far from school). 26

In columns 3 and 4 (Table 4) we introduce only the district slope dummy and find that the effect of location on S. Brigida is positive and significant both in the overall sample and in the estimates with borrowers and dropouts only. In columns 5 and 6 we introduce the distance dummy and find that its effect is positive and significant as well. When in columns 7 and 8 we introduce both variables we find that both distance and district slope dummies are positive and significant when jointly considered. In order to evaluate more clearly the interaction effect of location in S. Brigida and distance from school we estimate an additional specification in which a dummy for respondents with both characteristics is interacted with affiliation years and compared with the benchmark affiliation year effect. This slope dummy is significant and strong in magnitude (columns 9 and 10).

An important parallel result which reinforces our main findings is the lack of significance of the pre-treatment trend which clearly identifies a structural break in the schooling performance around the beginning of the bank-borrower relationship. This result documents that the dynamic effect of the bank-borrower relationship does not depend on a spurious positive child schooling trend, preexisting to the affiliation date.

25 A related interpretation is that current productivity and household income of borrowers may be a proxy of past values of the two variables. In this respect descriptive evidence at Table 3 shows a significant difference between borrowers in S. Brigida and Mitre in the year of the survey. The higher productivity and standard of living of the former may have generated enough savings to increase school attendance of the children in the household during the lending period.

26 To quote just an example the local team supporting our researchers refused to accompany them in Mitre at late morning and afternoon for the danger of meeting criminals or drug addicts.
Since affiliation is non synchronous (it occurs at different time for each borrower) it is difficult to interpret a difference in pre-treatment ($PreAffTrend$) and post-treatment ($AffilYears$) trend effects on child education as due to other unmeasured concurring factors. One possibility is that the effect is not due to the treatment but to requirements that the organization poses on would be borrowers in terms of child education (i.e. a precondition for being financed by the MF is that borrowers send their children to school). However, as we documented in section 2, Protagonizar is neutral (does not take any position) with respect to the child schooling issue. Furthermore, if a test on a dichotomous treatment effect may be subject to this observational equivalence, this is not the case of a gradual impact which grows with affiliation years. The precondition hypothesis would not explain why the education outcome improves across years even after the beginning of the relationship with the MFI.

Overall our findings document that the effect of microfinance on child schooling is positive and significant only conditionally to geographical location (in S. Brigida) and distance from school of borrowers. Given the difference in standard of living (and current sample income and productivity)\(^\text{27}\) between the two areas in which Protagonizar operates since more time, we can interpreted results by arguing that borrowers can be divided into four groups according to these two crucial variables (S. Brigida and Mitre residents close and far from school). Only one of these groups seems close to the luxury axiom threshold so to experience the stronger benefits from microfinance loans in terms of child schooling.

Consider as well that affiliation results (when estimated in the overall sample) can be explained neither by heterogeneity in time invariant characteristics between treatment and control sample (captured by fixed effects) nor by heterogeneity in a time variant factor which ensured progress in child education even before the “affiliation period” (the lack of significance of the pre-affiliation trend).

Finally, our child schooling results can be hardly related to a pro-schooling stance of the microfinance organization. As explained when describing the organization, its attitude toward this issue is absolutely neutral. Even if it were not, so the difference between pre and post treatment schooling trends documents that there are no traces of pre-formation attitude of future borrowers to conform to a child schooling prerequisite by the organization. The gradual positive effects observed only for a subgroup of borrowers also confirm that there is not a uniform effective overimposed schooling requirement.

\(^\text{27}\) Given the types of activities of Protagonizar borrowers and the limited reach of their potential market we may reasonably assume that local standard of living is the crucial variable affecting local demand and thereby driving income and productivity of most borrowers whose activities have mainly local customers.
5.3 Robustness checks

Results from the previous section highlight a positive effect of affiliation years on the probability of child schooling for i) borrowers living in S. Brigida ii) borrowers more distant from schools iii) borrowers of S. Brigida located more distant from schools.

A limit of our dependent variable may arise is that within variation (switches from 0 to 1 or vice versa) is limited. In our sample switches, that is changes in the dependent variable from $t-1$ to t, amount to 10 percent of total observations. The number is not so limited but however suggests us to perform further robustness checks.

First, we propose a simple logit pooled estimate in order to consider a larger number of observations and disentangle the effects of time invariant characteristics (such as gender and parent education) which were incorporated in fixed effects in the base estimate. The baseline equation we consider is the following:

$$
School_{it} = \alpha_0 + \alpha_1 NChildren_{it} + \alpha_2 JobExperience_{it} + \alpha_3 Parentage_{it} + \alpha_4 RespEducation_{it} \\
+ \alpha_5 PartnerEducation_{it} + \alpha_6 PreAffTrend_{it} + \alpha_7 Male_{it} + \alpha_8Childage_{it} \\
+ \alpha_9 AffilYears_{it} + \sum_i \alpha_{i1} DYears_i + \epsilon_{it}
$$

(2)

Regressors in the pooled logit estimate are therefore the same as those in the fixed effect estimate with the addition of $Male$, a dummy taking value of one if the child is male and zero otherwise, $RespEducation$ (respondent’s schooling years) and $PartnerEducation$ (schooling years of the respondent’s partner). Parental education is an important factor which is expected to have a positive and significant effect. This is due to the fact that the higher stock of human capital in the family not only generates higher income if “returns to schooling” work but also a more optimistic parental perspective on the benefit of education for their children (Maldonado and Gonzalez-Vega, 2008)

Problems of multicollinearity are greatly reduced with the omission of fixed effects so that we can replace parent age categories with parent age. Pooled logit estimates allow us to identify a positive education and gender (male) effect. The gender effect is positive and consistent with what expected in the literature about girl education to be less valued than the boys’ education so that girls should exhibit a wider education gap (Table 5).28

28 In this respect, Islam and Choe (2009) find that girls elder than 13 years (in the control group) tend to have a lower enrolment rate, whereas no differences between girls and boys in their educational achievements are found in Maldonado and Gonzalez-Vega (2008). In addition, as commented by Edmonds (2007), data from
The positive effects of the interaction of distance from school and S.Brigida location with years of MF-borrower relationship is confirmed in these estimates. Note however that, with pooled logit estimates, the baseline effect (AffilYears) - not significant in the base estimate - becomes negative, even though weakly so in the subsample of borrowers and dropouts. The comparison of this point with the fixed effect findings suggests the presence of some heterogeneity between borrowers and eligible non-borrowers with the first having time invariant characteristics which make them less prone to child schooling. An interpretation is that eligible non-borrowers are in healthier financial conditions or are in jobs with rosier perspectives (and this can motivate their non-borrower status).

The pooled logit estimation does not account for either the panel structure of the data or unobservable child-specific characteristics that might be correlated with the outcome variable (school attendance). Hence we re-estimate specifications 7-10 of table 4 with different approaches, namely i) logit child-random effects, ii) 3-level logit random effects iii) using Education Gap as dependent variable to address the scarcity of switches in the School dummy. The following subsections clarify each of the different robustness checks we use. Results are consistent with the previous ones, confirming the positive dynamic effect of microfinance on child-schooling only for the sub-sample of villagers from the richer area (S. Brigida) and for those who face higher transport costs since located distant from the schools.

a) Child-Random effects

We re-estimate the baseline model with random-effect logistic model for specification 7-10 (table 4). Equation 1 then becomes:

\[
\text{School}_{yi} = \alpha_0 + \alpha_1 NChildren_{yi} + \alpha_2 \text{JobExperience}_{yi} + \sum_{m=3}^{7} \alpha_m \text{ParentageCohorts}_m + \\
+ \alpha_8 \text{RespEducation}_{yi} + \alpha_9 \text{PartnerEducation}_{yi} + \alpha_{10} \text{PreAffTrend}_{yi} + \alpha_{11} \text{Male}_{yi} + \\
+ \alpha_{12} \text{Childage}_{yi} + \alpha_{13} \text{AffilYears}_{yi} + \sum_{i} \alpha_i \text{DYears}_i + v_i + \epsilon_{yi}
\]

(3)

where \(v_i\) are the child-specific unobserved random intercepts assumed to be normally distributed with zero-mean and variance \(\sigma_v\) and \(\epsilon_{yi}\) are the zero-mean and unit-variance normally distributed error terms. A stronger assumption is typically needed for the estimation of non-linear panel random effects models, namely that \(v_i\) and \(\epsilon_{yi}\) are independent (not just mean independent). Individual random effects are then “integrated out” usually using a quadrature method.

UNICEF’s Multiple Indicator Cluster Surveys show that there is a sizeable increase in participation rates in market and domestic work for males at age 12, while girls experience discrete jumps at age 8, 10, and 12. The increase at age 8 for girls appears to be most dramatic in domestic work, whereas most of the increase at age 10 and 12 for girls is in market work.
Results are reported in the first two columns of Tables 6 and 7. As in the previous pooled logit estimation, we find a positive impact of parental education but a negative effect of the length of MF-affiliation on the probability of child’s school attendance. However, the latter negative effect is counterbalanced by a positive and significant impact of MF-affiliation when borrowers live in S. Brigida (interaction AffilYears*Sbrigida) and when they are located far from the school (interaction AffilYears*Distant) as shown in Table 6, columns 1 and 2.

When we consider as explanatory variables the length of MF-affiliation (AffilYears) and its interaction with the borrowers living in S. Brigida that are more distant from the school (AffilYears*Sbrigida*Distant), only the latter variable shows a significant and strong positive coefficient (Table 7, columns 1 and 2). The findings are also robust to the sample split.29

b) Three-Level Random Effects

In order to control for child and family unobservable heterogeneous characteristics, we re-estimate equation 3 using a three-level random logistic intercept model for which in t time occasions (first level) we observe i children (second level) nested within j families (third level). Hence equation (3) becomes:

\[
\text{School}_{ijt} = \alpha_0 + \alpha_1 \text{NChildren}_{ijt} + \alpha_2 \text{JobExperience}_{ijt} + \sum_{m=3}^{7} \alpha_m \text{ParentageCohorts}_{ijt} + \\
+ \hat{\alpha}_8 \text{RespEducation}_{ijt} + \hat{\alpha}_9 \text{PartnerEducation}_{ijt} + \hat{\alpha}_{10} \text{PreAffTrend}_{ijt} + \hat{\alpha}_{11} \text{Male}_{ijt} + \\
+ \hat{\alpha}_{12} \text{Childage}_{ijt} + \hat{\alpha}_{13} \text{AffilYears}_{ijt} + \sum_{l} \hat{\alpha}_l \text{DYears}_{ijl} + \nu_i + \phi_j + \epsilon_{ijt}
\]

(4)

where \(\nu_i\) and \(\phi_j\) are respectively the child and family-specific unobserved random intercepts and \(\epsilon_{ijt}\) are the idiosyncratic error terms. The same distributional and independence assumptions made in the random effect model previously commented extends also here, both on \(\nu_i\) and \(\phi_j\). Such approach allows us to control separately for child and family heterogeneous and unobservable characteristics that might lead to biased estimates of MF-affiliation effect.

Results are very similar to those we get from the previous model (child-random effects) and are reported in columns 3-4 of Tables 6 and 7.

29 Consistently with previous results, we also find in this specification that the presence of younger parents positively affect the probability for a child to be at school whereas this probability declines when the child’s age increases.
c) Education Gap

To account for the scarcity of changes in the dummy dependent variable School_{ijt} in the baseline fixed effect model, we construct an alternative child-varying schooling variable (Education Gap).

Following Maldonado and Gonzalez-Vega (2008), we define the variable Education Gap as the difference in terms of years between the child’s highest level of education achieved and his/her expected level of education (according to the age). The expected level of education (Expected Education) is then equal to ChildAge-6. 30 So we define:

\[
\text{Education gap} = \max\{0, \text{Expected Education} - \text{Achieved Education}\}
\]

According to this measure, for example, a child who has attended the school up to the secondary school (without exiting in the past) shows an Education Gap equal to 0 at time \(t \). In contrast, if he/she did not attended the school, Education Gap is exactly equal to Expected Education according to the age. If, instead, he/she had problems like late entry, repetitions, desertion, etc. the gap is a positive number. As it is evident from its definition the gap is also able to capture whether a child attended the school continuously in the past and thus takes into account his/her cumulated performance.

By replacing the dependent dummy variable School_{ijt} with EducationGap_{ijt} we re-estimate the baseline child-fixed effects model (eq.1, columns 7-10 in table 4) with the following equation:

\[
\text{EducationGap}_{ijt} = \alpha_0 + \alpha_1 N\text{Children}_{jt} + \alpha_2 \text{JobExperience}_{jt} + \sum_{m=3}^{7} \alpha_m \text{ParentageCohorts}_{jt} + \\
+ \alpha_8 \text{RespEducation}_{jt} + \alpha_9 \text{PartnerEducation}_{jt} + \alpha_{10} \text{PreAffTrend}_{jt} + \\
+ \alpha_{11} \text{Male}_{jt} + \alpha_{12} \text{Childage}_{jt} + \alpha_{13} \text{AffilYears}_{jt} + \sum_i \alpha_i D\text{Years}_i + \nu_i + \varepsilon_{ijt}
\]

(5)

Estimations are repeated also with pooled OLS. In both cases results are consistent with what we have found so far and robust to sample split.

Specifically, MF-affiliation years per se make child’s education gap larger but the effect is reversed when considering either children living in S. Brigida (AffilYears*Sbrigida) or with children living more distant from the school (AffilYears*Distant) (table 6, col. 5-8). Again, only the children living in S. Brigida who live more distant from the school (AffilYears*Sbrigida*Distant) seem to benefit more from progressive affiliation to microfinance (Table 7, columns 5-8).

30 We consider in our panel only children aged 6 to 18.
6. Conclusions

The boom of microfinance around the world and the magic aura created around the same “microfinance” concept in a framework of asymmetric information and lack of uniformly acknowledged standards, creates a situation in which highly heterogeneous financial institutions have interest in using the concept in order to capture financial resources. This reduces the self explanatory power of the “microfinance” term and makes all the more urgent an evaluation with impact studies of different microfinance experiences around the world.

One of the most debated questions in this empirical literature is whether microfinance really promotes wellbeing of borrowers and of their families or traps them into a condition of financial dependence. A direction which may tell us whether there is an effective process of increase in wellbeing comes from the answer to the question on whether the bank-microfinance borrower relationship dynamically raises the likelihood of child schooling.

In our paper we propose an original methodology to perform this type of impact study which may overcome important and common limits in these types of analysis (the impossibility of evaluating with a randomized experiment the impact of an already operating organization, the difficulty of collecting long time series on treatment and control samples). In this respect, the combination of a retrospective panel approach with tests on structural break between pre and post-treatment trends, joined with techniques allowing us to minimize selection and survivorship bias, provides a robust methodology to analyze the dynamics of the bank-borrower relationship on child schooling.

The additional advantage we have in our empirical analysis is to address this question on individual data of borrowers from a microfinance organization which has an officially neutral stance toward child education.

Our findings are mixed and show that the effect is robust and significant only in the district with relatively higher standard of living and for children living at a relatively higher distance from school. Our conclusion is that, in the specific case, microfinance generates positive effects on child schooling only when parent income is above a certain threshold so that the Basu and Van (1998) luxury axiom applies and, specifically, for household in the higher standard of living and more productive area who live at a relatively higher distance from the school. The combination of these findings suggests that microfinance effect depend on income and schooling costs. The bank-borrower relationship may provide additional resources which compensate transport costs for families which are more distant from schools but is ineffective (or even harmful) if the level of income remains nonetheless below the threshold of income under which parents are forced not to send children to school by necessity.
References

Table 1. Summary statistics of Socio-Demographic and Economic Variables (Whole Sample)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respondent’s Age</td>
<td>361</td>
<td>43.19114</td>
<td>0.6708767</td>
<td>41.87181 44.51047</td>
</tr>
<tr>
<td>Household Income</td>
<td>361</td>
<td>4096.097</td>
<td>259.0923</td>
<td>3586.572 4605.622</td>
</tr>
<tr>
<td>Household Food expenditure</td>
<td>361</td>
<td>38.85286</td>
<td>1.585422</td>
<td>35.735 41.97071</td>
</tr>
<tr>
<td>Total Productivity</td>
<td>361</td>
<td>17.3678</td>
<td>1.189418</td>
<td>15.02872 19.70688</td>
</tr>
<tr>
<td>Productivity from I activity (Respondent)</td>
<td>361</td>
<td>11.06951</td>
<td>0.998779</td>
<td>9.10538 13.03368</td>
</tr>
<tr>
<td>Productivity from II activity (Respondent)</td>
<td>361</td>
<td>2.226235</td>
<td>0.4532565</td>
<td>1.334872 3.117598</td>
</tr>
<tr>
<td>Productivity from I activity (Partner)</td>
<td>361</td>
<td>4.04512</td>
<td>0.3502009</td>
<td>3.356423 4.733816</td>
</tr>
<tr>
<td>Productivity from II activity (Partner)</td>
<td>361</td>
<td>0.0269314</td>
<td>0.0206987</td>
<td>-.0137742 .0676369</td>
</tr>
<tr>
<td>Job Experience (years)</td>
<td>361</td>
<td>8.063712</td>
<td>0.4585132</td>
<td>7.162011 8.965413</td>
</tr>
<tr>
<td>Savings/month</td>
<td>361</td>
<td>186.0295</td>
<td>27.65336</td>
<td>131.6471 240.412</td>
</tr>
<tr>
<td>Distance from main road</td>
<td>361</td>
<td>1.285319</td>
<td>0.136926</td>
<td>1.016042 1.554595</td>
</tr>
<tr>
<td>N. of persons in the house</td>
<td>361</td>
<td>4.224377</td>
<td>0.1021779</td>
<td>4.023436 4.425317</td>
</tr>
<tr>
<td>N. of children</td>
<td>361</td>
<td>2.99169</td>
<td>0.1123689</td>
<td>2.770708 3.212672</td>
</tr>
<tr>
<td>Schooling years (Respondent)</td>
<td>361</td>
<td>8.430748</td>
<td>0.1636916</td>
<td>8.108836 8.75266</td>
</tr>
<tr>
<td>Schooling years (Partner)</td>
<td>361</td>
<td>5.587258</td>
<td>0.2370289</td>
<td>5.121122 6.053393</td>
</tr>
<tr>
<td>Credit cycle</td>
<td>361</td>
<td>6.614958</td>
<td>0.457248</td>
<td>5.715746 7.514171</td>
</tr>
<tr>
<td>Total amount of last microcredit received</td>
<td>209</td>
<td>1086.158</td>
<td>44.76348</td>
<td>997.9096 1174.406</td>
</tr>
<tr>
<td>Duration of the microcredit (weeks)</td>
<td>209</td>
<td>10.85167</td>
<td>0.2203321</td>
<td>10.4173 11.28604</td>
</tr>
</tbody>
</table>

Variable legend: see Table A4.
Table 2. Summary statistics of Socio-Demographic and Economic Variables by Group

<table>
<thead>
<tr>
<th>Variable</th>
<th>Eligible non-participants</th>
<th>Clients</th>
<th>Drop-outs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obs</td>
<td>Mean</td>
<td>Std. Err.</td>
</tr>
<tr>
<td>Respondent’s Age</td>
<td>152</td>
<td>43.68421</td>
<td>1.104722</td>
</tr>
<tr>
<td>Household Income</td>
<td>152</td>
<td>3662.599</td>
<td>462.1428</td>
</tr>
<tr>
<td>Household Food expenditure</td>
<td>152</td>
<td>42.29793</td>
<td>3.249835</td>
</tr>
<tr>
<td>Productivity from II activity (Respondent)</td>
<td>152</td>
<td>2.131734</td>
<td>0.5867983</td>
</tr>
<tr>
<td>Productivity from I activity (Partner)</td>
<td>152</td>
<td>3.319697</td>
<td>0.4366964</td>
</tr>
<tr>
<td>Productivity from II activity (Partner)</td>
<td>152</td>
<td>0.0648148</td>
<td>0.0497471</td>
</tr>
<tr>
<td>Job Experience (years)</td>
<td>152</td>
<td>7.447368</td>
<td>0.684113</td>
</tr>
<tr>
<td>N. of temporary employees</td>
<td>152</td>
<td>0.0263158</td>
<td>0.0130265</td>
</tr>
<tr>
<td>Savings/month</td>
<td>152</td>
<td>78.48684</td>
<td>25.43209</td>
</tr>
<tr>
<td>N. of persons in the house</td>
<td>150</td>
<td>4.013333</td>
<td>0.1608108</td>
</tr>
<tr>
<td>N.of children</td>
<td>152</td>
<td>2.519737</td>
<td>0.1600503</td>
</tr>
<tr>
<td>Schooling years (Respondent)</td>
<td>150</td>
<td>8.9</td>
<td>0.2614278</td>
</tr>
<tr>
<td>Schooling years (Partner)</td>
<td>152</td>
<td>5.828947</td>
<td>0.3903659</td>
</tr>
<tr>
<td>Credit cycle</td>
<td>150</td>
<td>15.76</td>
<td>0.4911458</td>
</tr>
</tbody>
</table>

Variable legend: see Table A4.
Table 3. Summary statistics of Socio-Demographic and Economic Variables by Geographic Area

<table>
<thead>
<tr>
<th>Variable</th>
<th>MITRE</th>
<th>S. BRIGIDA</th>
<th>VILLA DE MAYO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obs Mean Std. Dev. [95% Conf. Interval]</td>
<td>Obs Mean Std. Dev. [95% Conf. Interval]</td>
<td>Obs Mean Std. Dev. [95% Conf. Interval]</td>
</tr>
<tr>
<td>Respondent’s Age</td>
<td>147 43.83673 12.53436 41.79356 45.87991</td>
<td>165 41.97576 12.57269 40.04312 43.9084</td>
<td>49 45.34694 13.76673 41.39267 49.30121</td>
</tr>
<tr>
<td>Household Income</td>
<td>147 3750.075 2479.137 3345.96 4154.19</td>
<td>165 4666.333 6627.107 3647.632 5685.034</td>
<td>49 3213.98 2724.602 20.3277 40.29763</td>
</tr>
<tr>
<td>Household Food expenditure</td>
<td>147 37.36071 21.4312 33.86681 40.8546</td>
<td>165 41.17489 38.61064 35.23977 47.11002</td>
<td>49 35.5102 16.66738 30.7227 40.29763</td>
</tr>
<tr>
<td>Productivity from I activity (Partner)</td>
<td>147 3.482909 5.809838 2.535871 4.429948</td>
<td>165 4.705933 7.757082 3.513536 5.898331</td>
<td>49 3.506563 4.585527 2.189446 4.823681</td>
</tr>
<tr>
<td>Savings/month</td>
<td>147 178.9116 407.493 112.4877 245.3355</td>
<td>165 238.9455 667.5099 163.3417 341.5573</td>
<td>49 29.18367 90.11189 3.300516 55.06863</td>
</tr>
<tr>
<td>N. of children</td>
<td>147 3.244898 2.069319 2.907586 3.58221</td>
<td>165 2.951515 2.186879 2.615077 3.287953</td>
<td>49 2.367347 2.048311 1.779003 2.955691</td>
</tr>
<tr>
<td>Credit cycle</td>
<td>147 9.086435 9.259821 7.353103 10.64177</td>
<td>165 6.375758 8.137001 5.248371 7.626878</td>
<td>49 0 0 0 0</td>
</tr>
<tr>
<td>Total amount of last microcredit received</td>
<td>106 1226.038 678.1511 1095.434 1356.642</td>
<td>103 942.039 582.5151 828.3574 1058.05</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Duration of the microcredit (weeks)</td>
<td>106 11.03774 3.488551 10.36588 11.70959</td>
<td>103 10.66019 2.844166 10.10433 11.21606</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>

Variable legend: see Table A4.
Table 4. The effect the length of borrowing relationship with the MF institutions on child schooling (fixed-effects estimates)

<table>
<thead>
<tr>
<th>Dep. Var: School</th>
<th>Whole Sample</th>
<th>Clients&Drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parentage 29-33</td>
<td>3.463***</td>
<td>3.329***</td>
<td>3.251***</td>
<td>3.123***</td>
<td>2.993***</td>
<td>3.014***</td>
<td>2.705***</td>
<td>2.759***</td>
<td>2.806***</td>
<td>2.671***</td>
</tr>
<tr>
<td></td>
<td>(0.965)</td>
<td>(0.977)</td>
<td>(0.963)</td>
<td>(0.975)</td>
<td>(0.978)</td>
<td>(0.992)</td>
<td>(0.984)</td>
<td>(0.999)</td>
<td>(0.998)</td>
<td>(1.009)</td>
</tr>
<tr>
<td></td>
<td>(1.210)</td>
<td>(1.314)</td>
<td>(1.216)</td>
<td>(1.320)</td>
<td>(1.219)</td>
<td>(1.325)</td>
<td>(1.240)</td>
<td>(1.351)</td>
<td>(1.258)</td>
<td>(1.372)</td>
</tr>
<tr>
<td>Parentage 39-43</td>
<td>4.055***</td>
<td>3.645***</td>
<td>3.780***</td>
<td>3.354***</td>
<td>3.598***</td>
<td>3.304**</td>
<td>3.196**</td>
<td>2.914*</td>
<td>3.328**</td>
<td>2.832*</td>
</tr>
<tr>
<td></td>
<td>(1.431)</td>
<td>(1.533)</td>
<td>(1.443)</td>
<td>(1.546)</td>
<td>(1.452)</td>
<td>(1.558)</td>
<td>(1.477)</td>
<td>(1.587)</td>
<td>(1.480)</td>
<td>(1.590)</td>
</tr>
<tr>
<td></td>
<td>(809.4)</td>
<td>(1175)</td>
<td>(836.7)</td>
<td>(1117)</td>
<td>(718.3)</td>
<td>(957.0)</td>
<td>(839.5)</td>
<td>(918.1)</td>
<td>(894.0)</td>
<td>(965.4)</td>
</tr>
<tr>
<td></td>
<td>(0.421)</td>
<td>(0.450)</td>
<td>(0.429)</td>
<td>(0.463)</td>
<td>(0.411)</td>
<td>(0.444)</td>
<td>(0.422)</td>
<td>(0.458)</td>
<td>(0.428)</td>
<td>(0.461)</td>
</tr>
<tr>
<td>PreAftTend</td>
<td>-0.473</td>
<td>0.0236</td>
<td>-0.485</td>
<td>0.00924</td>
<td>-0.722**</td>
<td>-0.0967</td>
<td>-0.748**</td>
<td>-0.126</td>
<td>-0.519*</td>
<td>-0.0128</td>
</tr>
<tr>
<td></td>
<td>(0.311)</td>
<td>(0.188)</td>
<td>(0.309)</td>
<td>(0.195)</td>
<td>(0.344)</td>
<td>(0.261)</td>
<td>(0.346)</td>
<td>(0.281)</td>
<td>(0.311)</td>
<td>(0.205)</td>
</tr>
<tr>
<td>JobExperience</td>
<td>1.355***</td>
<td>1.689***</td>
<td>1.361***</td>
<td>1.668***</td>
<td>1.094**</td>
<td>1.502***</td>
<td>1.094**</td>
<td>1.491***</td>
<td>1.312***</td>
<td>1.623***</td>
</tr>
<tr>
<td></td>
<td>(0.408)</td>
<td>(0.395)</td>
<td>(0.408)</td>
<td>(0.400)</td>
<td>(0.429)</td>
<td>(0.429)</td>
<td>(0.433)</td>
<td>(0.440)</td>
<td>(0.412)</td>
<td>(0.405)</td>
</tr>
<tr>
<td>NChildren</td>
<td>1.895***</td>
<td>1.569***</td>
<td>2.016***</td>
<td>1.691***</td>
<td>1.958***</td>
<td>1.555***</td>
<td>2.086***</td>
<td>1.694***</td>
<td>2.070***</td>
<td>1.745***</td>
</tr>
<tr>
<td></td>
<td>(0.454)</td>
<td>(0.504)</td>
<td>(0.465)</td>
<td>(0.521)</td>
<td>(0.458)</td>
<td>(0.512)</td>
<td>(0.469)</td>
<td>(0.527)</td>
<td>(0.472)</td>
<td>(0.533)</td>
</tr>
<tr>
<td>AffilYears</td>
<td>0.537</td>
<td>0.147</td>
<td>0.256</td>
<td>-0.0400</td>
<td>-0.358</td>
<td>-0.385</td>
<td>-0.454</td>
<td>-0.476</td>
<td>0.154</td>
<td>-0.106</td>
</tr>
<tr>
<td></td>
<td>(0.331)</td>
<td>(0.275)</td>
<td>(0.368)</td>
<td>(0.290)</td>
<td>(0.354)</td>
<td>(0.304)</td>
<td>(0.336)</td>
<td>(0.297)</td>
<td>(0.357)</td>
<td>(0.280)</td>
</tr>
<tr>
<td>AffilYears*Sbrigida</td>
<td>0.882**</td>
<td>0.815**</td>
<td>(0.424)</td>
<td>(0.406)</td>
<td>0.769**</td>
<td>0.740*</td>
<td>0.387</td>
<td>(0.385)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AffilYears*Distant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.485***</td>
<td>1.024**</td>
<td>1.415***</td>
<td>0.991**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.479)</td>
<td>(0.417)</td>
<td>(0.471)</td>
<td>(0.417)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
<table>
<thead>
<tr>
<th>Dep. Var.: School</th>
<th>(1) whole sample</th>
<th>(2) clients&drops</th>
<th>(3) whole sample</th>
<th>(4) clients&drops</th>
<th>(5) whole sample</th>
<th>(6) clients&drops</th>
<th>(7) whole sample</th>
<th>(8) clients&drops</th>
<th>(9) whole sample</th>
<th>(10) clients&drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parentage</td>
<td>-0.0267***</td>
<td>-0.0395***</td>
<td>-0.0271***</td>
<td>-0.0402***</td>
<td>-0.0265**</td>
<td>-0.0395***</td>
<td>-0.0270***</td>
<td>-0.0405***</td>
<td>-0.0270**</td>
<td>-0.0400***</td>
</tr>
<tr>
<td></td>
<td>(0.0121)</td>
<td>(0.0148)</td>
<td>(0.0121)</td>
<td>(0.0148)</td>
<td>(0.0121)</td>
<td>(0.0148)</td>
<td>(0.0121)</td>
<td>(0.0149)</td>
<td>(0.0121)</td>
<td>(0.0148)</td>
</tr>
<tr>
<td>Childage</td>
<td>-0.525***</td>
<td>-0.525***</td>
<td>-0.526***</td>
<td>-0.527***</td>
<td>-0.525***</td>
<td>-0.525***</td>
<td>-0.526***</td>
<td>-0.527***</td>
<td>-0.526***</td>
<td>-0.527***</td>
</tr>
<tr>
<td></td>
<td>(0.0297)</td>
<td>(0.0374)</td>
<td>(0.0297)</td>
<td>(0.0375)</td>
<td>(0.0298)</td>
<td>(0.0375)</td>
<td>(0.0298)</td>
<td>(0.0376)</td>
<td>(0.0297)</td>
<td>(0.0374)</td>
</tr>
<tr>
<td>Male</td>
<td>0.366***</td>
<td>0.278</td>
<td>0.365**</td>
<td>0.279</td>
<td>0.379**</td>
<td>0.294*</td>
<td>0.379**</td>
<td>0.294*</td>
<td>0.379**</td>
<td>0.370***</td>
</tr>
<tr>
<td></td>
<td>(0.142)</td>
<td>(0.173)</td>
<td>(0.142)</td>
<td>(0.174)</td>
<td>(0.142)</td>
<td>(0.173)</td>
<td>(0.142)</td>
<td>(0.174)</td>
<td>(0.142)</td>
<td>(0.173)</td>
</tr>
<tr>
<td>RespEducation</td>
<td>0.151***</td>
<td>0.158***</td>
<td>0.150***</td>
<td>0.157***</td>
<td>0.156***</td>
<td>0.163***</td>
<td>0.156***</td>
<td>0.162***</td>
<td>0.150***</td>
<td>0.156***</td>
</tr>
<tr>
<td></td>
<td>(0.0373)</td>
<td>(0.0466)</td>
<td>(0.0373)</td>
<td>(0.0466)</td>
<td>(0.0379)</td>
<td>(0.0475)</td>
<td>(0.0379)</td>
<td>(0.0475)</td>
<td>(0.0373)</td>
<td>(0.0466)</td>
</tr>
<tr>
<td>PartnerEducation</td>
<td>0.0552***</td>
<td>0.0563**</td>
<td>0.0540***</td>
<td>0.0537**</td>
<td>0.0543***</td>
<td>0.0561**</td>
<td>0.0529***</td>
<td>0.0533**</td>
<td>0.0532***</td>
<td>0.0528**</td>
</tr>
<tr>
<td></td>
<td>(0.0184)</td>
<td>(0.0230)</td>
<td>(0.0184)</td>
<td>(0.0230)</td>
<td>(0.0184)</td>
<td>(0.0230)</td>
<td>(0.0185)</td>
<td>(0.0230)</td>
<td>(0.0185)</td>
<td>(0.0230)</td>
</tr>
<tr>
<td>PreAfftTend</td>
<td>-0.0471**</td>
<td>-0.0175</td>
<td>-0.0479**</td>
<td>-0.0182</td>
<td>-0.0469**</td>
<td>-0.0173</td>
<td>-0.0476**</td>
<td>-0.0179</td>
<td>-0.0482**</td>
<td>-0.0185</td>
</tr>
<tr>
<td></td>
<td>(0.0219)</td>
<td>(0.0242)</td>
<td>(0.0219)</td>
<td>(0.0242)</td>
<td>(0.0218)</td>
<td>(0.0241)</td>
<td>(0.0218)</td>
<td>(0.0241)</td>
<td>(0.0219)</td>
<td>(0.0241)</td>
</tr>
<tr>
<td>JobExperience</td>
<td>0.0362***</td>
<td>0.0283**</td>
<td>0.0370***</td>
<td>0.0294**</td>
<td>0.0359***</td>
<td>0.0281**</td>
<td>0.0367***</td>
<td>0.0292**</td>
<td>0.0373***</td>
<td>0.0298**</td>
</tr>
<tr>
<td></td>
<td>(0.0105)</td>
<td>(0.0121)</td>
<td>(0.0106)</td>
<td>(0.0122)</td>
<td>(0.0105)</td>
<td>(0.0121)</td>
<td>(0.0106)</td>
<td>(0.0122)</td>
<td>(0.0106)</td>
<td>(0.0122)</td>
</tr>
<tr>
<td>NChildren</td>
<td>-0.0826***</td>
<td>-0.0496</td>
<td>-0.0801***</td>
<td>-0.0448</td>
<td>-0.0826***</td>
<td>-0.0503</td>
<td>-0.0798**</td>
<td>-0.0454</td>
<td>-0.0780**</td>
<td>-0.0422</td>
</tr>
<tr>
<td></td>
<td>(0.0319)</td>
<td>(0.0385)</td>
<td>(0.0320)</td>
<td>(0.0388)</td>
<td>(0.0319)</td>
<td>(0.0385)</td>
<td>(0.0320)</td>
<td>(0.0387)</td>
<td>(0.0321)</td>
<td>(0.0389)</td>
</tr>
<tr>
<td>AffiliYears</td>
<td>-0.0170</td>
<td>0.0321</td>
<td>-0.0480</td>
<td>0.00119</td>
<td>-0.193**</td>
<td>-0.135</td>
<td>-0.241***</td>
<td>-0.179*</td>
<td>-0.0504</td>
<td>-0.00105</td>
</tr>
<tr>
<td></td>
<td>(0.0489)</td>
<td>(0.0555)</td>
<td>(0.0531)</td>
<td>(0.0582)</td>
<td>(0.0856)</td>
<td>(0.0920)</td>
<td>(0.0876)</td>
<td>(0.0927)</td>
<td>(0.0522)</td>
<td>(0.0581)</td>
</tr>
<tr>
<td>AffiliYears*Sbrigida</td>
<td>0.157*</td>
<td>0.190**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0937)</td>
<td>(0.0945)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AffiliYears*Distant</td>
<td>0.229**</td>
<td>0.207**</td>
<td>0.245**</td>
<td>0.220**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0905)</td>
<td>(0.0921)</td>
<td>(0.0896)</td>
<td>(0.0910)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AffiliYearsSbrigidaDistant</td>
<td>0.242** (0.103)</td>
<td>0.260** (0.105)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year Dummies</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>7437</td>
<td>4956</td>
<td>7437</td>
<td>4956</td>
<td>7437</td>
<td>4956</td>
<td>7437</td>
<td>4956</td>
<td>7437</td>
<td>4956</td>
</tr>
<tr>
<td>AIC</td>
<td>4623.855</td>
<td>3201.536</td>
<td>4619.987</td>
<td>3195.302</td>
<td>4611.723</td>
<td>3192.431</td>
<td>4606.229</td>
<td>3185.046</td>
<td>4616.327</td>
<td>3192.895</td>
</tr>
<tr>
<td>BIC</td>
<td>4755.226</td>
<td>3325.195</td>
<td>4758.271</td>
<td>3325.469</td>
<td>4750.007</td>
<td>3322.598</td>
<td>4751.428</td>
<td>3321.721</td>
<td>4754.611</td>
<td>3323.062</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>-2293</td>
<td>-1582</td>
<td>-2290</td>
<td>-1578</td>
<td>-2286</td>
<td>-1576</td>
<td>-2282</td>
<td>-1572</td>
<td>-2288</td>
<td>-1576</td>
</tr>
</tbody>
</table>

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Table 6. Robustness checks (specifications n. 7 and 8)

<table>
<thead>
<tr>
<th>Model:</th>
<th>a) RANDOM EFFECTS</th>
<th>b) MULTILEVEL</th>
<th>c) FIXED EFFECTS</th>
<th>d) POOLED OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep var:</td>
<td>School Whole Sample</td>
<td>School Whole Sample</td>
<td>School Whole Sample</td>
<td>School Whole Sample</td>
</tr>
<tr>
<td></td>
<td>Clients&Drops</td>
<td>Clients&Drops</td>
<td>Clients&Drops</td>
<td>Clients&Drops</td>
</tr>
<tr>
<td>Parentage 29-33</td>
<td>1.803**</td>
<td>1.943**</td>
<td>1.803**</td>
<td>1.925**</td>
</tr>
<tr>
<td></td>
<td>(0.749)</td>
<td>(0.807)</td>
<td>(0.734)</td>
<td>(0.791)</td>
</tr>
<tr>
<td>Parentage 34-38</td>
<td>1.229</td>
<td>1.604*</td>
<td>1.205</td>
<td>1.503*</td>
</tr>
<tr>
<td></td>
<td>(0.829)</td>
<td>(0.908)</td>
<td>(0.821)</td>
<td>(0.899)</td>
</tr>
<tr>
<td>Parentage 39-43</td>
<td>1.149</td>
<td>1.335</td>
<td>1.111</td>
<td>1.223</td>
</tr>
<tr>
<td></td>
<td>(0.873)</td>
<td>(0.960)</td>
<td>(0.871)</td>
<td>(0.961)</td>
</tr>
<tr>
<td>Parentage 44-48</td>
<td>0.220</td>
<td>0.203</td>
<td>0.313</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>(0.909)</td>
<td>(1.005)</td>
<td>(0.924)</td>
<td>(1.030)</td>
</tr>
<tr>
<td>Parentage >48</td>
<td>0.143</td>
<td>0.0317</td>
<td>0.452</td>
<td>0.0707</td>
</tr>
<tr>
<td></td>
<td>(0.974)</td>
<td>(1.087)</td>
<td>(1.009)</td>
<td>(1.136)</td>
</tr>
<tr>
<td>Male</td>
<td>0.779*</td>
<td>0.596</td>
<td>0.515</td>
<td>0.530</td>
</tr>
<tr>
<td></td>
<td>(0.414)</td>
<td>(0.484)</td>
<td>(0.365)</td>
<td>(0.429)</td>
</tr>
<tr>
<td>RespEducation</td>
<td>0.447***</td>
<td>0.418***</td>
<td>0.386***</td>
<td>0.357***</td>
</tr>
<tr>
<td></td>
<td>(0.0837)</td>
<td>(0.0967)</td>
<td>(0.114)</td>
<td>(0.134)</td>
</tr>
<tr>
<td>PartnerEducation</td>
<td>0.124**</td>
<td>0.0761</td>
<td>0.0995</td>
<td>0.0179</td>
</tr>
<tr>
<td></td>
<td>(0.0527)</td>
<td>(0.0633)</td>
<td>(0.0725)</td>
<td>(0.0898)</td>
</tr>
<tr>
<td>Chiladge</td>
<td>-1.571***</td>
<td>-1.543***</td>
<td>-1.565***</td>
<td>-1.527***</td>
</tr>
<tr>
<td></td>
<td>(0.0925)</td>
<td>(0.102)</td>
<td>(0.0938)</td>
<td>(0.103)</td>
</tr>
<tr>
<td>PreAffTend</td>
<td>-0.0669</td>
<td>-0.00230</td>
<td>-0.036</td>
<td>0.0132</td>
</tr>
<tr>
<td></td>
<td>(0.0640)</td>
<td>(0.0636)</td>
<td>(0.0674)</td>
<td>(0.0659)</td>
</tr>
<tr>
<td>JobExperience</td>
<td>0.0589*</td>
<td>0.0487</td>
<td>0.0252</td>
<td>0.0347</td>
</tr>
<tr>
<td></td>
<td>(0.0303)</td>
<td>(0.0333)</td>
<td>(0.0396)</td>
<td>(0.0430)</td>
</tr>
<tr>
<td>NChildren</td>
<td>-0.193**</td>
<td>-0.0715</td>
<td>-0.149</td>
<td>-0.0178</td>
</tr>
<tr>
<td></td>
<td>(0.0932)</td>
<td>(0.112)</td>
<td>(0.140)</td>
<td>(0.164)</td>
</tr>
<tr>
<td>AffiYears</td>
<td>-0.625***</td>
<td>-0.621***</td>
<td>-0.636***</td>
<td>-0.678***</td>
</tr>
<tr>
<td></td>
<td>(0.190)</td>
<td>(0.194)</td>
<td>(0.199)</td>
<td>(0.201)</td>
</tr>
<tr>
<td>AffiYears*Sbrigida</td>
<td>0.496**</td>
<td>0.502**</td>
<td>0.507**</td>
<td>0.506**</td>
</tr>
<tr>
<td></td>
<td>(0.225)</td>
<td>(0.218)</td>
<td>(0.246)</td>
<td>(0.236)</td>
</tr>
<tr>
<td>AffiYears*Distant</td>
<td>0.618***</td>
<td>0.596***</td>
<td>0.573***</td>
<td>0.564***</td>
</tr>
<tr>
<td></td>
<td>(0.208)</td>
<td>(0.202)</td>
<td>(0.222)</td>
<td>(0.213)</td>
</tr>
<tr>
<td>Year-Dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Constant</td>
<td>20.85***</td>
<td>19.21***</td>
<td>21.05***</td>
<td>19.44***</td>
</tr>
<tr>
<td></td>
<td>(1.541)</td>
<td>(1.671)</td>
<td>(1.719)</td>
<td>(1.903)</td>
</tr>
<tr>
<td>RE 1: child (std. dev.)</td>
<td>3.276***</td>
<td>3.170***</td>
<td>3.736***</td>
<td>3.596***</td>
</tr>
<tr>
<td></td>
<td>(0.131)</td>
<td>(0.151)</td>
<td>(0.373)</td>
<td>(0.324)</td>
</tr>
<tr>
<td>RE 2: family (std. dev.)</td>
<td>3.734***</td>
<td>3.402***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.291)</td>
<td>(0.405)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of level 1 units</td>
<td>7437</td>
<td>4956</td>
<td>7437</td>
<td>4956</td>
</tr>
<tr>
<td></td>
<td>(1689)</td>
<td>(1567)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of level 2 units (child)</td>
<td>861</td>
<td>562</td>
<td>861</td>
<td>562</td>
</tr>
<tr>
<td></td>
<td>(295)</td>
<td>(176)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.578</td>
<td>0.602</td>
<td>0.613</td>
<td>0.629</td>
</tr>
</tbody>
</table>

(5-6) Child-Clustered Standard errors in parentheses; (7-10) Robust S.E. in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Table 7. Robustness checks (specifications n. 9 and 10)

<table>
<thead>
<tr>
<th>Model:</th>
<th>a) RANDOM EFFECTS</th>
<th>b) MULTILEVEL</th>
<th>c) FIXED EFFECTS</th>
<th>d) POOLED OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Dep var:</td>
<td>School (Whole Sample)</td>
<td>School (Clients&Drops)</td>
<td>Education Gap (Whole Sample)</td>
<td>Education Gap (Clients & Drops)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parentage 29-33</td>
<td>1.794***</td>
<td>1.928**</td>
<td>1.823**</td>
<td>1.949**</td>
</tr>
<tr>
<td></td>
<td>(0.751)</td>
<td>(0.812)</td>
<td>(0.740)</td>
<td>(0.803)</td>
</tr>
<tr>
<td>Parentage 34-38</td>
<td>1.185</td>
<td>1.535*</td>
<td>1.198</td>
<td>1.483</td>
</tr>
<tr>
<td></td>
<td>(0.832)</td>
<td>(0.913)</td>
<td>(0.823)</td>
<td>(0.908)</td>
</tr>
<tr>
<td>Parentage 39-43</td>
<td>1.137</td>
<td>1.311</td>
<td>1.161</td>
<td>1.239</td>
</tr>
<tr>
<td></td>
<td>(0.876)</td>
<td>(0.966)</td>
<td>(0.873)</td>
<td>(0.971)</td>
</tr>
<tr>
<td>Parentage 44-48</td>
<td>0.223</td>
<td>0.195</td>
<td>0.371</td>
<td>0.135</td>
</tr>
<tr>
<td></td>
<td>(0.912)</td>
<td>(1.011)</td>
<td>(0.925)</td>
<td>(1.038)</td>
</tr>
<tr>
<td>Parentage >48</td>
<td>0.111</td>
<td>-0.0203</td>
<td>0.519</td>
<td>0.0676</td>
</tr>
<tr>
<td></td>
<td>(0.977)</td>
<td>(1.093)</td>
<td>(1.010)</td>
<td>(1.145)</td>
</tr>
<tr>
<td>Male</td>
<td>0.758*</td>
<td>0.570</td>
<td>0.492</td>
<td>0.494</td>
</tr>
<tr>
<td></td>
<td>(0.416)</td>
<td>(0.488)</td>
<td>(0.364)</td>
<td>(0.430)</td>
</tr>
<tr>
<td>RespEducation</td>
<td>0.431***</td>
<td>0.395***</td>
<td>0.402***</td>
<td>0.356***</td>
</tr>
<tr>
<td></td>
<td>(0.0839)</td>
<td>(0.0972)</td>
<td>(0.117)</td>
<td>(0.136)</td>
</tr>
<tr>
<td>PartnerEducation</td>
<td>0.121**</td>
<td>0.0694</td>
<td>0.103</td>
<td>0.0129</td>
</tr>
<tr>
<td></td>
<td>(0.0530)</td>
<td>(0.0638)</td>
<td>(0.0736)</td>
<td>(0.0905)</td>
</tr>
<tr>
<td>Chiladge</td>
<td>-1.581***</td>
<td>-1.558***</td>
<td>-1.574***</td>
<td>-1.556***</td>
</tr>
<tr>
<td></td>
<td>(0.0938)</td>
<td>(0.104)</td>
<td>(0.104)</td>
<td>(0.115)</td>
</tr>
<tr>
<td>PreAfftTend</td>
<td>-0.0705</td>
<td>-0.00587</td>
<td>-0.0358</td>
<td>0.0140</td>
</tr>
<tr>
<td></td>
<td>(0.0644)</td>
<td>(0.0642)</td>
<td>(0.0665)</td>
<td>(0.0659)</td>
</tr>
<tr>
<td>JobExperience</td>
<td>0.0642***</td>
<td>0.0551</td>
<td>0.0287</td>
<td>0.0408</td>
</tr>
<tr>
<td></td>
<td>(0.0305)</td>
<td>(0.0336)</td>
<td>(0.0399)</td>
<td>(0.0439)</td>
</tr>
<tr>
<td>NChildren</td>
<td>-0.182*</td>
<td>-0.0521</td>
<td>-0.139</td>
<td>0.00666</td>
</tr>
<tr>
<td></td>
<td>(0.0939)</td>
<td>(0.113)</td>
<td>(0.140)</td>
<td>(0.165)</td>
</tr>
<tr>
<td>AffilYears</td>
<td>-0.218*</td>
<td>-0.223*</td>
<td>-0.296**</td>
<td>-0.353**</td>
</tr>
<tr>
<td></td>
<td>(0.123)</td>
<td>(0.132)</td>
<td>(0.140)</td>
<td>(0.149)</td>
</tr>
<tr>
<td>AffilYearsSbrigidaDistant</td>
<td>0.767***</td>
<td>0.775***</td>
<td>0.762***</td>
<td>0.789***</td>
</tr>
<tr>
<td></td>
<td>(0.268)</td>
<td>(0.263)</td>
<td>(0.301)</td>
<td>(0.291)</td>
</tr>
<tr>
<td>Year-Dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Constant</td>
<td>21.10***</td>
<td>19.56***</td>
<td>20.76***</td>
<td>19.57***</td>
</tr>
<tr>
<td></td>
<td>(1.563)</td>
<td>(1.705)</td>
<td>(1.776)</td>
<td>(1.995)</td>
</tr>
</tbody>
</table>

(5-6) Child-Clustered Standard errors in parentheses; (7-10) Robust S.E. in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Table A1. Summary statistics of Socio-Demographic and Economic Variables by Geographic Area (ONLY CLIENTS)

<table>
<thead>
<tr>
<th>Variable</th>
<th>MITRE</th>
<th>S. BRIGIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respondent’s Age</td>
<td>Obs 44.32895 Mean 44.32895 Std. Dev. 1.365539 [95% Conf. Interval 41.60865 47.04924]</td>
<td>Obs 40.68919 Mean 40.68919 Std. Dev. 1.318134 [95% Conf. Interval 38.06215 43.31623]</td>
</tr>
<tr>
<td>Household Income</td>
<td>Obs 4419.224 Mean 4419.224 Std. Dev. 300.5372 [95% Conf. Interval 3820.523 5017.924]</td>
<td>Obs 5561.378 Mean 5561.378 Std. Dev. 718.9793 [95% Conf. Interval 4128.455 6994.302]</td>
</tr>
<tr>
<td>Household Food expenditure</td>
<td>Obs 36.78415 Mean 36.78415 Std. Dev. 2.850863 [95% Conf. Interval 31.10494 42.46336]</td>
<td>Obs 34.9749 Mean 34.9749 Std. Dev. 1.930336 [95% Conf. Interval 31.12775 38.82206]</td>
</tr>
<tr>
<td>Productivity from II activity (Respondent)</td>
<td>Obs 1.770285 Mean 1.770285 Std. Dev. 0.5189164 [95% Conf. Interval 0.7365506 2.80402]</td>
<td>Obs 4.119457 Mean 4.119457 Std. Dev. 1.748307 [95% Conf. Interval 0.6350865 7.603827]</td>
</tr>
<tr>
<td>Productivity from I activity (Partner)</td>
<td>Obs 3.762628 Mean 3.762628 Std. Dev. 0.7150822 [95% Conf. Interval 2.338111 5.187145]</td>
<td>Obs 5.990917 Mean 5.990917 Std. Dev. 1.102422 [95% Conf. Interval 3.793793 8.188041]</td>
</tr>
<tr>
<td>Productivity from II activity (Partner)</td>
<td>Obs 76 Mean 76 Std. Dev. 76 [95% Conf. Interval 0.1313814 0.3318656]</td>
<td>Obs 74 Mean 74 Std. Dev. 74 [95% Conf. Interval -0.0691029 0.3318656]</td>
</tr>
<tr>
<td>Savings/month</td>
<td>Obs 253.9474 Mean 253.9474 Std. Dev. 53.4963 [95% Conf. Interval 147.3773 360.5175]</td>
<td>Obs 375.3604 Mean 375.3604 Std. Dev. 103.113 [95% Conf. Interval 169.8565 580.8642]</td>
</tr>
<tr>
<td>N. of persons in the house</td>
<td>Obs 4.75 Mean 4.75 Std. Dev. 0.482728 [95% Conf. Interval 3.788357 5.71643]</td>
<td>Obs 5.824324 Mean 5.824324 Std. Dev. 0.4619382 [95% Conf. Interval 4.903683 6.744966]</td>
</tr>
<tr>
<td>N.of children</td>
<td>Obs 3.421053 Mean 3.421053 Std. Dev. 0.236998 [95% Conf. Interval 2.927044 3.915061]</td>
<td>Obs 3.081081 Mean 3.081081 Std. Dev. 0.236998 [95% Conf. Interval 2.619696 3.542466]</td>
</tr>
<tr>
<td>Schooling years (Respondent)</td>
<td>Obs 8.118421 Mean 8.118421 Std. Dev. 0.368406 [95% Conf. Interval 7.38437 8.852472]</td>
<td>Obs 8.69946 Mean 8.69946 Std. Dev. 0.2947802 [95% Conf. Interval 8.10845 9.283442]</td>
</tr>
<tr>
<td>Schooling years (Partner)</td>
<td>Obs 4.75 Mean 4.75 Std. Dev. 0.482728 [95% Conf. Interval 3.788357 5.71643]</td>
<td>Obs 5.824324 Mean 5.824324 Std. Dev. 0.4619382 [95% Conf. Interval 4.903683 6.744966]</td>
</tr>
<tr>
<td>Credit cycle</td>
<td>Obs 17.57895 Mean 17.57895 Std. Dev. 0.5795531 [95% Conf. Interval 16.42442 18.73348]</td>
<td>Obs 13.89189 Mean 13.89189 Std. Dev. 0.7411248 [95% Conf. Interval 12.41483 15.36895]</td>
</tr>
<tr>
<td>Total amount of last microcredit received</td>
<td>Obs 1320.395 Mean 1320.395 Std. Dev. 76.711 [95% Conf. Interval 1167.579 1473.211]</td>
<td>Obs 1095.635 Mean 1095.635 Std. Dev. 68.5187 [95% Conf. Interval 959.0776 1232.193]</td>
</tr>
<tr>
<td>Duration of the microcredit (weeks)</td>
<td>Obs 10.96053 Mean 10.96053 Std. Dev. 0.2982056 [95% Conf. Interval 10.36647 11.55458]</td>
<td>Obs 10.71622 Mean 10.71622 Std. Dev. 0.2475502 [95% Conf. Interval 10.22285 11.20958]</td>
</tr>
</tbody>
</table>
Table A2. Summary statistics of Socio-Demographic and Economic Variables by Geographic Area (ONLY ELIGIBLE NON-PARTICIPANTS)

<table>
<thead>
<tr>
<th>Variable</th>
<th>MITRE</th>
<th></th>
<th>S. BRIGIDA</th>
<th></th>
<th>VILLA DE MAYO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obs</td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>[95% Conf. Interval]</td>
<td>Obs</td>
<td>Mean</td>
</tr>
<tr>
<td>Respondent's Age</td>
<td>40</td>
<td>43.60976</td>
<td>2.181093</td>
<td>39.2016</td>
<td>48.01791</td>
<td>61</td>
</tr>
<tr>
<td>Household Income</td>
<td>40</td>
<td>2641.463</td>
<td>304.1126</td>
<td>2026.829</td>
<td>3256.098</td>
<td>61</td>
</tr>
<tr>
<td>Household Food expenditure</td>
<td>40</td>
<td>36.32404</td>
<td>2.802678</td>
<td>30.65962</td>
<td>41.98847</td>
<td>61</td>
</tr>
<tr>
<td>Productivity from II activity (Respondent)</td>
<td>40</td>
<td>2.837527</td>
<td>1.461636</td>
<td>.1165488</td>
<td>5.791604</td>
<td>61</td>
</tr>
<tr>
<td>Productivity from I activity (Partner)</td>
<td>40</td>
<td>2.059247</td>
<td>0.6687287</td>
<td>.7076955</td>
<td>3.410798</td>
<td>61</td>
</tr>
<tr>
<td>Savings/month</td>
<td>40</td>
<td>4.42458</td>
<td>0.3019863</td>
<td>3.635565</td>
<td>4.854239</td>
<td>61</td>
</tr>
<tr>
<td>N. of persons in the house</td>
<td>40</td>
<td>4.2853659</td>
<td>0.3092562</td>
<td>2.228084</td>
<td>4.792333</td>
<td>61</td>
</tr>
<tr>
<td>N.of children</td>
<td>40</td>
<td>8.292683</td>
<td>0.5275853</td>
<td>7.226393</td>
<td>9.358973</td>
<td>61</td>
</tr>
<tr>
<td>Schooling years (Respondent)</td>
<td>40</td>
<td>5.512195</td>
<td>0.6915183</td>
<td>4.114585</td>
<td>6.909806</td>
<td>61</td>
</tr>
</tbody>
</table>
Table A3. Summary statistics of Socio-Demographic and Economic Variables by Geographic Area (DROP-OUTS)

<table>
<thead>
<tr>
<th>Variable</th>
<th>MITRE</th>
<th>S. BRIGIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obs</td>
<td>Mean</td>
</tr>
<tr>
<td>Respondent’s Age</td>
<td>77</td>
<td>44.24675</td>
</tr>
<tr>
<td>Household Income</td>
<td>77</td>
<td>4394.299</td>
</tr>
<tr>
<td>Household Food expenditure</td>
<td>77</td>
<td>36.56617</td>
</tr>
<tr>
<td>Productivity from I activity (Respondent)</td>
<td>77</td>
<td>11.05316</td>
</tr>
<tr>
<td>Productivity from II activity (Respondent)</td>
<td>77</td>
<td>1.747294</td>
</tr>
<tr>
<td>Productivity from I activity (Partner)</td>
<td>77</td>
<td>3.713763</td>
</tr>
<tr>
<td>Productivity from II activity (Partner)</td>
<td>77</td>
<td>0.1296296</td>
</tr>
<tr>
<td>Job Experience (years)</td>
<td>77</td>
<td>10.05844</td>
</tr>
<tr>
<td>Savings/month</td>
<td>77</td>
<td>250.6494</td>
</tr>
<tr>
<td>N. of persons in the house</td>
<td>77</td>
<td>4.441558</td>
</tr>
<tr>
<td>N. of children</td>
<td>77</td>
<td>3.376623</td>
</tr>
<tr>
<td>Schooling years (Respondent)</td>
<td>77</td>
<td>8.012987</td>
</tr>
<tr>
<td>Schooling years (Partner)</td>
<td>77</td>
<td>4.688312</td>
</tr>
<tr>
<td>Credit cycle</td>
<td>77</td>
<td>17.35065</td>
</tr>
<tr>
<td>Total amount of last microcredit received</td>
<td>77</td>
<td>1320.395</td>
</tr>
<tr>
<td>Duration of the microcredit (weeks)</td>
<td>77</td>
<td>10.96053</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Respondent’s Age (Parentage in tab. 5)</td>
<td>Respondents’ Age</td>
<td></td>
</tr>
<tr>
<td>Household Income</td>
<td>Total monthly family income in pesos (monthly income from all the respondent’s activities + monthly income from all the activities of respondent’s partner + contributions by other members living in the household).</td>
<td></td>
</tr>
<tr>
<td>Household Food expenditure</td>
<td>Daily family food expenditure in pesos</td>
<td></td>
</tr>
<tr>
<td>Total Productivity</td>
<td>Monthly income from each activities of each family members per hour worked (in pesos).</td>
<td></td>
</tr>
<tr>
<td>Productivity from I activity (Respondent)</td>
<td>Monthly income from the respondent’s main activity per hour worked (in pesos).</td>
<td></td>
</tr>
<tr>
<td>Productivity from II activity (Respondent)</td>
<td>Monthly income from the respondent’s secondary activity (if any) per hour worked (in pesos).</td>
<td></td>
</tr>
<tr>
<td>Productivity from I activity (Partner)</td>
<td>Monthly income from the partner’s main activity per hour worked (in pesos).</td>
<td></td>
</tr>
<tr>
<td>Productivity from II activity (Partner)</td>
<td>Monthly income from the partner’s secondary activity per hour worked (in pesos).</td>
<td></td>
</tr>
<tr>
<td>Job Experience (years)</td>
<td>Respondent’s years of experience in the main activity</td>
<td></td>
</tr>
<tr>
<td>Savings/month</td>
<td>Respondent’s monthly savings (in pesos)</td>
<td></td>
</tr>
<tr>
<td>N. of persons in the house</td>
<td>Number of household members</td>
<td></td>
</tr>
<tr>
<td>N.of children (NChildren)</td>
<td>Total number of children in the household</td>
<td></td>
</tr>
<tr>
<td>Schooling years (Respondent) (RespEducation)</td>
<td>Respondent’s years of education</td>
<td></td>
</tr>
<tr>
<td>Schooling years (Partner) (PartnerEducation)</td>
<td>Years of education of the respondent’s partner</td>
<td></td>
</tr>
<tr>
<td>Credit cycle</td>
<td>Cycle of loan received from the MFI (credit seniority)</td>
<td></td>
</tr>
<tr>
<td>Total amount of last microcredit received</td>
<td>Overall amount of the loan received (in pesos)</td>
<td></td>
</tr>
<tr>
<td>Duration of the microcredit (weeks)</td>
<td>Length of the loan (weeks).</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>Dummy = 1 if child is male</td>
<td></td>
</tr>
<tr>
<td>Parentage (tab. 4, 6, 7)</td>
<td>Respondent’s age cohort dummies: years 29-33; 34-38; 39-43; 44-48; >48 (omitted benchmark is 0-29)</td>
<td></td>
</tr>
<tr>
<td>Childage</td>
<td>Child’s age (years)</td>
<td></td>
</tr>
<tr>
<td>PreAfftTend</td>
<td>Trend variable measuring the number of years before becoming MFI-borrower</td>
<td></td>
</tr>
<tr>
<td>AffilYears</td>
<td>Years of uninterrupted lending relationship with the MFI (affiliation years)</td>
<td></td>
</tr>
<tr>
<td>Sbrigida</td>
<td>Dummy = 1 if respondent lives in the village of S. Brigida.</td>
<td></td>
</tr>
<tr>
<td>Distant</td>
<td>Dummy = 1 if child lives above the median distance from the school (measured in cuadras: 1 km = 12 cuadras)</td>
<td></td>
</tr>
<tr>
<td>Year-Dummies</td>
<td>Time dummies (1989 is the omitted benchmark)</td>
<td></td>
</tr>
</tbody>
</table>