
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 877 [PM] (2013) 1028–1106

www.elsevier.com/locate/nuclphysb

Integrable Scalar Cosmologies
I. Foundations and links with String Theory

P. Fré a, A. Sagnotti b, A.S. Sorin c

a Dipartimento di Fisica, Università di Torino, INFN – Sezione di Torino, via P. Giuria 1, 10125 Torino, Italy
b Scuola Normale Superiore and INFN, Piazza dei Cavalieri, 7, 56126 Pisa, Italy

c Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna,
Moscow Region, Russia

Received 13 August 2013; received in revised form 1 October 2013; accepted 15 October 2013

Available online 23 October 2013

Abstract

We build a number of integrable one-scalar spatially flat cosmologies, which play a natural role in in-
flationary scenarios, examine their behavior in several cases and draw from them some general lessons
on this type of systems, whose potentials involve combinations of exponential functions, and on similar
non-integrable ones. These include the impossibility for the scalar to emerge from the initial singularity
descending along asymptotically exponential potentials with logarithmic slopes exceeding a critical value
(“climbing phenomenon”) and the inevitable collapse in a Big Crunch whenever the scalar tries to settle
at negative extrema of the potential. We also elaborate on the links between these types of potentials and
“brane supersymmetry breaking”, a mechanism that ties together string scale and scale of supersymmetry
breaking in a class of orientifold models.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Cosmic Microwave Background (CMB) is a mine of profound hints on the early history
of our Universe [1]. Together with the results obtained by the Cosmological Supernova project
[2], the impressive data on its temperature fluctuations recorded during the last decade or so have
led in fact to a new paradigm for Cosmology reflecting three main facts:
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• Our Universe is highly isotropic and homogeneous at large scales, while its current state of
acceleration is well accounted for by a small positive cosmological constant;

• Our Universe is spatially flat, which brings to the forefront metrics of the form

ds2 = e2B(t) dt2 − a2(t)dx · dx. (1.1)

Special “gauge functions” B(t) can result in simpler expressions for the scale factor a(t),
which becomes a quantity of utmost interest for Theoretical Physics;

• Vacuum energy accounts for about 70% of the present contents of the Universe, dark matter
of unknown origin for another 24%, so that only 6% is left for conventional baryonic matter
in the form of luminous stars and galaxies.

The inflationary scenario is today the widely adopted paradigm to interpret these facts within
a consistent framework [3]. It ascribes the observed spatial flatness of our Universe to a primeval
accelerated expansion of the scale factor a(t) that was somehow injected right after the Big Bang.
This epoch of acceleration was then gracefully exited leaving way to more standard epochs of
decelerated expansion dominated by radiation and matter, and both the early stage of inflation
and the ensuing history of the Universe can find a rationale within the framework of General
Relativity. Actually, even the current acceleration could perhaps originate from a small relic of
the early inflationary phase that is resuming some prominence after other forms of energy have
been diluted by billions of years of cosmological expansion.

Although various attempts have been made over the years to generate inflation by different
means [5], its simplest and most natural realization remains based on the coupling of Einstein
gravity to scalar fields ΦI with self interactions driven by potential functions V (Φ). The vacuum
energy during inflation is then essentially the slowly varying value of this potential function, and
the available solutions of the coupled Einstein–Klein–Gordon equations provide possible back-
grounds for evolutionary histories of the Universe. Not only does this viewpoint provide the
simplest route toward an analytical formulation of the inflationary scenario, but it is also concep-
tually most appealing, since it opens up a direct bridge between Cosmology and the Fundamental
Interactions. Scalar fields play in fact a key role in symmetry breaking mechanisms, and the re-
cent discovery of a 126 GeV scalar boson provides a striking evidence for their role in Nature
[6]. Furthermore, they are ubiquitous and abundant in Supergravity [7] in diverse dimensions,
and their geometries codify the structure of supersymmetric Lagrangians. Once Supergravity is
connected to Superstrings [8], its scalar fields acquire a higher-dimensional origin, encode prop-
erties of the compactification, accompany brane and orientifold tensions and thus acquire a real
status of messengers of Fundamental Physics.

Black-hole solutions of Supergravity have been widely studied and classified [9], but exact
time-dependent solutions of the same equations describing inflationary scenarios are compar-
atively scarce. Indeed, most of the work done on inflation during the last two decades and its
testable implications for the CMB power spectrum were derived within the slow-roll approxi-
mation [10], which imposes rather mild conditions on the potential function V (Φ). As a result,
most models rest on a variety of ad hoc potentials, typically of polynomial form, for a special
scalar field usually termed the inflaton that is supposed to have driven inflation and part of the
subsequent history of the Universe. This state of affairs might seem rather disappointing, but
actually it has long been regarded as a sign of robustness, and indeed it is usually stressed how
key consequences of inflation are rather insensitive to the detailed form of the potential. Yet, the
history of Mathematical Physics shows that exact analytic solutions of simplified and idealized
models can often provide deeper insights, since after all a real understanding of fundamental
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physical processes is only attained when one controls entire moduli spaces, whose corners can
hide much significant information.

Exact solutions of one-field cosmological models are now acquiring more interest in view of
the comparison with CMB data, since the precision reached by the PLANCK and WMAP exper-
iments [1] allows more detailed tests of the power spectrum of primeval quantum fluctuations.
Moreover, standard treatments do not address the key issue of the onset of the inflationary phase,
let alone the possibility that it be an inevitable fate for our Universe, while exact solutions for
a scalar coupled to gravity may have some bearing on the low-� end of the CMB fluctuations
and their possible non-Gaussian features. On a more mathematical note, exact solutions of the
Einstein–Klein–Gordon equations could in principle be accompanied by exact solutions for the
fluctuation equations of various types of fields, which could bring along further insights into their
behavior.

With these motivations in mind, in this paper we have performed a wide search for systems
involving a single scalar field φ minimally coupled to gravity whose potentials V (φ) result in
complete classical integrability. Our work rests, to a large extent, on important results obtained
in Mathematical Physics on integrable dynamical systems with two degrees of freedom [11–16].
Families of integrable dynamical systems depending on one or more parameters, as well as a
number of sporadic examples, can indeed be connected, within suitable ranges for the indepen-
dent variable t , to Einstein–Klein–Gordon systems whose potentials V (φ) involve rational or
irrational combinations of exponentials of φ in the metrics of Eq. (1.1). The detailed analysis of
critical points and the explicit solutions of the resulting cosmological models reveal clearly two
key features of these systems:

• The climbing phenomenon, whereby the scalar field cannot emerge from the initial singu-
larity climbing down potentials that are asymptotically exponential with logarithmic slopes
exceeding a critical value. Or, if you will, the impossibility for scalar fields to overcome, in
a contracting phase, the attractive force of such potential ends. The physical meaning of this
phenomenon was first elucidated in [18] in the simple exponential potential, although the
corresponding solutions have a long history [19,20]. Possible imprints on the low-� tail of
the CMB power spectrum were then discussed in [21], while an analysis of the mechanism
near the initial singularity was recently presented in [22];

• The eventual collapse in a Big Crunch of systems of this type whenever the scalar tends to
settle at a negative extremum of the potential V (φ). This was expected: it reflects the fact that
AdS has no spatially flat metrics, or that negative extrema are non-admissible fixed points
for the corresponding dynamical systems.

This insight made it possible to also understand the gross features of a number of complicated
sporadic systems whose Liouville integrability does not translate into handy ways of solving
their field equations. Moreover, general features of two-dimensional dynamical systems suggest
that integrable models capture at least the gross features of these systems, where chaotic behavior
can be generically excluded.

Let us stress that potentials involving combinations of exponentials play an important role in
Supergravity and in String Theory. In particular, potentials involving a single exponential emerge
at tree level in brane–antibrane systems, where, however, they are generally accompanied by
tachyonic excitations, but also in classically stable “brane supersymmetry breaking” [23] (BSB)
vacuum configurations of (anti)branes and orientifolds [24]. In these models SUSY is broken at
the string scale and is non-linearly realized in the low-energy Supergravity [25]. Moreover, in
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general gauged supergravity models based on non-compact coset manifolds G/H one can always
resort to a solvable parametrization, and the scalar fields then fall in two classes [26]:

• The fields hi associated with the Cartan generators of the Lie algebra of G, whose number
equals the rank r of the coset and whose kinetic terms, determined by the invariant metric of
G/H, are canonical up to an overall constant;

• The axions bI associated with the roots of the Lie algebra of G, whose kinetic terms depend
instead on both the Cartan fields hi and the bI .

The scalar potentials of gauged Supergravity are in general polynomial functions of coset repre-
sentatives, so that once the axions are set to constant values, which solves their field equations,
one is left with combinations of exponentials of Cartan fields. Moreover, as shown in [18], the
non-minimal axion couplings can have the effect of “freezing” these fields close to the initial
singularity. All in all, a final consistent truncation to a single Cartan field φ, with all others stabi-
lized at extremal values, leads generically to potentials involving combinations of exponentials
of φ.

Having ascertained that exponential functions play a role in Supergravity and in String Theory,
three intriguing questions emerge:

1. Can the integrable models that we have identified be realized within conventional gauged
Supergravity, and for what choices of fluxes? This proviso is important, since some of the
simplest potentials in our list do appear, albeit in versions where SUSY is non-linearly real-
ized.

2. Can integrable potentials provide interesting insights on inflationary scenarios behind the
slow-roll regime, in addition to those encoded by the single-exponential potential, the sim-
plest member of the set, that already revealed the existence of the climbing phenomenon?

3. How much can one learn from integrable potentials about Cosmology with similar non-
integrable potentials?

The first question is perhaps the most difficult one, but it is also particularly interesting since
a proper understanding of the issue will encode low-energy manifestations of non-perturbative
string effects present in these contexts even with supersymmetry broken at high scales. It will be
dealt with in detail elsewhere [27].

The second question has encouraging answers. There are indeed two classes of handily inte-
grable models where an early climbing phase leaves way to inflation during the ensuing descent
(models (2) and (9) in Table 1). This setting can leave interesting imprints on the low-� portion
of the CMB power spectrum [21] that are qualitatively along the lines of WMAP and PLANCK
data and is close to BSB orientifold models, although not quite identical to them. Model (6) in
Table 1 is perhaps the most interesting of all the examples that we are presenting, since it can
even combine, in a rather elegant and relatively handy fashion, an early climbing phase with
tens of e-folds of slow-roll inflation and with a graceful exit to an eventual phase of decelerated
expansion.

Finally, the extensive literature on two-dimensional dynamical systems implies a positive an-
swer to the third question. It turns out, in fact, that the dynamical system counterparts of our
cosmological equations experience behaviors that are largely determined by the nature of their
fixed points, and more specifically by the eigenvalues of their linear approximations in the vicin-
ity of them. As a result, when an integrable potential has the same type of fixed points as a



1032 P. Fré et al. / Nuclear Physics B 877 [PM] (2013) 1028–1106
physically interesting non-integrable one, its exact solutions are expected to provide trustable
clues on the actual physical system. This result is very appealing, despite the absence of general
estimates of the error, and will be illustrated further in [27] comparing analytical and numerical
solutions for interesting families of potential wells that include the physically relevant case of
the STU model [28].

Summarizing, we have constructed a wide list of one-field integrable cosmologies and we
have examined in detail the properties of their most significant solutions, arriving in this fashion
at a qualitative grasp of the general case. We have also addressed the question of whether the
integrable models provide valuable approximations of similar non-integrable models, and in this
respect we have obtained encouraging results that find a rationale in the ascertained behavior of
corresponding two-dimensional dynamical systems.

The structure of the paper is as follows. In Section 2 we derive an effective dynamical model
that encompasses the possible d-dimensional Friedman–Lemaitre–Robertson–Walker (FLRW)
spatially flat cosmologies driven by a scalar field φ with canonical kinetic term and self inter-
action produced by a potential function V (φ). In Section 3 we describe the methods used to
build integrable dynamical systems and identify nine different families of one-scalar cosmolo-
gies that are integrable for suitable choices of the gauge function B(t) of Eq. (1.1). In Section 4
we analyze the generic properties of dynamical systems in two variables, we describe the general
classification of their fixed points and we illustrate the corresponding behavior of the solutions of
Section 3. We then discuss in detail the exact solutions of several particularly significant systems
identified in Section 3 and illustrate a number of instructive lessons that can be drawn from them.
In Section 5.1 we describe the gross features of 26 additional sporadic potentials and elaborate on
the qualitative behavior of their solutions, on the basis of the key lessons drawn from the simpler
examples of Section 4. We also elaborate briefly on the links with other integrable systems. In
Section 6 we illustrate how exponential potentials accompany in String Theory a mechanism for
supersymmetry breaking brought about by classically stable vacuum configurations of D branes
and orientifolds with broken supersymmetry and discuss their behavior in lower dimensions.
Under some assumptions that are spelled out in Section 6, we also describe the types of expo-
nential potentials that can emerge, in four dimensions, from various types of branes present in
String Theory. Insofar as possible, we work in a generic number of dimensions, but with critical
superstrings in our mind, so that in most of the paper 4 � d � 10. Finally Section 7 contains
our conclusions, an assessment of our current views on the role of integrability in cosmological
models emerging from a Fundamental Theory and some anticipations of results that are going to
appear elsewhere [27,29].

2. The role of integrable one-field models

In this section we set up our notation before turning to a systematic search for integrable
single-scalar cosmologies. We begin by reviewing some standard facts about FLRW cosmolo-
gies, a useful generalization of this classic setup and some basic aspects of Supergravity and
String Theory connected to the role of exponential potentials.

2.1. The effective dynamical system for scalar cosmologies

Let us begin with a derivation from first principles of the effective dynamical model whose
integrability will be our main concern in subsequent sections, in order to make contact with the
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notation commonly used in Cosmology. Our starting point is provided by the action principles
for Einstein gravity minimally coupled to n scalars in a “mostly negative” signature,

S =
∫

ddx
√−detg

[
1

2k2
d

R + 1

2
gμν∂μΦA∂νΦ

BgAB(Φ) − V (Φ)

]
, (2.1)

where

Rμ
νρσ = ∂σ Γ μ

νρ − ∂ρΓ μ
νσ + Γ μ

στΓ
τ
νρ − Γ μ

ρτΓ
τ
νσ (2.2)

and R = δμ
ρgνσ Rμ

νρσ . Actions of this type, where the scalars describe σ -models with target-
space metrics gAB , emerge generically from Supergravity in various dimensions. In most of our
examples, however, we shall focus on systems where a single scalar field φ is present to search
for potential functions V (φ) that results in integrable cosmologies.

We shall focus on spatially flat cosmologies, which are of special relevance in the inflationary
scenario, but we shall generalize slightly the standard Freedman–Lemaitre–Robertson–Walker
(FLRW) setup

ds2 = dt2 − e2A(t) dx · dx (2.3)

allowing for a wider class of metrics involving “gauge functions” B(t),

ds2 = e2B(t) dt2 − e2A(t) dx · dx, (2.4)

so that in the models that we shall examine the “parametric” time t and the actual cosmic time tc
measured by comoving observers will be related, in general, according to

dtc = eB(t) dt, (2.5)

up to a “minus” sign that we shall introduce in some cases. This slight departure from the standard
setting will prove essential to arrive at most of our results, since the actual solutions of Eq. (2.5)
will be rather complicated in general.

As the wider class of metrics in Eq. (2.4) involves a non-trivial g00, the corresponding dynam-
ical system for the cosmological equations

S =
∫

dt e(d−1)A−B
[
− (d − 1)(d − 2)

2k2
d

Ȧ2 + 1

2
gμνΦ̇AΦ̇BgAB(Φ) − e2BV (Φ)

]
(2.6)

follows directly once Eq. (2.1) is specialized to the case of mere time dependence for the scalar
fields in the background (2.4). Moreover, after the redefinitions

A = (d − 1)A,

ϕA = kd

√
d − 1

d − 2
ΦA,

V(ϕ) = k2
d

d − 1

d − 2
V (Φ), (2.7)

the independent equations of motion that follow from Eq. (2.6) take the simple universal form

Ȧ2 − gμνϕ̇Aϕ̇BgAB = 2e2BV(ϕ),

d

dt

(
gABϕ̇B

) + (Ȧ− Ḃ)gABϕ̇B + e2B ∂V(ϕ)

∂ϕA
= 0, (2.8)

where the dependence on the space–time dimension d has disappeared.
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In this case the Freedman equation or Hamiltonian constraint, the first of Eqs. (2.8), follows
varying the reduced action (2.6) with respect to B, while a second-order equation for A could
be derived combining Eqs. (2.8), as in the standard FLRW setting. Special choices for B lead
to different classes of exact solutions for this type of systems, as we shall see in Section 3.
However, the physical interpretation of the results will often require some care, since the relation
between t and the actual cosmic time tc , which is determined in principle by Eq. (2.5), will be
rather complicated in general, as we have already stressed, and actually in some examples t and
tc will even run in opposite directions.

Starting from the general Lagrangians of Eq. (2.1), one is interested in principle in the details
of the consistent truncations to effective Lagrangians for a single minimally coupled scalar field.
The truncation to a single scalar mode is a common simplification in Cosmology, and several
of our exact solutions can prove potentially instructive in this context. Moreover, our techniques
to identify integrable potentials will prove particularly powerful in this case and in a handful of
others involving only a few scalars, with potentials V that are combinations of exponential func-
tions. The key consistency requirement for the truncation brings into the game n − 1 constants
Φa

0 such that

gAB(Φ)
∂

∂ΦB
V(Φ)

∣∣∣∣
ΦA=ΦA

0

= 0 (a = 1, . . . , n − 1),

gμν∂μΦA∂νΦ
BgAB(Φ)

∣∣
Φa=Φa

0
= α2gμν∂μφ∂νφ

(
φ ≡ Φn

)
, (2.9)

where φ can be identified with the n-th original field, up to a positive proportionality constant
α2. The additional parameter is useful since this type of unconventional normalization presents
itself naturally in Supergravity, as we shall see in detail in [27,29], so that it is worth emphasizing
that the actual link between (A,φ,V ) and (A, ϕ,V) in Supergravity will be in general

A= (d − 1)A,

ϕ = αkd

√
d − 1

d − 2
φ,

V(ϕ) = k2
d

d − 1

d − 2
V (φ) ≡ k2

d

d − 1

d − 2
V

(
ϕ

αkd

√
d − 2

d − 1

)
. (2.10)

Aside from this subtlety, the first of Eqs. (2.9) guarantees that setting n − 1 scalar fields to
constant values solves their equations of motion, which is clearly a necessary condition for a
consistent truncation, while the second states instead that the kinetic term of the leftover field be-
comes canonical on the (constant) solutions for the others. As we shall see in [27], in supergravity
models where the scalar manifold is a symmetric coset space these conditions can naturally be
satisfied, and one is led to associate the leftover field with a Cartan generator of the isometry Lie
algebra.

Before moving further, let us also anticipate that exponential potentials emerge in orientifold
vacua where supersymmetry is broken at the string scale due to the simultaneous presence of spe-
cial collections of branes and orientifolds dictated by consistency conditions. Although we shall
return in Section 6 to this phenomenon, usually referred to as “brane supersymmetry breaking”
[23], we ought to stress right away that the resulting dynamics is in general very complicated, so
that one can only arrive at Eq. (2.11) under two assumptions. Namely, that the stabilization of the
additional moduli does somehow take place as a result of string corrections, and moreover that
the ubiquitous higher-derivative corrections to the low-energy effective string Lagrangians play
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a subdominant role. Rigorous and fully convincing arguments to this effect are unfortunately not
available at this time, so that a systematic investigation of these phenomena from the vantage
point of Supergravity appears timely and can be potentially very instructive. We shall return to
this point in the near future, starting from the more familiar case of linear supersymmetry and
gauged Supergravity [27].

All in all, in the next sections we shall analyze in detail mechanical systems for the (A, ϕ)

variables whose equations of motion follow from the class of Lagrangians

L = eA−B
[
−1

2
Ȧ2 + 1

2
ϕ̇2 − e2BV(ϕ)

]
, (2.11)

where the potential function V involves combinations of exponentials. We have just stressed that
this class of mechanical models, whose equations of motion can be cast in the form

ϕ̈ + (Ȧ− Ḃ)ϕ̇ + e2BV ′(ϕ) = 0,

Ä = ȦḂ − ϕ̇2,

Ȧ2 − ϕ̇2 = 2e2BV(ϕ), (2.12)

the last of which is usually called the Friedman or Hamiltonian constraint, reflects the cosmolog-
ical behavior of truncated d-dimensional Supergravity in space–time metrics of the form (2.4).
Moreover, these equations have an interesting general feature: if the (parametric-)time variable
t is continued to imaginary values, their form is preserved while the class of metrics (2.4) is
turned into another of Euclidean signature, provided one also flips the sign of V . In other words,
Minkowski solutions in a given potential V afford an interesting alternative interpretation as Eu-
clidean solutions in the inverted potential −V , whenever the analytically continued functions
remain real.

The standard four-dimensional FLRW setting for spatially flat cosmologies can be recovered
inserting the definitions of scale factor and Hubble function,

a(t) = eA(t), H(t) ≡ ȧ(t)

a(t)
= Ȧ(t), (2.13)

in Eqs. (2.12) with B = 0. In particular, specializing Eqs. (2.8) to four dimensions and letting
k4 = √

2 one can recover the familiar expressions [4]

H 2 = 1

3
φ̇2 + 2

3
V (φ),

Ḣ = −φ̇2,

φ̈ + 3Hφ̇ + V ′ = 0, (2.14)

the second of which can be deduced from the others.
In the instructive hydrodynamical picture, the energy density and the pressure of the fluid

described by the scalar matter can be identified with the two combinations

ρ = 1

4
φ̇2 + 1

2
V (φ),

p = 1

4
φ̇2 − 1

2
V (φ), (2.15)

since in this fashion the first of Eqs. (2.14) translates into the familiar link between the Hubble
constant and the energy density of the Universe,
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H 2 = 4

3
ρ. (2.16)

A standard result in General Relativity (see for instance [4]) is that for a fluid whose equation of
state is

p = wρ, w ∈R (2.17)

the relation between energy density and scale factor takes the form

ρ

ρ0
=

(
a0

a

)3(1+w)

, (2.18)

where ρ0 and a0 are their values at some reference time t0. Combining Eq. (2.17) with the first
of Eqs. (2.14) one can then deduce that

a(t) ∼ (t − ti )
2

3(w+1) , (2.19)

where ti is an initial cosmic time. All values −1 � w � 1 can be encompassed by Eqs. (2.15),
including the two particularly important cases of a dust-filled Universe, for which w = 0 and

a(t) ∼ (t − ti )
2
3 , and of a radiation-filled Universe, for which w = 1

3 and a(t) ∼ (t − ti )
1
2 . More-

over, when the potential energy V (φ) becomes negligible with respect to the kinetic energy in
Eqs. (2.15), w ≈ 1. On the other hand, when the potential energy V (φ) dominates w ≈ −1, and
Eq. (2.18) implies that the energy density is an approximately constant vacuum energy, ρ ≈ ρ0.
The behavior of the scale factor is then exponential, since the Hubble function is also a constant
H0 on account of Eq. (2.16), and therefore

a(t) ≈ eH0t ; H0 =
√

4

3
ρ0. (2.20)

The actual solutions of the nonlinear Friedman equations that we shall come to with typically
originate from potentials involving combinations of exponential functions. Hence, they will cor-
respond to complicated equations of state whose index w will vary in time, but nonetheless they
will be qualitatively akin, at different epochs, to these simple types of behavior. In most of the
exact solutions that we shall describe, a Universe undergoing initially a decelerated expansion
will enter an eventual de Sitter phase, so that the integrable models at stake will typically ad-
dress the onset of inflation rather than its end, but we shall also come to an amusing example of
graceful exit.

3. Integrable families of scalar cosmologies

In this section we describe our systematic search for integrable families of scalar cosmologies,
explaining in detail the methods that we relied upon. We begin by reviewing, as an illustration, the
case of a single minimally coupled scalar with an exponential potential. This affords relatively
simple and yet very instructive exact solutions in terms of a suitable parametric time t , which
exhibit a sharp transition in their behavior when the logarithmic slope of the exponential potential
reaches a “critical” value. A similar setup will guide our subsequent search, in the remainder of
this section, for integrable families of single-scalar cosmologies. Although the actual behavior
in terms of the cosmological time tc will generally not be available in closed form, the key
features of all these solutions will also surface clearly, in Section 4, from their dependence on
the parametric time t , as for a single exponential. The results of this section are summarized in
Table 1.
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3.1. “Climbing” scalars in an exponential potential

Before proceeding to discuss more general exactly solvable exponential potentials, it is in-
structive to review how the special gauge choice

Ve2B = 1

2
(3.1)

leads to a very interesting class of exact solutions with the exponential potentials

V = V0e
2γϕ. (3.2)

In doing so, we shall pay due attention to some peculiar features of these solutions that will then
surface again in more complicated examples. This discussion will also illustrate the power and
the limitations of our approach in a relatively simple context.

The key consequence of the gauge (3.1) is that the field equations following from the La-
grangian (2.11) reduce to the autonomous system

Ȧ2 − ϕ̇2 = 1,

ϕ̈ + ϕ̇

√
1 + ϕ̇2 + γ

(
1 + ϕ̇2) = 0, (3.3)

where the equation for ϕ is effectively of first order, since the logarithmic derivative of the po-
tential function V is simply a constant, γ , for the exponential potentials in Eq. (3.2). Let us also
note that the substitutions

Ȧ = coshv, ϕ̇ = sinhv (3.4)

solve identically the first of Eq. (3.3), which is the form taken by the Hamiltonian constraint
in this gauge. Moreover, up to the field redefinition ϕ → −ϕ, one can confine the attention to
positive values of γ .

All in all, for 0 < γ < 1 the resulting first-order equation for v leads to the two classes of
solutions

ϕ̇ = 1

2

[√
1 − γ

1 + γ
coth

(
t

2

√
1 − γ 2

)
−

√
1 + γ

1 − γ
tanh

(
t

2

√
1 − γ 2

)]
(3.5)

and

ϕ̇ = 1

2

[√
1 − γ

1 + γ
tanh

(
t

2

√
1 − γ 2

)
−

√
1 + γ

1 − γ
coth

(
t

2

√
1 − γ 2

)]
. (3.6)

Notice that close to the initial singularity these two classes solutions behave as

ϕ̇ ∼ ± 1

(1 ± γ )t
, (3.7)

but the dependence on γ disappears when working in terms of the cosmological time tc, and

dϕ

dtc
∼ ± 1

tc
(3.8)

since in this coordinate system the dynamics is initially dominated by the kinetic terms.
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Eq. (3.5) describes a scalar field that emerges from the initial singularity climbing up the
exponential potential (a climbing scalar), while (3.6) describes a scalar field that emerges climb-
ing down (a descending scalar). Notice that Eqs. (3.5) and (3.6) are mapped into each other by
the combined Z2 redefinitions ϕ → −ϕ and γ → −γ , which are a manifest symmetry of the
action (2.11) with the potential (3.2). At the same time for 0 < γ < 1 the system possesses a
special exact solution, the Lucchin–Matarrese (LM) attractor [19], which in this gauge takes the
particularly simple and suggestive form

ϕ̇ = − γ√
1 − γ 2

(3.9)

and captures the late-time behavior of generic solutions. In cosmic time the LM attractor takes
the form

ϕ = − 1

γ
log

[
γ 2tc

√
2V0

1 − γ 2

]
. (3.10)

Notice that the speed of ϕ apparently increases as γ decreases. However, if the speeds are com-
pared at points where the corresponding potentials assume identical values one is led to consider

dϕ

dtc
= − 1

γ tc
= γ√

1 − γ 2

√
2V(ϕ), (3.11)

so that the resulting dependence on γ follows Eq. (3.9).
At any rate, as γ approaches one from below something dramatic happens: both the descend-

ing solution and the LM attractor disappear, and one is left with a single type of solution,

ϕ̇ = 1

2t
− t

2
, (3.12)

which is a limiting case of those in Eq. (3.5) so that it describes a “critical” scalar whose initial
climbing phase soon leaves way, in this gauge, to a descent that is essentially driven by a uniform
acceleration. In cosmic time, however, for large tc

ϕ ∼ − log tc, (3.13)

a limiting behavior that is actually attained for all values of γ . Finally, only climbing solutions
continue to be available for γ > 1, with

ϕ̇ = 1

2

[√
γ − 1

γ + 1
cot

(
t

2

√
γ 2 − 1

)
−

√
γ + 1

γ − 1
tan

(
t

2

√
γ 2 − 1

)]
. (3.14)

For this “over-critical” climbing solution near the initial singularity

ϕ̇ ∼ 1

(1 + γ )t
, (3.15)

and again

dϕ

dtc
∼ 1

tc
, (3.16)

but the whole cosmological history now takes place within the finite interval

0 < t <
π√
2
γ − 1
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of parametric time. Notice that in this region the Z2 redefinitions ϕ → −ϕ and γ → −γ map the
solutions into themselves, once they are combined with finite translations of t . The sharp change
in the nature of the classical solutions thus presents some formal analogies with phase transitions,
which finds a rationale in the combined Z2 transformations that for 0 < γ < 1 map climbing and
descending solutions into one another, and insisting on this analogy one would thus conclude that
the symmetry is somehow recovered for γ > 1, where a single solution exists. Amusingly, the
similarities go even further, since at the transition point γ = 1 the Lucchin–Matarrese attractor
[19] follows a fate similar to the Euclidean instanton, in that it also disappears. Notice that the
integration constant expected to be present in the velocities of Eqs. (3.5)–(3.14) is merely the
time of the initial singularity, which we have set to zero in all cases for brevity. This effective
transmutation underlies the peculiar behavior of the system for γ � 1. Although it emerged in
this relatively simple setting, as stressed in [18], the climbing phenomenon only depends on the
asymptotic behavior of the potential and forbids the scalar field to descend along steep enough
exponential grades as it emerges from the initial singularity. We shall see a number of illustrations
of this fact in the following.

The convenient gauge choice of Eq. (3.1) has thus led to simple solutions in parametric
time t , but the complications inherent in the problem have not disappeared. Rather, they have
been moved to the actual link between t and the cosmological time tc. Indeed, in this class of
models the relation between the “parametric” time t and the cosmological time tc is determined
by Eq. (2.5), and considering for definiteness γ < 1 and the climbing scalar solution determined
by Eq. (3.5), it reads

tc =
∫

dt

[
sinh

(
t

2

√
1 − γ 2

)] γ
1−γ

[
cosh

(
t

2

√
1 − γ 2

)]− γ
1+γ

, (3.17)

or alternatively

tc = 1√
1 − γ 2

∫
dτ(τ)

γ−1/2
1−γ (1 + τ)

−γ−1/2
1+γ , (3.18)

after the substitution

τ = sinh2
(

t

2

√
1 − γ 2

)
. (3.19)

There are two elementary cases of Eq. (3.18), which correspond to γ = ± 1
2 , or if you will

to a climbing and a descending scalar in the same potential with γ = 1
2 , by virtue of the Z2

symmetry that we have already elaborated upon. In general, however, the relation between t and
tc is considerably more complicated and reads

tc ∼
[

sinh2
(

t

2

√
1 − γ 2

)] 1/2
1−γ

2F1

[
γ + 1/2

1 + γ
,

1/2

1 − γ
; 3/2

1 − γ
;− sinh2

(
t

2

√
1 − γ 2

)]
,

(3.20)

where 2F1 is a hypergeometric function. As we are about to see, some interesting FLRW gener-
alizations of the elementary cases with γ = ±1/2 do exist also with potentials involving more
than one exponential, although a wider class of exact solutions, which describe a number of in-
teresting phenomena compatibly with the climbing regime that we have just reviewed, can only
be found provided a non-trivial B is introduced.



1040 P. Fré et al. / Nuclear Physics B 877 [PM] (2013) 1028–1106
3.2. Integrable scalar cosmologies involving more exponentials

Let us now move on to search for more general potential functions V(ϕ) that lead to integrable
scalar cosmologies. As one can anticipate from the preceding example, it is perhaps convenient
to first tackle the systematic construction in a simplified context, the standard FLRW setting with
B = 0, before considering more complicated systems. The corresponding exact solutions, as we
are about to see, have the virtue of being simple, instructive and completely explicit.

3.2.1. Elementary systems with B = 0
The key idea underlying the construction is to bring the kinetic terms to their simplest form.

In this case, starting from the Lagrangians (2.11), this can be attained via the redefinitions

A= log(xy), ϕ = log

(
x

y

)
, (3.21)

where it should be understood that the independent variable t will eventually take values in the
portions of the real axis where the product xy is positive. One is thus led to consider Lagrangians
for the dynamical variables x and y of the type

L = −2ẋẏ − xyV
(

x

y

)
, (3.22)

and the cases of interest clearly correspond to potential functions such that xyV is at most a
quadratic polynomial in x and y, and thus to

V = C11
x

y
+ 2C12 + C22

y

x
, (3.23)

with the Cij are arbitrary constants. The resulting equations of motion are

ẍ − C12x − C22y = 0, (3.24)

ÿ − C11x − C12y = 0, (3.25)

and are to be supplemented with the Hamiltonian constraint

ẋẏ = C12xy + 1

2

(
C11x

2 + C22y
2), (3.26)

which could have been obtained varying B if this additional function had been retained in the
space–time metric.

In terms of the original fields a and ϕ these models correspond to the class of potentials

V = C11e
ϕ + 2C12 + C22e

−ϕ, (3.27)

which combine in general a cosmological term with a pair of exponentials. Notice that these
exponentials are always “under-critical”, with γ = ± 1

2 in the notation of Section 3.1, so that
there is no climbing phenomenon in this class of models. Still, the inclusion of a cosmological
constant and the possibility of dealing with potential wells entails a number of instructive lessons,
as we shall see in Section 4.
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3.2.2. Triangular systems with B 	= 0
Let us now complicate the analysis that led to Eq. (3.27), allowing for a non-trivial B. This

yields a wider class of exact solutions for potentials involving combinations of exponentials with
other values of γ . In a number of cases, our solutions will be identified letting

A = log
(
x

1
1−α y

1
1−β

)
, ϕ = log

(
x

1
1−α y

− 1
1−β

)
(3.28)

and allowing for a non-trivial B of the form

B = log
(
x

α
1−α y

β
1−β

)
, (3.29)

which makes it possible to replace the class of Lagrangians (2.11) with

L = −4ẋẏ − 2(1 − α)(1 − β)x
1+α
1−α y

1+β
1−β V

(
x

1
1−α y

− 1
1−β

)
. (3.30)

Two interesting classes of potentials V(ϕ) can be readily identified in this way. They corre-
spond to β = −α = γ in Eq. (3.30), with γ 	= (−1,1), and combine eventually in L a bilinear
term in the two variables x and y with an algebraic power in one of them. The potentials belong-
ing to the first class correspond to

V = C1e
2γϕ + C2e

(γ+1)ϕ, (3.31)

where the Ci are arbitrary real constants, and in this case the relation between the parametric
time t and the cosmic time tc reads

dtc = x
− γ

1+γ y
γ

1−γ dt. (3.32)

In terms of x and y the Lagrangians for this class of models take the form

L = −4ẋẏ − 2
(
1 − γ 2)[C1xy + C2x

2
1+γ

]
, (3.33)

and the corresponding equations of motion thus define the following “triangular” systems

ẍ − 1 − γ 2

2
C1x = 0, (3.34)

ÿ − 1 − γ 2

2
C1y = C2(1 − γ )x

1−γ
1+γ , (3.35)

in which the first equation is elementary, so that the nonlinear terms present in the second simply
build up a known source term. Finally, the equation of motion of B translates into the Hamiltonian
constraint

ẋẏ = 1 − γ 2

2

[
C1xy + C2x

2
1+γ

]
. (3.36)

The second class of models would correspond to

V = C1e
2γϕ + C2e

(γ−1)ϕ, (3.37)

where the Ci are again arbitrary real constants. Notice, however, that these apparently new poten-
tials can be mapped into those of Eq. (3.31) by the combined redefinitions (ϕ, γ ) → (−ϕ,−γ ).
Moreover, for γ = 0 the potentials in Eqs. (3.31) and (3.37) become a special case of those in
Eq. (3.27). As a result, the available phenomena can be explored referring only to the potentials
of Eq. (3.31), letting γ vary over the real axis, with the exclusion of the points γ = ±1 where the
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climbing phenomenon sets in. These “critical” potentials, however, can be reached via an asym-
metric substitution, to which now we turn since it also allows the inclusion of a cosmological
term. Performing the redefinitions

A= 1

1 − α
logx + v, ϕ = 1

1 − α
logx − v (3.38)

in Eq. (2.11) and making the gauge choice

B = α

1 − α
logx + v (3.39)

leads finally to

L = − 4

1 − α
ẋv̇ − 2e2vx

1+α
1−α V

(
x

1
1−α e−v

)
. (3.40)

As a result, the most general potential V yielding a “triangular” system obtains in this case for
α = −1, and describes an arbitrary combination of an exponential potential that is “critical” in
the sense of Section 3.1 and a cosmological constant:

V = C1e
2ϕ + C2. (3.41)

In this case Eq. (3.40) becomes

L = −2ẋv̇ − 2C1x − 2C2e
2v, (3.42)

whose equations of motion,

v̈ = C1, (3.43)

ẍ = 2C2e
2v, (3.44)

form again a “triangular” system since the first is clearly elementary. As usual, the system (3.44)
is to be supplemented with the corresponding Hamiltonian constraint, which now reads

ẋv̇ = C1e
2v + C2x. (3.45)

Finally, in this case the relation between the cosmological time tc and the parametric time t

follows from

dtc = evx− 1
2 dt. (3.46)

Actually, working again with α = −1 there is another interesting gauge choice,

B = −A− 2ϕ (3.47)

that together with the asymmetric redefinitions

A= 1

4
logx + v,

ϕ = 1

4
logx − v (3.48)

leads to the class of Lagrangians

L = −1
ẋv̇ − e−2vxV

(
x

1
2 e−v

)
. (3.49)
2
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Up to a shift of ϕ, one can thus associate a simple integrable dynamics to potential functions V
of the form

V = Cϕe2ϕ. (3.50)

For positive values of C these are potential wells whose right end is an exponential wall that
is “critical” in the sense of Section 3.1. Therefore, the scalar can only emerge from the initial
singularity proceeding toward it, and in the next section we shall see how in this type of system
ϕ can be (almost) stabilized as a result of the cosmological evolution.

With the potential function (3.50), the Lagrangian of Eq. (3.49) becomes indeed

L = −1

2
ẋv̇ − C

(
1

4
logx − v

)
, (3.51)

so that the resulting equations of motion,

ẍ = −2C, (3.52)

v̈ = C

2x
(3.53)

define once more a triangular system. Finally, the corresponding Hamiltonian constraint reads

ẋv̇ = C

(
1

2
logx − 2v

)
, (3.54)

while in this case the relation between t and the cosmological time tc is

dtc = x− 3
4 ev dt. (3.55)

3.2.3. Systems integrable via quadratures
Two more classes of integrable potentials can actually be associated to Eq. (3.30). They are

our first examples of a richer class of integrable scalar cosmologies, where the two-dimensional
(A, ϕ) dynamics can be solved via quadratures since it becomes manifestly separable in suitable
coordinates.

The first class of integrable cosmologies of this type that we would like to describe belongs to
the class of Lagrangians (3.30) with α = β = −1, which have the general form

L = −4ẋẏ − 8V
[(

x

y

) 1
2
]
, (3.56)

and arises if

V = C log

(
x + y

x − y

)
+ D, (3.57)

where C and D are two arbitrary constants. In terms of ϕ, it corresponds to the class of “wall”
potentials

V = C log(cothϕ) + D, (3.58)

where the cosmological constant D does not enter the equations for ξ and η introduced below
but plays a role in the Hamiltonian constraint. Indeed, letting

x = 1
(ξ + η), y = 1

(ξ − η), (3.59)

2 2
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Eq. (3.56) takes the separable form

L = −ξ̇2 + η̇2 − 8C log

(
ξ

η

)
− 8D, (3.60)

whose equations of motion,

ξ̈ = 4C

ξ
,

η̈ = 4C

η
, (3.61)

can be turned into the conservation laws

ξ̇2 − 8C log ξ = εξ ,

η̇2 − 8C logη = εη, (3.62)

where εξ and εη are integration constants. The solutions by quadratures of these equations are to
be subjected to the Hamiltonian constraint

ξ̇2 − η̇2 = 8C log

(
ξ

η

)
+ 8D, (3.63)

which is tantamount to the condition

εξ = εη + 8D. (3.64)

Finally, for this class of models the relation between the cosmological time tc and the parametric
time t takes the form

dtc = 2dt√
ξ2 − η2

. (3.65)

The second class of integrable cosmologies that we would like to describe possesses another
instructive feature: its integrability rests on the recourse to complex combinations of the original
variables. The corresponding potential functions read

V = Im

[
log

(
C

e2ϕ + i

e2ϕ − i

)
+ iΛ

]
, (3.66)

where Im denotes the imaginary part and where the freedom of including the cosmological con-
stant Λ has the same origin as in the preceding example. Notice also that

Im

[
log

(
e2ϕ + i

e2ϕ − i

)]
= 2 arctan

(
e−2ϕ

)
, (3.67)

so that we can confine our attention to real values of C, since a phase would only bring about a
shift of ϕ. These potentials are essentially step functions that, as in the preceding example, result
from a series of exponential terms. In terms of the new variables x and y above the Lagrangians
for this class of models read

L = −4ẋẏ − 8 Im

[
C log

(
x + iy

x − iy

)
+ iΛ

]
, (3.68)

so that, letting
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z = x + iy, (3.69)

Eq. (3.68) takes finally the form

L = 2 Im
[−ż2 − 8C log z − 4iΛ

]
. (3.70)

As advertised, one is led to an integrable one-dimensional complex dynamical system, whose
equation of motion

z̈ = 4C

z
(3.71)

and Hamiltonian constraint

Im
[
ż2 − 8C log z − 4iΛ

] = 0 (3.72)

are complex variants of Eqs. (3.61) and (3.63).
Another interesting class of exact solutions can be identified looking for expressions of the

type

(x ± y)p = (xy)
p
2

(√
x

y
±

√
y

x

)p

(3.73)

and comparing them with the general Lagrangians of Eq. (2.11). One can thus realize that the
class of potentials

V = C1(coshγ ϕ)
2
γ

−2 + C2(sinhγ ϕ)
2
γ

−2
, (3.74)

which includes interesting examples of under-critical exponential wells, affords a relatively sim-
ple description in the class of gauges

B =A(1 − 2γ ). (3.75)

This can be explicitly seen via the substitutions

e2γA = xy, e2γϕ = x

y
, (3.76)

whose net result is the emergence of a pair of decoupled nonlinear differential equations that
exactly solvable in terms of Jacobi elliptic functions or generalizations thereof. Indeed, letting

ξ = x + y

2
, η = x − y

2
, (3.77)

the Lagrangian (2.11) can be finally turned into the separable form

L = − 1

2γ 2

(
ξ̇2 − η̇2) − C1ξ

2
γ

−2 − C2η
2
γ

−2
, (3.78)

so that its equations of motion

ξ̈ − 2C1γ (1 − γ )ξ
2
γ

−3 = 0,

η̈ + 2C2γ (1 − γ )η
2
γ

−3 = 0 (3.79)

can be solved independently by quadratures. As usual, they are to be supplemented by the Hamil-
tonian constraint, which in this case takes the form
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ξ̇2 − η̇2 = 2γ 2[C1ξ
2
γ

−2 + C2η
2
γ

−2]
, (3.80)

while for this whole class of models the relation between the cosmological time tc and the para-
metric time t reads

dtc = (
ξ2 − η2) 1

2γ
−1

dt. (3.81)

There is also an interesting variant of this class of potentials along the lines of (3.66), which
can be solved again in terms of complex combinations of the original variables. It rests again on
the substitutions of Eqs. (3.76), but now

V = Im
[
C(i + sinh 2γ ϕ)

1
γ

−1]
, (3.82)

where C is an arbitrary constant. Notice also that, if C = |C|ei(θ+π/2),

V(ϕ) = |C|(cosh 2γ ϕ)
1
γ

−1 cos

[(
1

γ
− 1

)
arccos(tanh 2γ ϕ) + θ

]
. (3.83)

Letting again

z = x + iy, (3.84)

for this choice of V the Lagrangian of Eq. (2.11) takes the final form

L = Im

[
− 1

2γ 2
ż2 − C

2
z

2
γ

−2
]
, (3.85)

which can again be solved by quadratures, while the corresponding Hamiltonian constraint reads

Im

[
1

2γ 2
ż2 − C

2
z

2
γ

−2
]

= 0. (3.86)

Interestingly, the potentials (3.58), (3.66) and (3.82) involve infinite series of exponentials that
can simulate, in String Theory, the resummation of an infinite number of loop corrections to
tree-level exponential potentials. Indeed, as we shall see in Section 6, in four dimensions loop
corrections originating from the introduction of arbitrary numbers of handles in the world sheet
can give rise precisely to corrections of a tree-level brane term by arbitrary powers of e2ϕ , where
ϕ is a suitable combination of the ten-dimensional dilaton and of a scalar related to the internal
volume of the compactification, up to an assumption concerning the stabilization of an orthogonal
combination of the two fields that we shall discuss in detail there.

Another interesting class of potential functions is

V = C1e
2γϕ + C2e

2
γ

ϕ
, (3.87)

or more simply, if the Ci ’s are both positive,

V = λ
(
e2γϕ + e

2
γ

ϕ)
, (3.88)

with λ > 0, since a relative factor between the two exponentials can clearly be absorbed into a
shift of ϕ. One can also assume, without any loss of generality, that 0 < γ < 1, so that the first
term is a mild exponential while the second is a steep one. This class of potentials can describe
a scalar that can only emerge from an initial singularity while climbing them up to then inject an
inflationary phase during the subsequent descent in d dimensions provided γ < 1√

d−1
.

One can arrive at exact solutions for the class of potentials (3.87) working in the gauge
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B =A, (3.89)

which reduces Eq. (2.11) to

L = 1

2

(
ϕ̇2 − Ȧ2) − e2A(

C1e
2γϕ + C2e

2
γ

ϕ)
, (3.90)

and performing the “Lorentz boost”

Â = 1√
1 − γ 2

(A+ γ ϕ),

ϕ̂ = 1√
1 − γ 2

(ϕ + γA), (3.91)

which turns the Lagrangian (3.90) into the separable form

L = 1

2

( ˙̂ϕ2 − ˙̂A2) − C1e
2
√

1−γ 2Â − C2e
2
γ

√
1−γ 2ϕ̂

. (3.92)

The resulting equations of motion are then

¨̂A− 2C1

√
1 − γ 2e2

√
1−γ 2Â = 0,

¨̂ϕ + 2C2

γ

√
1 − γ 2e

2
γ

√
1−γ 2ϕ̂ = 0. (3.93)

As usual these are to be supplemented with the Hamiltonian constraint, which in this case reads

˙̂ϕ2 − ˙̂A2 = −2C1e
2
√

1−γ 2Â − 2C2e
2
γ

√
1−γ 2ϕ̂

, (3.94)

while in this class of models the relation between the cosmological time tc and the parametric
time t takes the form

dtc = exp

[ Â− γ ϕ̂√
1 − γ 2

]
dt. (3.95)

4. Properties of the exact solutions

In this section we describe in detail the solutions of the most significant integrable systems
identified in Section 3. Our emphasis will be on two main lessons that can be drawn from this
study. The first is the emergence, in more general contexts, of the climbing phenomenon that,
as we have seen in Section 3.1, first presented itself in a single sufficiently steep exponential
potential V but only depends on the asymptotic behavior of the potential for large values of its
argument. The second is the ubiquitous emergence of a Big Bang followed by a Big Crunch
whenever the scalar field tries to settle at a negative extremum of V . We begin in Section 4.1
with a detailed description of the variety of behaviors that are possible around critical points
of the potentials and we apply the general theory of two-dimensional integrable systems to our
examples of Section 3, which are collected in Table 1. We then describe in detail the solutions
of the integrable families that we identified there, beginning in Section 4.2.1 from the relatively
simple systems of Section 3.2.1 that belong to the standard FLRW setting with B = 0. In Sec-
tion 4.2.2 we describe the solutions of the triangular systems of Section 3.2.2, and we conclude
in Section 4.2.3 with the systems solvable by quadratures of Section 3.2.3.
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Table 1
Families of integrable potential functions for the Lagrangians of Eq. (2.11).

Potential function V A, ϕ,B L, Hamilt. Constr., dtc

(1) C11eϕ + 2C12 + C22e−ϕ A= log(xy)

ϕ = log( x
y )

B = 0

L = −2ẋẏ − C11x2 − 2C12xy − C22y2

2ẋẏ = C11x2 + 2C12xy + C22y2

dtc = dt

(2) C1e2γϕ + C2e(γ+1)ϕ (γ 2 	= 1) A= log(x
1

1+γ y
1

1−γ )

ϕ = log(x
1

1+γ y
−1

1−γ )

B = log(x
−γ
1+γ y

γ
1−γ )

L = −4ẋẏ − 2(1 − γ 2)[C1xy + C2x
2

1+γ ]
2ẋẏ = (1 − γ 2)[C1xy + C2x

2
1+γ ]

dtc = x
− γ

1+γ y
γ

1−γ dt

(3) C1e2ϕ + C2 A= 1
2 logx + v

ϕ = 1
2 logx − v

B = − 1
2 logx + v

L = −2ẋv̇ − 2C1x − 2C2e2v

ẋv̇ = C1e2v + C2x

dtc = evx
− 1

2 dt

(4) Cϕe2ϕ A= 1
4 logx + v

ϕ = 1
4 logx − v

B = − 3
4 logx + v

L = − 1
2 ẋv̇ − C( 1

4 logx − v)

ẋv̇ = C( 1
2 logx − 2v)

dtc = x
− 3

4 ev dt

(5) C log(cothϕ) + D A= 1
2 log(

ξ2−η2

2 )

ϕ = 1
2 log(

ξ+η
ξ−η

)

B = − 1
2 log(

ξ2−η2

2 )

L = −ξ̇2 + η̇2 − 8C log(
ξ
η ) − 8D

ξ̇2 − η̇2 = 8C log(
ξ
η ) + 8D

dtc = 2 dt√
ξ2−η2

(6) C Im[log( e2ϕ+i

e2ϕ−i
) + D] A= 1

2 log(
ξ2−η2

2 )

ϕ = 1
2 log(

ξ+η
ξ−η )

B = − 1
2 log(

ξ2−η2

2 )

z = 1√
2
(ξe

iπ
4 + ηe

− iπ
4 )

L = 2 Im[−ż2 − 8C log z − 8D]
Im[ż2 − 8C log z − 8D] = 0

dtc = 2 dt√
ξ2−η2

(7) C1(coshγ ϕ)
2
γ −2 + C2(sinhγ ϕ)

2
γ −2 A= 1

2γ
log(ξ2 − η2)

ϕ = 1
2γ

log(
ξ+η
ξ−η

)

B = ( 1
2γ

− 1) log(ξ2 − η2)

L = − ξ̇2−η̇2

2γ 2 − C1ξ
2
γ −2 − C2η

2
γ −2

ξ̇2 − η̇2 = 2γ 2[C1ξ
2
γ −2 + C2η

2
γ −2]

dtc = (ξ2 − η2)
1

2γ
−1

dt

(8) Im[C(i + sinh 2γ ϕ)
1
γ −1] A= 1

2γ
log(ξ2 − η2)

ϕ = 1
2γ

log(
ξ+η
ξ−η

)

B = ( 1
2γ

− 1) log(ξ2 − η2)

z = 1√
2
(ξe

iπ
4 + ηe

− iπ
4 )

L = Im[− 1
2γ 2 ż2 − C

2 z
2
γ −2]

Im[ 1
2γ 2 ż2 − C

2 z
2
γ −2] = 0

dtc = (ξ2 − η2)
1

2γ
−1

dt

(9) C1e2γϕ + C2e
2
γ ϕ

(γ 2 	= 1) A= 1√
1−γ 2

(Â− γ ϕ̂)

ϕ = 1√
1−γ 2

(ϕ̂ − γ Â)

B =A

L = ˙̂ϕ2− ˙̂A2

2 − C1e
2Â

√
1−γ 2 − C2e

2ϕ̂

√
1−γ 2

γ

˙̂ϕ2− ˙̂A2

2 = −C1e
2Â

√
1−γ 2 − C2e

2ϕ̂

√
1−γ 2

γ

dtc = exp[ Â−γ ϕ̂√
1−γ 2

]dt

4.1. Qualitative analysis of fixed points: Subsystems I and II

It is instructive to spell out how one-scalar FLRW cosmologies are governed, in general, by
nonlinear autonomous first-order dynamical systems on a two-dimensional plane. Our discussion
moves from the redundancy of Eqs. (2.12), a fact that we have already stressed in Section 2.1,
and for the sake of simplicity in this portion of the section we shall work in the gauge
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B = 0, (4.1)

although the exact solutions that will presented later on will rest, to a large extent, on more
general gauge choices. In this fashion A becomes a cyclic variable, since Eqs. (2.12) become

ϕ̈ + Ȧϕ̇ + V ′(ϕ) = 0,

Ä = −ϕ̇2,

Ȧ2 − ϕ̇2 = 2V(ϕ), (4.2)

where A enters only via its time derivative, or equivalently via the (rescaled) Hubble function

H = Ȧ≡ H(d − 1). (4.3)

The solutions of this redundant system can indeed be generated starting from two irreducible
subsystems to which we now turn.

• Subsystem I is

ϕ̇ = v,

v̇ = −σv

√
v2 + 2V(ϕ) − V ′(ϕ), (4.4)

where the sign σ = ±1 accounts for periods of expansion or contraction of the Universe,
and where one should exclude possible branches satisfying the conditions

v2 + 2V(ϕ) = 0 if V(ϕ) 	= 0,

v2 + 2V(ϕ) < 0. (4.5)

If Eqs. (4.4) are solved, one can also obtain

H = σ

√
v2 + 2V(ϕ). (4.6)

• Subsystem II is

ϕ̇ = σ
(
H2 − 2V(ϕ)

) 1
2 ,

Ḣ = −(
H2 − 2V(ϕ)

)
, (4.7)

where the sign σ = ±1 accounts again for periods of expansion or contraction of the Uni-
verse, and where one should exclude possible branches satisfying the conditions

H2 − 2V(ϕ) = 0 if V ′(ϕ) 	= 0,

H2 − 2V(ϕ) < 0. (4.8)

The branches that are compatible with Eqs. (4.5) for Subsystem I and with Eqs. (4.8) for Subsys-
tem II will be referred to as “admissible” in what follows. One can verify that, within them, the
complete original system (4.2) can be recovered from any of the two nonlinear first-order sys-
tems, which are indeed autonomous on the two-dimensional Euclidean planes (ϕ, v) or (ϕ,H).

A well-developed theory of planar dynamical systems makes it possible to analyze qualita-
tively local and global properties of their phase portraits. Generic planar systems are indeed very
regular and can have only a few different types of trajectories and limit sets. There are thus:
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• Fixed points (critical or stationary);
• Periodic orbits (cycles);
• Homoclinic orbits: connecting a given fixed point with itself;
• Heteroclinic orbits: connecting pairs of different fixed points.

An implication of these results is that generic planar systems cannot be chaotic,1 and are therefore
very special if compared with dynamical systems in more than two dimensions, where chaotic
regimes are frequently present.

Let us now turn to analyze in detail the nature of the fixed points present in the systems of
Table 1. This is quite instructive, although the more interesting mathematical structures present
themselves in systems that are somewhat pathological from a physical viewpoint, since they
involve potentials that are unbounded from below.

4.1.1. Qualitative analysis of Subsystem I
The fixed points of Eqs. (4.4) are determined by the conditions

vc = 0, V ′(ϕc) = 0, (4.9)

and are admissible if

V(ϕc) � 0. (4.10)

If this condition is not fulfilled, Subsystem I does not possess fixed points and all points in
its phase space are regular. A nonlinear system without admissible fixed points must possess
only monotonic solutions, which can also blow up in a finite time. This behavior will show up
repeatedly around the negative extrema present in some of our potentials: the scalar field ϕ trying
to settle down there will run off to infinity in a finite time while the Universe will experience a
Big Crunch.

If Subsystem I is linearized around a fixed point, the resulting equations read

φ̇ = v,

v̇ = −σ
√

2V(ϕc)v − V ′′(ϕc)φ, (4.11)

where φ denotes the displacement of ϕ from its critical value,

φ = ϕ − ϕc. (4.12)

The corresponding eigenvalues

λ± = −σ

√
V(ϕc)

2
±

√
V(ϕc)

2
− V ′′(ϕc) (4.13)

characterize the critical points, and consequently define the phase portrait of the linearization.
The nature of a fixed point is reflected in the corresponding eigenvalues. One can thus distinguish
the following cases:

1 See, however, the peculiar behavior discussed in [22]: a scalar confined to a cosh-well that is “critical” in the sense of
Section 3.1 undergoes wild oscillations near the initial singularity. This occurs since, as the system proceeds toward a Big
Crunch in the time reversal of the standard scenario, the scalar can never overcome the attractive pull of “(over-)critical”
exponential potentials.
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• Hyperbolic fixed point:
– saddle: if the two eigenvalues are real and have opposite signs;
– node (attracting or repelling): if the eigenvalues are real and have the same sign;
– - improper node (attracting or repelling): if the two eigenvalues coincide;
– focus (attracting or repelling): if the two eigenvalues have the same real part;

• Elliptic fixed point: if the eigenvalues are purely imaginary.

An important result is that the phase portraits of a nonlinear system and of its linearization are
qualitatively equivalent in a neighborhood of a hyperbolic fixed point, where Re(λ±) 	= 0. Let us
add that Subsystem I does not possess periodic trajectories on account of Dulac’s criterion, since
the expression

∂ϕ̇

∂ϕ
+ ∂v̇

∂v
= −2σ

v2 + V(ϕ)√
v2 + 2V(ϕ)

(4.14)

does not change sign on the whole two-dimensional plane. We are thus led to conclude that
Subsystem I can only have fixed points, heteroclinic orbits or homoclinic orbits.

In order to understand qualitatively the phase portrait in a neighborhood of an admissible
fixed point one can analyze its structural stability. If the fixed point ϕc is a local minimum of the
potential V(ϕ), one should define the weak Lyapunov function with the required properties,

f (ϕ, v) ≡
√

v2 + 2V(ϕ) − √
2V(ϕc) > 0, f (ϕc, vc) = 0,

ḟ (ϕ, v) = −σv2. (4.15)

By construction this function is positive definite in the domain of phase space delimited by the
corresponding inequality (4.15) and vanish only at the fixed point, while its time derivative is
negative or positive semi-definite depending on the sign of σ = ±1 and do not vanish identically
on any trajectory other than the fixed point itself. From the constructed Lyapunov function one
can conclude that this fixed point is unstable for σ = −1 and asymptotically stable for σ = +1.
The inequality (4.15) defines explicitly the basin of attraction, i.e. the phase-space domain of
asymptotic stability, and all trajectories crossing it approach asymptotically the fixed point as
t → +∞.

The asymptotic behavior as t → +∞ of the Hubble function and of the scale factor that apply
if the fixed point is asymptotically stable have the form

H = √
2V(ϕc), A= √

2V(ϕc)(t − t0) if V(ϕc) > 0, (4.16)

as pertains to an expanding de Sitter patch, while the exponential behavior leaves way to a power-
like behavior if V(ϕc) = 0. Let us also recall that in four dimensions H = H

3 and a = eA/3.

4.1.2. Qualitative analysis of Subsystem II and the “separatrix”
Let us now consider a class of potentials that can be represented in the form

V(ϕ) = 1

2

(
P(ϕ)2 −P ′(ϕ)2), (4.17)

where the function P(ϕ) is clearly defined modulo an overall sign. This representation is actually
not unique, and different functions P(ϕ) might correspond to the same potential V(ϕ). After all,
Eq. (4.17) is a nonlinear first-order differential equation for P(ϕ) that in principle can have both
sporadic and continuous one-parameter families of solutions.
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Resorting to this representation, we can now explain how to build the “separatrix” for a saddle,
the solution that is not sensitive to the repulsive eigenvalue. To this end, let us note that for
potentials that are compatible with Eq. (4.17) the two simpler equations

ϕ̇ = σP ′(ϕ), (4.18a)

H = −σP(ϕ), (4.18b)

which can be integrated by quadratures, yield solutions of Subsystem II. However, if P(ϕ)

denotes a particular solution of Eq. (4.17), the corresponding general solution of Eqs. (4.18a)
involves a single integration constant. On the contrary, the general solution of Eqs. (4.7) would
involve two integration constants, so that only special solutions of Subsystems I (4.4) and II (4.7)
are captured in this fashion. Regular fixed points ϕc of P(ϕ) are regular fixed points of the one-
dimensional gradient system (4.18a) that are also admissible fixed points of the potential V(ϕ)

(4.17). Moreover, the non-degenerate fixed points of the former are also non-degenerate fixed
points of the latter, since

P ′(ϕc) = 0 ⇒ V ′(ϕc) =P ′(ϕc)
(
P(ϕc) −P ′′(ϕc)

) = 0,

V ′′(ϕc) =P ′′(ϕc)
(
P(ϕc) −P ′′(ϕc)

) 	= 0 ⇒ P ′′(ϕc) 	= 0,

V(ϕc) = 1

2

(
P(ϕc)

)2
> 0. (4.19)

A suitable choice for σ = ±1 in (4.18a) can always turn a fixed point of V into an attractor for
the system (4.18a), provided σ is chosen in such a way that σP ′′(ϕc) < 0, so that if Subsystem
I possesses a saddle point this becomes an attractor for Eqs. (4.18a). The corresponding orbit
approaches asymptotically this fixed point, and consequently it describes what is usually called
the separatrix of the saddle point of Subsystem I (4.4). Eqs. (4.18a) are thus the separatrix equa-
tions, a fact that we shall use repeatedly in what follows. Notice that a direct numerical approach
would be bound to miss this curve, since the evolution near the fixed point would be dominated
generically by the repelling eigenvalue.

The reader might have noticed some analogies between the representation (4.17) and the scalar
potential of N = 1 Supergravity coupled to a Wess–Zumino multiplet,

V = 4e2 exp[K](gzz̄DzWh(z)Dz̄Wh(z̄) − 3
∣∣Wh(z)

∣∣2)
, (4.20)

which is constructed in terms of a Kähler potential K(z, z̄) and of a holomorphic superpotential
Wh(z) [30]. In Eq. (4.20) z denotes a complex scalar field, whose kinetic term

√−ggμν∂z∂z̄K∂μz∂ν z̄ (4.21)

is determined by K, while the two Kähler covariant derivatives are

DzW = ∂zW + ∂zKW,

Dz̄W = ∂z̄W + ∂z̄KW. (4.22)

In [27] we shall advocate that the link between the potentials studied in this paper and N = 1
Supergravity rests on Kähler potentials of the form

K = − log
[(−i(z − z̄)

)q]
(4.23)

and on the identifications
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z = i exp

(
ϕ√
3q

)
+ b. (4.24)

If the axion field b can be consistently set to zero, the residual potential V(ϕ) acquires a form
that becomes similar to Eq. (4.17) after the identification

P̃(ϕ) = exp

(
−ϕ

√
3q

6

)
× Wh

(
i exp

[
ϕ√
3q

])
. (4.25)

Assuming indeed that Wh be a real function of ϕ and parameterizing it as in Eq. (4.25) leads to

V = 3

2q

[
4
(
P̃ ′(ϕ)

)2 − (
P̃(ϕ)

)2]
, (4.26)

so that one might be tempted to foresee in P(ϕ) the imprint of a supersymmetric superpotential.
Yet, even leaving aside the factor 4 in the first term, which could be absorbed rescaling ϕ, the
crucial overall sign flip makes it impossible to identify P(ϕ) and P̃(ϕ). Indeed, if for a given
superpotential Wh(z) the truncation of V to a vanishing axion allows the representation (4.17) in
addition to the natural supersymmetric one (4.26), the link between P(ϕ) and Wh(i exp[ 1√

3q
ϕ]) is

bound to be generally complicated and non-local. Hence the function P(φ), if it exists, deserves
the name fake superpotential [31], and this discussion should convey a flavor of the difficulties
that are met when trying to fit integrable superpotentials in Supergravity. Reverting the argument
one can conclude that, given a potential that admits the representation (4.17) in terms of a real
fake superpotential, finding the corresponding holomorphic true superpotential is generally a
hard task.

The results collected in (4.19) have a parallel in terms of the supersymmetric representation
(4.26) and of the true superpotential P̃(ϕ). The main difference is that a critical point of the true
superpotential is also an extremum of the scalar potential, but at a negative value of the potential:

V(ϕ0) = − 3

2q

(
P̃(ϕ0)

)2
< 0. (4.27)

Therefore, ϕ0 physically corresponds to an anti de Sitter vacuum with unbroken supersymme-
try, and critical points of the true superpotential are just what is required to preserve N = 1
supersymmetry. On the contrary, a critical point of the fake superpotential is a fixed point of
the dynamical system, and from the physical viewpoint it corresponds to a de Sitter vacuum,
which necessarily breaks all supersymmetries. As it is well known, it is difficult to build de Sitter
vacua in Supergravity. However, these types of vacua are guaranteed to exist in any given model
whose supersymmetric scalar potential admits a representation like (4.17) in terms of a non-
monotonic fake superpotential. A necessary, though not sufficient, condition for the existence of
a fake superpotential is thus the existence of a de Sitter vacuum in the supergravity model under
consideration.

Returning to Eqs. (4.17), let us notice that a new dependent variable P(ϕ) defined by

P(ϕ) ≡
√

2V(ϕ)

1 − (P(ϕ))−2
, (4.28)

turns it into the product of two Abel equations of the first kind [17],

P′(ϕ) = ((
P(ϕ)

)2 − 1
)( (log |V(ϕ)|)′

P(ϕ) ∓ 1

)
(4.29)
2
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whose coefficient function depends on the potential V(ϕ). Solving any of these two Abel equa-
tions provides a solution of the original problem, but neither of them is integrable for generic
potentials. However, one can construct general solutions in some special cases. These include
the interesting potential well

V(ϕ) = C cosh
2ϕ

3
, (4.30)

which will show up again in Sections 4.2.2 and 4.2.3, and whose exact cosmological solution
will be described in detail in Section 4.2.2. In the new basis provided by P(ϕ) and U(ϕ), where

P(ϕ) = 1√
U(ϕ)

± coth
2ϕ

3
, (4.31)

Abel’s equation (4.29) reduces in this case to the linear equation

U ′(ϕ) =
(

2

3
tanh

2ϕ

3
+ 2 coth

2ϕ

3

)
U(ϕ) − 2

3
tanh

2ϕ

3
, (4.32)

and solving it one arrives at the general solution for P(ϕ),

P(ϕ) = 1

| sinh 2ϕ
3 |(α sinh 4ϕ

3 + cosh 4ϕ
3 )

1
2

± coth
2ϕ

3
, (4.33)

which is parameterized by an arbitrary integration constant α. Let us stress that for α = ±1 this
becomes a rational combination of exponential functions. Using the same procedure one can also
integrate Abel’s equation (4.29) for the potential

V(ϕ) = C sinh
2ϕ

3
. (4.34)

Inserting the functions P(ϕ) in Eq. (4.28) one then arrives at corresponding general solutions
of Eq. (4.17) for P(ϕ). A number of P(ϕ) that solve Eq. (4.17) for other potentials will be
constructed in the following subsections.

4.1.3. Examples of fixed-point analysis
Let us now turn to the detailed fixed-point analysis of an interesting class of potentials, not all

integrable but whose choice is inspired the families of potentials in Table 1. We shall occasionally
distinguish various ranges of the relevant parameters, and for brevity we shall mostly leave out
fixed points at infinity, unless they are the only ones present, as will be the case for the last
examples. In the corresponding lists we shall reserve boldface characters to the physically more
relevant cases of potentials bounded from below and we shall treat the two cases of systems
evolving from a Big Bang (corresponding to σ = 1 in Eqs. (4.4) or (4.7)) or evolving toward a
Big Crunch (corresponding to σ = −1 in Eqs. (4.4) or (4.7)).

1. The potentials V(ϕ) = C cosh(wϕ) + Λ

The class of potentials

V(ϕ) = C cosh(wϕ) + Λ (C 	= 0, w 	= 0) (4.35)

possesses an isolated fixed point,

vc = 0, ϕc = 0, (4.36)

which is admissible provided
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V(ϕc) = C + Λ � 0. (4.37)

As we shall see in the following subsections, the condition (4.37) has an important physical
consequence: the exact solutions for potential wells of this type will show indeed that when it is
not fulfilled a scalar trying to settle at the extremum will readily run away. This behavior reflects,
all in all, a familiar fact, the absence of spatially flat AdS slices.

The eigenvalues of Eq. (4.13) for the potentials (4.35) read

λ± = −σ

√
C + Λ

2
±

√
C + Λ

2
− Cw2, (4.38)

so that in this case the admissible fixed point is simple (not degenerate) since λ± 	= 0. Depending
on the values of the parameters, these eigenvalues can correspond to a hyperbolic fixed point or
alternatively to an elliptic one.

A hyperbolic fixed point obtains if

(h1) Λ � −C, C < 0(
saddle: (σ = ±1)

)
, (4.39)

(h2) Λ > −C, C > 0, w2 <
1

2

(
1 + Λ

C

)
(
node: repeller (σ = −1) or attractor (σ = +1)

)
, (4.40)

(h3) Λ > −C, C > 0, w2 = 1

2

(
1 + Λ

C

)
(
improper node: repeller (σ = −1) or attractor (σ = +1)

)
, (4.41)

(h4) Λ > −C, C > 0, w2 >
1

2

(
1 + Λ

C

)
(
focus: repelling (σ = −1) or attracting (σ = +1) spirals

)
, (4.42)

while an elliptic fixed point obtains if

(e) C + Λ = 0, C > 0 (center). (4.43)

The phase portraits of the nonlinear system (4.4) and of its linearization (4.11) are qualitatively
equivalent in a neighborhood of a hyperbolic fixed point. A stable node, an improper stable node
and a stable focus are asymptotically stable as well, so that every trajectory approaches the fixed
point as t→ + ∞. On the other hand, the nature of an elliptic fixed point can change in the
nonlinear system, but one can show nonetheless that it is unstable for σ = −1 and asymptotically
stable at σ = +1, due to the existence of a weak Lyapunov function f (ϕ, v) with the required
properties,

f (ϕ, v) =
√

v2 + 2V(ϕ) > 0,

f (0,0) = 0, ḟ (ϕ, v) = −σv2. (4.44)

This is a positive-definite function in the whole admissible domain of phase space that vanishes
only at the fixed point, while its time derivative is negative (positive) semi-definite for the case
σ = +1 (−1) and does not vanish identically on any trajectory other than the fixed point itself.
We shall see explicitly these types of behavior in the relatively simple exact solutions for the
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case w = 1 that will be discussed in Section 4.2.1 for the case σ = 1, which corresponds to a Big
Bang singularity in the past.

Let us conclude this discussion of the potentials (4.35) by noticing that the asymptotic be-
havior as t→ + ∞ of the Hubble function and of the scale factor that apply if the fixed point is
asymptotically stable are simply

H = √
2(C + Λ), A= √

2(C + Λ)(t − t0) if C + Λ � 0, C > 0, (4.45)

as pertains to an expanding de Sitter patch.
The subclass of potentials (4.35) with

C = +Λ
4 − w2

4 + w2
, Λ > 0, w 	= 2, (4.46)

C = −Λ
4 − w2

4 + w2
, Λ < 0, w 	= 2 (4.47)

can equivalently be represented in the form (4.17) with

P(ϕ) = 4

√
Λ

4 + w2
cosh

(
w

2
ϕ

)
, Λ > 0, (4.48)

P(ϕ) = 4

√ −Λ

4 + w2
sinh

(
w

2
ϕ

)
, Λ < 0. (4.49)

Only the first subclass (4.46) possesses the admissible fixed point (4.36), which in this case is
characterized by

λ± = 2

√
Λ

4 + w2

(
−σ ± 1

2

∣∣w2 − 2
∣∣), (4.50)

so that it is of the following types:

(h1) saddle (σ = ±1) if |w| > 2, (4.51)

(h2) node: repeller (attractor) for σ = −1(+1): w < 2 and w 	= ±√
2, (4.52)

(h3) improper node: repeller (attractor) for σ = −1(+1): w = ±√
2. (4.53)

Since for the choice of P(ϕ) in Eq. (4.48) P ′′(ϕc) > 0, the discussion after Eq. (4.19) implies
that the separatrix equations (4.18a) for the saddle (4.51) are found letting σ = −1, and thus
read

ϕ̇ = −2w

√
Λ

4 + w2
sinh

(
w

2
ϕ

)
,

H = 4

√
Λ

4 + w2
cosh

(
w

2
ϕ

)
, (4.54)

so that the corresponding solutions are

ϕ = ± 2

w
log

{
coth

[
w2

4

√
Λ

4 + w2
(t − t0)

]}
,

A=A0

∣∣∣∣sinh

(
w2

√
Λ

2
(t − t0)

)∣∣∣∣
8

w2

. (4.55)

2 4 + w
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Here t0 and a0 are integration constants, while the reader should appreciate that ϕ in Eq. (4.55)
possesses two distinct branches.

2. The integrable potentials (1) of Table 1
The potentials

V(ϕ) = ε1e
ϕ + ε2e

−ϕ + Λ, ε1 = ±1, ε2 = ±1, (4.56)

where more general values of the parameters ε1 and ε2 can always be reached by rescalings of
the time variable and constant shifts the scalar field, possess the fixed point

vc = 0, ϕc = 0, if ε1 = ε2, (4.57)

V(ϕc) = 2ε1 + Λ, V ′′(ϕc) = 2ε1, (4.58)

which is admissible if

2ε1 + Λ � 0. (4.59)

The corresponding eigenvalues (4.13) are

λ± =
(

−σ

√
Λ

2
+ ε1 ±

√
Λ

2
− ε1

)
, (4.60)

and can correspond to a hyperbolic fixed point, or alternatively to an elliptic one. A hyperbolic
fixed point obtains if

(h1) Λ � 2, ε1 = −1
(
saddle (σ = ±1)

)
, (4.61)

(h2) Λ� 2, ε1 = 1
(
node: repeller/attractor (σ = −1/+1)

)
, (4.62)

(h3) Λ = 2, ε1 = 1
(
improper node: repeller/attractor (σ = −1/+1)

)
, (4.63)

(h4) |Λ| < 2, ε1 = 1
(
focus: repelling/attracting (σ = −1/+1)

)
, (4.64)

while an elliptic one obtains if

(e) Λ = −2, ε1 = 1
(
center: unstable/asymptotically stable (σ = −1/+1)

)
.(4.65)

The potential (4.56) can equivalently be represented in the form (4.17) with

P±(ϕ) = 1

Γ±
(
ε1e

ϕ + ε2e
−ϕ

) + Γ±, Γ± ≡
√

Λ ±
√

Λ2 − 4ε1ε2. (4.66)

For the saddle (4.61) P±(ϕ) becomes

Ps±(ϕ) = − 2

Γs±
coshϕ + Γs±, Γs± ≡

√
Λ ±

√
Λ2 − 4,

P ′′
s±(ϕc) = − 2

Γs±
< 0, (4.67)

and the separatrix equations (4.18a)–(4.18b) read

ϕ̇ =P ′
s±(ϕ), H = −Ps±(ϕ) (Λ � 2). (4.68)

These are essentially Eqs. (4.54), so that we can refrain from displaying their solutions, which
can be deduced from Eqs. (4.55) with simple substitutions.
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3. The potentials V(ϕ) = ε1e
γ1ϕ + ε2e

γ2ϕ

The class of potentials

V(ϕ) = ε1e
γ1ϕ + ε2e

γ2ϕ, ε1 = ±1, ε2 = ±1, γ1 	= γ2, γi 	= 0, (4.69)

where more general values of the parameters ε1 and ε2 can always be reached by rescalings of
the time variable and constant shifts the scalar field, possesses the fixed point

vc = 0, ϕc = 1

γ1 − γ2
log

(
−ε2γ2

ε1γ1

)
,

ε2γ2

ε1γ1
< 0, (4.70)

such that

V(ϕc) =
(

−ε2γ2

ε1γ1

) γ2
γ1−γ2

ε2

(
1 − γ2

γ1

)
, (4.71)

V ′′(ϕc) = −γ1γ2V(ϕc). (4.72)

The fixed point (4.70) is admissible in the ranges

(1) −ε1 = ε2 = 1, 0 <
γ2

γ1
< 1, (4.73)

(2) ε1 = ε2 = 1,
γ2

γ1
< 0, (4.74)

(3) ε1 = −ε2 = 1,
γ2

γ1
> 1, (4.75)

and the corresponding eigenvalues (4.13) read

λ± =
√
V(ϕc)

2
(−σ ± √

1 + 2γ1γ2). (4.76)

In the ranges of Eqs. (4.73)–(4.75) these eigenvalues correspond to a hyperbolic fixed point of
the following types:

(1) and (3) saddle (unstable), γ1γ2 > 0, (4.77)

(2a) −1 < 2γ1γ2 < 0(
node: repeller (σ = −1), attractor (σ = +1)

)
, (4.78)

(2b) − 1 = 2γ1γ2(
improper node: repeller (σ = −1), attractor (σ = +1)

)
, (4.79)

(2c) − 1 > 2γ1γ2,(
focus: repelling (σ = −1) or attracting (σ = +1) spirals

)
. (4.80)

4. The integrable potentials (2) of Table 1
There is a first integrable subset of the potentials just discussed,

V(ϕ) = ε1e
2γϕ + ε2e

(γ+1)ϕ. (4.81)

This class is particularly interesting since the case γ = 2
3 corresponds to a supersymmetric inte-

grable model. In [27] we shall discuss in detail this model, which is obtained coupling to N = 1
Supergravity a single Wess–Zumino multiplet with the kinetic term of the S3 model (case q = 3
in Eq. (4.23)) and a superpotential
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Wh(z) = 1√
5

(
24z5 + i2ωz3), (4.82)

where ω is a constant. After a consistent truncation to vanishing axion (b = 0), and upon the
identification (4.24), the scalar potential generated by (4.82) becomes (up to an overall positive
constant)

VSUSY(ϕ) = 6ω

5
exp

(
4ϕ

3

)
+ 24

5
exp

(
5ϕ

3

)
, (4.83)

which can be turned into the form (4.81) with γ = 1
3 by a shift of ϕ.

The family of potentials (4.81) displays a variety of behaviors that will be discussed in detail
in Section 4.2.2 and possesses the fixed point

vc = 0, ϕc = 1

γ − 1
log

[
− ε2

2ε1

(
1 + 1

γ

)]
,

ε2

ε1

(
1 + 1

γ

)
< 0, (4.84)

with eigenvalues

λ± =
√
V(ϕc)

2

(−σ ± (2γ + 1)
)
. (4.85)

As a result, one can distinguish the following cases:

(1) −ε1 = ε2 = 1, |γ | > 1 (saddle), (4.86)

(2a) ε1 = ε2 = 1, −1 < γ < 0, γ 	= −1

2
(node), (4.87)

(2b) ε1 = ε2 = 1, γ = −1

2
(improper node), (4.88)

(3) ε1 = −ε2 = 1, 0 < γ < 1 (saddle). (4.89)

Let us also note that the subclass of potentials (4.81) with

ε1 = sign
(
1 − γ 2), (4.90)

which is consistently correlated with the constraints (4.87)–(4.90) on the type of fixed point, can
equivalently be represented in the form (4.17) with

P(ϕ) =
√

2

|1 − γ 2|e
γϕ + ε2

√
1

2

∣∣∣∣1 + γ

1 − γ

∣∣∣∣ sign(1 − γ )eϕ. (4.91)

P(ϕ) possesses the non-degenerate fixed point (4.84) with the properties

P ′(ϕc) = 0, P ′′(ϕc) =
[
− ε2

2ε1

(
1 + 1

γ

)] γ
γ−1

√
2γ (γ − 1)√|1 − γ 2| 	= 0,

P ′′(ϕc) > 0 for |γ | > 1 and P ′′(ϕc) < 0 for 0 < γ < 1, (4.92)

so that the separatrix equations (4.18a) adapted to the saddles (4.86) and (4.89) are

ϕ̇ = −P ′(ϕ), H = +P(ϕ) for |γ | > 1, (4.93)

ϕ̇ = +P ′(ϕ), H = −P(ϕ) for 0 < γ < 1. (4.94)

Let us further remark that the potential well
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V(ϕ) = 2ε1 cosh
2ϕ

3
, (4.95)

belongs to the series (4.81), where it emerges for γ = − 1
3 and ε2 = ε1, and that its fixed point is

the node (4.87).

5. The integrable potentials (9) of Table 1
The integrable potentials

V(ϕ) = ε1e
2γϕ + ε2e

2
γ

ϕ
, γ 	= 0, (4.96)

possess the fixed point

vc = 0, ϕc = γ

1 − γ 2
log |γ |, (4.97)

λ± =
√
V(ϕc)

2
(−σ ± 3), (4.98)

and there are two cases:

(1) − ε1 = ε2 = 1 for |γ | > 1 (saddle), (4.99)

(2) ε1 = −ε2 = 1 for |γ | < 1 (saddle). (4.100)

The potentials admitting the fixed point (4.99)–(4.100) can be recast in the form

V(ϕ) = sign
(
1 − γ 2)e2γϕ + sign

(
γ 2 − 1

)
e

2
γ

ϕ
, (4.101)

which admits the representation (4.17) with

P±(ϕ) =
√

2

|1 − γ 2|
(
eγϕ ± |γ |e 1

γ
ϕ)

. (4.102)

Since P+(ϕ) has no fixed point while P−(ϕ) possesses the non-degenerate fixed point (4.97)
with the properties

P ′−(ϕc) = 0, P ′′−(ϕc) =
√∣∣1 − γ 2

∣∣|γ |
γ 2

1−γ 2 sign
(
γ 2 − 1

) 	= 0,

P ′′−(ϕc) > 0 for |γ | > 1 and P ′′−(ϕc) < 0 for |γ | < 1, (4.103)

the separatrix equations (4.18a) are in this case

ϕ̇ = −P ′−(ϕ), H = +P−(ϕ) for |γ | > 1, (4.104)

ϕ̇ = +P ′−(ϕ), H = −P−(ϕ) for |γ | < 1. (4.105)

6. The integrable potential (4) of Table 1
The potential

V(ϕ) = Cϕe2ϕ, (4.106)

possesses the fixed point

vc = 0, ϕc = −1
, (4.107)
2
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which is admissible if

C � 0, (4.108)

but this choice makes it unbounded from below as ϕ → ∞. The eigenvalues (4.13) read

λ± =
√
V(ϕc)

2
(−σ ± 3), (4.109)

and correspond in this case to a saddle.
The potential (4.106) with the admissible saddle point (4.107)–(4.108) can equivalently be

represented in the form (4.17), with

P(ϕ) = √−C

(
ϕ − 1

2

)
eϕ, (4.110)

P ′(ϕc) = 0, P ′′(ϕc) = √−Ce−1 > 0, (4.111)

so that its separatrix (4.18a)–(4.18b) read

ϕ̇ = −P ′(ϕ), H =P(ϕ). (4.112)

7. The potentials V(ϕ) = C1(coshγ ϕ)β + C2(sinhγ ϕ)β

The potentials

V(ϕ) = C1(coshγ ϕ)β + C2(sinhγ ϕ)β, β 	= 0, γ 	= 0 (4.113)

possess the fixed points

v1c = 0, ϕ+
1c = 1

2γ
log

(1 + (−C1
C2

)
1

β−2

1 − (−C1
C2

)
1

β−2

)
, β 	= 2, (4.114)

for odd β:

∣∣∣∣C1

C2

∣∣∣∣ < 1 if β > 2 or

∣∣∣∣C1

C2

∣∣∣∣ > 1 if β < 2,

for even β: additionally ϕ−
1c = −ϕ+

1c,
C1

C2
< 0 (4.115)

and

v2c = 0, ϕ2c = 0, β > 1. (4.116)

The fixed-point values of the potential are

V
(
ϕ±

1c

) = C1

(
1 −

(
−C1

C2

) 2
β−2

) 2−β
2

(4.117)

and

V(ϕ2c) = C1, (4.118)

respectively, so that they are admissible if

C1 � 0. (4.119)

The eigenvalues (4.13) are
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λ1± =
√
V(ϕ±

1c)

2

(−σ ±
√

1 + 2γ 2β(β − 2)
)
, (4.120)

so that the corresponding types of hyperbolic fixed points are

(1) saddle (unstable), if β < 0 or β > 2, (4.121)

(2) node
(
repeller(σ = −1) or attractor (σ = +1)

)
:

|γ | < 1√
2
, 0 < β < 2, (4.122)

|γ |� 1√
2
, 0 < β < 1 +

√
1 − 1

2γ 2
or 1 +

√
1 − 1

2γ 2
< β < 2, (4.123)

(3) improper node
(
repeller (σ = −1) or attractor (σ = +1)

) :

|γ |� 1√
2
, β = 1 ±

√
1 − 1

2γ 2
, (4.124)

(4) focus
(
repelling (σ = −1) or attracting (σ = +1)spirals

)
:

|γ | > 1√
2
, 1 −

√
1 − 1

2γ 2
< β < 1 +

√
1 − 1

2γ 2
(4.125)

for the fixed point of Eqs. (4.114)–(4.115). In addition, for the fixed point of Eq. (4.116)

λ2± =
√
V(ϕ2c)

2

(
−σ ±

√
1 − 2γ 2β

)
for β > 2, (4.126)

λ2± =
√
V(ϕ2c)

2

(
−σ ±

√
1 − 4γ 2

(
1 + C2

C1

))
for β = 2, (4.127)

(1) saddle (unstable): β = 2,
C2

C1
< −1, (4.128)

(2) node
(
repeller(σ = −1), attractor (σ = +1)

)
:

|γ | < 1√
2β

for β > 2, (4.129)

− 1 <
C2

C1
<

1

4γ 2
− 1 for β = 2, (4.130)

(3) improper node
(
repeller (σ = −1), attractor (σ = +1)

)
:

γ = ± 1√
2β

for β > 2, (4.131)

C2

C1
= 1

4γ 2
− 1 for β = 2, (4.132)

(4) focus
(
repelling (σ = −1) or attracting (σ = +1) spirals

)
:

|γ | > 1√
2β

for β > 2, (4.133)

C2
>

1
2

− 1 for β = 2. (4.134)

C1 4γ
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8. The integrable potentials (7) of Table 1
If β = 2( 1

γ
− 1) the potentials (4.113) become

V(ϕ) = C1(coshγ ϕ)
2( 1

γ
−1) + C2(sinhγ ϕ)

2( 1
γ

−1) (4.135)

which are integrable and are characterized by the following types of hyperbolic fixed points:

λ1± =
√
V(ϕ±

1c)

2

(−σ ± (4γ − 3)
)

(4.136)

(1) saddle (unstable): γ <
1

2
or γ > 1, (4.137)

(2) node
(
repeller (σ = −1), attractor (σ = +1)

)
:

1

2
< γ <

3

4
or

3

4
< γ < 1, (4.138)

(3) improper node
(
repeller (σ = −1), attractor (σ = +1)

)
: γ = 3

4
, (4.139)

and

λ2± =
√
V(ϕ2c)

2

(−σ ± (2γ − 1)
)

for 0 < γ <
1

2
, (4.140)

λ2± =
√
V(ϕ2c)

2

(
−σ ±

√
−C2

C1

)
for γ = 1

2
. (4.141)

(1) saddle (unstable): γ = 1

2
for

C2

C1
< −1, (4.142)

(2) node
(
repeller (σ = −1), attractor (σ = +1)

)
:

for 0 < γ <
1

2
or γ = 1

2
, −1 <

C2

C1
< 0, (4.143)

(3) improper node
(
repeller (σ = −1), attractor (σ = +1)

)
:

forγ = 1

2
, C2 = 0,

(4) focus
(
repelling (σ = −1) or attracting (σ = +1) spirals

)
:

for γ = 1

2
,

C2

C1
> 0. (4.144)

The potentials (4.135) with

C1 > 0, C2 < 0, (4.145)

can equivalently be represented in the form (4.17) with

P±(ϕ) = √
2C1(coshγ ϕ)

1
γ ± √−2C2(sinhγ ϕ)

1
γ , (4.146)

where P+(ϕ) possesses both fixed points (4.114)–(4.115) and (4.116), while P−(ϕ) possesses
only the fixed point (4.116).

Finally the potentials
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V(ϕ) = C1 cosh

(
2ϕ

3

)
, (4.147)

V(ϕ) = C1 coshϕ, (4.148)

which we have already discussed, belong to the class (4.135) and correspond to γ = 1
3 ,C2 =

−C1 and γ = 1
2 ,C2 = C1, so that their fixed points are the node (4.143) and the focus (4.144),

respectively.

9. The integrable potentials (8) of Table 1
Let us now turn to consider the class of potentials of Eq. (3.82) (letting C = |C|ei(θ+π/2))

V(ϕ) = |C| Im
[
ei(θ+π/2)(i + sinh 2γ ϕ)

1
γ

−1]
≡ |C|(cosh 2γ ϕ)

1
γ

−1 cos

[(
1

γ
− 1

)
arccos(tanh 2γ ϕ) + θ

]
(4.149)

where 0 < θ � 2π is a real parameter. This expression has no definite symmetry in general with
respect to the inversion ϕ → −ϕ, and it is bounded both from below and above, |V(ϕ)| � |C|,
for γ < 0 and for γ > 1. On the other hand, if 0 < γ < 1, the two conditions

cos

[
π

(
1 − 1

γ

)
+ θ

]
> 0, cos θ > 0, (4.150)

guarantee that the potential is bounded from below, V(ϕ) � −|C| asymptotically as ϕ → ±∞.
For the case γ = 1

n
(n ∈ N), the potentials of this class become polynomials in the hyperbolic

functions sinh(2γ ϕ) and cosh(2γ ϕ). Moreover, for γ = 1
2n

(n ∈ N) and θ = π
2 , 3π

2 (θ = 0,π)

they are even (odd) functions of ϕ, and for γ = 1
2n+1 (n ∈ N) and θ = 0,π (θ = π

2 , 3π
2 ) they are

even (odd) functions of ϕ.
The potential (4.149) possesses the fixed points

vkc = 0, ϕkc = 1

4γ
log

(1 + cos
π
2 +πk−θ

1
γ

−2

1 − cos
π
2 +πk−θ

1
γ

−2

)
, (4.151)

where the possible values of k ∈ Z are constrained by the range of the principal value of the
arccos function (0 � arccos � π ):

−1

2
+ θ

π
� k � 1

γ
− 5

2
+ θ

π
if

1

γ
> 2, (4.152)

1

γ
− 5

2
+ θ

π
� k � −1

2
+ θ

π
if

1

γ
< 2. (4.153)

The fixed-point values of the potential and of its second derivative

V(ϕkc) = C(−1)k+1
(

sin
π
2 + πk − θ

1
γ

− 2

)2− 1
γ

, (4.154)

V ′′(ϕkc) = −4(1 − γ )(1 − 2γ )V(ϕkc), (4.155)

define the admissible fixed points

C(−1)k+1 > 0 (4.156)
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and determine their types

λk± =
√
V(ϕkc)

2

(−σ ± (4γ − 3)
)
, (4.157)

(1) saddle (unstable): γ <
1

2
or γ > 1, (4.158)

(2) node
(
repeller (σ = −1), attractor (σ = +1)

)
:

1

2
< γ <

3

4
or

3

4
< γ < 1, (4.159)

(3) improper node
(
repeller (σ = −1), attractor (σ = +1)

)
: γ = 3

4
. (4.160)

It is instructive to take a closer look at some representatives of the different types of admissible
fixed points.

1. The symmetric potential with parameters C > 0, θ = 0, γ = 1
5 that is bounded from below

possesses one admissible fixed point (4.151) with k = 1, the saddle of Eq. (4.158):

v1c = 0, ϕ1c = 0. (4.161)

2. The potential with parameters C > 0, θ = 0, γ = 5
6 that is bounded from below possesses

one admissible fixed point (4.151) with k = −1, the node of Eq. (4.159):

v−1c = 0, ϕ−1c = 3

15
log

(
1 + cos 5π

8

1 − cos 5π
8

)
. (4.162)

3. The potential with parameters C > 0, θ = 0, γ = 3
4 that is bounded from below possesses

one admissible fixed point (4.151) with k = −1, the improper node of Eq. (4.160):

v−1c = 0, ϕ−1c = 1

3
log

(√
2 − 1√
2 + 1

)
. (4.163)

The potential (4.149) with

C > 0 (4.164)

can equivalently be represented in the form (4.17), with

P(ϕ) = √
C(cosh 2γ ϕ)

1
2γ cos

[
1

2γ
arccos(tanh 2γ ϕ) + θ

2
− π

4

]
, (4.165)

where P(ϕ) possesses the fixed points (4.151) for odd values of k.

10. The integrable potentials (6) of Table 1
Let us now consider the potential

V(ϕ) = 2C arctan
(
e−2ϕ

) + D, (4.166)

which possesses the admissible fixed points at infinity

v+
c = 0, ϕ+

c = +∞ if D � 0, (4.167)

v− = 0, ϕ− = −∞ if Cπ + D � 0, (4.168)
c c
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with

V
(
ϕ+

c

) = D, V ′′(ϕ+
c

) = 0, (4.169)

V
(
ϕ−

c

) = Cπ + D, V ′′(ϕ−
c

) = 0. (4.170)

The corresponding eigenvalues (4.13),

λ±± =
√
V(ϕ±

c )

2
(−σ ± 1), (4.171)

include zeroes, so that the fixed points (4.167) and (4.168) are not hyperbolic. As a result, the
linearization of this dynamical system around these fixed points must be combined with an anal-
ysis of their structural stability properties in order to determine the phase portrait. To this end,
one can consider different domains for the admissible parameter space {C,D} and define the
following weak Lyapunov functions f ±(ϕ, v) with the required properties in these domains:

(1) for C � 0, D � 0, (4.172)

f +(ϕ, v) ≡
√

v2 + 2V(ϕ) −
√

2V
(
ϕ+

c

)
> 0 for −∞ < {v,ϕ} < +∞, (4.173)

f +(
ϕ+

c , v+
c

) = 0, ḟ +(ϕ, v) = −σv2,

and

(2) for − D

π
� C < 0, D � 0, (4.174)

f −(ϕ, v) ≡
√

v2 + 2V(ϕ) −
√

2V
(
ϕ−

c

)
> 0 for −∞ < {v,ϕ} < +∞, (4.175)

f −(
ϕ−

c , v−
c

) = 0, ḟ −(ϕ, v) = −σv2.

These functions are positive definite in the whole phase space and vanish only at the fixed points,
while their time derivative is negative or positive semi-definite depending on the sign of σ = ±1
and does not vanish identically on any trajectory other than the fixed points themselves. From
these Lyapunov functions one can conclude that the fixed points (4.167) and (4.168) are unstable
for σ = −1 and asymptotically stable for σ = +1 in the parameter domain (4.172) and (4.174),
respectively. Eqs. (4.173) and (4.175) define explicitly the basin of attraction (stability domain),
which is the whole phase space in this example, so that all trajectories approach asymptotically
as t→ + ∞ the corresponding fixed points.

The asymptotic behavior as t → +∞ of the Hubble function and of the scale factor that apply
if the fixed points (4.167)–(4.168) are asymptotically stable have as usual the form

H =
√

2V
(
ϕ±

c

)
, A=

√
2V

(
ϕ±

c

)
(t − t0) if V

(
ϕ±

c

)
> 0, (4.176)

as pertains to an expanding de Sitter patch, while the exponential behavior leaves way to a power-
like behavior if V(ϕ±

c ) = 0. Let us also recall that in four dimensions H = H
3 and a = eA/3.

Similar considerations apply to the last two examples, to which we now turn.

11. The integrable potentials (5) of Table 1
Let us now consider the potential

V(ϕ) = C log | cothϕ| + D, (4.177)

which possesses the admissible fixed points at infinity
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v±
c = 0, ϕ±

c = ±∞ at D � 0, (4.178)

with

V
(
ϕ±

c

) = D, V ′′(ϕ±
c

) = 0. (4.179)

The corresponding eigenvalues (4.13)

λ±± =
√
V(ϕ±

c )

2
(−σ ± 1) (4.180)

include zero, so that these fixed points (4.178) are not hyperbolic, and in order to understand
qualitatively the phase portrait in their vicinity one needs to analyze their structural stability
properties. To this end, one can define the following weak Lyapunov functions f ±(ϕ, v) with
the required properties:

C � 0, D � 0, (4.181)

f ±(ϕ, v) ≡
√

v2 + 2V(ϕ) −
√

2V
(
ϕ±

c

)
> 0 for −∞ < {v,ϕ} < +∞, (4.182)

f ±(
ϕ±

c , v±
c

) = 0, ḟ ±(ϕ, v) = −σv2.

These functions are positive definite in the whole phase space and vanish only at the fixed points,
while their time derivative is negative or positive semi-definite depending on the sign of σ =
±1 and does not vanish identically on any trajectory other than the fixed points themselves.
From these Lyapunov functions one can conclude that the fixed points (4.178) are unstable for
σ = −1 and asymptotically stable for σ = +1 in the parameter domain (4.181). Eqs. (4.182)
define explicitly the basin of attraction (stability domain), which is the whole phase space in this
example, so that all trajectories approach asymptotically as t → +∞ the corresponding fixed
points.

12. The potential V(ϕ) = V0e
2γϕ + Λ

Our last analysis concerns the potential

V(ϕ) = V0e
2γϕ + Λ, γ > 0, (4.183)

which possesses an admissible fixed point at infinity,

vc = 0, ϕc = −∞, (4.184)

V(ϕc) = Λ, V ′′(ϕc) = 0, (4.185)

provided

Λ � 0. (4.186)

The corresponding eigenvalues (4.13)

λ± =
√
V(ϕc)

2
(−σ ± 1) (4.187)

include zero, so that one is confronted with a degenerate non-hyperbolic fixed point.
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As in the preceding subsection, one can define a Lyapunov function,

if V0 � 0, Λ � 0:

f (ϕ, v) ≡
√

v2 + 2V(ϕ) − √
2V(ϕc) > 0, (4.188)

for −∞ < {v,ϕ} < +∞,

f (ϕc, vc) = 0, ḟ (ϕ, v) = −σv2 (4.189)

and as a result one can conclude that the fixed point (4.184) is unstable for σ = −1 and asymp-
totically stable for σ = +1 in the parameter domain (4.188). Eqs. (4.189) characterize the basin
of attraction, which is the whole phase space in this example, so that all trajectories approach
asymptotically as t→ + ∞ the fixed point (4.184).

In order to clarify how the system approaches the fully degenerate non-hyperbolic fixed point
(4.184) with λ± = 0 in Eq. (4.187) with Λ = 0 and V0 > 0 and to specify the corresponding
directions in the phase portrait, one can represent Subsystem I of Eq. (4.4) in polar coordinates
(r, θ), introducing the new evolution parameter τ defined as

dr

dτ
= −σr sin2 θ,

dθ

dτ
= − cos θ(σ sin θ + γ ), (4.190)

where

r dt ≡ dτ,
√

2V0e
γϕ ≡ r cos θ, v ≡ r sin θ. (4.191)

For 0 < γ < 1 this transformation (4.191) blows up the degenerate fixed point (4.184) into the
circle (0,0 � θ < 2π), where the resulting dynamical system (4.190) possesses the four non-
degenerate hyperbolic fixed points(

0,
π

2

)
,

(
0,

3π

2

)
, (4.192)

(0,∓ arcsinγ ), (0,π ± arcsinγ ) (4.193)

for σ = ±1, with the eigenvalues

λ1 = −σ sin2 θ, λ2 = −σ cos(2θ) + γ sin θ. (4.194)

Only the two fixed points (4.192) survive for γ � 1, so that the system undergoes a bifurcation at
γ = 1 where the climbing phenomenon sets in. The angles in Eqs. (4.192) and (4.193) define the
discrete set of phase portrait directions along which the trajectories can approach asymptotically
the original degenerate fixed point (4.184).

4.2. Exact solutions of the models of Table 1

We now turn to a detailed discussion of the solutions of the most significant models listed in
Table 1.



P. Fré et al. / Nuclear Physics B 877 [PM] (2013) 1028–1106 1069
Fig. 1. ϕ(τ) and A(τ ) (dashed), with τ = √|Λ|/2tc , according to Eqs. (4.200) and Eqs. (4.202). With Λ > 0 the scalar
is brought to rest by cosmological friction as the Universe begins an exponential expansion, while with Λ < 0 the scalar
runs off to infinity as the Universe undergoes an eventual Big Crunch.

4.2.1. Solutions of the elementary systems with B = 0
Let us open our discussion of the exact solutions with a relatively simple special case in which

only C12 is not zero in the class of potentials (3.27). Only a cosmological constant is then present,
and if we further assume initially that Λ > 0 and let

C12 = Λ

2
, λ =

√
Λ

2
(4.195)

the solution takes the form

ϕ = log

(
c1 cosh(λtc) + d1 sinh(λtc)

c2 cosh(λtc) + d2 sinh(λtc)

)
, (4.196)

eA = (
c1 cosh(λtc) + d1 sinh(λtc)

)(
c2 cosh(λtc) + d2 sinh(λtc)

)
, (4.197)

while the Hamiltonian constraint reduces to the condition

c1c2 = d1d2 (4.198)

on the four integration constants.
Together with the familiar de Sitter patch, which is recovered if the four constants are all

equal, this setting includes two other interesting solutions that entail a non-trivial cosmological
evolution of the scalar field. They differ only in the direction of its motion, and hence it suffices
to illustrate one of them, which obtains if c1 and d2 vanish and reads

ϕ = log

[
d1

c2
tanh(λtc)

]
, (4.199)

eA = [
c2d1 sinh(λtc) cosh(λtc)

]
. (4.200)

If c2 and d1 have identical signs one can work for tc � 0, and then the scalar emerges from
the initial singularity at t = 0 from −∞ (Fig. 1), moves toward larger values and when it is
brought eventually to rest by cosmological friction the Universe enters an epoch of exponential
expansion. On the other hand, if c2 and d1 have opposite signs one can capture the time reversal
of this evolution. This option presents itself in all of our examples, but we shall leave it aside for
brevity in the following.

The solutions of Eq. (4.197) admit an interesting continuation to imaginary values of t . What
we have stressed in Section 2.1 is manifest in this case: the end result can be regarded as a solution
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for Λ > 0 with Euclidean signature, or alternatively as a solution for Λ < 0 with Minkowski
signature. Abiding to the latter interpretation, one can present it in the form

ϕ = log

[
d1

c2
tan

(|λ|tc
)]

, (4.201)

eA = c2d1 sin
(|λ|tc

)
cos

(|λ|tc
)
, (4.202)

where c2 and d1 were also analytically continued in order that the arguments remain real and
their product stays positive. This solution illustrates a key feature of this class of models, since it
describes a Universe that emerges from a Big Bang at tc = 0 and ends up in a Big Crunch at

t�c = π

2

√
2

|Λ| , (4.203)

when the scalar is rapidly driven to infinity. Notice in fact that during the collapsing phase cos-
mological damping leaves way to cosmological amplification, so that in this case the scalar field
sweeps out the whole real axis during its evolution. This type of behavior reflects the attractive
nature of a negative cosmological constant and the absence of a flat AdS slicing, and will surface
time and over again in more complicated examples.

Our next class of integrable potentials illustrates the crucial role of the allowed range for the
independent variable t . It concerns a case that was already discussed in Section 3.1, an exponen-
tial potential with γ = 1

2 , that we write

V = Ceϕ, (4.204)

letting for brevity C11 = C. However, now the solution will be given directly in terms of cosmic
time, since after all, as we already noticed there, this value of γ brings about an elementary
relation between parametric time t and cosmic time tc . Assuming to begin with that C be positive,
as pertains to a stable potential, the solution reads

ϕ = log

[
d1tc + c1

Cd1
6 t3

c + Cc1
2 t2

c + d2tc + c2

]
, (4.205)

eA =
[
(d1tc + c1)

(
Cd1

6
t3
c + Cc1

2
t2
c + d2tc + c2

)]
, (4.206)

where the constants are not independent since the Hamiltonian constraint (3.26) yields the
quadratic relation

Cc2
1 = 2d1d2. (4.207)

Notice that d1 cannot vanish, otherwise the Hamiltonian constraint would force c1 to vanish as
well. As a result, shifting t one can always remove c1 and then d2 is bound to vanish on account
of Eq. (4.207), so that all in all the solution can be reduced in general to the form

ϕ = log

[
6

C

tc

(t3
c + Δ)

]
,

eA =
[
Cd2

1

6
tc

(
t3
c + Δ

)]
, (4.208)

where Δ is a combination of the remaining constants. Actually, a further rescaling of the time
variable tc to
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τ = tc

|Δ| (4.209)

gives rise if Δ > 0 to

ϕ = log

[
6

C

τ

(τ 3 + 1)

]
,

eA =
[
Cd2

1

6
τ
(
τ 3 + 1

)]
, (4.210)

which describes for τ > 0 the evolution in the presence of a climbing scalar, and if Δ < 0 to

ϕ = log

[
6

C

τ

(τ 3 − 1)

]
,

eA =
[
Cd2

1

6
τ
(
τ 3 − 1

)]
, (4.211)

which describes for τ > 1 the evolution in the presence of a descending scalar. Notice also that
these two expressions, with their excluded regions, are mapped into each other by a time-reversal
operation.

How about the region that we excluded in the standard case C > 0? It also plays a role, albeit
in the case C < 0 that we excluded since it involves an inverted potential. In this pathological
case the solutions behave again along the lines of what happened for Λ < 0 in the preceding
example: the Universe emerges from a Big Bang to end up in a Big Crunch while the scalar
sweeps out the whole real axis.

We can now move one step forward, combining the preceding potentials into

V = Ceϕ + Λ, (4.212)

where both C and the cosmological constant Λ are initially assumed to be positive. In this case
the solution can be cast in the form

x = c1 coshλtc + d1 sinhλtc,

y = Ctc

2λ
(c1 sinhλtc + d1 coshλtc) + c2 coshλtc + d2 sinhλtc, (4.213)

where λ is given again in Eq. (4.195), while the Hamiltonian constraint yields the quadratic
relation

(
d2

1 − c2
1

) = Λ

C
(c1c2 − d1d2). (4.214)

There are clearly two classes of independent solutions, the first of which, a deformation of
the descending solution, obtains for d1 = 0 and, taking into account the Hamiltonian constraint
(4.214), can be cast in the form2

2 Notice that some of the coefficients present in these solutions and in Eqs. (4.217) are bound to have a singular limit
as Λ → 0. As a result, as tc → ∞ ϕ approaches a limiting speed that is half of the value determined by Eqs. (4.210)
and (4.211) in the absence of a cosmological term. In other words, the Λ → 0 limit of the late-time behavior exhibits a
discontinuity at Λ = 0.
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Fig. 2. The solutions for ϕ(τ) and A(τ ) (dashed) in the potential (4.204), with τ = √|Λ|/2tc : descending or climbing if
C > 0, with an eventual Big Crunch if C < 0.

ϕ = − log
C

Λ

[
(λtc + Δ1) tanh(λtc) − 1

]
,

eA = c2
1
C

Λ
cosh2(λtc)

[
(λtc + Δ1) tanh(λtc) − 1

]
, (4.215)

where Δ1 is a combination of the other constants, and the corresponding range of tc is defined
by the condition

C
[
(λtc + Δ1) tanh(λtc) − 1

]
> 0. (4.216)

In a similar fashion, a deformation of the climbing solution obtains for c1 = 0 and takes the form

ϕ = − log
C

Λ

[
(λtc + Δ2) coth(λtc) − 1

]
,

eA = d2
1
C

Λ
sinh2(λtc)

[
(λtc + Δ2) coth(λtc) − 1

]
(4.217)

if Δ2 is a positive combination of the other constants. In general, however, the range of tc is
defined by the condition[

(λtc + Δ2) coth(λtc) − 1
]
> 0, (4.218)

so that this solution describes a climbing scalar only if the inequality (4.218) is satisfied for
all t � 0, but otherwise it describes a descending scalar. In all cases, the presence of a positive
cosmological constant in Eq. (4.212) drives the system to approach more rapidly the attractor
behavior

ϕ ∼ − logλtc, (4.219)

a result that affords an intuitive explanation since its net effect is to flatten the potential, reducing
the effective value of γ , in the language of Section 3.1, that is felt by the scalar field during the
descent.

As in the preceding example, the ranges thus identified depend on the sign of C, so that for
C < 0 one is confronted again with the type of behavior encountered in Eqs. (4.202): the scalar
sweeps the whole real axis during an epoch following a Big Bang and preceding a Big Crunch.

Similar types of behavior are encountered in the class of potential wells

V = C coshϕ + Λ. (4.220)
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Fig. 3. The evolution of ϕ in the potentials (4.220), with ε equal to 0 (left), to 0.1 (center) and to 0.5 (right), as a function
of τ . The extent of the oscillations is quickly reduced as ε increases.

The preceding discussion makes it possible to confine our analysis, for brevity, to the class of
models where Λ and C are both positive, which exhibit nonetheless an interesting crossover
between two qualitatively different types of behavior. For all these models Eq. (4.220) describes
potential wells whose ends are under-critical in the sense of Section 3.1, so that the scalar ϕ

can descend from either side after the initial singularity, but there are two types of subsequent
behavior. They reflect the eigenvalues of the system (3.25), that for this class of potentials are
determined by the relation

λ2 = Λ ± C

2
, (4.221)

so that they are all real if Λ > C while two are real and two are imaginary if Λ < C. Letting

τ = t

√
C

2
, ε = Λ

C
, (4.222)

the interesting behavior for Λ < C is captured for instance by the exact solution

ϕ = log

[√
1 − ε sinh(τ

√
1 + ε) + √

1 + ε sin(τ
√

1 − ε)√
1 − ε sinh(τ

√
1 + ε) − √

1 + ε sin(τ
√

1 − ε)

]
, (4.223)

which describes a scalar field that emerges from the initial singularity climbing down the right
end of the well and readily approaches its minimum performing damped oscillations about it
(Fig. 3).

Briefly stated, the two subclasses of systems thus identified behave, respectively, as an over-
damped and an under-damped oscillator, so that if Λ > C cosmological friction dominates and
the scalar descends from one of the walls and comes to rest at the bottom, while in the opposite
case it also undergoes damped oscillations. One can understand intuitively why this should be
the case: as we have seen, the net effect of a positive Λ is to enhance the effect of cosmological
damping relative to the potential drive, so that only if it is small enough can the potential have
a say close to the origin. In the language of Section 4.1.3, the two types of behavior reflect the
transition between a fixed point of type “node” and one of type “focus”.

4.2.2. Solutions of the triangular systems with B 	= 0
The class of potentials of Eqs. (3.37) is rather rich and has the virtue of displaying neatly a

number of effects, including the onset of the climbing phenomenon when the potential becomes
sufficiently steep. Let us notice, to begin with, that in the most interesting case in which both ci
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are not zero in the potential (3.31), shifting ϕ one can make them identical up to a sign. Therefore,
we shall work generically with

V = C
(
ε1e

2γϕ + ε2e
(γ+1)ϕ

)
, (4.224)

with γ 	= ±1, and we shall actually set C = 1 in the following, absorbing its positive value in the
time scale. In all cases, as we have seen in Section 3,

A= log
(
x

1
1+γ y

1
1−γ

)
, ϕ = log

(
x

1
1+γ y

− 1
1−γ

)
, (4.225)

and

dtc = x
− γ

1+γ y
γ

1−γ dt. (4.226)

Some care should be exercised when interpreting the dynamics in terms of t , since in certain
ranges for the parameter γ large values of t translate into small values of tc and vice versa.

For brevity, here we shall restrict our attention to the cases where the potential does not be-
come arbitrarily large and negative, since we know already from preceding examples what this
type of pathology would imply (see e.g. the right panel of Fig. 2), but nonetheless different ranges
of γ bring about different types of interesting phenomena:

1. For γ > 1, both exponents in the potential are positive and over-critical in the sense of
Section 3.1. In this region the potential is dominated asymptotically by the first term in
Eq. (3.31), so that we shall confine our attention to the case ε1 = 1, allowing however for
ε2 = ±1, since negative values give rise to shallow potential wells terminating on an over-
critical potential, an interesting situation that will also be captured by a subsequent class of
examples;

2. For 0 < γ < 1 both exponents are positive and under-critical, and here one can play similarly
with ε1 = ±1 while fixing ε2 = 1, since the second term now dominates asymptotically;

3. For −1 < γ < 0 both exponents are under-critical but have opposite signs, so that Eq. (3.31)
describes stable potential wells only if ε1 = ε2 = 1;

4. For −3 < γ < −1 both exponents are negative, one is over-critical and one is under-critical,
so that for ε2 = 1 Eq. (3.31) captures the onset on an inflationary phase spurred by the
climbing phenomenon, as will be also the case for one of the models belonging to the last
class of Section 3.2.3. In this region one can also allow for ε2 = −1 compatibly with the
existence of a negative lower bound for V ;

5. For γ < −3 both exponents are negative and over-critical, so that this last range has the
same qualitative features as the first one.

To begin with, the solutions apply in regions where x(t) and y(t) are both positive and possess
widely different features for |γ | < 1, where the climbing phenomenon is not present, and in the
complementary interval |γ | > 1, where it occurs. We have chosen to present them in an explicit
form, although some contributions can be related to hypergeometric functions.

For |γ | < 1 and ε1 = 1 the homogeneous solutions are hyperbolic, and letting

Ω =
√

1 − γ 2

2
(4.227)

there are actually two distinct classes of behavior. They are captured by
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Fig. 4. Cosmological evolution of the scalar field in the potential well (4.230): the solutions (4.232) for a − 2 =
−2.5,−1.9,2.5 (left: continuous, dashed, dotted), and the solution (4.234) for a = −2.5,−1.9,2.5 (right: continuous,
dashed, dotted). In the former case an interesting transition occurs at the point a = −2, below which the solutions actually
emerge from the right.

x(t) = sinh(Ωt),

y(t) =
[
a − 1

1 + γ

sinh2(Ωt)∫
0

duu
1−γ

2(1+γ ) (1 + u)−
1
2

]
cosh(Ωt) + [

sinh(Ωt)
] 3+γ

1+γ , (4.228)

which typically describes for 0 < γ < 1 a climbing scalar, and by

x(t) = cosh(Ωt),

y(t) =
[
a + 1

1 + γ

cosh2(Ωt)∫
1

duu
1−γ

2(1+γ ) (u − 1)−
1
2

]
sinh(Ωt) − [

cosh(Ωt)
] 3+γ

1+γ , (4.229)

which typically describes for 0 < γ < 1 a descending scalar. For instance, in the region −1 <

γ < 0 the names of climbing and descending solutions should perhaps be interchanged, since
the potential becomes steeper on its left end. More importantly, the behavior undergoes a sharp
change when a endows y(t) with a zero for positive t , thus setting a positive lower bound on the
admissible region for the cosmological evolution, since Eq. (4.228) then describes a descending
scalar. Aside from taking into account the Hamiltonian constraint, in these solutions we have
also absorbed an overall constant originating from x(t) into the definition of the spatial scale
(see Fig. 4).

The case γ = − 1
3 is particularly instructive, since for the corresponding stable potential,

V = 2 cosh

(
2ϕ

3

)
, (4.230)

the integrals of Eqs. (4.228) and (4.229) become particularly simple and the solutions read

A = 3

4
log

{
sinh2

(
2t

3

)[
cosh2

(
2t

3

)
+ (a − 2) cosh

(
2t

3

)
+ 1

]}
, (4.231)

ϕ = 3

4
log

{
sinh2( 2t

3 )

cosh2( 2t
3 ) + (a − 2) cosh( 2t

3 ) + 1

}
(4.232)

and
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A= 3

4
log

{
cosh2

(
2t

3

)[
sinh2

(
2t

3

)
+ a sinh

(
2t

3

)
− 1

]}
, (4.233)

ϕ = 3

4
log

{
cosh2( 2t

3 )

sinh2( 2t
3 ) + a sinh( 2t

3 ) − 1

}
. (4.234)

As we have stressed, these expressions apply in regions where x(t) and y(t) are both positive,
where they describe Universes where the scalar approaches the critical point ϕ = 0 of the poten-
tial after emerging from the initial singularity from negative or positive values. The transition that
we have mentioned after Eq. (4.229) manifests itself in Eq. (4.232) as the parameter a entering
the solution becomes less than −2.

On the other hand, for |γ | > 1, letting

ω =
√

γ 2 − 1

2
(4.235)

and up to a shift of the origin of t there is the single class of solutions

x(t) = sin(ωt),

y(t) =
[
a − ε

γ + 1

1∫
sin2(ωt)

duu
1−γ

2(γ+1) (1 − u)−
1
2

]
cos(ωt) − ε

[
sin(ωt)

] γ+3
γ+1 . (4.236)

For ε = 1 these describe, for 0 < ωt < ω�t < π
2 , where y(t) vanishes at the upper end, a climbing

scalar in an expanding Universe, and the constant a determines the extent of the climbing phase.
On the other hand, for ε = −1 this solution applies in the wider range 0 < ωt < ω�t < π and its
nature changes drastically, as one could have anticipated from the preceding examples, since the
extremum corresponds to a negative cosmological constant. As a result, the scalar lingers about
it for a while but this drives the Universe to collapse again, so that the scalar is accelerated and
eventually climbs up the potential all the way until an eventual Big Crunch takes place. There
is another interesting region for −3 < γ < −1, where the climbing is followed by a “hard kick”
that leads to an inflationary phase during the subsequent descent. The behavior of this class of
potentials is along the lines of what we shall see for the models of Eq. (3.90), so that we can
postpone a more detailed discussion of this case for the sake of brevity, but let us note that for the
sequence of rational values γ = −1 − 1

2n
the integrals become elementary and are expressible in

terms of trigonometric functions. Eq. (4.236), and the previous considerations for ε = −1, also
apply to the potential wells obtained choosing ε1 = −1 in the region 0 < γ < 1, provided

ω =
√

1 − γ 2

2
. (4.237)

We can forego a detailed description of the solutions of Eqs. (3.44), which can be expressed in
terms of error functions, since the key effect of a cosmological constant was already illustrated in
the preceding section and this model adds to that discussion only the inevitable presence of the
climbing phenomenon brought about by its “critical” exponential potential. Therefore, we can
now turn to describe the solutions of the dynamical system of Eqs. (3.51), which corresponds
to the potential function of Eq. (3.50). As we have stressed, for C > 0 this describes a shallow
potential well whose right end leaves way to a “critical” exponential in the sense of Section 3.1.
Hence, one might expect the scalar to emerge from an initial singularity while climbing up the
potential and to try to approach the bottom of the well for suitable initial conditions.
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Fig. 5. The potential well (3.50) and the corresponding ϕ(τ) and A(τ ) (dashed).

Up to a choice for the origin of the parametric time t , the solution of the first of Eqs. (3.53)
reads

x = Ct(t2 − t), (4.238)

and in the spirit of the preceding section we work in the interval 0 < t < t2 where x is positive.
It is thus convenient to perform the rescaling

τ = t

t2
(4.239)

and taking into account the Hamiltonian constraint (3.54) the complete solution takes finally the
form

x = Ct2
2 τ(1 − τ), (4.240)

v = 1

2

[
τ log τ + (1 − τ) log(1 − τ)

] + 1

4
log

(
Ct2

2

) − C

2
(1 − 2τ), (4.241)

so that

ϕ = 1

4
(1 − 2τ)

[
log

(
τ

1 − τ

)
+ 2C

]
,

A = 1

4

[
(1 + 2τ) log τ + (3 − 2τ) log(1 − τ)

] + C

2
(2τ − 1) + 1

2
log

(
Ct2

2

)
. (4.242)

Finally

dtc = C− 1
2 dt e

C
2 (2τ−1)

[
τ τ− 3

2 (1 − τ)1−τ− 3
2
] 1

2 . (4.243)

An example of this class of solutions is displayed in Fig. 5. They follow the general trend
of the spacetimes of Eq. (2.4) with a negative cosmological constant, so that a Big Bang is
always followed by a Big Crunch, and in this example the two are separated by an interval of
cosmological time that grows exponentially with C. As expected, ϕ does emerge from the Big
Bang from the milder end of the potential, the only option allowed by its “critical” logarithmic
slope, and larger positive values of C bring about larger penetrations into the right repulsive
region. However, for ϕ < 0 the potential is mostly very small and negative, so that the scalar
lingers around the extremum trying to settle there, but this is impossible since it would result
in an expanding solution driven by a mere negative cosmological constant, which as we have
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stressed does not exist in the class of metrics of (2.4). As a result, the Universe starts to contract,
cosmological damping turns into cosmological amplification and the scalar eventually runs off
to infinity while the Universe experiences a Big Crunch.

4.2.3. Solutions of the systems integrable via quadratures
Another wide class of the integrable models that we have identified is solvable by quadratures.

The solutions bring about in some cases a new complication, the need to invert simultaneously a
pair of functions, but nonetheless one can extract relatively simply some information about the
behavior close to the initial singularity and at late times.

Error functions have already surfaced in Section 4.2.2, and play a prominent role also in the
solutions for the potentials of Eqs. (3.58) and (3.66), which deserve a closer look since they
possess the novel feature of involving infinite series of exponentials. Let us begin from the first
case, which rests on a pair of independent dynamical systems, and let us concentrate on the
non-pathological case C > 0, where the potential describes an infinite logarithmic barrier at
ϕ = 0 that is accompanied, for ϕ > 0, by a region that is flat up to exponentially small corrections.
Rescaling the time variable according to

τ = √
8Ct (4.244)

and letting

εξ = − log ξ0, εη = − logη0 (4.245)

the system reduces to the two identical-looking equations

ξ̇2 = log

(
ξ

ξ0

)
, (4.246)

η̇2 = log

(
η

η0

)
, (4.247)

while the Hamiltonian constraint (3.64) translates into the condition

η0 = ξ0e
ρ, (4.248)

where

ρ = D

C
. (4.249)

Eqs. (4.246) and (4.247) can now be solved by quadratures, so that one readily arrives at the
two relations

t = 2ξ0

√
A+log(

2 cosh ϕ
ξ0

)∫
u0

eu2
du,

t = 2ξ0e
ρ

√
A+ρ+log(

2 sinh ϕ
ξ0

)∫
v0

ev2
dv, (4.250)

where u0 and v0 are a pair of positive lower bounds, but this implicit form is clearly not very
handy. Still, one can extract from it the main features of the dynamics.
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Let us first analyze qualitatively the behavior of these expressions in the case ρ = 0. The key
observation is that for large t the upper limits must also grow, while the integrands are dominated
by the regions near them. As a result, the two expressions are compatible if ϕ also grows in such a
way that the two upper bounds become essentially, in both cases,

√
A+ ϕ. This means effectively

that x grows faster than y, so that

A ∼ ϕ ∼ 1

2
log t. (4.251)

As we have seen in Section 3.1, this type of expression describes the late-time descent along a
“critical” exponential tail, which is clearly the dominant behavior for large positive values of ϕ

also for the potential (3.58). On the other hand, for small values of t one finds in general the
limiting relations

A ∼ 1

2

(−ρ + u2
0 + v2

0

) + 1

2
log

(
ξ2

0 sinh(ρ + u2
0 − v2

0)

2

)
,

log(cothϕ) ∼ ρ + u2
0 − v2

0, (4.252)

which we shall specialize again momentarily to the case ρ = 0. It should then be clear that the
only consistent way to set the Big Bang time at t = 0 is to identify the two lower bounds, choosing
v0 = u0, but the scalar is then bound to emerge after the initial singularity from large positive
values, and thus while climbing up the exponential wall. This is indeed the expected result, since
the logarithmic slope of W diverges as ϕ → 0+, so that we are well beyond the “critical” value
there. And indeed one can come readily to this conclusion from the differential equation for ϕ

near t = 0 in the gauge of Section 3.1, which is a viable choice for this model since W never
vanishes.

As in some preceding examples, there is a again a sharp difference between the cases of
positive and negative ρ, so let us begin by illustrating the former, which is simpler, referring
again to Eqs. (4.252). The behavior near the original singularity does not change, although now
u0 is reduced with respect to v0 according to

u0 =
√

v2
0 − ρ. (4.253)

This compensates, for low values of t , the combined effects of the positive ρ in the exponential
prefactor and in the upper bound of the second of Eqs. (4.250). However, as t increases the inte-
grals become dominated by their upper ends, so that the presence of ρ is to be compensated by
the difference between the two hyperbolic functions. In other words, as in preceding examples,
a positive ρ enhances cosmological friction and ϕ attains a finite limiting value for large t . For
ρ < 0 we expect, as for the preceding examples, an eventual collapse of the Universe. The be-
havior for small t remains the same, so that the system emerges again from the initial singularity
with the scalar climbing up, as can be seen from Eqs. (4.252), but when the integrals become
dominated by their upper bounds at some point the two equations (4.250) become incompatible,
due to the combined effects of a negative ρ in the exponent and in the upper bound, and this
signals in this formulation the expected Big Crunch.

Let us now turn to the potential of Eq. (3.66), which we shall specialize to the form

V = arctan
(
e−2ϕ

)
. (4.254)

This potential never vanishes and describes essentially a finite potential step, which the scalar
should be able to climb or descend during the cosmological evolution, and there are indeed two
distinct classes of solutions that realize these options. Let us add that the effective γ ,
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Fig. 6. A typical numerical climbing solution for the potential (4.254) (left), in the gauge of Section 3.1. The figure
displays the scale factor A (center), the scalar field ϕ (right, dashed) and the cosmic acceleration (right, continuous). In
this four-dimensional example 60 e-folds of accelerated expansion terminate in a graceful exit when ϕ climbs down and
moves away toward +∞.

γeff = 1

2V
∂V
∂ϕ

(4.255)

tends to zero from negative values as ϕ → −∞ and to −1 from larger negative values as ϕ → ∞.
In other words, in the convenient gauge of Section 3.1 the scalar would be subject to an effective
potential drive V ′/2V that is essentially constant on both sides of the step, with a γeff that is
slightly negative on the left and negative and essentially critical on the right. Hence, depending
on the initial conditions the scalar ϕ can indeed emerge from −∞ moving toward larger values,
or alternatively it can emerge from +∞ trying to climb up and then revert its motion somewhere,
but it has no other option than proceeding indefinitely to the right at late epochs.

These types of behavior can thus be anticipated proceeding along the lines of Section 3.1, but
they can also be foreseen from the implicit solution by quadratures of the system (3.68) that, up
to a rescaling of the time variable, takes the form of the contour integral

t =
z∫

a

dz√
log( z

z0
)
, (4.256)

to be defined in the complex plane cut along the line connecting the origin to the point z0. The
freedom in the choice of the lower limit a, where one of the two variables x and y is to vanish if
the initial singularity occurs at t = 0, reflects the behavior of ϕ as it emerges from it. Recalling
from Section 3.2.3 that for this model

ϕ = 1

2
log

(
x

y

)
, A= 1

2
log(xy), (4.257)

one can readily conclude that a real (imaginary) a implies that the scalar emerges from +∞
(−∞). In a similar fashion, the asymptotic slope of the contour for large |z| determines the
eventual fate of ϕ at late epochs.

For brevity, in the following let us take z0 = 1, up to a rescaling of the spatial metric in
Eq. (2.4). One could thus envisage, a priori, scalar trajectories emerging from ±∞ and termi-
nating at any point of the real axis, but the Hamiltonian constraint should be imposed, which in
this case translates into the condition that the contour be chosen in such a way that t remain real
throughout the cosmological evolution. One can then show that, at any point of the z-plane, the
slope of the integration contour is to be
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dy

dx
= arctan(

y
x
)

log
√

x2 + y2 +
√

(log
√

x2 + y2)2 + (arctan(
y
x
))2

, (4.258)

which clearly tends to zero for large values of x and y, so that indeed ϕ → +∞. Notice that a
cosmological term Λ would displace y

x
in the argument of the inner arctan to y

x
+ αΛ, with α

positive. If Λ > 0 the contour still flattens so that x/y grows and ϕ → ∞ at late times. However,
if Λ < 0 the slope at some point changes sign and y is driven to zero, which signals the expected
Big Crunch.

Alternatively, starting from the contour integral one can generate the asymptotic series

t = z

1∫
0

du√
log(u) + log(z)

= z√
log(z)

∞∑
n=0

�(n + 1
2 )

�( 1
2 )

log(z)−n, (4.259)

which is clearly dominated by the first term for large values of |z|. Even in this fashion, one is
led to conclude that real values of t obtain at late times only for contours that tend to become
parallel to the real axis of the z-plane, which is tantamount to saying that ϕ must inevitably tend
to +∞ at late epochs. This is precisely as expected from the shape of the potential.

One can actually turn the (complex) integrable system into the set of coupled first-order dif-
ferential equations

dx

dt
=

4
√

(log
√

x2 + y2 )2 + (arctan(
y
x
))2√

1 +
(

arctan(
y
x
)

log
√

x2+y2+
√

(log
√

x2+y2 )2+(arctan(
y
x
))2

)2
, (4.260)

dy

dt
=

arctan(
y
x
)

4
√

(log
√

x2 + y2 )2 + (arctan(
y
x
))2√(

log
√

x2 + y2 +
√

(log
√

x2 + y2 )2 + (arctan(
y
x
))2

)2 + (arctan(
y
x
))2

,

the second of which is obtained combining the first with Eq. (4.258), or alternatively one can
recast this system in terms of the cosmic time tc.

This model is remarkable, since it combines naturally an inflationary phase with an eventual
graceful exit. Indeed, if the scalar emerges from the initial singularity moving in from +∞ and
manages to climb up the step, it slows down on the plateau as a result of cosmological friction in
the almost flat potential that it finds there, reverts its motion and proceeds eventually in fast roll
toward +∞. A similar behavior also occurs if the scalar moves in from −∞ and undergoes slow
roll before descending the step, and in both cases, as ϕ lingers in the left region, the Universe can
undergo several e-folds of accelerated expansion. A typical numerical solution displaying this
type of behavior for a scalar climbing up from the right is shown in Fig. 6. Interestingly, as we
shall briefly explain in Section 6, in four dimensions a power series in e2ϕ as in Eq. (4.254) can
emerge precisely from closed-string loop corrections, so that in principle these types of potentials
can have a role in String Theory. Moreover, since

arctan
(
e−2ϕ

) = π

2
− arctan

(
e2ϕ

)
(4.261)

this combination of loop corrections enjoys a remarkable behavior under the inversion of its
argument, which in String Theory would be naturally related to the string coupling, as we shall
see in Section 6.
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Our next class of examples refers to the potentials of Eq. (3.74), which we present here again
for the reader’s convenience,

V = C1(coshγ ϕ)
2( 1

γ
−1) + C2(sinhγ ϕ)

2( 1
γ

−1)
. (4.262)

Depending on the choice made for the real exponent γ , these potentials can describe barriers or
wells of different shapes, and the presence of the second term restricts in general the domain to
the region ϕ > 0. For the sake of brevity and simplicity, we shall concentrate on a special but
very significant case of potential wells, with γ = 1

3 , which affords relatively handy solutions in
terms of elliptic functions. The potentials that we would like to discuss here in detail are thus

W = C1

(
cosh

ϕ

3

)4

+ C2

(
sinh

ϕ

3

)4

= C1

[(
cosh

ϕ

3

)4

+ ε

(
sinh

ϕ

3

)4]
, (4.263)

with |ε| < 1 in order to exclude a pathological behavior for large |ϕ|. Notice that positive values
of ε tend to squeeze the well, while negative ones tend to widen it. In terms of ξ and η

(xy)2W = C1
(
ξ4 + εη4), (4.264)

so that the starting point is provided in this case by the two conservation laws

ξ̇2 − 2

9
C1ξ

4 = A,

η̇2 + 2

9
C1εη

4 = A, (4.265)

where the two “total energies” are bound to coincide because of the Hamiltonian constraint
(3.80). The relations

e2γA = ξ2 − η2, e2γϕ = ξ + η

ξ − η
(4.266)

were already presented in Section 3.2.3, and connect ξ and η to the physical variables A and ϕ.
The solutions for ξ and η can be expressed in terms of Jacobi elliptic functions with imaginary

modulus k, and for ε > 0 a possible choice corresponding to the scalar initially climbing down
the right end of the well is

ξ = e−i π
4

(
9A

2C1

) 1
4

sn

[
tei π

4

(
2AC1

9

) 1
4

, i

]
,

η =
(

9A

2εC1

) 1
4

sn

[
t

(
2AεC1

9

) 1
4

, i

]
, (4.267)

where the second function generalizes a sin function, while the first is also real and generalizes
a tan function. On the other hand, for ε < 0 both ξ and η behave as ξ above, so that

ξ = e−i π
4

(
9A

2C1

) 1
4

sn

[
tei π

4

(
2AC1

9

) 1
4

, i

]
,

η = e−i π
4

(
9A

2|ε|C1

) 1
4

sn

[
tei π

4

(
2A|ε|C1

9

) 1
4

, i

]
. (4.268)

Let us also recall that, in terms of Jacobi ϑ functions,
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Fig. 7. Some instances of the stable even potentials that can emerge from Eq. (3.82) for γ = 1
2n

, displayed here for the
three cases n = −5,3,4. There are always negative extrema where the systems will try to settle before ending up in a
Big Crunch.

sn(u, k) = ϑ3(0|τ)

ϑ2(0|τ)

ϑ1(
u

ϑ2
3 (0|τ)

|τ)

ϑ4(
u

ϑ2
3 (0|τ)

|τ)
, (4.269)

where the modulus τ of the associated torus is defined implicitly in terms of k by the relation

k = ϑ2
2 (0|τ)

ϑ2
3 (0|τ)

. (4.270)

The solutions that we have displayed describe a scalar ϕ that emerges from the initial singu-
larity descending the right end of the wells and comes to the extremum, which lies at ϕ = 0 for
the whole class of potentials at stake, within a finite interval of the parametric time t , or asymp-
totically as tc → ∞. This is the familiar behavior for extrema corresponding to positive values of
the potentials, and of course another type of solutions, where the scalar descends along the left
end, also exists, which can be simply obtained from these reversing the sign of η.

In discussing the class of potentials described by Eq. (3.82), we shall leave aside once more
pathological cases in which they are unbounded from below as the field grows to arbitrarily large
(positive or negative) values. The interesting subclass of potentials that fulfill this condition are
then even functions that arise for special ranges of γ , where generically they have a number of
critical points with negative cosmological constant. We refrain from analyzing these examples
in detail, since we already know that whenever such extrema are present, as the scalar tries to
settle there the expansion stops and leaves way to an eventual Big Crunch, but some of these
interesting potentials are displayed in Fig. 7.

Our last class of examples is very instructive, since their potentials

W = λ
[
e2γϕ + e

2
γ

ϕ]
, (4.271)

with λ > 0, where one can clearly restrict the attention to the case 0 < γ < 1, combine an (over-
)critical term with an (under)critical one and the solutions are relatively simple. These are the
most general potentials in Eq. (3.90) whenever the two coefficients C1 and C2 are both positive,
up to shifts of ϕ, and we confine our attention to this subclass for brevity, since other choices
bring about the types of pathologies that we have already come across. For low enough γ , the
first term in Eq. (4.271) can drive an inflationary phase, so that the key qualitative features of
the models are along the lines of the semi-analytic treatment in [21], or of the class of models
discussed at the beginning of Section 4.2.2.
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The solution by quadratures of this class of models rests on the gauge choice (3.89) and on a
“boost” that turns the Lagrangian into a separable form. The resulting equations of motion lead
to the “energy conservation” relations

˙̂A2 = 2λ
(
e2Â

√
1−γ 2 + e2Â0

√
1−γ 2)

,

˙̂ϕ2 = 2λ
(
e

2ϕ̂0

√
1

γ 2 −1 − e
2ϕ̂

√
1

γ 2 −1)
, (4.272)

so that ϕ̂ is bound to be less than ϕ̂0. This is the manifestation of the climbing phenomenon:
ϕ̂ cannot proceed along the steep potential beyond a certain point. As in previous examples,
however, the two constants Â0 and ϕ̂0 are not independent, but

Â0 = 1

γ
ϕ̂0 (4.273)

on account of the Hamiltonian constraint (3.94). Letting

X = (Â− Â0)

√
1 − γ 2,

Y = (ϕ̂ − ϕ̂0)

√
1

γ 2
− 1,

ω2 = 2λe2Â0
√

1−γ 2
(

1

γ 2
− 1

)
, (4.274)

Eqs. (4.272) take the neat form

Ẋ2 = ω2γ 2(1 + e2X
)
,

Ẏ 2 = ω2(1 − e2Y
)
, (4.275)

while the Hamiltonian constraint becomes

Ẋ2 − γ 2Ẏ 2 = ω2γ 2(e2X + e2X
)
. (4.276)

The solutions of Eqs. (4.275) can be obtained by quadratures, which can be conveniently inverted
so that finally

eA = eA0
cosh[ω(t − tϕ̂)]

γ 2

1−γ 2

sinh[ωγ (t − tÂ)]
1

1−γ 2

(4.277)

and

eϕ = eϕ0
sinh[ωγ (t − tÂ)]

γ

1−γ 2

cosh[ω(t − tϕ̂)]
γ

1−γ 2
, (4.278)

where one can choose tÂ = 0 with no loss of generality (see Fig. 8).
In order to properly interpret these expressions, let us take a closer look at the relation between

t and the actual cosmological time tc , determined by

dtc = ±eA dt = ±eA0
cosh[ω(t − tϕ̂)]

γ 2

1−γ 2

1
1−γ 2

dt. (4.279)

sinh[ωγ t]
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Fig. 8. Three potentials of Eq. (4.271) (left diagram), with γ = 0.35 (red, continuous), γ = 0.5 (blue, dashed) and
γ = 0.65 (purple, dashed-dotted) and the corresponding behavior of ϕ in cosmic time for the same penetration in the
exponential barrier (right diagram). The scalar is bound to emerge from the initial singularity while climbing up the
potential, but in the presence of a steeper barrier it equilibrates more slowly to its attractor curve ϕ ∼ 1

γ log tc during
the descent, which in the first two examples supports an inflationary phase in four dimensions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

There is a subtlety here: one must pick the “minus” sign, so that large positive values of t translate
into early cosmological epochs, close to the initial singularity, while small values of t translate
into large values of tc , and thus into late epochs. Indeed with the sign choice in (4.279), for small
values of t where

eA ∼ t
− 1

1−γ 2 , eϕ ∼ t
γ

1−γ 2 , (4.280)

one finds that

tc ∼ −
∫

eA dt ∼ t
− γ 2

1−γ 2 . (4.281)

Expressing eA and eϕ in terms of tc now gives

eA ∼ t

1
γ 2
c , eϕ ∼ t

− 1
γ

c , (4.282)

which are precisely the equations describing the behavior at large times in a “mild” exponential
potential e2γϕ reviewed in Section 3.1, once one recalls that A = (d − 1)A and specializes the
discussion to the d = 4 case. In a similar fashion the opposite limit, t → ∞, corresponds to the
behavior of the scalar as it climbs up the “mild” potential e2γϕ right after the initial singularity.
Indeed, the limiting behavior is now

eA ∼ eϕ ∼ e
− γωt

γ+1 , (4.283)

so that

tc ∼ −
∫

e
− γωt

γ+1 ∼ e
− γωt

γ+1 , (4.284)

where the integration constant was chosen so that as t → ∞ tc → 0. Hence

eA ∼ eϕ ∼ tc, (4.285)

a result that we saw already in Section 3.1.



1086 P. Fré et al. / Nuclear Physics B 877 [PM] (2013) 1028–1106
All in all, this class of models describes, in a relatively handy analytic form but at the price
of a counter-intuitive relation between t and tc, spatially flat cosmologies with a climbing scalar
that impinges on a “hard” exponential, reverts its motion and, if γ < 1√

d−1
, drives an inflationary

phase during its final descent.

5. Additional integrable potentials

In addition to the cases introduced in Section 3, the most significant of which were solved
in detail in Section 4, we have identified 26 sporadic one-field potentials that lead to integrable
cosmologies. Their emergence rests on the transformations

ξ = 1

2

(
eγ (A+ϕ) + eγ (A−ϕ)

)
, η = 1

2

(
eγ (A+ϕ) − eγ (A−ϕ)

)
,

B =A(1 − 2γ ) (5.1)

introduced in Section 3.2.3 and on special choices for the parameter γ . The corresponding La-
grangians (2.11) can always be recast in the form

L = −1

2

(
ξ̇2 − η̇2) − Vc(ξ, η), (5.2)

where the potential functions

Vc(ξ, η) = γ 2(ξ2 − η2)( 1
γ

−1)V(ϕ), (5.3)

correspond to a list of sporadic two-field dynamical systems that are Liouville integrable thanks
to the existence of a conserved charge Q in addition to the Hamiltonian H . The compilation of
this list was a major mathematical achievement resulting from the work of several authors (see
the review papers [11–13] and references therein), and here we are translating these results into
the cosmological setting. It is indeed remarkable that these integrable dynamical systems can be
mapped into cosmological models with a potential V(ϕ) that depends only on exponentials of
the scalar field ϕ.

In Section 5.1 we list the 26 V(ϕ), the corresponding Vc(ξ, η) and the additional conserved
charge that exists in each of these models and guarantees its Liouville integrability. We also
display plots of the most significant potentials and add some qualitative remarks on the corre-
sponding solutions that can be anticipated on the basis of the results of Section 4. We conclude in
Sections 5.2 and 5.3, where we display some links that exist, up to analytic extensions, between
the cosmological systems and trigonometric potentials or Toda systems.

5.1. Sporadic integrable potentials

Let us now turn to a description of the 26 sporadic potentials and of the corresponding
integrable cosmological models. The intuition provided by the explicit analysis performed in
Section 4 will suffice to capture the key qualitative features of all the interesting models whose
potentials are bounded from below, although obtaining explicit solutions would be much harder
in general for these sporadic models. For the sake of order and clarity, we shall split the 26 cases
into groups that can be turned into the canonical form of Eq. (5.2) with the same value of the
parameter γ by the transformation (5.1).
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Fig. 9. The three potentials of Eq. (5.4) with λ < 0 in the first case and λ > 0 in the others. The analysis of Section 4
indicates that in the first model the Universe will experience a Big Crunch while in the others it will readily enter a de
Sitter phase with the scalar stabilized at the bottom.

Group Ia (γ = 2
5 )

In this case the scalar potentials are

VIa(ϕ) = λ

[
a cosh3

(
2ϕ

5

)
+ b sinh2

(
2ϕ

5

)
cosh

(
2ϕ

5

)]

= λ

4

[
(a + b) cosh

(
6ϕ

5

)
+ (3a − b) cosh

(
2ϕ

5

)]
, (5.4)

where λ is an overall scale, so that

Vc,Ia(ξ, η) = 4

25
λ
[
aξ3 + bξη2]. (5.5)

There are three independent choices for the parameters a and b,

{a, b} =
⎧⎨
⎩

1 −3
1 − 1

2

1 − 3
16

⎫⎬
⎭ , (5.6)

and selecting appropriately the sign of λ the even potentials VIa, displayed in Fig. 9, are always
bounded from below.

The Liouville integrability of the systems corresponding to Eq. (5.6) is guaranteed by the
existence of an additional conserved charge (see e.g. [15] and references therein), which in the
three cases takes the form

Q(1)
Ia (ξ, η) = 25ξ̇ η̇ + 4λη

(
η2 − 3ξ2),

Q(2)
Ia (ξ, η) = 50η̇(ηξ̇ − η̇ξ ) + λη2(η2 − 4ξ2),

Q(3)
Ia (ξ, η) = η̇4 + λ

25
η̇η2(ηξ̇ − 3η̇ξ ) + λ2

5000
η4(η2 − 6ξ2). (5.7)

Group Ib (γ = 2
5 )

In this case the scalar potentials are

VIb(ϕ) = λ

[
a sinh3

(
2ϕ

5

)
+ b cosh2

(
2ϕ

5

)
sinh

(
2ϕ

5

)]

= λ
[
(a + b) sinh

(
6ϕ

)
− (3a − b) sinh

(
2ϕ

)]
, (5.8)
4 5 5
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Fig. 10. The five non-trivial potentials of Eq. (5.11), which correspond to cases 2–6 since the first is constant, with λ < 0
in the second case. The analysis of Section 4 indicates that in cases 1, 2 and 3 above the Universe will experience a Big
Crunch while in the others it will readily enter a de Sitter phase with the scalar stabilized at the bottom.

so that

Vc,Ib(ξ, η) = − 4

25
λ
[
aη3 + bξ2η

]
. (5.9)

One has again the three options in Eq. (5.6) for the parameters a and b, but these potentials are
less interesting, since they are clearly all unbounded from below. Notice that the potentials (5.9)
and the corresponding additional conserved charges, which guarantee the Liouville integrability
of these systems, can be obtained from Eqs. (5.5) and (5.7) via the transformations

ξ → iη, η → iξ, λ → −iλ. (5.10)

Group II (γ = 1
3 )

In this case the scalar potentials are (see Fig. 10)

VII(ϕ) = λ

[
a cosh4

(
ϕ

3

)
+ b sinh4

(
ϕ

3

)
+ c sinh2

(
ϕ

3

)
cosh2

(
ϕ

3

)]

= λ

8

[
3a + 3b − c + 4(a − b) cosh

(
2ϕ

3

)
+ (a + b + c) cosh

(
4ϕ

3

)]
,

so that

Vc,II(ξ, η) = 1

9
λ
[
aξ4 + bη4 + cξ2η2]. (5.11)

with six independent options for the parameters a, b and c in Eq. (5.11),
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Fig. 11. The bounded Ramani potential corresponding to Eq. (5.14). The analysis of Section 4 indicates that the Universe
will readily enter a de Sitter phase with the scalar stabilized at the bottom.

{a, b, c} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 1 −2
1 1 −6
1 8 −6
1 16 −12
1 1

8 − 3
4

1 1
16 − 3

4

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (5.12)

and choosing appropriately the sign of λ these even potentials are always bounded from below.
The Liouville integrability of the systems corresponding to Eq. (5.12) is guaranteed by the

existence of an additional conserved charge (see e.g. [15] and references therein), which in the
six cases takes the form

Q(1)
II (ξ, η) = ηξ̇ − η̇ξ,

Q(2)
II (ξ, η) = 9

4
ξ̇ η̇ + ληξ

(
η2 − ξ2),

Q(3)
II (ξ, η) =

[
9

2
ξ̇2 + λξ2(2η2 − ξ2)]2

+ 9λξ2(ξ η̇ − 2ξ̇ η)2,

Q(4)
II (ξ, η) = (ξ η̇ − ξ̇ η)ξ̇ − 4

9
ληξ2(ξ2 − 2η2),

Q(5)
II (ξ, η) =

[
9

2
η̇2 + 1

8
λ
(
η2 − 2ξ2)η2

]2

− 9

8
λη2(2ξ η̇ − ηξ̇)2,

Q(6)
II (ξ, η) = (ηξ̇ − η̇ξ )η̇ + 1

36
λξη2(η2 − 2ξ2). (5.13)

If η is continued to purely imaginary values, these potentials correspond to the cubic and
quartic generalized Hénon–Heiles integrable systems with meromorphic genus-two hyperelliptic
general solutions (see [11–13] and references therein).

Group III (γ = 2
5 ) – Ramani potentials

There are two scalar potentials in this class. The first potential is bounded from below and
reads (see Fig. 11)

VIIIa(ϕ) = λ

[
a cosh3

(
2ϕ

5

)
+ b sinh2

(
2ϕ

5

)
cosh

(
2ϕ

5

)
+ c sinh3

(
2ϕ

5

)]
, (5.14)

so that
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Vc,IIIa(ξ, η) = 4

25
λ
[
aξ3 + bξη2 + cη3], (5.15)

and in this case

{a, b, c} =
{

1,−1

2
,

1

6
√

3

}
, (5.16)

so that the potential (5.14) can be recast in the form

VIIIa(ϕ) = λ

16

[(
1 − 1

3
√

3

)
e−6ϕ/5 +

(
7 + 1√

3

)
e−2ϕ/5 (5.17)

+
(

7 − 1√
3

)
e2ϕ/5 +

(
1 + 1

3
√

3

)
e6ϕ/5

]
. (5.18)

The Liouville integrability of the system corresponding to Eq. (5.14) is guaranteed by the
existence of the additional conserved charge (see e.g. [15] and references therein)

QIIIa(ξ, η) = η̇4 + 2√
3
ξ̇ η̇3 − 4λ

25
√

3
ξ̇2η3 + 4λ

25

(
η3 + √

3ξη2)ξ̇ η̇

+ 4λ

25

(
−2

√
3ξ2η + 1√

3
η3 − 2ξη2

)
η̇2

+ 4λ2

252

(
4√
3
ξ3η3 − 2√

3
ξη5 − ξ2η4 + 5

9
η6

)
. (5.19)

On the other hand, the second potential is not bounded from below and reads

VIIIb(ϕ) = a cosh3
(

2ϕ

5

)
+ b sinh

(
2ϕ

5

)
cosh2

(
2ϕ

5

)
+ c sinh3

(
2ϕ

5

)
, (5.20)

so that

Vc,IIIb(ξ, η) = − 4

25
λ
[
aξ3 + bξ2η + cη3], (5.21)

and in this case

{a, b, c} = {1,−3
√

3,6
√

3}. (5.22)

With these values of the coefficients, Eq. (5.20) can be recast in the form

VIIIb(ϕ) = λ

16

[
(2 − 18

√
3)e−6ϕ/5 + (6 + 30

√
3)e−2ϕ/5 (5.23)

+ (6 − 30
√

3)e2ϕ/5 + (2 + 18
√

3)e6ϕ/5]. (5.24)

The potential (5.21), and the additional charge that guarantees the Liouville integrability of the
system, can be derived from Eqs. (5.15) and (5.19) via the transformations

ξ → iη, η → iξ, λ → −i6
√

3λ. (5.25)
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Fig. 12. The potentials of Group IV in their real domain. In both cases the Universe will end up in a decelerated phase
with the scalar running off to infinity, but in the first case it can either bounce back or overcome the wall, depending on
the initial conditions.

Group IV (γ = 3) – Fokas, Lagestrom, Inozemtsev potentials
This group comprises the two potentials

VIVa = λ

cosh
2
3 (6ϕ)

,

VIVb = λ

sinh
2
3 (6ϕ)

, (5.26)

which are displayed in Fig. 12, so that

VIVac = 9
λ

(ξ2 + η2)
2
3

,

VIVbc = 9
λ

(2ξη)
2
3

. (5.27)

The Liouville integrability of the systems corresponding to Eqs. (5.27) is guaranteed by the
existence of an additional conserved charge [16], which for the two potentials at stake reads

QIVa(ξ, η) = (
η̇2 + ξ̇2)(ηξ̇ − η̇ξ ) − 4λ(ηξ̇ + η̇ξ )

(
η2 + ξ2)− 2

3 ,

QIVb(ξ, η) = (ηξ̇ − η̇ξ )ξ̇ η̇ − 2λ(ηη̇ + ξ ξ̇ )(2ηξ)−
2
3 . (5.28)

Group Va (γ = 3
5 ) – Holt–Drach potentials

In this case the scalar potentials are

VVa(ϕ) = λ

[
a cosh

4
3

(
3ϕ

5

)
+ b

sinh2(
3ϕ
5 )

cosh
2
3 (

3ϕ
5 )

]

= a − b + (a + b) cosh(
6ϕ
5 )

2 cosh
2
3 (

3ϕ
5 )

, (5.29)

so that

Vc,Va(ξ, η) = 9
λ
[
aξ

4
3 + bξ− 2

3 η2], (5.30)

25
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Fig. 13. The bounded Holt–Drach potentials of Eqs. (5.29) and (5.33) in their real domains. They are all the potentials
of Eq. (5.29), with negative λ in the last two cases, and the last two potentials of Eq. (5.33), again with negative λ. The
analysis of Section 4 indicates that in cases 2 and 3 above the Universe will experience a Big Crunch while case 1 will
enter readily a de Sitter phase with the scalar stabilized at one of the critical points. In cases 4 and 5 the scalar will
descend from the right end after the initial singularity and will readily end at the bottom as the Universe enters a de Sitter
phase.

with the three options

{b, a} =
⎧⎨
⎩

1 − 3
4

1 − 9
2

1 −12

⎫⎬
⎭ . (5.31)

The Liouville integrability of the systems of Eq. (5.6) is guaranteed by the existence of an
additional conserved charge (see e.g. [15] and references therein) that in the three cases takes the
form

Q(1)
Va (ξ, η) =

[
η̇2 − 3

2
ξ̇2 + 9

25
λ

(
9

2
ξ

4
3 + 3ξ− 2

3 η2
)]

η̇ − 81

25
ληξ

1
3 ξ̇ ,

Q(2)
Va (ξ, η) =

(
η̇2 − 2ξ̇2 + 36

25
λξ− 2

3 η2
)

η̇2 − 216

25
ληξ

1
3 η̇ξ̇ − 5832

625
λη2ξ

2
3 ,

Q(3)
Va (ξ, η) =

[
η̇2 − 3ξ̇2 − 54

25
λ
(
3ξ

4
3 − ξ− 2

3 η2)]η̇4 − 648

25
ληξ

1
3 η̇3ξ̇

−
(

9

25
λ

)2

648η2ξ
2
3 η̇2 −

(
9

25
λ

)3

648η4. (5.32)
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Group Vb (γ = 3
5 ) – Holt–Drach potentials

In this case the scalar potential is

VV b(ϕ) = λ

[
a sinh

4
3

(
3ϕ

5

)
+ b

cosh2(
3ϕ
5 )

sinh
2
3 (

3ϕ
5 )

]

= −a + b + (a + b) cosh(
6ϕ
5 )

2 sinh
2
3 (

3ϕ
5 )

, (5.33)

so that

VV a(ϕ) = − 9

25
λ
[
aη

4
3 + bξ2η− 2

3
]
, (5.34)

again with the three options of Eq. (5.31) for the parameters a and b, the first of which leads to
a result that is unbounded from below.

The potentials (5.34) and the corresponding second integrals, which guarantee the Liouville
integrability of the systems, can be derived from Eqs. (5.30) and (5.32) via the transformations

ξ → iη, η → iξ λ → −λ. (5.35)

Group VI (γ = 6
7 ) – Drach potentials

This group comprises the two potentials

VVIa = λ sinh(
6ϕ
7 )

cosh
2
3 (

6ϕ
7 )

,

VVIb = λ cosh(
6ϕ
7 )

sinh
2
3 (

6ϕ
7 )

, (5.36)

so that

VVIac = 36

49
ληξ− 2

3 ,

VVIbc = 36

49
λξη− 2

3 . (5.37)

The first potential, VVIa(ϕ), is unbounded from below, while VVIb(ϕ) describes a well with a
positive minimum that is qualitatively similar to the last example in Fig. 13.

The Liouville integrability of these models is guaranteed by the existence of an additional
conserved charge Q [32] that in the two cases takes the form

QVIa(ξ, η) = ξ̇
(
3η̇2 − 2ξ̇2) + 18

49
ληξ− 5

3

(
2

3
ηη̇ − ξ ξ̇

)
, (5.38)

QVIb(ξ, η) = η̇
(
3ξ̇2 − 2η̇2) − 18

49
λξη− 5

3

(
2

3
ξ ξ̇ − ηη̇

)
. (5.39)

Group VII (γ = −1) – Hietarinta potentials
This group comprises the two potentials (see Fig. 14)
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Fig. 14. The two Hietarinta potentials of Eqs. (5.41). The analysis of Section 4 indicates that in case 1 special initial
conditions will lead to a Big Crunch. In case 2 the behavior will be qualitatively similar to that illustrated in Fig. 12.

VVIIa(ϕ) = λ

[
−1

4
(coshϕ)−4 + (sinhϕ)2(coshϕ)−6

]
, (5.40)

VVIIb(ϕ) = λ

[
−1

4
(sinhϕ)−4 + (coshϕ)2(sinhϕ)−6

]
. (5.41)

Applying the transformations of Eqs. (3.76) and (3.77) with γ = −1, these expressions become

Vc,VIIa(ξ, η) = λ

[
−1

4
ξ−4 + η2ξ−6

]
, (5.42)

Vc,VIIb(ξ, η) = λ

[
−1

4
η−4 + ξ2η−6

]
. (5.43)

The Liouville integrability of each of these systems is guaranteed by the existence of an addi-
tional conserved charge (see e.g. [15] and references therein) that in the two cases take the form

QVIIa(ξ, η) = (η̇ξ − ηξ̇)ξ̇ − ληξ−4 + 2λη3ξ−6, (5.44)

QVIIb(ξ, η) = (ξ̇η − ξ η̇)η̇ + λξη−4 − 2λξ3η−6. (5.45)

5.2. An integrable trigonometric potential

It is perhaps worth mentioning another simple and yet potentially instructive case that does
not belong to the class of potentials that constitute the main subject of this paper. This is the
simple trigonometric potential

Vtrig(ϕ) = λ cos 2ϕ, (5.46)

where λ is a real constant. With this potential, taking B = A, one can reduce the general La-
grangian (2.11) to the separable form

Lt = −U̇2
1 − U̇2

2 − λ

2
exp (2

√
2U1) − λ

2
exp (2

√
2U2), (5.47)

at the price of moving to complex variables via the transformation

U1 = 1√
2
(A+ iϕ),

U2 = i√ (A− iϕ). (5.48)

2
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This potential is closely related to the Liouville potentials of Eq. (3.87), since it obtains formally
setting γ = i in them, and of course one could also consider, along similar lines, a combination
of trigonometric sin and cos functions, allowing for a complex λ.

5.3. Relations to Toda systems

We can conclude this section with some cursory remarks on the explicit link between some
special Toda systems and potentials that yield integrable cosmological models.

The starting point is provided by the Toda-chain Lagrangians associated with the A2 simple
roots,

LA2 = 1

2

(
ẋ1

2 + ẋ2
2 + ẋ3

2) + λ
(
ex2−x1 + εex3−x2

)
,

x3 ≡ −x1 − x2, (5.49)

where the two choices ε = 1 and ε = −1 correspond to the SL(3)/SO(3) and SL(3)/SO(1,2)

chains. It is well known that this Lagrangian describes a completely integrable dynamical system
in the complex hyperplane C

2 where the xi (i = 1,2,3) take values. The transformations

x1 = 2i√
3
ϕ − 2A, x2 = − 4i√

3
ϕ (5.50)

suffice to map (5.49) into a Lagrangian proportional to (2.11) with the gauge choice

B =A (5.51)

and

VA2(ϕ) = λ cos(2
√

3ϕ). (5.52)

As a result, even this trigonometric potential defines an integrable cosmological model.
Finally, let us remark that the trigonometric potential (5.46), which was already related to a

Liouville system with γ = i, can be also retrieved starting the Toda-chain Lagrangian based on
the simple roots of the D2 system,

LD2 = 1

2

(
ẋ1

2 + ẋ2
2) + λ

(
ex2−x1 + e−x2−x1

)
, (5.53)

working in the gauge

B =A, (5.54)

via the redefinitions

x1 = −2A, x2 = 2iϕ. (5.55)

6. Orientifold vacua and exponential potentials

In orientifold vacua [24], non-conventional projections and charge neutrality conditions can
conspire to force classically stable non-BPS combinations of branes and orientifolds into a bulk
that was originally supersymmetric. This phenomenon is usually termed “brane supersymmetry
breaking” (BSB) [23], and its simplest manifestation occurs in the ten-dimensional Sugimoto
model in [23], a “false friend” of the type-I superstring. Whereas the latter has an SO(32) gauge
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group resulting from D9 branes and a conventional O9− orientifold with negative tension and
charge, the Sugimoto model has an O9+ orientifold with positive tension and charge, so that
charge neutrality forces D9 branes into its vacuum. As a result, supersymmetry is broken at
the string scale leaving behind no order parameter to restore it in ten dimensions, and the low-
energy effective field theory is consequently the Volkov–Akulov supergravity [33] described in
[25], to be contrasted with the more conventional N = (1,0) coupled system of Supergravity
and supersymmetric Yang–Mills theory that accompanies the type-I superstring. All in all, these
models are characterized by runaway potentials that leave no other option in flat space than
complicated resummations [34]. Lower-dimensional vacua are largely uncharted, although the
nine-dimensional solution of [35] is clearly a first significant step.

Our focus in this paper has been on cosmological models with background metrics of the type

ds2 = −e2B(t) dt2 + e2A(t) dx · dx. (6.1)

In order to keep an eye on the possible role of BSB in the Early Universe, we can forego a detailed
discussion of low-energy couplings, but for one key fact: in models of this type, the tensions of
orientifolds and branes conspire to generate tree-level exponential potentials whose string-frame
form is uniquely determined by their origin from the (projective) disk. Similar, if more intricate
constructions, involving non-BPS combinations of orientifolds and (anti-)D9 and D5 branes, first
show up in six dimensions [23]. No tachyons are again present, to lowest order, in these more
complicated settings, although supersymmetry is again broken in their open sectors at the string
scale from the outset. In lower dimensions, or after T -duality transformations, geometric moduli
or lower-dimensional branes can also intervene, and bring about singular limits where supersym-
metry can be recovered and, correspondingly, more conventional low-energy supergravities that
clearly deserve a closer look, but the very existence of the Sugimoto model of [23] is somehow a
conceptual puzzle for String Theory, on the par with the celebrated option of recovering eleven
non-compact dimensions [36] via string dualities [37].

Despite the aesthetic appeal of settings where supersymmetry breaking is an inevitable feat,
the applications of BSB in conventional Minkowski backgrounds have been seriously hampered
by the corresponding exponential potentials, which for one matter have no critical points, so that
conventional perturbative techniques are inapplicable without resummations, which lie well be-
yond current technology [34]. On the other hand, the string and Planck scales are typically close
enough to make one wonder whether this class of string vacua is trying to provide interesting
clues on the Early Universe. This expectation drove the analysis of [18], where the Sugimoto
model of [23] was shown to result in intriguing spatially flat cosmologies where a scalar (the
dilaton in the ten-dimensional case) can only emerge from the initial singularity while climbing
a steep exponential potential. This behavior was shown to persist even in the presence of the non-
minimally coupled axion partner present in supergravity-inspired [38] scenarios as in [39], and
actually we should stress that BSB provides a natural origin for their uplift. These considerations
were stimulated by exact solutions that have actually a long history [19,20], and may be regarded
as the simplest members of the cosmologies driven by combinations of exponential potentials
that we have explored in the preceding sections.

One can actually identify a few interesting types of exponential potentials that may emerge at
tree level in models where BSB is at work. This entails following closely two scalar modes that
are generally present in these orientifolds, up to dualities, the dilaton and the scalar associated
to the volume associated to compact extra dimensions. The ensuing derivation is inspired by the
four-dimensional analysis in [40] and will also provide an opportunity to correct Eq. (2.17) of
[18], which conflicts with the correct four-dimensional analysis presented there.
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In the string frame and in a mostly negative signature, the ten-dimensional low-energy effec-
tive field theory of the Sugimoto model of [23] includes the terms

S10 = 1

2κ2
10

∫
d10x

√−g̃e−2φ
[
R(g̃) − 4(∂φ)2 − T9e

−φ + · · ·], (6.2)

which suffice for our purposes since, as in the preceding section, we shall confine our attention
to the metric, whose string-frame form we call here g̃, and to the dilaton φ. The Weyl rescaling

g̃MN = gMNe
φ
2 (6.3)

of the ten-dimensional metric turns the action (6.2) into its Einstein-frame form

S10 = 1

2κ2
10

∫
d10x

√−g

[
R + 1

2
(∂φ)2 − T9e

3
2 φ + · · ·

]
, (6.4)

while a subsequent Kaluza–Klein reduction to d dimensions on the metric

ds2 ≡ gMN dxM dxN = e
− (10−d)

(d−2)
σ
gμν dxμ dxν − eσ δij dxi dxj , (6.5)

where σ reflects the internal volume, results in the Einstein-frame d-dimensional effective action

Sd = 1

2κ2
d

∫
ddx

√−g

[
R + 1

2
(∂φ)2 + 2

(10 − d)

(d − 2)
(∂σ )2 − T9e

3
2 φe

− (10−d)
(d−2)

σ

]
. (6.6)

It is thus convenient to define the two fields

Φt =
√

d − 2

2(d − 1)

(
3

2
φ − 10 − d

d − 2
σ

)
, (6.7)

Φs =
√

10 − d

2(d − 1)

(
1

2
φ + 3σ

)
, (6.8)

only one of which enters the tadpole potential, so that Eq. (6.6) takes finally the form

Sd = 1

2κ2
d

∫
ddx

√−g

[
R + 1

2
(∂Φs)

2 + 1

2
(∂Φt )

2 − T9e

√
2(d−1)
d−2 Φt

]
. (6.9)

Following standard practice, in the ensuing discussion we shall also begin by assuming that Φs

is somehow stabilized, so that the dynamics is dominated by Φt alone. As a result, Sd reduces
for our purposes to

Sd = 1

2κ2
d

∫
ddx

√−g

[
R + 1

2
(∂Φt )

2 − T9e

√
2(d−1)
d−2 Φt

]
, (6.10)

so that the scalar potential takes the form

V9 = T9e
γ9

√
2(d−1)
d−2 Φt , (6.11)

and taking into account the choice of normalization for Sd made in String Theory the comparison
between Eqs. (6.10) and (2.10) results in the redefinition

ϕ =
√

d − 1

2(d − 2)
Φt , (6.12)

and thus in the striking fact that γ9 = 1 for all dimensions 4 � d � 10.
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In Sections 3 and 4 we have elaborated at length on the special meaning of this value, gen-
eralizing the results of [18,21]. Suffice it to repeat here that, in models involving exponential
potentials as in (6.11) and with background metrics as in Eq. (6.1), if γ9 � 1 Φt deserves to be
called a “climbing scalar”, since it is forced to emerge from the initial singularity while climbing
up the potential, while if γ9 < 1 a “descending” solution also exists.3

Notice also that if Φs is somehow stabilized, letting for brevity Φs = 0, Eqs. (6.8) and (6.12)
imply that

ϕ = 2(d − 1)

3(d − 2)
φ. (6.13)

The original dilaton and the rescaled field ϕ that enters the cosmological equations of Section 2.1
thus coincide in this case in our dimensions, so that closed-string loop factors contribute indeed
integer powers of exp(2ϕ) to the potential, as anticipated before Eq. (4.261).

Lower-dimensional vacua of this type contain in general other ingredients, to which we can
now turn. These include the D5 (or D5) branes, which are widely present in the models of [23],
and also the non-BPS D3 identified in [41] along the lines of Sen’s approach [42], which is stable
also in the presence of D9 branes. Proceeding as above, under the assumption that Φs remains
somehow stabilized despite the fact that it enters these other contributions, one can show that in
dimensions d � 6, where they are space filling, D5 branes give rise to an additional exponential
potential with

γ5 = d

2(d − 1)
, (6.14)

which lies below the critical value γ5 = 1 but above the upper bound for slow-roll inflation,

γs.r. = 1√
d − 1

. (6.15)

A similar reasoning [18] shows that in four dimensions the non-BPS D3 brane of [41] would
bring about a space-filling contribution with γ3 = 1

2 , which can drive an inflationary phase since
this value lies below the upper bound (6.15). On the other hand, taking to account both Φs and
Φt , in the general four-dimensional case when D9 (anti)branes and the stable non-BPS brane of
[41] are present, one would be confronted with models of the type

S4 = 1

2κ2
4

∫
d4x

√−ge−2φ

[
R + 1

2
(∂Φs)

2 + 1

2
(∂Φt )

2

− T9e
√

3Φt − T5e

√
3( 2

3 Φt− 1√
3
Φs) − T3e

√
3( 1

2 Φt−
√

3
2 Φs) + · · ·

]
. (6.16)

This expression has a very interesting structure, and confining the attention to case where D5
branes are not present, so that the D3 brane is stable, it is instructive to take a closer look at
the two-scalar dynamics lifting the assumption that various sorts of corrections that we have
neglected stabilize Φs .

To begin with, one can notice that independent shifts of Φs and Φt can turn the general scalar
potential resulting from D9 and D3 branes into the universal form

3 One can show that this type of asymptotic behavior persists even in extensions of (6.1) with curved spatial slices, but
in this paper we shall confine our attention to the spatially flat case.
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V = V0
(
e
√

3Φt + e
√

3( 1
2 Φt−

√
3

2 Φs)
)
, (6.17)

which comprises “critical” values of γ along a pair of directions that are 60 degrees apart. There
is rich set of solutions, and indeed “climbing” still takes place near the initial singularity for
a range of initial directions, although it is no more inevitable, while the late-time dynamics is
dominated by a (fast-roll) attractor along the valley between the two peaks.

The integrable spatially flat cosmologies that we have described include the two classes of
examples of Eqs. (3.37) and (3.88), whose potentials convey interesting lessons for this type of
compactifications in the presence of BSB. Indeed, as we have seen they result in a relatively
simple integrable dynamics, but are really close in spirit to what has just emerged from BSB
models with D9 and D3 branes once one assumes that Φs is somehow stabilized by higher-order
corrections. Both cases involve indeed a climbing scalar that bounces essentially against a hard
wall and subsequently injects an inflationary phase, in qualitatively similar fashions.

One can add to this discussion a further degree of freedom, allowing for an off-critical bulk of
dimension d . Confining our attention to the case d > 10, let us add some cursory remarks on the
resulting potential after a compactification to four dimensions. For simplicity, let us confine our
attention to the contributions arising from D9 branes and from the conformal anomaly originally
described by Polyakov in [43]. Up to shifts of the two fields Φs and Φt , the resulting potential
contains again two terms with identical normalizations, and assuming again that Φs is somehow
stabilized, one is finally confronted with

V = V0
(
e
√

3γ9Φt + e
√

3γΛΦt
)
, (6.18)

where

γ9 =
√

d2 − 14d + 184

24(d − 4)
, γΛ = −10

3

(d − 4)(d − 10)√
2(d2 − 14d + 184)

. (6.19)

Interestingly, for d slightly larger than ten γΛ is small and negative while γ9 is very close to one,
so that one has a potential well which combines a steep wall with a rather flat one. As a result,
the scalar is essentially bound to emerge from the initial singularity with the scalar descending
along the mild wall and to stabilize readily at the bottom as the Universe enters a de Sitter phase.
We met potentials of this type in Sections 4.2.2 and 5.1.

We would like to conclude this section with a brief look into the possible link between γ and
other fundamental branes. This step is motivated in part by the wide scan carried out in [44], and
the computation involved is a slight generalization of what we presented so far, the main new
ingredient being a more general coupling to the dilaton of a p-brane in its natural presentation,
in the string frame and in p + 1 dimensions, namely

Sp ∼ −
∫

dp+1x
√−ge−αφ. (6.20)

The following steps parallel what we have seen so far, and thus involve the Weyl rescaling that
puts the bulk portion of the effective action in the Einstein frame, a wrapping of the p-brane from
the original (p + 1)-dimensional space to four dimensions, the field redefinitions (6.8) of φ and
the breathing mode σ into Φt and Φs and, again, the assumption that Φs is somehow stabilized.
All in all, one is thus led to

γ = 1
(p + 9 − 6α), (6.21)
12
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so that these γ ’s are amusingly all multiples of 1
12 . The allowed values include those that we

already ran across for the D9 and D3 branes, while the value 1
12 appears related to an NS five-

brane, which is interestingly unstable in these orientifold models, with one of its dimensions
wrapped on a compact internal cycle. This value is tantalizingly close to those investigated in
[21] in connection with the class of potentials

V = V0
(
e2ϕ + e2γϕ

)
, (6.22)

minimal modifications of the D9-brane term that embody the climbing mechanism and can ac-
count qualitatively for CMB power suppression at large scales within a perturbative regime for
the string coupling. However, more than a word of caution is needed. As the Referee correctly
stressed to us, these top-down considerations cannot afford a quantitative comparison with the
CMB in the absence of well-motivated completions of potential, which are necessary for instance
to grant a proper tensor-to-scalar ratio and whose presence will affect in general the precise link
between the available γ ’s and the spectral index ns .

7. Conclusions

This paper was largely devoted to the search for exact cosmological solutions involving a
single scalar field φ with a standard kinetic term in spatially flat metrics. Most of our analytic
solutions, however, were obtained within a mild generalization of the FLRW setting that rests on
a gauge function B(t), as in Eq. (2.4), so that they are expressed in terms of a “parametric time” t .
Although in most cases the actual relation between t and the cosmic time measured by comoving
observers is somewhat implicit, we showed how to extract the key physical indications of these
models. Hopefully, these exact solutions will stimulate further progress in the development of
the inflationary scenario, which can nowadays begin to afford detailed comparisons with the new
data provided by the PLANCK experiment [1].

The objective of our search was the scalar potential V (φ) of the models, whose nature de-
termines whether the corresponding equations are integrable, and in particular whether they can
be integrated explicitly. Our search for integrable potentials was driven by the reduced action
principle of Eq. (2.11), and the corresponding equations of motion (2.12) always include the
Freedman constraint, the condition that the Hamiltonian vanish for the allowed solutions. Canon-
ical transformations were identified that could map the reduced Lagrangians into known types of
integrable systems with two degrees of freedom, whose construction represents a major achieve-
ment of Mathematical Physics [11–16]. The resulting bestiary comprises different classes of
models of increasing complexity: separable linear systems, triangular systems, separable sys-
tems that are integrable by quadratures and some sporadic integrable systems. To begin with,
we thus identified the nine families of potentials collected in Table 1, whose solutions are ex-
plicit (in terms of t ) up to the inversion of quadrature integrals, some of which are defined in the
complex plane. In addition, the remarkable literature on two-dimensional dynamical systems led
us to identify 26 sporadic models whose Liouville integrability is guaranteed by a second con-
served charge accompanying their Hamiltonians. Although their explicit solutions would be far
more complicated, the intuition gained from the simpler cases in Table 1 made their qualitative
features rather transparent.

All the integrable potentials that we have identified involve combinations of exponential func-
tions. As we anticipated in the preceding sections, these are ubiquitous in truncations to Cartan
sectors of gauged supergravity models with scalar manifolds that are (necessarily non-compact)
homogenous spaces G/H. For N � 3 this property is inevitable, while for N � 2 it identifies an
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important and widely investigated subset of the possible models. Furthermore, exponential po-
tentials also emerge in orientifold models with “brane supersymmetry breaking” (BSB), where
supersymmetry is broken at the string scale and is non-linearly realized in the low-energy Su-
pergravity [25], so that little is known to date about their low-energy manifestations in lower
dimensions. This work therefore revealed some interesting features, but it also raised some
questions that remain unanswered and appear urgent and potentially very instructive. Generally
speaking, the most urgent question is the following: Can some of our integrable potentials emerge
from Supergravity? This is the case for the single exponential, albeit in an unconventional con-
text where supersymmetry is non-linearly realized, but the general pattern is not known in detail
and taking a closer look at it starting from the more conventional case of linear supersymmetry
appears timely and potentially very interesting.

One approach to the problem that could be christened minimalist posits that perhaps the in-
tegrable cosmological models cannot be deduced from Supergravity, and yet their solutions can
provide good approximations to similar field equations that emerge from it under appropriate
conditions. In a future publication [27] we shall elaborate on the effectiveness of this approach,
drawing comparisons between cosmological solutions arising from integrable potentials and oth-
ers arising from similar, non-integrable, ones. One could provide manifold instances of this
approach, which also drove mathematicians to discover some of the integrable two-dimensional
models that we considered here. For instance, it is well known that the study of sporadic inte-
grable potentials of the Hénon–Heiles type was motivated by some equations that describe the
motion of stars in a plane near the galactic center, albeit with a, b, c coefficients that are differ-
ent from those of Eq. (5.6) that guarantee integrability. Historically the minimalist approach was
fully justified, since after all the physical Hénon–Heiles equations do not concern the fundamen-
tal equations of a theory (in this case Newton’s theory) but emerge in applications to a particular
physical system, so that finding approximate integrable models capturing some essential features
is certainly very rewarding in this context.

A minimalist approach is however less satisfactory in attempts to address problems related
to the origin and fate of our Universe, so that in this context the final aim should perhaps be
framed within a maximalist approach. In this respect, one should keep in mind that integrabil-
ity reflects hidden symmetries bringing along additional conserved charges, and when touching
upon Fundamental Physics one should not be indifferent to their role. Rather, one should try to
connect hidden symmetries granting integrability and key symmetry principles of the complete
theory, and in this respect clarifying whether and how integrable cosmological models might fit
into candidate unified theories of all interactions appears a matter of utmost relevance, to which
we plan to return elsewhere [27,29]. In the first of these works we shall explore the possibility of
deriving integrable cosmological models within N = 1 Supergravity by suitable choices of su-
perpotential. Notwithstanding the difficulties that we met in this task, whose technical origin will
be emphasized in [27], we have already identified a small number of supersymmetric integrable
models based on the coupling of N = 1 Supergravity to a single Wess–Zumino multiplet. Clearly
there is a far wider hunting ground than what is provided by a single multiplet, and appropriate
strategies should be developed to classify and explore one-field truncations of more general su-
pergravity models. This sets up a program that overlaps to a considerable extent with efforts
aimed at classifying supergravity gaugings with due attention to their vacua and to the key issue
of moduli stabilization. The second planned paper [29] will be devoted to the classification of
N = 2 gaugings with the method of the embedding tensor. While the identification of integrable
one-field truncations will represent a side issue there, we shall provide nonetheless a proof of the
non-integrability of Fayet–Iliopoulos abelian gaugings of N = 2 models based on G4/H4 scalar
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manifolds. Such a proof emerges from a close and challenging comparison between cosmological
potentials induced by abelian gaugings and corresponding black-hole geodesic potentials of the
same theory. In both cases the complete field equations can be reformulated in terms of a Poisso-
nian system on the coadjoint orbits of the Borel subalgebra of the numerator group B(G3) ⊂ G3,
where the enlarged group G3 ⊃ G4 emerges in both time-like and space-like dimensional reduc-
tions of Supergravity to three dimensions. The Poissonian structure is uniquely identified in both
cases by the Lie–Poisson tensor defined by the structure constants of B(G), while the difference
resides in the quadratic form that determines the Hamiltonian of the system. In the black-hole
case this Hamiltonian is related to the solvable group manifold B(G3), and thus to the invari-
ant metric of a symmetric space G3/H�, which implies the existence of a Lax-pair representation
and complete integrability of the dynamical system, while on the contrary the quadratic form that
enters the cosmological model corresponds to a metric on a solvable group manifold that is not
even Einstein, and whose isometries cannot be extended to the full G3. This argument excludes
the Lax-pair representation and the full integrability of the multi-field dynamical system. Strictly
speaking, however, it does not exclude the integrability of special one-field truncations, which
appears nonetheless somewhat unlikely, while in the black-hole case all consistent truncations
inherit this property. This negative result [29] is consistent with the positive ones to be presented
in [27]. For instance, an integrable gauging of the S3 model that we have found does not respect
its N = 2 special Kähler structure but only its N = 1 Kähler structure, and indeed the specific
superpotential leading to an integrable cosmological model is not a Fayet–Iliopoulos gauging.

All in all, the present indications are that integrable cosmological models have a better chance
of fitting in Supergravity only after a breaking to N = 1 supersymmetry induced, for instance,
by orbifold and/or orientifold projections within suitable flux compactifications. In this case, the
superpotential W(z) for the residual moduli fields, for which explicit expressions are available
in the literature in terms of fluxes and group structure constants, might possess special properties
reflecting the hidden symmetries underlying integrability.

How about, then, if an integrable cosmological model were not to fit in Supergravity while ob-
servational data turned out, instead, to be consistent with it? Perhaps even this should not be read
as circumstantial evidence for the minimalist approach, and indeed one might even conceive to
turn the requirement of consistency with integrable cosmological models into an indication to dis-
criminate between different candidate theories, together with several other constraints that draw
their origin from Particle Physics or Astrophysics. After all, if integrability can reflect hidden
symmetries, uncovering their threads and intertwining them into the tapestry of the fundamental
laws of Physics can perhaps add to the well-established lessons that manifest symmetries have
already provided over the years. The list of integrable cosmological models that we have been
able to compile in the present paper may be regarded as a first concrete step in this direction.
While we cannot claim that it be exhaustive, the integrable one-field potentials that we have in-
vestigated and the corresponding exact solutions constitute clearly a firm starting point for future
investigations along these lines.

In this respect, we ought to stress that a new perspective emerged after the original version
of this paper was sent to the ArXiv. Developing ideas put forward in [45] (see also the related
works [46–52]), two of us showed in [53] that positive-definite potentials, and among them all
the integrable ones presented in this paper, can find a place in N = 1 supergravity as D-terms
related to suitable one-dimensional Kähler manifolds. Such manifolds will be studied further in
a forthcoming publication [54], where they will be termed D-map images of the corresponding
potentials. In particular, the D-maps of the potentials belonging to the second integrable series
in Table 1,
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V = c1e
2γϕ + c2e

(γ+1)ϕ, (7.1)

have a remarkable mathematical profile. However, the higher-dimensional origin of these Kähler
manifolds and their links with String Theory remain a challenge for future work.

Let us conclude by summarizing the main results of our study. Insofar as the exact solutions
are concerned, they are the following:

1. The “climbing phenomenon” is a generic property of “critical” or “over-critical” potentials
that possess an asymptotically exponential behavior. This was first observed in [18] and here
we have produced a number of illustrative examples involving more complicated potentials.
As these systems emerge from the Big Bang, the scalar field cannot descend along such steep
grades, or alternatively these potentials do not let the scalar field escape to infinity from their
pull when the system proceeds toward a Big Crunch. The explicit analysis recently presented
in [22] revealed this fact clearly for the “critical” cosh-well;

2. A Big Crunch follows inevitably a Big Bang whenever the scalar field tries to settle at a
negative extremum of the potential, consistently with our initial assumption (1.1) on the
space–time metric and with the absence of flat AdS slices. On the other hand, an eventual
de Sitter phase is inevitably attained whenever the scalar field tries to settle at a positive
extremum of the potential. This was expected, since AdS has no spatially flat metrics, or
alternatively negative extrema are non-admissible fixed points for the corresponding dynam-
ical systems.

Insofar as the links with String Theory are concerned, although our current grasp of the
dynamics in the presence of nonlinear supersymmetry is undeniably rather primitive, we have
clarified how the available brane types reflect themselves, in lower dimensions, in corresponding
exponential potentials. Our key result rests on the combined effects of the dilaton and of the
breathing mode of the extra dimensions within a class of orientifold models [24] which exhibit
BSB [23], on the neglect of higher-derivative terms and on a simplifying assumption that is not
more justified at present than any other reductions to one-field models of inflation. This posits
that one combination of these fields, the one entering the steep exponential inherited from ten
dimensions, dominates the early cosmological phase. Once this is done, however, an interesting
prediction follows for the four-dimensional potentials

V = V0
(
e2ϕ + e2γϕ

)
(7.2)

that were explored in [21]. Here the first, steep exponential, is the signature of BSB and forces
the scalar to climb up as it emerges from the initial singularity, while the other drives the subse-
quent inflationary phase. Under the assumptions discussed in Section 6, one arrives at the simple
expression

γ = 1

12
(p + 9 − 6α) (7.3)

for the values of γ that are allowed in String Theory. Here p is the number of unwrapped dimen-
sions of the brane and α is another integer, the inverse power of the string coupling that enters its
world-volume action. All in all, the values of γ associated to the couplings of various types of
branes, a wide scan of which was recently presented in [44], to the field Φt of Section 6 are thus
quantized in units of 1 .
12
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