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Abstract: Four dimensional supergravity theories whose scalar manifold is a symmetric

coset manifold UD=4/Hc are arranged into a finite list of Tits Satake universality classes.

Stationary solutions of these theories, spherically symmetric or not, are identified with

those of an euclidian three-dimensional σ-model, whose target manifold is a Lorentzian

coset UD=3/H
⋆ and the extremal ones are associated with H⋆ nilpotent orbits in the K⋆

representation emerging from the orthogonal decomposition of the algebra UD=3 with re-

spect to H⋆. It is shown that the classification of such orbits can always be reduced to

the Tits-Satake projection and it is a class property of the Tits Satake universality classes.

The construction procedure of Bossard et al of extremal multicenter solutions by means

of a triangular hierarchy of integrable equations is completed and converted into a closed

algorithm by means of a general formula that provides the transition from the symmetric

to the solvable gauge. The question of the relation between H⋆ orbits and charge orbits W

of the corresponding black holes is addressed and also reduced to the corresponding ques-

tion within the Tits Satake projection. It is conjectured that on the vanishing locus of the

Taub-NUT current the relation between H⋆-orbit and W-orbit is rigid and one-to-one. All

black holes emerging from multicenter solutions associated with a given H⋆ orbit have the

same W-type. For the S3 model we provide a complete survey of its multicenter solutions

associated with all of the previously classified nilpotent orbits of sl(2) × sl(2) within g2,2.

We find a new intrinsic classification of the W -orbits of this model that might provide a

paradigm for the analogous classification in all the other Tits Satake universality classes.
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1 Introduction

The classical solutions of supergravity models that, in the gravitational sector, include

metrics of black hole type, have attracted a lot of interest in the course of the last fifteen-

seventeen years, with various peaks of attention and research activity when some new

conceptual input was introduced, which has occurred repeatedly.

The milestones in this new age of black hole physics have been:

1) The discovery of the attraction mechanism in the evolution of scalar fields [1, 2].

2) The statistical interpretation of black hole entropy in terms of string microstates [3, 4].

3) The ample development of black hole study [5–43] within the framework of special

Kähler geometry, [44–58] using in particular the first order equations that follow from

the preservation of supersymmetry. This meant an in depth study of BPS black holes

and of the relation of symplectic invariants of the duality groups with the black hole

entropy [59, 60].

4) The construction of black hole microstates in suitable conformal field theories [61–67].

5) The discovery of fake superpotentials and of new attraction flows for non supersym-

metric, non BPS black holes [68–76].

6) The introduction of a three-dimensional σ-model approach for the derivation of black

hole solutions [77] and the association of these latter with nilpotent orbits of the U -

duality group in the extremal case [78–83].

7) The complete integrability of the supergravity equations in the spherical symmetric

case and their association with a Lax pair formulation, in the case where the scalar

manifold is a symmetric homogenous space U/H [78–82, 84–87].
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What mainly concerns the present paper are the developments related with points 6) and

7) of the above list.

Concerning spherical symmetric supergravity black holes in the last couple of years

there were significant parallel developments based on:

A The purely D = 4 approach centered on the geodesic potential for radial flows, its

reexpression in terms of a fake superpotential and the analysis of critical points of

the latter, corresponding to black hole horizons [6–13, 88, 89]. In this approach the

classification of black holes is reduced to the classification of orbits of the symplectic

W-representation, namely the representation of the D = 4 duality group UD=4,

encoding the electromagnetic charges of the supergravity model.

B The D = 3 approach centered on the reduction of supergravity field equations to

those of a D = 3 σ-model with a Lorentzian target manifold which, for scalar mani-

folds that are symmetric coset spaces UD=4/Hc, is a also a symmetric coset UD=3/H
⋆,

the isotropy group H⋆ being a non-compact real section of the complexification of the

maximal compact subgroup of UD=3. In this approach, which leads to a Lax pair

formalism and to the development of explicit analytic formulae for the general inte-

gral [78–80, 82, 84], the classification of black holes is reduced to the classification

of orbits of the non compact stability group H⋆ in the K⋆ representation that corre-

sponds to the orthogonal decomposition of the D = 3 Lie algebra: UD=3 = H⋆ ⊕ K⋆.

The main result of approach A) has been the classification of critical points in terms

of certain special geometry invariants that are able to distinguish large and small black

holes, BPS and non-BPS ones. Obviously the structure of these invariants depend on the

electromagnetic charges which determine the geodesic potential and hence on the orbit of

the W representation yet such a link is not so clear in the D = 4 approach. On the other

hand, also in the D = 3 approach the relation between the H⋆ orbits and the W orbits of

the resulting black hole charges was not systematically investigated so far.

In view of these facts the basic goal of the present paper is precisely a systematic

investigation of the relation between these two approaches to the classification of black

hole solutions.

From the point of view of spherical symmetric solutions it was established that non-

extremal black holes correspond to orbits of regular, diagonalizable Lax operators in the K⋆

representation of H⋆, while extremal black holes are associated with nilpotent orbits in the

same representation. For this reason a considerable amount of work was recently devoted

to the study and classification of nilpotent orbits of the subgroup H⋆ ⊂ U extending and

completing work done by mathematicians for the nilpotent orbits of the full group U. In

the case of the so named S3-model, leading to UD=3 = g2,2, partial results were obtained

in [95] confirmed and extended in [86].

In [87] the present authors, in collaboration with M. Trigiante, succeeded in elaborating

a complete algorithm for the construction and classification of H⋆ nilpotent orbits in the

K⋆ representation, applicable to all relevant supergravity models based on scalar manifolds

that are symmetric coset spaces. The algorithm is based on the method of the standard
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triples {h,X, Y }, namely of the embedding of sl(2,R) algebras where X,Y ∈ K⋆ and

h ∈ H⋆, with the additional essential use of the Weyl group W and of its subgroup WH

which preserves the splitting UD=3 = H⋆ ⊕ K⋆. The final labeling of the orbits is given

by three set of eigenvalues named the α, β and γ labels (see [87, 94] for details).

In the same paper where it was introduced, the constructive orbit classification algo-

rithm was applied to the g2,2 case, reobtaining the 7 orbits found in previous calculations.

It was also applied to the non maximally split case of the algebras so(4, 4 + 2s) where, in-

dependently from the value of s, we were able to single out a fixed pattern of 37 nilpotent

orbits. Indeed in [87] we showed that the structure of nilpotent orbits is a property of the

Tits-Satake subalgebra of any algebra, giving a precise mathematical and physical relevance

to the concept of Tits Satake universality classes introduced several years ago in [96].

In the present paper we address the systematic issue of organizing all supergravity

models based on symmetric spaces into a finite list of Tits Satake universality classes

(see tables 3, 4) and by means of an in depth group-theoretical analysis we show that

for all elements of a given class there are always enough and appropriate parameters in

the adjoint representation of H⋆ to rotate a generic element of K⋆ into its subspace K⋆
TS

obtained by means of the Tits Satake projection. We show that the same is true for the W-

representation of charges: in the adjoint representation of UD=4 there are always enough

and appropriate parameters to rotate any element of W into its Tits Satake projection

WTS. Therefore we show constructively that both at the D = 4 and D = 3 level the

classification of black hole solutions can be restricted to the classification of orbit structures

for a finite list of maximally split Tits Satake algebras.

It is also appropriate to stress that the construction of nilpotent orbits for these uni-

versality classes has already consistently progressed, in view of the results of [87] and of [97]

where the orbit pattern for the f4,4 universality class was derived.

Having established this crucial point the comparison between the D = 4 and D = 3

approaches is reduced to investigate the relation between the corresponding WTS and

K⋆
TS orbits. Although simplified to its essence, the problem remains, and in the spherical

symmetric approach we obtain only some partial answers. We can summarize the issue in

the following question: The electromagnetic charges that can be obtained from Lax operators

belonging to the same H⋆ orbit do always fall in the same W⋆ orbit of UD=4?. The answer

is far from being positive. Indeed one immediately gets counterexamples by showing that

Lax operators belonging to the same H⋆ orbit can yield both charges with vanishing and

charges with non vanishing quartic invariant J4. However there is a caveat. Typically we

are interested in asymptotically flat black holes so that we have to exclude a non vanishing

Taub-NUT charge. The Taub-NUT charge is associated with the highest root of the algebra

and the reduction of a dynamical system which kills the highest root corresponds to a

consistent truncation. So we can consider the vanishing Taub-NUT locus in every H⋆-orbit

and it appears that all Lax operators belonging to such a locus produce charge vectors

within the same W-orbit. Since the vanishing Taub-NUT locus is not a coset manifold

rather an algebraic surface within a coset manifold, we were not able to provide a formal

proof of this fact, yet we can put it in the form of a conjecture since no counter example

has been found.
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This is what we can say if we stick to spherically symmetric solutions, yet there are

entirely new perspectives that open up if we take into account the brilliant strategy intro-

duced in [83, 98–102] how to associate multicenter non spherically symmetric solutions to

each H⋆ nilpotent orbit of K⋆.

The main catch of this strategy relies on the use of a symmetric, rather than solvable

gauge, to represent the field equations of the three-dimensional σ-model (equivalent to su-

pergravity for stationary solutions), that has the coset UD=3/H
⋆ as target space. The next

crucial ingredient in this menu is the use of the central element h of each standard triple

{h,X, Y } as a grading operator that determines a nilpotent subalgebra N ⊂ UD=3, spanned

by its eigen-operators of positive grading. Denoting N
⋂

K⋆ the intersection of such an al-

gebra with the K⋆ subspace and h(x) a map M3 → N
⋂

K⋆ from the three-dimensional base

space into such intersection, the symmetric coset representative is just Y(x) = exp[h(x)]

and obeys three-dimensional field equations forming a solvable system. The components

of h(x) associated with lower gradings are just harmonic functions, while those associated

with higher gradings obey Laplace equation with a source term provided by a functional

of the lower grading components. In this way one can construct non spherical symmetric

solutions of the σ-model representing multicenter black holes and also, as we will show in

the sequel, Kerr like solutions. A crucial technical problem that, in papers [83, 98–102]

was only touched upon, or solved with ad hoc procedures for specific cases, concerns the

final oxidation procedure. The correspondence between the fields of supergravity and the

fields of the three-dimensional σ-model is precise and algorithmic in the solvable gauge

realization of the coset representative, not in the symmetric gauge. Hence, in order to read

off the supergravity solution one has to make such a gauge transformation which, at first

sight, appears a matter of art and ingenuity, case by case. Fortunately this is not true,

since the problem was already solved in complete generality in [78–82, 84], by means of

a formula (see eq. (3.26) of the present paper) originally found in the context of spheri-

cal symmetric solutions, yet of much further reach. Indeed coupling eq. (3.26) with the

strategy of papers [83, 98–102], the general construction of multicenter black hole solutions

associated with nilpotent orbits becomes truly algorithmic and even implementable on a

computer. We consider this one of the main results of the present paper.

We applied the algorithm to the case of the S3 model, exploring the general form of

multicenter solutions and we came to the following conclusion. The solutions associated

with one nilpotent orbit have the property that, for each pole shared by all the harmonic

functions springing from the corresponding nilpotent algebra, we have a black hole whose

charges and other properties are those displayed by the spherical symmetric solution gen-

erated by the Lax operator in that orbit. However it may happen that a pole is located

only in one subset of the harmonic building blocks, while other poles are located in dif-

ferent subsets. In that case the black holes springing from each pole have the charges

and properties of the spherical black hole pertaining to various smaller orbits associated

with each subgroups. This mechanism unveils that larger orbit black holes can be viewed

as composite objects built from the coalescence of smaller ones when their centers come

together, namely when the corresponding poles overlap.

Our analysis also shows that the solutions associated with very large orbits, typically

– 4 –
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those for which the corresponding Lax operator has nilpotency degree larger than three,

are generically singular not only in the spherical symmetric case but also in the multicenter

case, since at each common pole of the involved harmonic functions we just retrieve the same

conditions pertaining to the spherical symmetric solution. This explicit result is somewhat

different from the claims made at various places of ref.s [83, 98–102] that multicenter

solutions with generic positions of the poles can be regular for higher orbits. In any case

we would like to stress that the solutions associate with higher orbits can be quite complex

and deserve a special detailed study. Several surprises might still lie ahead.

In the course of our analysis we have found a number of other results that up to our

knowledge were not known in the literature. We plan to summarize and high lite our

findings in our conclusions, section 11.

The structure of our paper is displayed in the contents. We emphasize that it is

organized in three parts. In the first part sections 2–3 we review the σ-model approach

to stationary supergravity solutions, the construction of multicenter solutions attached to

nilpotent orbits and we spell out the complete oxidation algorithm.

In the second part, sections 4–5 we apply the general scheme to the case of the S3

model and we explore all the solutions attached to each of the classified nilpotent orbits.

Part three of the paper, sections 6–10 is devoted to organize all the available supergrav-

ity models based on symmetric scalar manifolds into Tits Satake universality classes, to

show how within each class we can always reduce the analysis to the Tits Satake subalgebra

both at the D = 4 and D = 3 level and finally to analyse the general structure of the H⋆

subalgebra and the K⋆ representation in the maximally split casse (Tits Satake projection).

2 The general framework

The addressed issue is that of stationary solutions of D = 4 ungauged supergravity models.

For such field theories that include, the metric, several abelian gauge fields and several

scalar fields, we have a general form of the bosonic lagrangian, which is the following one:

L(4) =
√
|det g|

[
R[g]

2
− 1

4
∂µφ

a∂µφbhab(φ) + ImNΛΣ F
Λ
µνF

Σ|µν
]

+
1

2
ReNΛΣ F

Λ
µνF

Σ
ρσǫ

µνρσ , (2.1)

where FΛ
µν ≡ (∂µA

Λ
ν − ∂νA

Λ
µ )/2. In eq. (2.1) φa denotes the whole set of ns scalar fields

parameterizing the scalar manifold MD=4
scalar which, for supersymmetry N > 2, is necessarily

a coset manifold:

MD=4
scalar =

UD=4

Hc
(2.2)

For N = 2 eq. (2.2) is not obligatory but it is possible: a well determined class of symmetric

homogeneous manifolds that are special Kähler manifolds [55–58] falls into the set up of

the present general discussion. The theory includes also nv vector fields AΛ
µ for which

F±|Λ
µν ≡ 1

2

[
FΛ
µν ∓ i

√
|det g|
2

ǫµνρσ F
ρσ

]
(2.3)
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denote the self-dual (respectively antiself-dual) parts of the field-strengths. As displayed in

eq. (2.1) they are non minimally coupled to the scalars via the symmetric complex matrix

NΛΣ(φ) = i ImNΛΣ +ReNΛΣ (2.4)

which transforms projectively under UD=4. Indeed the field strengths F±|Λ
µν plus their

magnetic duals:

GΛ|µν ≡ 1
2 ǫ

ρσ
µν

δL(4)

δFΛ
ρσ

(2.5)

fill up a 2nv-dimensional symplectic representation of UD=4 which we call by the

name of W.

We rephrase the above statements by asserting that there is always a symplectic em-

bedding of the duality group UD=4,

UD=4 7→ Sp(2nv,R) ; nv ≡ # of vector fields (2.6)

so that for each element ξ ∈ UD=4 we have its representation by means of a suitable real

symplectic matrix:

ξ 7→ Λξ ≡
(
Aξ Bξ
Cξ Dξ

)
(2.7)

satisfying the defining relation:

ΛTξ

(
0n×n 1n×n
−1n×n 0n×n

)
Λξ =

(
0n×n 1n×n
−1n×n 0n×n

)
(2.8)

Under an element of the duality group the field strengths transform as follows:
(

F+

G+

)′

=

(
Aξ Bξ
Cξ Dξ

) (
F+

G+

)
;

(
F−

G−

)′

=

(
Aξ Bξ
Cξ Dξ

) (
F−

G−

)
(2.9)

where, by their own definitions:

G+ = N F+ ; G− = N F− (2.10)

and the complex symmetric matrix N should transform as follows:

N ′ = (Cξ +DξN ) (Aξ +BξN )−1 (2.11)

Choose a parametrization of the coset L(φ) ∈ UD=4, which assigns a definite group element

to every coset point identified by the scalar fields. Through the symplectic embedding (2.7)

this produces a definite φ-dependent symplectic matrix
(
A(φ) B(φ)

C(φ) D(φ)

)
(2.12)

in theW -representation of UD=4. In terms of its blocks the kinetic matrixN (φ) is explicitly

given by the Gaillard-Zumino formula:

N (φ) = [C(φ)− iD(φ)] [A(φ)− iB(φ)]−1 , (2.13)

– 6 –
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2.1 The σ-model approach to extremal black holes

A very powerful token in deriving stationary and in particular extremal black hole solu-

tions of D = 4 supergravity that depend only on three space-like coordinates x1, x2, x3,

is provided by the time-reduction of the four-dimensional field equations to those of an

effective three-dimensional σ-model. Let us shortly review this procedure.

In all N = 2 cases the number of vector fields in the theory is nv = n + 1 where n is

the complex dimension of the scalar manifold (ns = 2n), while in the case of other theories

the relation between nv and ns is different. Notwithstanding this difference, we can always

introduce a 2nv × 2nv field dependent matrix M4 defined as follows:

M4 =

(
ImN−1 ImN−1ReN

ReN ImN−1 ImN + ReN ImN−1ReN

)
(2.14)

M−1
4 =

(
ImN + ReN ImN−1ReN −ReN ImN−1

− ImN−1ReN ImN−1

)
(2.15)

and we can introduce the following set of 2 + ns + 2nv fields depending on the three

parameters xi:

Generic N = 2

warp factor U(x) 1 1

Taub-NUT field a(x) 1 1

D=4 scalars φa(x) ns 2n

Scalars from vectors ZM (x) =
(
ZΛ(x) , ZΣ(x)

)
2nv 2n+ 2

Total 2 + ns + 2nv 4n+ 4

the fields {U, a, φ, Z} are interpreted as the coordinates of a new (2+ns+2nv)-dimensional

manifold Q, whose metric we declare to be the following:

ds2Q =
1

4

[
dU2 + hrs dφ

r dφs + e−2U (da+ ZTCdZ)2 + 2 e−U dZT M4 dZ
]

(2.16)

having denoted by C the constant symplectic invariant metric in 2nv dimensions that

underlies the construction of the matrix NΛΣ. The metric (2.16) has the following indefi-

nite signature

sign
[
ds2Q

]
=


+, . . . ,+︸ ︷︷ ︸

2+ns

,−, . . . ,−︸ ︷︷ ︸
2nv+2


 (2.17)

since the matrix M4 is negative definite.

Moreover one very important point to be stressed is that the metric (2.16) admits a

typically large group of isometries. Certainly it admits all the isometries of the original

scalar manifold Mscalar enlarged with additional ones related to the new fields that have

been introduced {U, a, ZM}. In the case when the D = 4 scalar manifold is a homogeneous

symmetric space:

Mscalar =
UD=4

Hc
(2.18)

– 7 –
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one can show [77, 90–93, 103], that the manifold Q with the metric (2.16) is a new homo-

geneous symmetric space

Q =
UD=3

H⋆
(2.19)

whose structure is universal and can be described in general terms.

2.1.1 General structure of the UD=3 Lie algebra

The Lie algebra UD=3 of the numerator group always contains, as subalgebra, the duality

algebra UD=4 of the parent supergravity theory in D = 4 and a universal sl(2,R)E algebra

which is associated with the gravitational degrees of freedom {U, a} Furthermore, with

respect to this subalgebra, UD=3 admits the following universal decomposition, holding for

all N -extended supergravities:

adj(UD=3) = adj(UD=4)⊕ adj(sl(2,R)E)⊕W(2,W) (2.20)

whereW is the symplectic representation of UD=4 to which the electric and magnetic field

strengths are assigned. Furthermore the sl(2,R)E algebra defined by this decomposition

is named the Ehlers algebra. Indeed the scalar fields associated with the generators of

W(2,W) are just those coming from the vectors in D = 4. Denoting the generators of UD=4

by T a, the generators of sl(2,R)E by Lx and denoting by W iM the generators in W(2,W),

the commutation relations that correspond to the decomposition (2.20) have the following

general form:

[T a, T b] = fabc T
c

[Lx, Ly] = fxyz L
z,

[T a,W iM ] = (Λa)MN W
iN ,

[Lx,W iM ] = (λx)ijW
jM ,

[W iM ,W jN ] = ǫij (Ka)
MN T a + CMN kijx L

x (2.21)

where the 2×2 matrices (λx)ij , are the canonical generators of sl(2,R) in the fundamental,

defining representation:

λ3 =

(
1
2 0

0 −1
2

)
; λ1 =

(
0 1

2
1
2 0

)
; λ2 =

(
0 1

2

−1
2 0

)
(2.22)

while Λa are the generators of UD=4 in the symplectic representation W. By

CMN ≡
(

0nv×nv 1nv×nv

−1nv×nv 0nv×nv

)
(2.23)

we denote the antisymmetric symplectic metric in 2nv dimensions, nv being the number

of vector fields in D = 4 as we have already stressed. The symplectic character of the

representation W is asserted by the identity:

ΛaC+ C (Λa)T = 0 (2.24)

– 8 –
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The fundamental doublet representation of sl(2,R) is also symplectic and we have denoted

by ǫij =

(
0 1

−1 0

)
the 2-dimensional symplectic metric, so that:

λx ǫ+ ǫ (λx)T = 0, (2.25)

In eq. (2.21) we have used the standard convention according to which symplectic indices

are raised and lowered with the appropriate symplectic metric, while adjoint representation

indices are raised and lowered with the Cartan-Killing metric.

2.1.2 General form of the three-dimensional σ-model

Next we consider a gravity coupled three-dimensional euclidian σ-model, whose fields

ΦA(x) ≡ {U(x), a(x), φ(x), Z(x)}

describe mappings:

Φ : M3 → Q (2.26)

from a three-dimensional manifold M3, whose metric we denote by γij(x), to the target

space Q. The action of this σ-model is the following:

A[3] =

∫ √
detγR[γ] d3x +

∫ √
detγ L(3) d3x (2.27)

L(3) = (∂iU ∂jU + hrs ∂iφ
r ∂jφ

s

+e−2U
(
∂ia+ ZTC∂iZ

) (
∂ja+ ZTC∂jZ

)
+ 2 e−U ∂iZ

T M4 ∂jZ
)
γij (2.28)

where R[γ] denotes the scalar curvature of the metric γij .

The field equations of the σ-model are obtained by varying the action both in the

metric γij and in the fields ΦA(x). The Einstein equation reads as usual:

Rij − 1
2γij R = Tij (2.29)

where:

Tij =
δL(3)

δγij
− γij L(3) (2.30)

is the stress energy tensor, while the matter field equations assume the standard form:

1√
detγ

γij ∂i

[
√
detγ

δL(3)

δ ∂jΦA

]
− δL(3)

δΦA
= 0 (2.31)

As it is well known, in D = 3 there is no propagating graviton and the Riemann tensor is

completely determined by the Ricci tensor, namely, via Einstein equations, by the stress-

energy tensor of the matter fields.

Extremal solutions of the σ-model are those for which the three-dimensional metric

can be consistently chosen flat:

γij = δij (2.32)
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corresponding to a vanishing stress-energy tensor:

(
∂iU ∂jU + hrs ∂iφ

r ∂jφ
s + e−2U

(
∂ia+ ZTC∂iZ

) (
∂ja+ ZTC∂jZ

)

+2e−U ∂iZ
T M4 ∂jZ

)
= 0 (2.33)

We will see in the sequel how the nilpotent orbits of the group H⋆ in the K⋆ representation

can be systematically associated with general extremal solutions of the field equations.

2.2 Oxidation rules for extremal multicenter black holes

Let us now describe the oxidation rules, namely the procedure by means of which to every

configuration of the three-dimensional fields Φ(x) = {U(x), a(x), φ(x), Z(x)}, satisfying
the field equations (2.31) and also the extremality condition (2.33), we can associate a

well defined configuration of the four-dimensional fields satisfying the field equations of

supergravity that follow from the lagrangian (2.1). We might write such oxidation rules for

general solutions of the σ-model, also non extremal, yet given the goal of the present paper

we confine ourselves to spell out such rule in the extremal case, which is somewhat simpler

since it avoids the extra complications related with the three-dimensional metric γij .

In order to write the D = 4 fields, the first necessary item we have to determine is

the Kaluza-Klein vector field A[KK] = A
[KK]
i dxi. This latter is worked out through the

following dualization procedure:

F[KK] = dA[KK]

F[KK] = −ǫijk dxi ∧ dxj
[
exp[−2U ]

(
∂ka + Z C ∂kZ

)]
(2.34)

Given the Kaluza-Klein vector we can write the four-dimensional metric which is the fol-

lowing:

ds2 = − exp[U ]
(
dt+A[KK]

)2
+ exp[−U ] dxi ⊗ dxj δij (2.35)

The vielbein description of the same metric is immediate. We just write:

ds2 = −E0 ⊗ E0 + Ei ⊗ Ei

E0 = exp[U2 ]
(
dt+A[KK]

)

Ei = exp[−U
2 ] dx

i (2.36)

Next we can present the form of the electromagnetic field strengths:

FΛ = CΛM∂iZM dxi ∧ (dt+A[KK])

+ ǫijkdx
i ∧ dxj

[
exp[−U ]

(
ImN−1

)ΛΣ (
∂kZΣ + ReNΣΓ∂

kZΓ
)]

(2.37)

Next we define the electromagnetic charges and the Taub-NUT charges for multicenter

solutions. Considering the metric (2.35) the black hole centers are defined by the zeros of

the warp-factor exp[U(~x)]. In a composite m-black hole solution there are m three-vectors

~rα (α = 1, . . . ,m), such that:

lim
~x→~rα

exp[U(~x)] = 0 (2.38)

– 10 –



J
H
E
P
0
1
(
2
0
1
3
)
0
0
3

Each of these zeros defines a non trivial homology two-cycle S2α of the 4-dimensional space-

time which surrounds the singularity ~rα. The electromagnetic charges of the individual

holes are obtained by integrating the field strengths and their duals on such homology

cycles. (
pΛ

qΣ

)

α

=
1

4π
√
2

( ∫
S2α

FΛ

∫
S2α

GΣ

)
≡ 1

4π

∫

S2α

jEM (2.39)

Utilizing the form of the field strengths we obtain the explicit formula:

Qα ≡
(
pΛ

qΣ

)

α

(2.40)

=
1

4π
√
2

∫

S2α

ǫijkdx
i ∧ dxj

[
exp[−U ]M4 ∂

kZ + exp[−2U ]
(
∂ka+ Z C ∂kZ

)
CZ

]

which provides m-sets of electromagnetic charges associated with the solution. Similarly

we have m Taub-NUT charges defined by:

nα = − 1

4π

∫

S2α

ǫijkdx
i ∧ dxj exp[−2U ]

(
∂ka + Z C ∂kZ

)
≡ 1

4π

∫

S2α

jTN (2.41)

2.2.1 Reduction to the spherical case

The spherical symmetric one-center solutions are retrieved from the general case by assum-

ing that all the three-dimensional fields depend only on one radial coordinate:

τ = − 1

r
; r =

√
x21 + x22 + x23 (2.42)

On functions only of τ we have the identity:

∂if(τ) = −xi τ3 d

dτ
f(τ) (2.43)

and introducing polar coordinates:

x1 =
1

τ
cos θ

x2 =
1

τ
sin θ sinϕ

x3 =
1

τ
sin θ cosϕ (2.44)

we obtain:

τ3ǫijk x
idxj ∧ dxk = − 2 sin θ dθ ∧ dϕ (2.45)

By using these identities and restricting one’s attention to the extremal case, the action of

the σ-model (2.27) reduces to:

A =

∫
dτ L

L = U̇2 + hrs ϕ̇
r ϕ̇s + e−2U (ȧ+ ZTCŻ)2 + 2 e−U ŻT M4 Ż (2.46)
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where the dot denotes derivatives with respect to the τ variable. The σ-model field equa-

tions take the standard form of the Euler Lagrangian equations:

d

dτ

dL
dΦ̇

=
dL
dΦ

(2.47)

and the extremality conditions (2.33) reduces to:

L = U̇2 + hrs ϕ̇
r ϕ̇s + e−2U (ȧ+ ZTCŻ)2 + 2 e−U ŻT M4 Ż = 0 (2.48)

It appears from this that spherical extremal black holes are in one-to-one correspondence

with light-like geodesics of the manifold Q.

The reduced oxidation rules. In the spherical case the above discussed oxidation rules

reduce as follows. For the metric we have

ds2(4) = − eU(τ) (dt+ 2n cos θ dϕ)2 + e−U(τ)

[
1

τ4
dτ2 +

1

τ2
(
dθ2 + sin2 θ dφ2

)]
(2.49)

where n denotes the Taub-NUT charge obtained from the form of the Kaluza-Klein

field strength:

FKK = −2n sin θ dθ ∧ dϕ

n =
(
ȧ + Z C Ż

)
(2.50)

The electromagnetic field-strengths are instead the following ones:

FΛ = 2 pΛ sin θ dθ ∧ dϕ + ŻΛdτ ∧ (dt+ 2n cos θ dϕ) (2.51)

where the magnetic charges pΛ are extracted from the reduction of the general for-

mula (2.40), namely:

QM =

(
pΛ

qΣ

)
=

√
2
[
e−U M4 Ż − nCZ

]M
(2.52)

2.3 A counter example: the extremal Kerr metric

In this section, in order to better clarify the notion of extremality provided by condi-

tions (2.32)–(2.33) we consider the physically relevant counter-example of the extremal

Kerr metric. Such static solution of Einstein equations is certainly encoded in the σ-model

approach yet it is not extremal in the sense of eqs. (2.32)–(2.33) and therefore it is not

related to any nilpotent orbit. Indeed the extremal Kerr metric is a solution of pure gravity

and as such its σ-model representation lies in the euclidian submanifold:

SL(2,R)

O(2)
(2.53)

for which the coset tangent space K contains no nilpotent elements.
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Instead the so named BPS Kerr-Newman metric, which is not extremal in the sense

of General Relativity and actually displays a naked singularity, is extremal in the sense of

eqs. (2.32)–(2.33) and can be retrieved in one of the nilpotent orbits of the S3-model. We

will show that explicitly in section 5.4.

As a preparation to such discussions let us recall the general form of the Kerr-Newmann

metric which we represent in polar coordinates as it follows:

ds2KN = −V 0 ⊗ V 0 +
3∑

i=1

V i ⊗ V i (2.54)

V 0 =
δ(r)

σ(r, θ)

(
dt − α sin2 θ dφ

)
(2.55)

V 1 =
σ(r, θ)

δ(r)
dr (2.56)

V 2 = σ(r, θ) dθ (2.57)

V 3 =
sin(θ)

σ(r, θ)

((
r2 + α2

)
dφ − αdt

)
(2.58)

δ(r) =
√
q2 + r2 + α2 − 2mr (2.59)

σ(r, θ) =
√
r2 + α2 cos2(θ) (2.60)

Parameters of the Kerr-Newman solution are the mass m, the electric charge q and the

angular momentum J = mα of the Black Hole. The two particular cases we shall consider

in this paper correspond to:

a) The extremal Kerr solution: q = 0 and m = α.

b) The BPS Kerr-Newman solution q = m, arbitrary α.

Let us then focus now on the extremal Kerr solution. With the choice m = α, q = 0, the

metric (2.54) can be rewritten in the following form:

ds2EK = − exp[U ]
(
dt+A[KK]

)2
+ exp[−U ] γij dy

i ⊗ dyj (2.61)

where yi = {r, θ, φ} are the polar coordinates, the three dimensional metric γij is the

following one:

γij =




2r2−α2+α2 cos(2θ)
2r2

0 0

0 r2 − α2

2 + 1
2α

2 cos(2θ) 0

0 0 r2 sin2(θ)


 (2.62)

the warp factor is:

U = log

[
r2 − α2 sin2(θ)

(r + α)2 + α2 cos2(θ)

]
(2.63)

and the Kaluza Klein vector has the following appearance:

A[KK] =
2α2(r + α) sin2(θ)

r2 − α2 sin2(θ)
dφ (2.64)
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In presence of the metric γij the duality relation between the Kaluza Klein vector field and

the σ-model scalar field a reads as follows:

F
[KK]
ij ≡ ∂[iA

[KK]
j] = exp[−2U ]

√
det γ ǫijk γ

kℓ ∂ℓ a (2.65)

and it is solved by:

a = − 2α2 cos(θ)

2r2 + 4αr + 3α2 + α2 cos(2θ)
(2.66)

In this way, by means of inverse engineering we have showed how the extremal Kerr metric

is retrieved in the σ-model approach. The crucial point is that the metric γij is not flat and

hence such a configuration of the U, a fields does not correspond to an extremal solution

of the σ-model field equations. Indeed calculating the curvature two-form of the three-

dimensional metric (2.62) we find

R12 =
4α2

(
2r2 + α2 − α2 cos(2θ)

)

(2r2 − α2 + α2 cos(2θ))3
e1 ∧ e2 (2.67)

R13 =
4α2

(2r2 − α2 + α2 cos(2θ))2
e1 ∧ e3 (2.68)

R23 = − 4α2

(2r2 − α2 + α2 cos(2θ))2
e2 ∧ e3 (2.69)

where

e1 =
dr
√

cos(2θ)α2

r2
− α2

r2
+ 2

√
2

(2.70)

e2 = dθ

√
r2 − α2

2
+

1

2
α2 cos(2θ) (2.71)

e3 = dφ r sin(θ) (2.72)

is the dreibein corresponding to (2.62).

Hopefully this explicit calculation should have convinced the reader that the extremal

Kerr solution and, by the same token, also the extremal Kerr-Newman solution are not

extremal in the σ-model sense and are retrieved in regular rather than in nilpotent orbits

of U/H⋆.

3 Construction of multicenter solutions associated with nilpotent orbits

For spherically symmetric black holes the construction of solutions is associated with nilpo-

tent orbits in the following way. A representative of the H⋆ orbit is a standard triple

{h,X, Y } and hence an embedding of an sl(2,R) Lie algebra:

[h,X] = 2X ; [h, Y ] = − 2Y ; [X,Y ] = 2h (3.1)

into UD=3 in such a way that h ∈ H⋆ and X,Y ∈ K⋆. The nilpotent operator X is identified

with the Lax operator L0 at euclidian time τ = 0 and the corresponding solution depending
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on τ is constructed by using the algorithm described in [78–80, 82, 86]. In the multicenter

approach of [83, 98–102] one utilizes the standard triple to single out a nilpotent subalgebra

N, as follows. One diagonalizes the adjoint action of the central element h of the triple on

the Lie Algebra UD=3:

[h , Cµ] = µCµ (3.2)

The set of all eigen-operators Cµ corresponding to positive gradings µ > 0 spans a subal-

gebra N ⊂ UD=3 which is necessarily nilpotent

N = span [C2 , C3 , . . . , Cmax] (3.3)

Such a nilpotent subalgebra has an intersection N
⋂

K⋆ with the space K⋆ which is not

empty since at least the operator C2 = X is present by definition of a standard triple. The

next steps of the construction are as follows.

3.1 The coset representative in the symmetric gauge

Given a basis Ai of the space NK ≡ N
⋂

K⋆, whose dimension we denote:

ℓ ≡ dimNK (3.4)

and a basis Bα of the subalgebra NH ≡ N
⋂
H⋆, whose dimension we denote

m ≡ dimNH (3.5)

we can construct a map:

H : R3 → NK (3.6)

by writing:

NK ∋ H(~x) =
ℓ∑

i=1

hi(~x)A
i (3.7)

By construction, the point dependent Lie algebra element H(~x) is nilpotent of a certain

maximal degree dn, so that its exponential map to the nilpotent group N ⊂ UD=3 truncates

to a finite sum:

Y(x) = exp [H(~x)] = 1 +

dn∑

a=1

1

a!
Ha(~x) (3.8)

The above constructed object realizes an explicit ~x-dependent coset representative from

which we can construct the Maurer Cartan left-invariant one form:

Σ = Y−1∂iY dxi (3.9)

Next let us decompose Σ along the K⋆ subspace and the H⋆ subalgebra, respectively. This

is done by setting:

P = Tr(ΣKA)KA ; Ω = Tr(ΣHm)Hm (3.10)

where KA and Hm denote a basis of generators for the two considered subspaces, KA and

Hm being their duals:

Tr(KAKB) = δAB ; Tr(HmHn) = δmn ; Tr(KAHn) = 0 (3.11)
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Denoting:
⋆P ≡ 1

2 ǫijk δ
imPm dx

j ∧ dxk (3.12)

the Hodge-dual of the coset vielbein

P = Pm dx
m (3.13)

the field equations of the three dimensional σ-model reduce to the following one:

d⋆P = Ω ∧ ⋆P − ⋆P ∧ Ω (3.14)

Actually, since N ⊂ UD=3 forms a nilpotent subalgebra the constructed object Y realizes

a map from the three-dimensional space to the much smaller coset manifold:

Y : R3 → N

NH
(3.15)

and due to the polynomial form of the coset representative the final equations of motion

obtain a triangular solvable form that we describe here below. Since the algebra N is

nilpotent, its derivative series terminates, namely we have:

N ⊃ DN ⊃ . . . ⊃ DnN ⊃ Dn+1N = 0 (3.16)

where at each step DiN is a proper subspace of Di−1N. Correspondingly let us define:

DiNK = DiN
⋂

K⋆ (3.17)

the intersections of the derivative subalgebras with the K⋆ subspace and let us introduce

the complementary orthogonal subspaces:

DiNK = N
(i)
K ⊕ Di+1NK (3.18)

This yields an orthogonal graded decomposition of the space NK of the following form:

NK =
n⊕

a=0

N
(a)
K (3.19)

The space N
(0)
K contains those generators that cannot be produced by any commutator

within the algebra, N
(1)
K contains those generators that are produced in simple commutators,

N
(2)
K contains those that are produced in double commutators and so on. Let us name

ℓa = dimN
(a)
K ;

n∑

a

ℓa = ℓ (3.20)

Correspondingly we can arrange the ℓ functions hi(~x) according to the graded decomposi-

tion (3.19), by writing:

H(~x) =
n∑

α=0

ℓα∑

i=1

h
(α)
i (~x)Aiα

︸ ︷︷ ︸
∈N

(α)
K

(3.21)
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and equations (3.14) take the following triangular form:

∇2h
(0)
i = 0

∇2h
(1)
i = F

(1)
i

(
h(0),∇h(0)

)

∇2h
(2)
i = F

(2)
i

(
h(0),∇h(0), h(1),∇h(1)

)

. . . = . . .

∇2h
(n)
i = F

(n)
i

(
h(0),∇h(0), h(1),∇h(1), . . . , h(n−1),∇h(n−1)

)
, (3.22)

where ∇2 denotes the three-dimensional Laplacian and at each level α, by F
(α)
i (. . . ) we

denote an so(3) invariant polynomial of all the functions hβ up to level α − 1 and of

their derivatives.

Therefore the first ℓ0 functions h
(0)
i are just harmonic functions, while the higher

ones satisfy Laplace equation with a source that is provided by the previously determined

functions.

3.2 Transformation to the solvable gauge

Given the symmetric coset representative Y(~x), parameterized by functions h
(α)
i (~x) which

satisfy the field equations (3.22), in order to retrieve the corresponding supergravity fields

satisfying supergravity field equations, we need to solve a technical, yet quite crucial prob-

lem. We need to construct a new upper triangular coset representative:

L(Y) =




L1,1(Y) L1,2(Y) · · · L1,n−1(Y) L1,n(Y)

0 L2,2(Y) · · · L2,n−1(Y) L2,n(Y)

0 0 L3,3(Y) · · · L3,n(Y)
... . . . 0 · · · ...

0 0 · · · 0 L3,n(Y)




(3.23)

which depends algebraically on the matrix entries of Y and satisfies the following equiva-

lence condition

L(Y)Q(Y) = Y ; Q(Y) ∈ H⋆ (3.24)

where, as specified above, Q(Y) is a suitable element of the subgroup H⋆. It should be

stressed that in the existing literature, this transition from the symmetric to the solvable

gauge, which is compulsory in order to make the construction of the black hole solutions ex-

plicit, has been advocated, yet it has been to ad hoc procedures to be invented case by case.

Actually a universal and very elegant solution of such a problem exists and was found,

from a different perspective, by the authors of the present paper in [78–82, 84, 86]. Indeed

defining the following determinants:

Di(Y) := Det




Y1,1 . . . Y1,i

...
...

...

Yi,1 . . . Yi,i


 , D0(Y) := 1 (3.25)
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the matrix elements of the inverse of the upper triangular coset representative satisfying

both equations (3.23) and (3.24) are given by the following expressions:

(
L(Y)−1

)
ij

≡ 1√
Di(Y)Di−1(Y)

Det




Y1,1 . . . Y1,i−1 Y1,j
...

...
...

...

Yi,1 . . . Yi,i−1 Yi,j


 (3.26)

Equation (3.26) provides a universal non-trivial and very elegant solution to the gauge-

change problem and makes the entire construction based on harmonic functions truly al-

gorithmic from the start to the very end.

3.3 Extraction of the three dimensional scalar fields

The result of the procedure described in the previous section is a triangular coset represen-

tative L(h
(α)
i ) whose entries are polynomial and square root of polynomials in the functions

h
(α)
i (x). The extraction of the scalar fields {U(x), a(x), Z(x), φ(x)} can now be performed

according to the rules already presented in [86], which we recall here for completeness.

The general form of the solvable coset representative in terms of the fields is the

following one:

L(Φ) = exp
[
−aLE+

]
exp

[√
2ZM WM

]
L4(φ) exp

[
U LE0

]
(3.27)

where LE0 , L
E
± are the generators of the Ehlers group and WM ≡ W 1M are the generators

in the W -representation, according to the general structure (2.21) of the UD=3 Lie algebra;

furthermore L4(φ) is the coset representative of theD = 4 scalar coset manifold immersed in

the UD=3 group. From this structure, identifying L(Φ) = L(h
(α)
i ) we deduce the following

iterative procedure for the extraction of the relevant fields:

First of all we can determine the warp factor U by means of the following simple

formula:

U(h) = log
[
1
2 Tr

(
L(h)LE+ L−1(h)LE−

)]
(3.28)

Secondly we obtain the fields φi as follows. Defining the functionals

Ξi(h) = Tr
(
L−1(h)Ti L(τ)

)
(3.29)

from the form of the coset representative (3.27) it follows that Ξi depend only on the D = 4

scalar fields and, according to the explicit form of the D = 4 coset, one can work out the

scalar fields φi.

The knowledge of U, φi allows to define:

Ω(h) = L(h) exp
[
−U LE0

]
L4(φ)

−1 (3.30)

from which we extract the ZM fields by means of the following formula:

ZM (h) =
1

2
√
2
Tr
[
Ω(h)WT

M

]
(3.31)

where T means transposed. Finally the knowledge of ZM (h) allows to extract the a field

by means of the following trace:

a(h) = − 1
2Tr

[
Ω(h) exp

[
−
√
2ZM (h)WM

]
LE+

]
(3.32)
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3.4 General properties of the black hole solutions and structure of their poles

Having discussed the structure of supergravity solutions in terms of black-boxes that are

a set of harmonic functions and of their descendants generated through the solution of the

hierarchical equations (3.22), it is appropriate to study the general form of the geometries

one obtains in this way and the properties of the available harmonic functions.

First of all, naming:

W = exp[U(x)] (3.33)

the warp factor that defines the 4-dimensional metric (2.35), we would like to investigate

the general properties of the corresponding geometries. For the case where the Kaluza-

Klein monopole is zero A[KK] = 0 we can write the general form of the curvature two-form

of such spaces and therefore the intrinsic form of the Riemann tensor. Using the vielbein

formalism introduced in eq. (2.36) we obtain:

R0i = −W∇i∇kW E0 ∧ Ek − 2∇iW∇kW E0 ∧ Ek

Rij = − 2W∇[i∇kW Ej] ∧ Ek + (∇W · ∇W) ∇kW Ei ∧ Ej (3.34)

where the derivatives used in the above equations are defined as follows. Let the flat metric

in three dimension be described by a euclidian dreibein ei such that:

ds2flat =

3∑

i=1

ei ⊗ ei

Ei =
1

W
ei (3.35)

then the total differential of the warp factor expanded along ei yields the derivatives

∇kW, namely:

dW = ∇kW ek (3.36)

Next let us consider the general form of harmonic functions. These latter form a linear

space since any linear combination of harmonic functions is still harmonic. There are three

types of building blocks that we can use:

a Real center pole:

Hα(~x) =
1

|~x − ~xα|
(3.37)

b Real part of an imaginary center pole:

Rα(~x) = Re

[
1

|~x − i ~xα|

]
(3.38)

c Imaginary part of an imaginary center pole:

Jα(~x) = Im

[
1

|~x − i ~xα|

]
(3.39)
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Hence the most general harmonic function can be written as the following sum:

Harm(~x) = h∞ +
∑

α

pα
|~x − ~xα|

+
∑

β

qβ Re

[
1

|~x − i ~xβ |

]
+
∑

γ

kγ Im

[
1

|~x − i ~xγ |

]
(3.40)

where the constant h∞ is the boundary value of the harmonic function at infinity far from

all the poles. In order to study the behavior of Harm(~x) in the vicinity of a real pole

(|~x − ~xα| ≪ 1) it is convenient to adopt local polar coordinates:

x1 − x1α = r cos θ

x2 − x2α = r sin θ sin φ

x3 − x3α = r sin θ cos φ (3.41)

In this coordinates the harmonic function is approximated by:

Harm(~x) ≃ hα +
pα
r

(3.42)

where the effective constant hα encodes the finite part of the function contributed by all

the other poles. In polar coordinates the Laplacian operator on functions of r becomes:

∆ =
d2

dr2
+

2

r

d

dr
(3.43)

The general outcome of the construction procedure outlined in the previous section is that

the warp factor is the square root of a rational function of n harmonic functions, where

n = dimNK

W(~x) =

√√√√√
P
(
Ĥarm1(~x), . . . , Ĥarmn(~x)

)

Q
(
Ĥarm1(~x), . . . , Ĥarmn(~x)

) (3.44)

where P and Q are two polynomials. By Ĥarm1(~x) we denote both harmonic functions

and their descendants generated by the hierarchical system (3.22). For a given multicenter

solution it is convenient to enumerate all the poles displayed by one or the other of the

harmonic functions and in the vicinity of each of those poles we will have:

Ĥarmi(~x) ≃ pi
rmi

(3.45)

where pi 6= 0 if the considered pole belongs to the considered function and it is zero

otherwise. Furthermore if Harmi(~x) is one of the level one harmonic function the exponent

mi = 1. Otherwise it is bigger, but in any case mi ≥ 1. Taking this into account the

effective behavior of the warp factor will always be of the following form:

W(~x) ≃ rℓα
√
cα (3.46)

where ℓ is some integer or half integer power (positive or negative) and cα is a constant. In

order for the pole to be a regular point of the solution, two conditions have to be satisfied:

1. The constant cα > 0 must be positive so that the warp factor is real.

2. The power ℓα ≥ 1 so that the Riemann tensor does not diverge at the pole.
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The second condition follows from the form (3.34) of the Riemann tensor which implies

that all of its components behave as:

Rab
cd ≃ r2ℓα−2 × const (3.47)

Near the pole the metric behaves as follows:

ds2 ≃ −√
cα r

ℓαdt2 +
1√
cα

1

rℓα

[
dr2 + r2

(
dθ2 + sin2 θ dφ2

)]
(3.48)

In order for the pole to be an event horizon of finite or of vanishing area, we must have

2− ℓα > 0, so that the volume of the two-sphere described by
(
dθ2 + sin2 θ dφ2

)
does not

diverge. Hence for regular black holes we have only three possibilities:

ℓα = 2︸ ︷︷ ︸
Large Black Holes

; ℓα = 3
2︸ ︷︷ ︸

Small Black Holes

; ℓα = 1︸ ︷︷ ︸
Very Small Black Holes

(3.49)

When we are in the case of Large Black Holes, the near horizon geometry is approximated

by that:

AdS2 × S2 (3.50)

The case of the harmonic functions with an imaginary center requires a different treat-

ment. Their near singularity behavior is best analyzed by using spheroidal coordinates.

These are easily introduced by setting:

x1 =
√
r2 + α2 sin θ sinφ

x2 =
√
r2 + α2 sin θ cosφ

x3 = r cos θ (3.51)

where r, θ, φ are the new coordinates and α is a deformation parameter which represents

the position of the center in the complex plane. In terms of these coordinates the flat

euclidian three-dimensional metric takes the following form:

ds2E3 = dΩ2
spheroidal ≡

(
r2+α2 cos2 θ

)
dr2

r2+ α2
+
(
r2+ α2

)
sin2 θdφ2 +

(
r2 + α2 cos2 θ

)
dθ2 (3.52)

and the two harmonic functions that correspond to the real and imaginary part of a complex

harmonic function with center on the imaginary z-axis at α-distance from zero are:

Pα(r, θ) =
r

r2 + α2 cos2 θ
(3.53)

Rα(r, θ) =
α cos θ

r2 + α2 cos2 θ
(3.54)

and the Hodge duals of their gradients, in spheroidal coordinates have the following form:

⋆ ∇Pα =
sin θ

(r2 + α2 cos2 θ)2
[
2α2 r cos θ sin θ dr ∧ dφ+

(
r2 + α2

) (
r2 − α2 cos2 θ

)
dθ ∧ dφ

]

(3.55)

⋆∇Rα =
α sin θ

(r2+α2 cos2 θ)2
[(
α2 cos2 θ − r2

)
sin θdr ∧ dφ+ 2r

(
r2+α2

)
cos θdθ ∧ dφ

]
(3.56)

These are the building blocks we can use to construct Kerr-Newman like solutions and

we shall outline a pair of examples in the sequel.
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4 The example of the S
3 model: classification of the nilpotent orbits

As an illustration of the general procedure we explore the case of the S3 model, leading

to the G2,2 group in D = 3. The spherical symmetric black hole solutions of this model

where already discussed in a full-fledged way in [86], and in [87] the detailed classification

of the corresponding nilpotent orbits was derived. Here we reconsider the same case from

the point of view of the multicenter construction outlined in the previous section, relying

on the results of [87]. According to that paper, for the case of the coset manifold:1

UD=3

H⋆
=

G(2,2)

̂SL(2,R)× SL(2,R)h⋆
(4.1)

we have just seven distinct nilpotent orbits of the H⋆ = ̂SL(2,R) × SL(2,R)h⋆ subgroup

in the K⋆ representation
(
2, 32
)
,2 which are enumerated by the three set of labels αβγ and

are denoted Oα
βγ as described in table 1.3 An explicit choice of a representative for each of

the seven orbits is provided below.

O1
11 =




√
3
2

√
5
2

2

√
3
2

√
5
2 0

√
5
2

2 0
√

5
2

2

√
6 −

√
5
2

2 −
√
3 −

√
5
2

2 0

√
5
2

2

−
√

3
2

√
5
2

2 −
√

3
2

√
5
2 0

√
5
2

2 0

−
√
5
2

√
3

√
5
2 0

√
5
2 −

√
3 −

√
5
2

0

√
5
2

2 0
√
5
2

√
3
2

√
5
2

2

√
3
2√

5
2

2 0 −
√

5
2

2

√
3 −

√
5
2

2 −
√
6

√
5
2

2

0

√
5
2

2 0
√
5
2 −

√
3
2

√
5
2

2 −
√

3
2




(4.2)

O4
11 =




1
2 0 0 0 1

2 0 0

0 0 0 0 0 0 0

0 0 1
2 0 0 0 1

2

0 0 0 0 0 0 0

−1
2 0 0 0 −1

2 0 0

0 0 0 0 0 0 0

0 0 −1
2 0 0 0 −1

2




(4.3)

1For the rationale of our notation we refer the reader to the later section 8 where it is recalled that the

H⋆ subalgebra for N = 2 theories is isomorphic to the direct product of a new sl(2, R)h⋆ factor times a

copy ÛD=4 of the duality algebra UD=4 in D = 4. In our case UD=4 = sl(2,R) so that we have eq. (4.1).
2By n

2
we mean the representation j = n

2
of so(1, 2) ≃ sl(2,R).

3For the notation and organization of the αβγ labels we refer the reader to [87].
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O2
11 =




1
2 0 −1

2 0 0 0 0

0 1 0 1√
2

0 0 0
1
2 0 −1

2 0 0 0 0

0 − 1√
2
0 0 0 1√

2
0

0 0 0 0 1
2 0 −1

2

0 0 0 − 1√
2
0 −1 0

0 0 0 0 1
2 0 −1

2




(4.4)

O3
11 =




1 0 0 − 1√
2
0 0 0

0 1 −1
2 0 1

2 0 0

0 1
2 0 0 0 −1

2 0
1√
2
0 0 0 0 0 1√

2

0 −1
2 0 0 0 1

2 0

0 0 1
2 0 −1

2 −1 0

0 0 0 − 1√
2
0 0 −1




(4.5)

O3
22 =




1 0 0 1√
2
0 0 0

0 1 −1
2 0 −1

2 0 0

0 1
2 0 0 0 1

2 0

− 1√
2
0 0 0 0 0 − 1√

2

0 1
2 0 0 0 1

2 0

0 0 −1
2 0 −1

2 −1 0

0 0 0 1√
2
0 0 −1




(4.6)

O3
21 =




−1 0 0 1√
2
0 0 0

0 0 −1
2 0 −1

2 0 0

0 1
2 −1 0 0 1

2 0

− 1√
2
0 0 0 0 0 − 1√

2

0 1
2 0 0 1 1

2 0

0 0 −1
2 0 −1

2 0 0

0 0 0 1√
2
0 0 1




(4.7)

O3
12 =




−1 0 0 − 1√
2
0 0 0

0 0 −1
2 0 1

2 0 0

0 1
2 −1 0 0 −1

2 0
1√
2
0 0 0 0 0 1√

2

0 −1
2 0 0 1 1

2 0

0 0 1
2 0 −1

2 0 0

0 0 0 − 1√
2
0 0 1




(4.8)

Note that, in some instances, these representatives do not coincide with the representatives

shown in our previous papers [86, 87]. The reason is that in the approach pursued in the

present paper, it is no longer relevant to consider representatives possessing vanishing

– 23 –



J
H
E
P
0
1
(
2
0
1
3
)
0
0
3

N dn α− label γβ − labels Orbits WH − classes

1 7 [j=3] γβ1 = {814101} O1
1 (×, γ1,×)

2 3 [j=1]×2[j=1/2] γβ1 = {311101} O2
1 (γ1, γ1,×)

7 3 2[j=1]×[j=0]
γβ1 = {4102}
γβ2 = {2201}

β1 β2

γ1 O3
1,1 O3

1,2

γ2 O3
2,1 O3

2,2

(γ1, γ2, γ2)

4 2 2[j=1/2]×3 [j=0] γβ1 = {1201} O4
1 (0, γ1, γ1)

Table 1. Classification of the nilpotent orbits of
G(2,2)

̂SL(2,R)×SL(2,R)h⋆
. The objects displayed in this

table were defined in [87] to which we refer the reader for notations and details on the g2,2 Lie

algebra basis. The same notations are followed in writing the orbit representatives displayed in the

main text.

Taub-NUT charges. The vanishing of the Taub-NUT current will be anyhow implemented

on the parametrization of the symmetric coset representative associated with the nilpotent

orbit. So we rather prefer to choose the simplest representatives of each nilpotent orbit

postponing the issue of the Taub-NUT charge at a later stage.

Each orbit representative Oα
βγ identifies a standard triple {h,X, Y } and hence an em-

bedding of an sl(2,R) Lie algebra:

[h,X] = 2X ; [h, Y ] = − 2Y ; [X,Y ] = 2h (4.9)

into g(2,2) in such a way that h ∈ H⋆ and X,Y ∈ K⋆. The triple is obtained by setting:

Xα|βγ ≡ Oα
βγ ; Yα|βγ ≡ XT

α|βγ ; hα|βγ ≡
[
Xα|βγ , Yα|βγ

]
(4.10)

The relevant item in the construction of solutions based on the integration of equations in

the symmetric gauge is provided by the central element of the triple hα|βγ which defines

the gradings. In the present example of the S3 model, it turns out the orbits having the

same α and γ labels but different β-labels have the same central element, namely:

hα|βγ = hα|β′γ (4.11)

so that the solutions pertaining both to orbit Oα
βγ and to orbit Oα

β′γ are obtained from

the same construction and are distinguished only by different choices in the space of the

available harmonic functions parameterizing the general solution.

The explicit form of the central elements are the following ones:
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Large orbit O1
11: central element.

h1|11 =




0 0 −1 0 5 0 0

0 0 0
√
2 0 0 0

−1 0 0 0 0 0 5

0
√
2 0 0 0

√
2 0

5 0 0 0 0 0 −1

0 0 0
√
2 0 0 0

0 0 5 0 −1 0 0




Eigenvalues
[
1
2 h1|11

]
= {−3, 3,−2, 2,−1, 1, 0} (4.12)

Very small orbit O4
11: central element.

h4|11 =




0 0 0 0 −1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 0 0

−1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −1 0 0 0 0




Eigenvalues
[
1
2 h4|11

]
=

{
−1

2
,−1

2
,
1

2
,
1

2
, 0, 0, 0

}
(4.13)

Small orbit O2
11: central element.

h2|11 =




0 0 1 0 0 0 0

0 0 0 −
√
2 0 0 0

1 0 0 0 0 0 0

0 −
√
2 0 0 0 −

√
2 0

0 0 0 0 0 0 1

0 0 0 −
√
2 0 0 0

0 0 0 0 1 0 0




Eigenvalues
[
1
2 h2|11

]
=

{
−1, 1,−1

2
,−1

2
,
1

2
,
1

2
, 0

}
(4.14)

Large BPS orbit O3
11: central element.

h3|11 = h3|21 =




0 0 0
√
2 0 0 0

0 0 1 0 −1 0 0

0 1 0 0 0 1 0√
2 0 0 0 0 0 −

√
2

0 −1 0 0 0 −1 0

0 0 1 0 −1 0 0

0 0 0 −
√
2 0 0 0




Eigenvalues
[
1
2 h3|11

]
= {−1,−1, 1, 1, 0, 0, 0} (4.15)
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Large non BPS orbit O3
22: central element.

h3|12 = h3|22 =




0 0 0 −
√
2 0 0 0

0 0 1 0 1 0 0

0 1 0 0 0 −1 0

−
√
2 0 0 0 0 0

√
2

0 1 0 0 0 −1 0

0 0 −1 0 −1 0 0

0 0 0
√
2 0 0 0




Eigenvalues
[
1
2 h3|22

]
= {−1,−1, 1, 1, 0, 0, 0} (4.16)

5 Explicit construction of the multicenter Black Holes solutions of the

S
3 model

Having enumerated the central elements for the independent orbits we proceed to the

construction and discussion of the corresponding black hole solutions, whose properties are

summarized in table 2.

5.1 The very small black holes of O4
11

We begin with the smallest orbits which, in a sense that will become clear further on,

represent the elementary blocks in terms of which bigger black holes are constructed.

Focusing on any orbit Oα
βγ and considering the nilpotent element of the corresponding

triple Xα|βγ ∈ K⋆ as a Lax operator L0, we easily workout the electromagnetic charges by

calculating the traces displayed below (see section 10, for more explanations)

Qw = Tr(Xα|βγT w) (5.1)

W-representation. In the case of the orbit O4
11 we obtain:

Qw
4|11 = = (0, 0, 0, 1) (5.2)

Substituting such a result in the expression for the quartic symplectic invariant (see [86]):

I4 =
1

4

(
4
√
3Q4Q

3
1 + 3Q2

3Q
2
1 − 18Q2Q3Q4Q1 −Q2

(
4
√
3Q3

3 + 9Q2Q
2
4

))
(5.3)

of the W representation which happens to be the spin 3
2 of sl(2,R) we find:

I4 = 0 (5.4)

The result is meaningful since, by calculating the trace Tr(X4|11LE+) = 0, we can also check

that the Taub-NUT charge vanishes. Indeed as we stress in section 11 we can formulate

the conjecture that W-orbits of the UD=4 group are in bijection with H⋆-orbits subject

to the Taub-NUT vanishing condition Tr(L0L
E
+) = 0. We can also address the question

whether there are subgroups of the original duality group in four-dimensions SL(2,R) that
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Name pq Quart. Inv. W−stab. group H⋆− stab. group dim dim

of orbit charges I4 SW ⊂ sl(2,R) SH⋆ ⊂ ̂sl(2,R)⊕ sl(2,R)h⋆ N N
⋂
K⋆

O4
11




0

0

0

q




0

(
1 0

c 1

)
ISO(1, 1)︸ ︷︷ ︸
3 gen.

3 3

O2
11




√
3 p

0

0

0




0 1 SO(1, 1) ⊲ R︸ ︷︷ ︸
2 gen.

4 3

O3
11




0

p

−
√
3q

0




9 p q3 > 0 Z3 R︸︷︷︸
1 gen. A2 = 0

5 4

O3
22




0

p√
3q

0




−9 p q3 < 0 1 R︸︷︷︸
1 gen. A3 = 0

3 3

O1
11




1
2

√
3
2p

0
7
6p√
2q




1
128p

3×
(49p+72q)

1 1 6 4

Table 2. Properties of the g(2,2) orbits in the S3 model. The structure of the electromagnetic

charge vector is that obtained for solutions with vanishing Taub-NUT current. The symbol ⊲ is

meant to denote semidirect product. SW denotes the subgroup of the D = 4 duality group which

leaves the charge vector invariant, while SH⋆ denotes the subgroup of the H⋆ isotropy group of the

D = 3 sigma-model which leaves invariant the X element of the standard triple. This latter is the

Lax operator in the one-dimensional spherical symmetric approach.

leave the charge vector (5.2) invariant. Using the explicit form of the j = 3
2 representation

displayed in eq. (3.13) of [86], we realize that indeed such group exists and it is the parabolic

subgroup described below:

∀ c ∈ R :

(
1 0

c 1

)
∈ S4|11 ⊂ SL(2,R) (5.5)
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This stability subgroup together with the vanishing of the quartic invariant are the intrinsic

definition of the W-orbit pertaining to very small black holes.

H⋆-stability subgroup. In a parallel way we can pose the question what is the sta-

bility subgroup of the nilpotent element X4|11 in H⋆ = ̂sl(2,R) ⊕ sl(2,R)h⋆ (For further

explanations on H⋆ and its structure see section 9). The answer is the following:

S4|11 = ISO(1, 1) (5.6)

A generic element of the corresponding Lie algebra is a linear combination of three gener-

ators J, T1, T2, satisfying the commutation relations:

[J , T1] =
1√
2
T1 +

3

2
√
6
T2

[J , T2] =
3

2
√
2
T1 ; [T1 , T2] = 0

(5.7)

It is explicitly given by the following matrix:

ω J + xT1 + y T2 =




0 − x
2
√
2

ω
2
√
2

−x
2 0 −1

2

√
3
2y 0

x
2
√
2

0 −1
2

√
3
2y −ω

2
x

2
√
2

0 −1
2

√
3
2y

ω
2
√
2

−1
2

√
3
2y 0 −x

2 0 − x
2
√
2

0

−x
2 −ω

2
x
2 0 −x

2 −ω
2

x
2

0 x
2
√
2

0 x
2 0 1

2

√
3
2y

ω
2
√
2

1
2

√
3
2y 0 − x

2
√
2

−ω
2

1
2

√
3
2y 0 − x

2
√
2

0 1
2

√
3
2y 0 x

2
ω

2
√
2

x
2
√
2

0




(5.8)

Nilpotent algebra N4|11. Considering next the adjoint action of the central element

h4|11 on the subspace K⋆ we find that its eigenvalues are the following ones:

EigenvaluesK
⋆

4|11 = {−2, 2,−1,−1, 1, 1, 0, 0} (5.9)

Therefore the three eigenoperators A1, A2, A3 corresponding to the positive eigenvalues

2, 1, 1, respectively, form the restriction to K⋆ of a nilpotent algebra N4|11. In this case Ai
commute among themselves so that N4|11 = N4|11

⋂
K⋆ and it is abelian. This structure of

the nilpotent algebra implies that for the orbit O4
11 we have only three functions h0i which

will be harmonic and independent.

Explicitly we set:

H(h1, h2, h3) =
3∑

i=1

hiAi =




−h1 h3 0 −
√
2h3 −h1 −h2 0

h3 0 −h2 0 h3 0 −h2

0 h2 −h1
√
2h3 0 −h3 −h1√

2h3 0
√
2h3 0

√
2h3 0

√
2h3

h1 −h3 0
√
2h3 h1 h2 0

−h2 0 h3 0 −h2 0 h3

0 −h2 h1 −
√
2h3 0 h3 h1




(5.10)
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Considering H(h1, h2, h3) as a Lax operator and calculating its Taub-NUT charge and

electromagnetic charges we find:

nTN = −2 h2 ; Q =
(
0 , 2h2 , −2

√
3h3 , −2h1

)
(5.11)

This implies that constructing the multi-centre solution with harmonic functions fulfilling

the condition h2 = 0 should be sufficient to annihilate the Taub-NUT current.

For later convenience let us change the normalization in the basis of harmonic functions

as follows:

h1 = 1√
2
H1 ; h2 = 1

2 (1 − H2) ; h3 = 1√
2
H3 (5.12)

Implementing the symmetric coset construction with:

Y (H1,H2,H3) ≡ exp
[
H
(

1√
2
H1,

1
2 (1 − H2) ,

1√
2
H3

)]
(5.13)

and calculating the upper triangular coset representative L(Y) according to equa-

tions (3.26) we find a relatively simple expression which, however, is still too large to be

displayed. Yet the extraction of the σ-model scalar fields produces a quite compact answer

which we list below:

exp [−U ] =
√
H2

2 − 3H2
3 +H1 (5.14)

Im z =

√
H2

2 − 3H2
3 +H1

H2
2 −H2

3 +H1
(5.15)

Re z = −
√
2H3

H2
2 −H2

3 +H1
(5.16)

ZM =




√
6H2

3

H2
2−3H2

3+H1

(H2−2H3)(H2+H3)
2+H1H2√

(H2
2−3H2

3+H1)
2

−
√
3H3

H2
2−3H2

3+H1

H2
2−3H2

3+H1−1√
2(H2

2−3H2
3+H1)




(5.17)

a =
H3

2 +
(
−3H2

3 +H1 + 1
)
H2 − 2H3

3√
2
(
H2

2 − 3H2
3 +H1

) (5.18)

The Taub-NUT current. Given this explicit result we can turn to the explicit oxida-

tion formulae described in section 2.2 and calculate the Taub-NUT current which is the

integrand of eq. (2.41). We find:

jTN =
√
2 ⋆∇H2 (5.19)

Hence the vanishing of the Taub-NUT current is guaranteed by the very simple condition:

H2 = α ; ∇H2 = 0 (5.20)

where α is just a constant. This confirms the preliminary analysis obtained from the Lax

operator which requires a vanishing component of the Lax along the second generator A2

of the nilpotent algebra.
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General form of the solution. Imposing this condition we arrive at the following form

of the solution depending on two harmonic functions H1,H3:

exp[−U ] =
√
α2 − 3H2

3 +H1 (5.21)

z = i
1√

α2 − 3H2
3 +H1

−
√
2H3

α2 − 3H2
3 +H1

(5.22)

jTN = 0 (5.23)

jEM = ⋆∇




0

0√
3H3

− 1√
2
H1


 (5.24)

Obviously the physical range of the solution is determined by the condition (α2 − 3H2
3 +

H1) > 0 which can always be arranged, by tuning the parameters contained in the harmonic

functions.

To this effect let us discuss the nature of the black holes encompassed by this solution,

that, by definition, are located at the poles of the harmonic functions H1,H3.

According to the argument developed in section 3.4, in the vicinity of each pole |~x −
~xI | = r < ǫ we can choose polar coordinates centered at ~xα and the behavior of the

harmonic functions, for ǫ→ 0 is the following one:

H1 ∼ a1 +
b1
r

(5.25)

H3 ∼ a3 +
b3
r

(5.26)

which corresponds to the following behavior of the warp factor:

exp[−U ] ∼
√
α2 − 3a23 −

3b23
r2

+ a1 +
b1
r

− 6a3b3
r

(5.27)

In order for the warp factor to be real for all values of r → 0 we necessarily find

b3 = 0

b1 > 0

α2 − 3a23 + a1 > 0 (5.28)

Since conditions (5.28) hold true for each available pole, it means the harmonic function

H3 has actually no pole and is therefore equal to some constant. The boundary condition

of asymptotic flatness fixes the value of such a constant:

lim
r→∞

exp[−U ] = 1 ⇔ H3 =

√
α2 +H1(∞)− 1√

3
(5.29)

Under such conditions in the vicinity of each pole ~xα, the warp factor has the follow-

ing behavior:

|~x− ~xα|2 exp[−U ]
~x→~xα∼

√
b1 |~x− ~xα|3/2 +O

(
|~x− ~xα|5/2

)
(5.30)
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leading to a vanishing horizon area:

AreaHα = lim
~x→~xα

|~x− ~xα|2 exp[−U ] = 0 (5.31)

At the same time using the form of the electromagnetic current in eq. (5.24) and the

behavior of the harmonic function in the vicinity of the poles we obtain the charge vector

of each black hole encompassed by the solution:

Qα =

∫

S2α

jEM =




0

0

0

− 1√
2
qα


 ; where qα = b1 for pole ~xα (5.32)

Summarizing. For the regular multicenter solutions associated with the orbit 4|11 all

blacks holes localized at each pole are of the same type, namely they are very small black

holes with vanishing horizon area and a charge vector Q belonging to W-orbit which

is characterized by both a vanishing quartic invariant and the existence of a continuous

parabolic stability subgroup of SL(2,R). Every black hole is a repetition in a different

place of the spherical symmetric black hole which gives its name to the orbit.

5.2 The small black holes of O2
11

Next let us consider the orbit O2
11.

W-representation. Applying the same strategy as in the previous case, from the general

formula we obtain

Qw
2|11 = Tr(X2|11T w) =

(√
3, 0, 0, 0

)
(5.33)

Substituting such a result in the expression for the quartic symplectic invariant (see eq. (5.3)

we find:

I4 = 0 (5.34)

Just as before we stress that this result is meaningful since, by calculating the trace

Tr(X2|11LE+) = 0, we can also check that the Taub-NUT charge vanishes. Addressing

the question whether there are subgroups of the original duality group in four-dimensions

SL(2,R) that leave the charge vector (5.33) invariant we realize that such a group contains

only the identity

SL(2,R) ⊃ S2|11 = 1 (5.35)

Hence we clearly establish the intrinsic difference between the two type of small black holes

at the level of the W-representation. Both have vanishing quartic invariant, yet only the

orbit 4|11 has a residual symmetry.

H⋆-stability subgroup. Considering next the stability subgroup of the nilpotent ele-

ment X2|11 in H⋆ = ̂sl(2,R)⊕ sl(2,R)h⋆ we obtain:

S2|11 = SO(1, 1) ⊲ R (5.36)
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A generic element of the corresponding Lie algebra is a linear combination of two generators

J, T , satisfying the commutation relations:

[J , T ] =
3

2
√
6
T (5.37)

We do not give its explicit form which we do not use in the sequel.

Nilpotent algebra N4|11. Considering next the adjoint action of the central element

h2|11 on the subspace K⋆ we find that its eigenvalues are the following ones:

EigenvaluesK
⋆

4|11 = {−3, 3,−2, 2,−1, 1, 0, 0} (5.38)

Therefore the three eigenoperators A3, A2, A1 corresponding to the positive eigenvalues

3, 2, 1, respectively, form the restriction to K⋆ of a nilpotent algebra N2|11. In this case Ai
do not all commute among themselves so that, differently from the previous case we have

N4|11 6= N4|11
⋂
K⋆. In particular we find a new generator:

B ∈ H⋆ (5.39)

which completes a four-dimensional algebra with the following commutation relations:

0 = [A3 , A2] = [A1 , A3] (5.40)

B = [A2 , A1]

0 = [B , A1]

0 = [B , A2]

0 = [B , A3] (5.41)

As in the previous case, the structure of the nilpotent algebra implies that for the orbit

O2
11 we have only three functions h0i which will be harmonic and independent. This is so

because D2N2|11 = 0 and DN2|11
⋂
K⋆ = 0.

Explicitly we set:

H(h1, h2, h3) =
3∑

i=1

hiAi = (5.42)




−h2 h1−h3 h2 −
√
2h1−

√
2h3 0 −3h1 − h3 0

h1 − h3 −2h2 h3 − 3h1 −
√
2h2 h1+h3 0 −3h1−h3

−h2 3h1−h3 h2
√
2h1−

√
2h3 0 −h1 − h3 0√

2h1+
√
2h3

√
2h2

√
2h1−

√
2h3 0

√
2h1 −

√
2h3 −

√
2h2

√
2h1+

√
2h3

0 −h1−h3 0
√
2h1−

√
2h3 −h2 3h1−h3 h2

−3h1−h3 0 h1+h3
√
2h2 h3−3h1 2h2 h1−h3

0 −3h1 − h3 0 −
√
2h1−

√
2h3 −h2 h1Q−Qh3 h2




Considering H(h1, h2, h3) as a Lax operator and calculating its Taub-NUT charge and

electromagnetic charges we find:

nTN = −2 (3h1 + h3) ; Q =
{
−2

√
3h2, 6h1 − 2h3,−2

√
3 (h1 + h3) , 0

}
(5.43)
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This implies that constructing the multi-centre solution with harmonic functions the con-

dition h3 = − 3 h1 might be sufficient to annihilate the Taub-NUT current. Yet we just

show below that this is not the case. The proper condition to be considered is the vanish-

ing of the Taub-NUT current. In the present case the vanishing of the Taub-NUT current

provides a more complicated condition than h3 = − 3 h1.

For later convenience let us change the normalization in the basis of harmonic functions

as follows:

h1 = 1
4H3 ; h2 = 1

2 (1 − H2) ; h3 = 1
4H1 (5.44)

Implementing the symmetric coset construction with:

Y (H3,H2,H1) ≡ exp
[
H
(
1
4H3,

1
2 (1 − H2) ,

1
4H1

)]
(5.45)

calculating the upper triangular coset representative L(Y) according to equations (3.26)

and extracting the σ-model scalar fields we obtain the answer which we list below:

exp [−U ] =
1

2

√
−H2

3 +
(
4H3

1 + 6H2H1

)
H3 +H2

2

(
3H2

1 + 4H2

)
(5.46)

Im z =

√
−H2

3 +
(
4H3

1 + 6H2H1

)
H3 +H2

2

(
3H2

1 + 4H2

)

2
(
H2

1 +H2

) (5.47)

Re z =
H3 −H2H1

2
(
H2

1 +H2

) (5.48)

ZM =




√
3
2(H2

3−2H1(2H2
1+3H2−1)H3+H2(−4H2

2+(4−3H2
1)H2+2H2

1))
H2

3−2(2H3
1+3H2H1)H3−H2

2(3H2
1+4H2)√

2(2H3
1+3H2H1−H3)

−H2
3+(4H3

1+6H2H1)H3+H2
2(3H2

1+4H2)√
6(H1H2

2+H3(2H2
1+H2))

H2
3−2(2H3

1+3H2H1)H3−H2
2(3H2

1+4H2)
4H3H3

1+3H2
2H2

1+H2
3√

2(−H2
3+(4H3

1+6H2H1)H3+H2
2(3H2

1+4H2))




(5.49)

a =
H3

(
−6H2

1 − 3H2 + 1
)
−H1

(
3H2

2 + 3H2 + 2H2
1

)

H2
3 − 2

(
2H3

1 + 3H2H1

)
H3 −H2

2

(
3H2

1 + 4H2

) (5.50)

The Taub-NUT current. Given this explicit result we can turn to the explicit oxida-

tion formulae described in section 2.2 and calculate the Taub-NUT current which is the

integrand of eq. (2.41). We find:

jTN = 1
2 (

⋆∇H3 + 3 (H2
⋆∇H1 − H1

⋆∇H2)) (5.51)

This result, compared with eq. (5.43), emphasizes the difference between the Lax operator

approach, good for the spherical symmetric case, and the construction based on harmonic

functions plus transition to the solvable gauge. Indeed, as we see and we already antici-

pated, the vanishing condition of the Taub NUT charge calculated algebraically from the

Lax operator does not guarantee the vanishing of the Taub NUT current in the general

multi-center case. Analyzing eq. (5.51) we see that there are just two possible solutions to

the condition jTN = 0:
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case a) H3 = β = const ; H1 = 0. With this condition we obtain:

exp[−U ] =
1

2

√
4H3

2 − β2 (5.52)

z =
β + i

√
4H3

2 − β2

2H2
(5.53)

jEM = ⋆∇




−
√

3
2H2

0

0

0




(5.54)

case b) H3 = β = const ; H2 = 0

exp[−U ] =
1

2

√
β
(
4H3

1 − β
)

(5.55)

z =
β + i

√
β
(
4H3

1 − β
)

2H2
3

(5.56)

jEM =




0

0

−
√

3
2H1

0




(5.57)

It might seem that these two solutions correspond to different types of black holes but

this is not the case, as we now show. From the asymptotic flatness boundary condition

we find that the value of β is fixed in terms of the value at infinity of the corresponding

harmonic function H1,2, which of course must satisfy the necessary condition for reality of

the solution H1,2(∞) ≥ 1 :





β = 2
√
[H2(∞)]3 − 1 case a

β = 2

(
[H1(∞)]3 +

√
[H1(∞)]6 − 1

)
case b

(5.58)

In the vicinity of a pole by means of the usual argument we obtain the following behavior

of the warp factor:

|~x− ~xα|2 exp[−U ]
~x→~xα∼





√
b32
√
|~x− ~xα|+O

(
|~x− ~xα|3/2

)
: case a

√
β b31

√
|~x− ~xα|+O

(
|~x− ~xα|3/2

)
: case b

(5.59)

Hence in both cases the horizon area vanishes at all poles ~xα and the reality conditions are

satisfied choosing the appropriate sign of b1,2. The charge vector has the same structure

for all black holes encompassed in the first or in the second solution, namely:

Qα =





{
−
√

3
2 pα , 0 , 0 , 0

}
: pα = b2 for pole α

{
0 , 0 , −

√
3
2 qα , 0

}
: qα = b1 for pole α

(5.60)

– 34 –



J
H
E
P
0
1
(
2
0
1
3
)
0
0
3

In both cases the quartic invariant I4 is zero for all black holes in the solutions, yet one

might still doubt whether the W-orbit for the two cases might be different. It is not so,

since a direct calculation shows that the image in the j = 3
2 representation Λ[A],4 of the

following SL(2,R) element:

A =

(
0 p

q

− q
p 0

)
(5.61)

maps the charge vector Q[q] = {0 , 0 , − q , 0}, into the charge vector Q[p] = {p , 0 , 0 , 0},
namely we have Λ[A]Q[q] = Q[p]. Hence the two solutions we have here discussed simply

give different representatives of the same W-orbit.

Summary. Just as in the previous case for a multicenter solution associated with the

O2
11 orbit all the black holes included in one solution are of the same type, namely small

black holes with the same identical properties.

5.3 The large BPS black holes of O3
11

Next let us consider the orbit O3
11, which in the spherical symmetric case leads to BPS

Black holes with a finite horizon area.

W-representation. In order to better appreciate the structure of these solutions, let

us slightly generalize our orbit representative, writing the following nilpotent matrix that

depends on two parameters (p, q) to be interpreted later as the magnetic and the electric

charge of the hole:

X3|11(p, q) =




q 0 0 − q√
2
0 0 0

0 p+q
2 −p

2 0 q
2 0 0

0 p
2

q−p
2 0 0 − q

2 0
q√
2
0 0 0 0 0 q√

2

0 − q
2 0 0 p−q

2
p
2 0

0 0 q
2 0 −p

2
1
2(−p− q) 0

0 0 0 − q√
2
0 0 −q




; (pq > 0) (5.62)

The standard triple representative mentioned in eq. (4.5) is just the particular case

X3|11(1, 1). Applying the same strategy as in the previous case, from the general formula

we obtain

Qw
3|11 = Tr(X3|11(p, q)T w) =

(
0, p,−

√
3q, 0

)
(5.63)

Substituting such a result in the expression for the quartic symplectic invariant (see

eq. (5.3)) we find:

I4 = 9 p q3 > 0 if p and q have the same sign (5.64)

Just as before we stress that this result is meaningful since, by calculating the trace

Tr(X3|11LE+) = 0, we can also check that the Taub-NUT charge vanishes. Furthermore

4See [86] for details, in particular eq. (3.13) of that reference for the explicit form of the spin 3
2
matrices.
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we note that the condition that p and q have the same sign was singled out in [86] as the

defining condition of the orbit O3
11 which, in the spherical symmetry approach leads to

regular BPS solutions. The choice of opposite signs was proved in [86] to correspond to

a different H⋆ orbit, the non diagonal O3
21 which instead contains only singular solutions.

Here we will show another important and intrinsically four dimensional reason to separate

the two cases.

Addressing the question whether there are subgroups of the original duality group in

four-dimensions SL(2,R) that leave the charge vector (5.63) invariant we realize that such

a subgroup exists and is the finite cyclic group of order three:5

SL(2,R) ⊃ S3|11 = Z3 (5.65)

S3|11 is made by the following three elements:

1 =

(
1 0

0 1

)
(5.66)

B =


−1

2 −
√
3
2

√
p
q√

3
2

√
q
p −1

2


 (5.67)

B2 =


−1

2

√
3
2

√
p
q

−
√
3
2

√
q
p −1

2


 ; B3 = 1 (5.68)

It is evident that such a Z3 subgroup exists if and only if the two charges p, q have the

same sign. Otherwise the corresponding matrices develop imaginary elements and migrate

to SL(2,C). The existence of this isotropy group Z3 can be considered the very definition of

the W-orbit corresponding to BPS black holes. Indeed let us name λ =
√

p
q and consider

the algebraic condition imposed on a generic charge vector: Q = {Q1, Q2, Q3, Q4} by the

request that it should admit the above described Z3 stability group:

Λ[B]Q = Q ⇔ Q =

(√
3λ2Q4,−

λ2Q3√
3
, Q3, Q4

)
(5.69)

It is evident from the above explicit result that the charge vectors having this symmetry

depend only on three parameters (λ2, Q3, Q4). The very relevant fact is that substituting

this restricted charge vector in the general formula (5.3) for the quartic invariant we obtain:

J4 = λ2
(
Q2

3 + 3λ2Q2
4

)2
> 0 (5.70)

Hence the Z3 guarantees that the quartic invariant is a perfect square and hence positive.

It is an intrinsic restriction characterizing the W-orbit.

5The authors express their gratitude to Alessio Marrani who attracted their attention, after the first

appearance of the present paper in the arXive to paper [105] where the existence of a discrete stability

subgroup for the charges of the regular BPS orbit in the S3 model had already been found.
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H⋆-stability subgroup. Considering next the stability subgroup of the nilpotent ele-

ment X3|11(1, 1) in H⋆ = ̂sl(2,R)⊕ sl(2,R)h⋆ we obtain:

S3|11 = R (5.71)

the group being generated by a matrix A3|11 of nilpotency degree 2:

A2
3|11 = 0 (5.72)

We do not give its explicit form which we do not use in the sequel.

Nilpotent algebra N3|11. Considering next the adjoint action of the central element

h3|11 on the subspace K⋆ we find that its eigenvalues are the following ones:

EigenvaluesK
⋆

3|11 = {−2,−2,−2,−2, 2, 2, 2, 2} (5.73)

Therefore the four eigenoperators A1, A2, A3, A4 corresponding to the four positive eigen-

values 2, respectively, form the restriction to K⋆ of a nilpotent algebra N3|11. Also in this

case the Ai do not all commute among themselves so that, we have N3|11 6= N3|11
⋂
K⋆. In

particular we find a new generator:

B ∈ H⋆ (5.74)

which completes a five-dimensional algebra with the following commutation relations:

[Ai , Aj ] = Ωij B

[B , Ai] = 0

Ω =




0 0 −1 1

0 0 −1 −1

1 1 0 0

−1 1 0 0


 (5.75)

The structure of the nilpotent algebra implies that for the orbit O3
11 we have only four

functions h0i which will be harmonic and independent. This is so because D2N3|11 = 0 and

DN3|11
⋂
K⋆ = 0.

Explicitly we set:

H(h1, h2, h3, h4) =
4∑

i=1

hiAi = (5.76)




2h3 h1 − 2h2 2h1 − h2 −
√
2h3 −3h2 −3h1 0

h1 − 2h2 h3 − h4 h4
√
2h2 − 2

√
2h1 h3 0 −3h1

h2 − 2h1 −h4 h3 + h4
√
2h1 − 2

√
2h2 0 −h3 −3h2√

2h3 2
√
2h1−

√
2h2

√
2h1−2

√
2h2 0

√
2h1−2

√
2h2

√
2h2−2

√
2h1

√
2h3

3h2 −h3 0
√
2h1−2

√
2h2 −h3 − h4 −h4 2h1−h2

−3h1 0 h3 2
√
2h1−

√
2h2 h4 h4 − h3 h1 − 2h2

0 −3h1 3h2 −
√
2h3 h2 − 2h1 h1 − 2h2 −2h3
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Considering H(h1, h2, h3, h4) as a Lax operator and calculating its Taub-NUT charge and

electromagnetic charges we find:

nTN = −6h1 ; Q =
{
2
√
3 (h2 − 2h1) ,−2h4,−2

√
3h3,−6h2

}
(5.77)

This implies that constructing the multi-centre solution with harmonic functions the condi-

tion h1 = 0 might be sufficient to annihilate the Taub-NUT current. We shall demonstrate

that also in this case the condition is slightly more complicated. This emphasizes the differ-

ence between the Lax operator one-dimensional approach and the multicenter construction

based on harmonic functions.

For later convenience let us change the normalization in the basis of harmonic functions

as follows:

h1 = 1√
12
H1 ; h2 = 1√

12
H2 ; h3 = 1

2 (H3 − 1) ; h4 = 1
2 (H4 + 1) (5.78)

Implementing the symmetric coset construction with:

Y (H1,H2,H3,H4) ≡ exp
[
H
(

1√
12
H1,

1√
12

H2,
1
2 (H3 − 1) , 12 (H4 + 1)

)]
(5.79)

calculating the upper triangular coset representative L(Y) according to equations (3.26)

and extracting the σ-model scalar fields we obtain an explicit but rather messy answer

which we present in the appendix in eqs. (A.1), (A.4), (A.6). In particular we obtain the

Taub-NUT current in the following form:

jTN =
4∑

i=1

Ri (H) ∇Hi (5.80)

where Ri (H) are rational functions of the four harmonic functions, the maximal degree

of involved polynomials being 16. A priori, imposing the vanishing of the Taub-NUT

current is a problem without guaranteed solutions. In the 4-dimensional linear space of the

harmonic functions we can introduce r-linear relations of the form:

0 = V i
αHi ; α = 1, . . . , r (5.81)

Let U ia be a set of 4 − r linear independent 4-vectors orthogonal to the vectors V i
α. Then

it must happen that on the locus defined by eqs. (5.81), the following rational functions

should also vanish

0 = Pa(H) ≡ U iaRi (H) ; (a = 1, . . . , r − 4) (5.82)

For generic rational functions this will never happen, yet we know that for our system such

solutions should exist and in want of a clear cut algorithm it is a matter of ingenuity to

find them. We do not find any solution with r = 1 but we find two nice solutions with

r = 2. They are the following ones:
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a) H1 = H2 = 0. The complete form of the supergravity solution corresponding to this

choice is:

exp[−U ] =
√
−H3

3H4 (5.83)

z = i

√
−H3

3H4

H2
3

(5.84)

jTN = 0 (5.85)

jEM = ⋆∇




0
H4√
2√
3
2H3

0




(5.86)

b) H1 = 0, H3 = −H4.The complete form of the supergravity solution corresponding to

this choice is:

exp[−U ] =

√
−H4

2

3
− 2H2

4H2
2 +H4

4 (5.87)

z =
2H2H4 − i

√
−H4

2 − 6H2
4H2

2 + 3H4
4√

3
(
H2

2 −H2
4

) (5.88)

jTN = 0 (5.89)

jEM = ⋆∇




−H2√
2

H4√
2

−
√

3
2H4√

3
2H2




(5.90)

We can now make some comments about the two solutions. First of all both in case a) and

in case b) we have to fix the asymptotic value of the harmonic functions at spatial infinity

r = ∞, in such a way as to obtain asymptotic flatness. This is quite easy and we do not

dwell on it. Secondly we have to fix the parameters of the harmonic functions in such a

way that the warp factor is always real on the whole physical range. These conditions are

also easily spelled out:

a) −H3H4 > 0

b) −H4
2
3 − 2H2

4H2
2 +H4

4 > 0
(5.91)

and in a multicenter solution can be easily arranged adjusting the coefficients of each

pole. Thirdly we can comment about the structure of the charge vector that we obtain at

each pole:

Hi ∼ ai +
Qi

|x− xα|
(5.92)
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In case a) and b) we respectively obtain:

Qα =




0
Q4√
2√
3
2Q3

0




(5.93)

Qα =




−Q2√
2

Q4√
2

−
√

3
2Q4√

3
2Q2




(5.94)

Comparing with eqs. (5.69), (5.70) we see that in both cases the structure of these charges

is that imposed by the Z3 invariance which characterizes BPS black holes. The necessary

choice of signs in the case a)
Q4

Q3
< 0 (5.95)

is the same which is required by the reality of the warp factor. Hence in case b) all the

black holes encompassed by the solution at each pole are finite area BPS black holes. In

case a) the same is true for all the poles common to the harmonic function H3 and H4:

they are finite area BPS black holes. Yet we can envisage the situation where some poles

of H3 are not shared by H4 and viceversa. In this case the pole of H4 defines a very small

black hole, while the pole of H3 defines a small black hole. This is confirmed by the fact

that a charge vector of type {0, p, 0, 0} is mapped into {0, 0, 0, p} by Λ

[(
0 −1

1 0

)]
and as

such admits a parabolic subgroup of stability Λ

[(
1 b

0 1

)]
.

Summary. For a multicenter solution associated with the O3
11 orbit we have found two

simple possibilities namely, either all the black holes included in one solution are regular,

finite area, BPS black holes, either we have a mixture of very small and small black holes.

A finite area BPS black hole emerges when the center of a very small black hole coincides

with the center of a small one. This provides the challenging suggestion that a BPS black

hole can be considered quantum mechanically as a composite object where the ”quarks”

are small and very small black holes.

5.4 BPS Kerr-Newman solution

Next we want to show how this orbit encompasses also the BPS Kerr-Newman solution

that was found by Luest et al in [104].

To this effect we go back to the general formulae (A.1)–(A.6) for the scalar fields

in this orbit and we make the following reduction from four to two independent

harmonic functions:

H2 = 0 ; H4 = −1
3 H3 (5.96)
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With such a choice the expressions for all the scalar fields dramatically simplify and

we obtain:

W =

√
3

H2
1 +H2

3

(5.97)

z = i
1√
3

(5.98)

Z =




− 3H1√
2(H2

1+H2
3)

H2
1+(H3−3)H3√
2(H2

1+H2
3)

−
√

3
2(H2

1+(H3−1)H3)
H2

1+H2
3

− H1√
6(H2

1+H2
3)




(5.99)

a =
5H1√

3
(
H2

1 +H2
3

) (5.100)

Utilizing the above expressions in the final oxidation formulae we obtain the following

result for the Taub-Nut current and for the electromagnetic currents:

jTN =
2 (⋆∇H1H3 − ⋆∇H3H1)√

3
(5.101)

jEM =




2 ⋆∇H3H1(H2
1+(H3−2)H3)− ⋆∇H1((2H3+1)H2

1+H2
3(2H3−3))√

2(H2
1+H2

3)
⋆∇H3(3H2

1−H2
3)−4 ⋆∇H1H1H3

3
√
2(H2

1+H2
3)√

3
2(4 ⋆∇H1H1H3+ ⋆∇H3(H2

3−3H2
1))

H2
1+H2

3
2 ⋆∇H3H1(H2

1+(H3−6)H3)− ⋆∇H1((2H3+3)H2
1+H2

3(2H3−9))√
6(H2

1+H2
3)




(5.102)

Next identifying the two harmonic functions with those introduced in eqs. (3.53)–(3.56),

according to:

H1 = 3
1
4 (1 + mP) ; H3 = 3

1
4 mR (5.103)

we obtain the following result for the warp-factor:

exp[U ] =
(m+ r)2 + α2 cos2(θ)

r2 + α2 cos2(θ)
(5.104)

and for the Kaluza-Klein vector:

A[KK] = ω ≡ m(m+ 2r)α sin2(θ)

r2 + α2 cos2(θ)
dφ (5.105)

Indeed one can easily check that, in the spheroidal coordinates (3.51) with flat metric (3.52)

we have:

2m (⋆∇P R − P ⋆∇R) = dω (5.106)

where ⋆∇ denotes the Hodge dual of the exterior derivative d. Writing the corresponding

final form of the metric:

ds2BPSKN = − exp[U ] (dt + ω)2 + exp[−U ] dΩ2
spheroidal (5.107)
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we can easily check that it is just the Kerr-Newman metric (2.54) with q = m. The only

necessary step, in order to verify such an identity is a redefinition of the coordinate r. If

in the metric (2.54) one replaces r → r +m, then (2.54) becomes identical to (5.107).

It is interesting to consider the expressions for the vector field strengths that solve the

Maxwell-Einstein system together with the BPS Kerr-Newmann metric. For the first two

field strengths (magnetic), from eq. (5.102) we find:

F 1 = − 1√
2 (r2 + α2 cos2 θ)2 ((m+ r)2 + α2 cos2 θ)

(
4
√
3mα sin θ

(((
−3 + 2

4
√
3
)
α4 cos4 θ

+m
(
2

4
√
3m+m+ 2

(
1 +

4
√
3
)
r
)
α2 cos2 θ

−r(m+ r)2
(
2

4
√
3m+

(
−3 + 2

4
√
3
)
r
))

sin θdr ∧ dφ

+2
(
r2 + α2

)
cos θ

(((
−2 +

4
√
3
)
m+

(
−3 + 2

4
√
3
)
r
)
α2 cos2 θ + (m+ r)

(
4
√
3m2

+
(
−1 + 3

4
√
3
)
rm+

(
−3 + 2

4
√
3
)
r2
))

dθ ∧ dφ
))

(5.108)

F 2 =
1√

233/4 (r2 + α2 cos2 θ)2 ((m+ r)2 + α2 cos2 θ)

(
m sin θ

(
α2
(
−2 cos θ sin θr3

+m2 sin 2θr − 2(2m+ r)α2 cos3 θ sin θ
)
dr ∧ dφ

−1

8

(
r2 + α2

) (
8r4 + 16mr3 + 8m2r2 + α4

−8α2
(
−3m2 − 6rm+ α2

)
cos2 θ − α4 cos(4θ)

)
dθ ∧ dφ

))
(5.109)

while for the second two we get:

G3 =
1√

2 (r2 + α2 cos2 θ)2 ((m+ r)2 + α2 cos2 θ)

(
33/4m sin θ

((
sin 2θr3 − 2m2 cos θ sin θr

+2(2m+ r)α2 cos3 θ sin θ
)
dr ∧ dφα2

+
1

8

(
r2 + α2

) (
8r4 + 16mr3 + 8m2r2 + α4

−8α2
(
−3m2 − 6rm+ α2

)
cos2 θ − α4 cos(4θ)

)
dθ ∧ dφ

))
(5.110)

G4 = − 1√
2 (r2 + α2 cos2 θ)2 ((m+ r)2 + α2 cos2 θ)

(
mα sin θ

((
−
(
−2 + 333/4

)
α4 cos4 θ

+m
((

2 + 33/4
)
m+ 2

(
1 + 33/4

)
r
)
α2 cos2 θ

+r(m+ r)2
((

−2 + 333/4
)
r − 2m

))
sin θdr ∧ dφ

−2
(
r2+α2

)
cos θ

(
−m3 +

(
−4 + 33/4

)
rm2 +

(
−5 + 433/4

)
r2m+

(
−2 + 333/4

)
r3

+
((

−1 + 233/4
)
m+

(
−2 + 333/4

)
r
)
α2 cos2 θ

)
dθ ∧ dφ

))
(5.111)

The above expressions are rather formidable, yet considering them in some limit their

meaning can be decoded. First of all we recall that in the limit α → 0 the metric (5.107)

becomes the Reissner-Nordstrom metric. Correspondingly in the same limit the above
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four-vector of field strengths degenerates into:




F 1

F 2

G3

G4




α→0
=⇒




0

−m sin(θ)dθ∧dφ√
233/4

33/4m sin(θ)dθ∧dφ√
2

0




(5.112)

showing that the black hole charges
(
0,− m√

2 31/4
, m 31/4√

2
, 0
)
have the correct form for a BPS

black hole and are endowed with the characteristic Z3 symmetry.

Also in the α 6= 0 we can easily determine the black hole charges by integrating the

field strengths on a two-sphere of very large radius r → ∞. For this purpose it is important

to evaluate the asymptotic expansion of the field strengths for large radius. We find:




F 1

F 2

G3

G4




r→∞≃




−
√
2 4√3(−3+2 4√3)mα cos θ sin θdθ∧dφ

r +O
(

1
r2

)

−m sin θdθ∧dφ√
233/4

+O
(

1
r2

)

33/4m sin θdθ∧dφ√
2

+O
(

1
r2

)
√
2(−2+333/4)mα cos θ sin θdθ∧dφ

r +O
(

1
r2

)




(5.113)

and the integration on the angular variables produces the same result as for the corre-

sponding Reissner-Nordstrom black hole:

QBPSKN =

(
0,− m√

2 31/4
,
m 31/4√

2
, 0

)
(5.114)

In conclusion the BPS Kerr-Newman solution is a deformation of the Reissner-Nordstrom

BPS black hole. It is extremal in the σ-model sense and for this reason could be retrieved

from the nilpotent orbit construction. However it is not extremal in the sense of General

Relativity since the mass is less than
√
q2 + α2 being equal to m. For this reason we

are below the limit of the cosmic censorship, there is no horizon and we have instead a

naked singularity.

The important message is that, notwithstanding the deformation and the presence of

a Kaluza-Klein vector, the structure of the charges is that pertaining to the orbit where

the solution has been constructed, namely the BPS orbit O3
11.

5.5 The large non BPS black holes of O3
22

Next let us consider the orbit O3
22, which in the spherical symmetric case leads to non BPS

Black holes with a finite horizon area.

W-representation. As in the previous case, in order to better appreciate the structure

of these solutions, let us slightly generalize our orbit representative, writing the following
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nilpotent matrix that depends on two parameters (p, q)

X3|22(p, q) =




q 0 0 q√
2
0 0 0

0 p+q
2 −p

2 0 − q
2 0 0

0 p
2

q−p
2 0 0 q

2 0

− q√
2
0 0 0 0 0 − q√

2

0 q
2 0 0 p−q

2
p
2 0

0 0 − q
2 0 −p

2
1
2(−p− q) 0

0 0 0 q√
2
0 0 −q




; (pq > 0) (5.115)

The standard triple representative mentioned in eq. (4.6) is just the particular case

X3|22(1, 1). Applying the usual strategy from the general formula we obtain

Qw
3|22 = Tr(X3|22(p, q)T w) =

(
0, p,

√
3q, 0

)
(5.116)

Substituting such a result in the expression for the quartic symplectic invariant (see eq. (5.3)

we find:

I4 = − 9 p q3 < 0 if p and q have the same sign (5.117)

This result is meaningful since, by calculating the trace Tr(X3|22LE+) = 0, we find that the

Taub-NUT charge vanishes. Furthermore we note that the condition that p and q have the

same sign was singled out in [86] as the defining condition of the orbit O3
22 which, in the

spherical symmetry approach leads to regular non BPS solutions. The choice of opposite

signs was proved in [86] to correspond to a different H⋆ orbit, the non diagonal O3
12 which

instead contains only singular solutions.

Addressing the question of stability subgroups of the original duality group in

four-dimensions SL(2,R), we realize that for the charge vector (5.116) this subgroup is

just trivial:

SL(2,R) ⊃ S3|22 = 1 (5.118)

H⋆-stability subgroup. Considering next the stability subgroup of the nilpotent ele-

ment X3|22(1, 1) in H⋆ = ̂sl(2,R)⊕ sl(2,R)h⋆ we obtain:

S3|22 = R (5.119)

the group being generated by a matrix A3|22 of nilpotency degree 2:

A3
3|22 = 0 (5.120)

We do not give its explicit form which we do not use in the sequel.

Nilpotent algebra N3|22. Considering next the adjoint action of the central element

h3|22 on the subspace K⋆ we find that its eigenvalues are the following ones:

EigenvaluesK
⋆

3|22 = {−4, 4,−2,−2, 2, 2, 0, 0} (5.121)

Therefore the three eigenoperators A1, A2, A3 corresponding to the three positive eigenval-

ues 4, 2, 2, respectively, form the restriction to K⋆ of a nilpotent algebra N3|22. In this case
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the Ai do all commute among themselves so that we have N3|22 = N3|22
⋂
K⋆ and it is

abelian. The abelian structure of the nilpotent algebra implies that for the orbit O3
22 we

have only three functions h0i which will be harmonic and independent. This is so because

DN3|22 = 0.

Explicitly we set:

H(h1, h2, h3) =
3∑

i=1

hiAi = (5.122)




2h3 h1 − 2h2 2h1 − h2 −
√
2h3 −3h2 −3h1 0

h1 − 2h2 h3 0
√
2h2 − 2

√
2h1 h3 0 −3h1

h2 − 2h1 0 h3
√
2h1 − 2

√
2h2 0 −h3 −3h2√

2h3 2
√
2h1−

√
2h2

√
2h1−2

√
2h2 0

√
2h1−2

√
2h2

√
2h2−2

√
2h1

√
2h3

3h2 −h3 0
√
2h1 − 2

√
2h2 −h3 0 2h1 − h2

−3h1 0 h3 2
√
2h1 −

√
2h2 0 −h3 h1 − 2h2

0 −3h1 3h2 −
√
2h3 h2 − 2h1 h1 − 2h2 −2h3




Considering H(h1, h2, h3) as a Lax operator and calculating its Taub-NUT charge and

electromagnetic charges we find:

nTN = −6h1 ; Q =
{
2
√
3 (h2 − 2h1) , 0,−2

√
3h3,−6h2

}
(5.123)

This implies that constructing the multi-centre solution with harmonic functions the con-

dition h1 = 0 might be sufficient to annihilate the Taub-NUT current. In this case we will

be lucky and such a condition suffices.

For later convenience let us change the normalization in the basis of harmonic functions

as follows:

h1 = H1 ; h2 = 1
2 (1−H2) ; h3 = 1

2 (1−H3) (5.124)

Implementing the symmetric coset construction with:

Y (H1,H2,H3) ≡ exp
[
H
(
H1,

1
2 (1−H2) ,

1
2 (1−H3)

)]
(5.125)

calculating the upper triangular coset representative L(Y) according to equations (3.26)

and extracting the σ-model scalar fields we obtain an explicit expression which is sufficiently

simple to be displayed:

exp [−U ] =
√

H2H3
3 − 4H2

1 (5.126)

Im z =

√
H2H3

3 − 4H2
1

H2
3

(5.127)

Re z = −2H1

H2
3

(5.128)
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ZM =




−
√
6H1H3

4H2
1−H2H3

3
4H2

1−(H2−1)H3
3√

2(4H2
1−H2H3

3)√
3
2(4H2

1−H2(H3−1)H2
3)

4H2
1−H2H3

3√
2H1H2

4H2
1−H2H3

3




(5.129)

a = −H1 (H2 + 3H3 − 2)

4H2
1 −H2H3

3

(5.130)

Using these results we easily obtain the Taub-NUT current in the following form:

jTN = 2 ⋆∇H1 (5.131)

In this case the predicted condition H1 = 0 is sufficient to annihilate the Taub-NUT

current and we obtain an extremely simple result.6 The complete form of the supergravity

solution corresponding to this choice is:

exp[−U ] =
√
H3

3H2 (5.132)

z = i

√
H3

3H2

H2
3

(5.133)

jTN = 0 (5.134)

jEM = ⋆∇




0

− H2√
2

−
√

3
2H3

0




(5.135)

Comparing with the case of the large BPS orbit we see that the only difference is the

relative sign of the harmonic functions in the electromagnetic current. What we said for

the BPS black holes extends to the non BPS ones in the same way.

Summary. For a multicenter solution associated with the O3
22 orbit we have a mixture

of very small and small black holes as in the case of the orbit O3
22. Also here a finite area

non BPS black hole emerges when the center of a very small black comes to coincides with

the center of a small one. The only difference is the relative sign of the two charges. With

equal signs we construct a non BPS state, while with opposite charges we construct a BPS

one. This reinforces the conjecture that at the quantum level finite black holes can be

interpreted as composite states.

This conjecture is also supported by an angular momentum analysis. Looking at the

representations in table 1, we see that the representation 2(j = 1)+(j = 0) that corresponds

to BPS and non BPS large black holes can be obtained by summing the representation

6Actually even the condition H1 = const suffices to annihilate the Taub-NUT charge allowing for a

non trivial real part of the z-field. However in this section we analyze the case H1 = 0 for its remarkable

simplicity.
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(j = 1) + 2
(
j = 1

2

)
that corresponds to small black holes with the representation 3(j =

0) + 2
(
j = 1

2

)
that corresponds to very small black holes. Consider the following table:

1 1
2

1
2 0 −1

2 −1
2 −1

0 1
2 −1

2 0 1
2 −1

2 0

1 1 0 0 0 −1 −1

the numbers in the first line are the eigenvalues of the central element h in the triplet

(h,X, Y ) characterizing the orbit O4
11. The second line contains the eigenvalues for the

central element of the triplet of the orbit O4
11. In the last line we have the eigenvalues for

the h in the triplet characterizing the orbit O3
i,j . We realize that the coincidence of centres

correspond to the identification of a new SL(2,R) subgroup which is the direct sum of the

original two associated with the two small black holes.

5.6 The largest orbit O1
11

Next let us consider the orbit O1
11, which in the spherical symmetric case leads only to

singular solutions.

W-representation. Applying the usual strategy from the general formula we obtain a

charge vector

Qw
1|11 = Tr(X1|11(p, q)T w) (5.136)

which has no invariance:

SL(2,R) ⊃ S1|11 = 1 (5.137)

and yields a quartic invariant generically different from zero:

I4 6= 0 (5.138)

For our choice of the representative the Taub-NUT charge is not zero and only later we will

enforce the vanishing of the Taub-NUT current on the harmonic function parameterized

solution.

H⋆-stability subgroup. Considering next the stability subgroup of the nilpotent ele-

ment X1|11 in H⋆ = ̂sl(2,R)⊕ sl(2,R)h⋆ we obtain that it is trivial:

S1|11 = 1 (5.139)

Nilpotent algebra N1|11. Considering next the adjoint action of the central element

h1|11 on the subspace K⋆ we find that its eigenvalues are the following ones:

EigenvaluesK
⋆

3|22 = {−5, 5,−3, 3,−1,−1, 1, 1} (5.140)

Therefore the four eigenoperators A1, A2, A3, A4 corresponding to the four positive eigen-

values 5, 3, 1, 1, respectively, form the restriction to K⋆ of a nilpotent algebra N1|11. In this

case the Ai do not all commute among themselves so that we have N1|11 6= N1|11
⋂
K⋆.
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The full algebra involves also two operators B1, B2 ∈ H⋆ and the full set of commutation

relations is the following one:

0 = [A1 , A2] = [A1 , A3] = [A1 , A4]

0 = [A2 , A3]

0 = [B1 , B2] = [B1 , A1] = [B1 , A2]

0 = [B1 , A4] = [B2 , A1] = [B2 , A3]

B1 = [A2 , A4]

B2 = [A3 , A4]

−16A1 = [B1 , A3]

−16A1 = [B2 , A1]

24A2 = [B2 , A4] (5.141)

By inspection of eqs. (5.141) we easily see that:

DN1|11 = span {B1, B2, A1, A2} ; DN1|11
⋂

K⋆ = span {A1, A2} (5.142)

D2N1|11 = span {A1} = D2N1|11
⋂

K⋆ (5.143)

This structure of the nilpotent algebra implies that for the orbit O1
11 we have only two

functions h03, h
0
4 which are harmonic and independent. The other two functions h21, h

1
2, obey

instead equations in which the previous two play the role of sources. Not surprisingly

h21, h
1
2 correspond to the higher gradings 5 and 3, while h03, h

0
4 correspond to the gradings

1, 1. More precisely h12 receives source contributions only from h03, h
0
4, while h21 receives

source contributions from h12, h
0
3, h

0
4

Explicitly we set:

H(h1, . . . , h4) =

4∑

i=1

hiAi = (5.144)




h1 + h4
h2

3 − h3 h4
√
2h2

3 −
√
2h3 −h1 −h2 − h3 0

h2

3 − h3 2h4 h2 + h3 −
√
2h4 h3 − h2

3 0 −h2 − h3

−h4 −h2 − h3 h1 − h4
√
2h2

3 −
√
2h3 0 h2

3 − h3 −h1√
2h3 −

√
2h2

3

√
2h4

√
2h2

3 −
√
2h3 0

√
2h2

3 −
√
2h3 −

√
2h4

√
2h3 −

√
2h2

3

h1
h2

3 − h3 0
√
2h2

3 −
√
2h3 h4 − h1 −h2 − h3 h4

−h2 − h3 0 h3 − h2

3

√
2h4 h2 + h3 −2h4

h2

3 − h3

0 −h2 − h3 h1
√
2h2

3 −
√
2h3 −h4

h2

3 − h3 −h1 − h4




Considering H(h1, . . . , h4) as a Lax operator and calculating its Taub-NUT charge and

electromagnetic charges we find:

nTN = −2(h2 + h3) ; Q =

{
−2

√
3h4,−2 (h2 + h3) ,

2 (h2 − 3h3)√
3

,−2h1

}
(5.145)

This implies that constructing the multi-centre solution with harmonic functions the con-

dition h2 = − h3 might be sufficient to annihilate the Taub-NUT current.
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Implementing the symmetric coset construction with:

Y (h1, . . . , h4) ≡ exp [H (h1, . . . , h4)] (5.146)

and imposing the field equations (3.14) we obtain the following conditions:

0 =
224

5
∇h3 ◦ ∇h3 h

3
4 −

16

5
h3∆ h3 h

3
4 −

416

5
∇ h3 ◦ ∇h4 h3 h

2
4 +

16

5
h23∆ h4 h

2
4

+
192

5
∇ h4 ◦ ∇h4 h

2
3 h4 +

32

3
∇h2 ◦ ∇h3 h4 −

8

3
h3∆h2 h4 −

8

3
h2∆ h3 h4

−16

3
∇ h3 ◦ ∇h4 h2 −

16

3
∇h2 ◦ ∇h4 h3 +∆ h1 +

16

3
h2 h3∆h4

0 = 4∆h3 h
2
4 − 8∇ h3 ◦ ∇h4 h4 − 4 h3∆h4 h4 + 8∇h4 ◦ ∇h4 h3 +∆h2

0 = ∆h3

0 = ∆h4 (5.147)

Solutions of the above system can be quite complicated and can encompass many different

types of behaviors, yet what is generically true is that the contributions from the source

term introduces in h1 and h2 poles 1/rp stronger than p = 1, while h3 and h4 have only

simple poles. Hence if the structure of the polynomials in the functions h1,2,3,4 is such

that at simple poles the divergence of the inverse warp factor is already too strong or

the coefficient already becomes imaginary, introducing stronger poles can only make the

situation worse. For this reason we confine ourselves to analyze solutions encompassed

in this orbit in which the source terms vanish identically upon the implementation of

some identifications.

There are few different reductions with such a property and we choose just one that has

also the additional feature of annihilating the Taub-NUT current. It is the following one:

h3 = h4 = − h2 ≡ h (5.148)

The reader can easily check that with the choice (5.148) the system of equations (5.147)

reduces to:

∆h = ∆h1 = 0 (5.149)

For later convenience let us change the normalization in the basis of harmonic functions

as follows:

h4 = 1
4 H ; h3 = 1

4 H ; h2 = − 1
4 H ; h1 = − 1

4 + W (5.150)

calculating the upper triangular coset representative L(Y) according to equations (3.26)

and extracting the σ-model scalar fields we obtain explicit expressions which are sufficiently

simple to be displayed:

exp [U ] =
8
√
15√

−(H+ 2)3 (H5 + 10H4 + 40H3 + 80H2 − 60(4W + 1))
(5.151)

Im z =
3
√
15(H+ 2)√

− H+2
H2(H(H(H+10)+40)+80)−60(4W+1)

((H(H(H+10)+20)−40)H2+90(4W+1))

(5.152)

Re z =
15H(H+ 2)(H+ 4)

H5 + 10H4 + 20H3 − 40H2 + 360W + 90
(5.153)
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We skip the form of the Z fields and of a but we mention their consequences, namely the

Taub-NUT current

jTN = 0 (5.154)

and the electromagnetic currents

jEM = ⋆∇
{
1

2

√
3

2
H, 0, 7H

6
,
√
2W
}

(5.155)

This shows that a black hole belonging to this orbit has a charge vector Q ={
1
2

√
3
2p, 0,

7p
6 ,

√
2q
}
, whose quartic invariant is:

I4 =
1

128
p3(49p+ 72q) (5.156)

This latter can be positive or negative depending on the choices for p and q. The problem,

however, is that this solution is always singular around all poles of H. Indeed setting:

H ∼ p

r
; W ∼ q

r
(5.157)

we find that for r → 0 the inverse warp factor behaves as follows:

exp[−U ] ∼
√
−p8

8
√
15r4

+

√
−p8√
15pr3

+

√
3
5

√
−p8

p2r2
+

4
√
−p8√

15p3r
+

√
3
5p

3(p+ 5q)
√

−p8
+O (r) (5.158)

The coefficient
√
−p8 indicates that approaching the pole the warp factor becomes imagi-

nary at a finite distance from it and the would be horizon r = 0 is never reached. If it were

reached, the divergence 1
r4

would imply an infinite area of the horizon. As we know from

our general discussion the Riemann tensor diverges if the warp factor goes to zero faster

than r2 so that the would be horizon would actually be a singularity. Yet since the warp

factor becomes imaginary at a finite distance from the pole it remains open the question if

solutions of this type can be prolonged by suitably changing the coordinate system. In that

case they might acquire a physical meaning. So far such a question has not been tackled

but it deserves to be.

6 Classification of the sugra-relevant symmetric spaces and discussion of

their general properties

As we highlighted in the introduction there is a general group-theoretical framework un-

derlying the construction of supergravity black holes which allows both for

1) a classification of the relevant symmetric spaces,

2) a general description of their structures which are relevant to the black hole solutions.
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The presentation of both items in the above list is the goal of the present section. To achieve

such a goal we need to emphasize a few general aspects of the decomposition (2.20) that

relate to the underlying root systems and Dynkin diagrams. In the following we heavily

rely on results presented several years ago in [103]. Indeed from the algebraic view-point

a crucial property of the general decomposition in eq. (2.20) is encoded into the following

statements which are true for all the cases:7

1. The A1 root-system associated with the sl(2,R)E algebra in the decomposition (2.20)

is made of ±ψ where ψ is the highest root of UD=3.

2. Out of the r simple roots αi of UD=3 there are r − 1 that have grading zero with

respect to ψ and just one αW that has grading 1:

(ψ , αi) = 0 i 6=W

(ψ , αW ) = 1 (6.1)

3. The only simple root αW that has non vanishing grading with respect ψ is just the

highest weight of the symplectic representation W of UD=4 to which the vector fields

are assigned.

4. The Dynkin diagram of UD=4 is obtained from that of UD=3 by removing the dot

corresponding to the special root αW .

5. Hence we can arrange a basis for the simple roots of the rank r algebra UD=3

such that:

αi = {αi, 0} ; i 6=W

αW =
{
wh,

1√
2

}

ψ =
{
0,

√
2
}

(6.2)

where αi are (r − 1)-component vectors representing a basis of simple roots for the

Lie algebra UD=4, wh is also an (r− 1)-vector representing the highest weight of the

representation W.

7An apparent exception is given by the case of N = 3 supergravity. The extra complicacy, there, is that

the duality algebra in D = 3, namely UD=3 has rank r + 2, rather than r + 1 with respect to the rank of

the algebra UD=4. Actually in this case there is an extra U(1)Z factor that is active on the vectors, but not

on the scalars and which is responsible for the additional complications. It happens in this case that there

are two vector roots, one for the complex representation to which the vectors are assigned and one for its

conjugate. They have opposite charges under U(1)Z. This case together with that of N = 5 supergravity

and with one of the series of N = 2 theories completes the list of three exotic models which are anomalous

also from the point of view of the Tits Satake projection (see below).
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This means that the entire root system and the Cartan subalgebra of the UD=3 Lie algebra

can be organized as follows:

±ψ = ±
(
0 ,

√
2
)

; 2

±α̂ = ±
(
α ,

√
2
)

; 2 × # of roots = 2nr

± ŵ = ±
(
w ,

√
2
2

)
; 2 × # of weights = 2 × dimW

Hi ∈CSA⊂UD=4 ; rankUD=4 = r

Hψ 1

dimUD=4 = 3 + dimUD=3 + 2× dimW

(6.3)

This organization of the Lie algebra is very important, as it was thoroughly discussed

in [103], for the systematics of the Kač Moody extension which occurs when stepping down

from D=3 to D=2 dimensions, but it is equally important in the present context to analyze

the structure of the H⋆-subalgebra and the Tits Satake projection.

6.1 Tits Satake projection

In most cases of lower supersymmetry, neither the algebra UD=4 nor the algebra UD=3 are

maximally split. In short this means that the non-compact rank rnc < r is less than the

rank of U, namely not all the Cartan generators are non-compact. Rigorously rnc is defined

as follows:

rnc = rank (U/H) ≡ dimHn.c. ; Hn.c. ≡ CSAU

⋂
K (6.4)

When this happens it means that, just as the billiard dynamics, also the structure of black

hole solutions is effectively determined by a maximally split subalgebra UTS ⊂ U named the

Tits Satake subalgebra of U, whose rank is equal to rnc. Effectively determined does not

mean that solutions of the big system coincide with those of the smaller system rather it

means that the former can be obtained from the latter by means of rotations of a compact

subgroup of the big group Gpaint ⊂ U which we name the paint group, for whose precise def-

inition we refer the reader to [96], whose main results are summarized in section 7. Here we

just emphasize few important facts, relevant for our goals. To this effect we recall that the

Tits Satake algebra is obtained from the original algebra via a projection of the root system

of U onto the subspace orthogonal to the compact part of the Cartan subalgebra of UTS :

ΠTS ; ∆U 7→ ∆UTS (6.5)

In euclidian geometry ∆UTS is just a collection of vectors in rnc dimensions; a priori there

is no reason why it should be the root system of another Lie algebra. Yet in almost all

cases, ∆UTS turns out to be a Lie algebra root system and the maximal split Lie algebra

corresponding to it, UTS , is, by definition, the Tits Satake subalgebra of the original

non maximally split Lie algebra: UTS ⊂ U. Such algebras U are called non-exotic. The

exotic non compact algebras are those for which the system ∆UTS is not an admissible

root system. In such cases there is no Tits Satake subalgebra UTS . Exotic algebras are

very few and in supergravity they appear only in three instances that display additional
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pathologies relevant also for the black hole solutions. For the non exotic models we have

that the decomposition (2.20) commutes with the projection, namely:

adj(UD=3) = adj(UD=4)⊕ adj(sl(2,R)E)⊕W(2,W )

⇓
adj(UTSD=3) = adj(UTSD=4)⊕ adj(sl(2,R)E)⊕W(2,WTS)

(6.6)

In other words the projection leaves the A1 Ehlers subalgebra untouched and has a

non trivial effect only on the duality algebra UD=4. Furthermore the image under the

projection of the highest root of U is the highest root of UTS :

ΠTS : ψ → ψTS (6.7)

The reason why the Tits Satake projection is relevant to us was pointed out in [87] where

we advocated that the classification of nilpotent orbits and hence of extremal black hole

solutions depends only on the Tits Satake subalgebra and therefore is universal for all

members of the same Tits Satake universality class. By this name we mean all algebras

who share the same Tits Satake projection.

Having clarified these points we can proceed with the classification of homogeneous

symmetric spaces relevant to supergravity models and to black hole solutions.

6.2 Classification of the sugra-relevant symmetric spaces

The classification of the symmetric coset based supergravity models is exhaustive and it is

presented in tables 3 and 4. There are 16 universality classes of non-exotic models and 3

exceptional instances of exotic models which appear in the second table.

In the tables we have also listed the Paint groups and the subpaint groups. These

latter are always compact and their different structures is what distinguishes the different

elements belonging to the same class. As it was shown in [96], these groups are dimensional

reduction invariant, namely they are the same in D = 4 and in D = 3. Hence the repre-

sentation W, which in particular contains the electromagnetic charges of the hole, can be

decomposed with respect to the Tits Satake subalgebra and the Paint group revealing a reg-

ularity structure inside each Tits Satake universality class which is at the heart of the clas-

sification of charge orbits. The same decomposition can be given also for the K⋆ representa-

tion and this is at the heart of the classification of black holes according to nilpotent orbits.

Focusing on the non-exotic models, we note that the 16 classes have a quite different

type of population. There are six one element classes whose single member is maximally

split. They are the following ones and all have a distinguished standpoint within the

panorama of supergravity theories:

1. The N = 8 supergravity theory, which is the maximal one in D = 4, (model 1).

2. The N = 2 supergravity theory with a single vector multiplet and non-vanishing

Yukawa (model 2).

3. The N = 4 supergravity theory with 5 vector multiplets (model 11).
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TS TS coset coset Paint subP susy

# D=4 D=3 D=4 D=3 Group Group

1 E7(7)
SU(8)

E8(8)
SO⋆(16)

E7(7)
SU(8)

E8(8)
SO⋆(16)

1 1 N = 8

2
SU(1,1)
U(1)

G2(2)
SL(2,R)×SL(2,R)

SU(1,1)
U(1)

G2(2)
SL(2,R)×SL(2,R)

1 1 N = 2

n=1

3
Sp(6,R)

SU(3)×U(1)

F4(4)
Sp(6,R)×SL(2,R)

1 1 N = 2

n = 6

4
SU(3,3)

SU(3)×SU(3)×U(1)

E6(2)
SU(3,3)×SL(2,R)

SO(2)×SO(2) 1 N = 2

n = 9

5 N = 6

Sp(6,R)
SU(3)×U(1)

F4(4)
Sp(6,R)×SL(2,R)

SO⋆(12)
SU(6)×U(1)

E7(−5)
SO⋆(12)×SL(2,R)

SO(3)×SO(3) SO(3)d N = 2

×SO(3) n=16

6 E7(−25)
E6(−78)×U(1)

E8(−24)
E7(−25)×SL(2,R)

SO(8) G2(−14) N = 2

n = 27

7 SL(2,R)
O(2)

×
SO(2,1)
SO(2)

SO(4,3)
SO(2,2)×SO(2,1)

SL(2,R)
O(2)

×
SO(6,1)
SO(6)

SO(8,3)
SO(6,2)×SO(2,1)

SO(5) SO(4) N = 4

n=1

8 SL(2,R)
O(2)

×
SO(3,2)

SO(3)×SO(2)
SO(5,4)

SO(3,2)×SO(2,2)
SL(2,R)
O(2)

×
SO(6,2)

SO(6)×SO(2)
SO(8,4)

SO(6,2)×SO(2,2)
SO(4) SO(3) N = 4

n=2

9 SL(2,R)
O(2)

×
SO(4,3)

SO(4)×SO(3)
SO(6,5)

SO(4,2)×SO(2,3)
SL(2,R)
O(2)

×
SO(6,3)

SO(6)×SO(3)
SO(8,5)

SO(6,2)×SO(2,3)
SO(3) SO(2) N = 4

n=3

10 SL(2,R)
O(2)

×
SO(5,4)

SO(5)×SO(4)
SO(7,6)

SO(5,2)×SO(2,4)
SL(2,R)
O(2)

×
SO(6,4)

SO(6)×SO(4)
SO(8,6)

SO(6,2)×SO(2,4)
SO(2) 1 N = 4

n=4

11 SL(2,R)
O(2)

×
SO(6,5)

SO(6)×SO(5)
SO(8,7)

SO(6,2)×SO(2,5)
SL(2,R)
O(2)

×
SO(6,5)

SO(6)×SO(5)
SO(8,7)

SO(6,2)×SO(2,5)
1 1 N = 4

n=5

12 SL(2,R)
O(2)

×
SO(6,6)

SO(6)×SO(6))
SO(8,8)

SO(6,2)×SO(2,6)
SL(2,R)
O(2)

×
SO(6,6)

SO(6)×SO(6))
SO(8,8)

SO(6,2)×SO(2,6)
1 1 N = 4

n=6

13 SL(2,R)
O(2)

×
SO(6,7)

SO(6)×SO(7))
SO(8,9)

SO(6,2)×SO(2,7)
SL(2,R)
O(2)

×
SO(6,6+p)

SO(6)×SO(6+p))
SO(8,8+p)

SO(6,2)×SO(2,6+p)
SO(p) SO(p − 1) N = 4

n=6+p

14 SL(2,R)
O(2)

×
SO(2,1)
SO(2)

SO(4,3)
SO(2,2)×SO(2,1)

SL(2,R)
O(2)

×
SO(2,1)
SO(2)

SO(4,3)
SO(2,2)×SO(2,1)

1 1 N = 2

n=2

15 SL(2,R)
O(2)

×
SO(2,2)

SO(2)×SO(2)
SO(4,4)

SO(2,2)×SO(2,2)
SL(2,R)
O(2)

×
SO(2,2)

SO(2)×SO(2)
SO(4,4)

SO(2,2)×SO(2,2)
1 1 N = 2

n=3

16 SL(2,R)
O(2)

×
SO(2,3)

SO(2)×SO(3)
SO(4,5)

SO(2,2)×SO(2,3)
SL(2,R)
O(2)

×
SO(2,2+p)

SO(2)×SO(2+p)
SO(4,4+p)

SO(2,2)×SO(2,2+p)
SO(p) SO(p − 1) N = 2

n=3+p

Table 3. The 16 instances of non-exotic homogeneous symmetric scalar manifolds appearing in

D = 4 supergravity. Non exotic means that the Tits Satake projection of the root system is a

standard Lie Algebra root system. The 16 models are grouped according to their Tits Satake

Universality classes. The time-like dimensional reduction is listed side by side. Within each class

the models are distinguished by the different structure of the Paint Group and of its subPaint

subgroup. The Paint group is the same in D=4 and in D=3.

4. The N = 4 supergravity theory with 6 vector multiplets which is obtained compact-

ifying a type II theory on a T6/Z2 orbifold (model 12).

5. The N = 2 theory with two vector multiplets and non vanishing Yukava couplings,

usually called the st-model (model 14).

6. The N = 2 theory with three vector multiplets and non vanishing Yukava couplings,

usually called the stu-model (model 15).

Next we have two universality classes, each containing an infinite number of elements.

They are:
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TS TS coset coset Paint subP susy

# D=4 D=3 D=4 D=3 Group Group

1e
bc1 bc2

SU(p+1,1)
SU(p+1)×U(1)

SU(p+2,2)
SU(p+1,1)×SL(2,R)h⋆

U(1)×U(1)×U(p) U(p−1) N = 2

n=p+1

2e
bc3 bc4

SU(p+1,3)
SU(p+1)×SU(3)×U(1)

SU(p+2,4)
SU(p+1,2)×SU(1,2)×U(1) U(1)×U(1)×U(p) U(p−1) N = 3

n=p+1

3e
bc1 bc2

SU(5,1)
SU(5)×U(1)

E6(−14)

SO⋆(10)×SO(2) U(1)×U(1)×U(4) U(3) N = 5

Table 4. The 3 instances of exotic homogenous symmetric scalar manifolds appearing in D = 4

supergravity. Exotic means that the Tits Satake projection of the root system is not a standard

Lie Algebra root system. Notwithstanding this anomaly the concept of Paint Group, according to

its definition as group of external automorphisms of the solvable Lie algebra generating the non

compact coset manifold still exists. The Paint group is the same in D=4 and in D=3

1. The N = 4 supergravity theory with n = 6+p vector multiplets (p ≥ 1), (model 13).

2. The N = 2 supergravity theory with n = 3 + p vector multiplets (p ≥ 1) and non

vanishing Yukawa couplings (model 16).

We still have the very interesting 4-element universality class whose maximally split rep-

resentative corresponds to the maximally split special Kähler manifold Sp(4,R)
SU(3)×U(1) . This

class contains the models 3, 4, 5, 6 distinguished by quite peculiar Paint groups. We will

thoroughly analyze the structure of this class.

Finally we have the three exotic models whose common feature is that their group and

subgroup all belong to the pseudo-unitary series SU(p, q). The general decomposition (2.20)

still holds true, but the Tits Satake projection looses its significance.

6.3 Dynkin diagram analysis of the principal models

Next we analyze the form of the root systems of the UD=3 algebras in relation with the

decomposition (2.20).

N=8. This is the case of maximal supersymmetry and it is illustrated by figure 1.

In this case all the involved Lie algebras are maximally split and we have

adj E8(8) = adjE7(7) ⊕ adj SL(2,R)E ⊕ (2,56) (6.8)

The highest root of E8(8) is

ψ = 3α1 + 4α2 + 5α3 + 6α4 + 3α5 + 4α6 + 2α7 + 2α8 (6.9)

and the unique simple root not orthogonal to ψ is α8 = αW , according to the labeling of

roots as in figure 1. This root is the highest weight of the fundamental 56-representation

of E7(7).
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E8 ✐

α7

✐

α6

✐

α4

✐α5

✐

α3

✐

α2

✐

α1

✐❤❣❢❡❞❝❜❛❵

α8

ψ = 3α1 + 4α2 + 5α3 + 6α4 + 3α5 + 4α6 + 2α7 + 2α8

(ψ , α8) = 1 ; (ψ , αi) = 0 i 6= 8

Figure 1. The Dynkin diagram of E8(8). The only simple root which has grading one with

respect to the highest root ψ is α8 (painted black). With respect to the algebra UD=4 = E7(7)

whose Dynkin diagram is obtained by removal of the black circle, α8 is the highest weight of the

symplectic representation of the vector fields, namely W = 56.

The well adapted basis of simple E8 roots is constructed as follows:

α1 = {1,−1, 0, 0, 0, 0, 0, 0} = {α1, 0}
α2 = {0, 1,−1, 0, 0, 0, 0, 0} = {α2, 0}
α3 = {0, 0, 1,−1, 0, 0, 0, 0} = {α3, 0}
α4 = {0, 0, 0, 1,−1, 0, 0, 0} = {α4, 0}
α5 = {0, 0, 0, 0, 1,−1, 0, 0} = {α5, 0}
α6 = {0, 0, 0, 0, 1, 1, 0, 0} = {α6, 0}
α7 =

{
− 1

2 ,−1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2 ,

1√
2
, 0
}

= {α7, 0}
α8 =

{
− 1, 0, 0, 0, 0, 0,− 1√

2
, 1√

2

}
=
{
wh,

1√
2

}

(6.10)

In this basis we recognize that the seven 7-vectors ᾱi constitute a simple root basis for the

E7 root system, while:

wh =

{
− 1, 0, 0, 0, 0, 0,− 1√

2

}
(6.11)

is the highest weight of the fundamental 56 dimensional representation. Finally in this

basis the highest root ψ defined by eq. (6.9) takes the expected form:

ψ =
{
0, 0, 0, 0, 0, 0, 0,

√
2
}

(6.12)

N=6. In this case theD = 4 duality algebra is UD=4 = SO⋆(12), whose maximal compact

subgroup is H = SU(6)×U(1). The scalar manifold:

SKN=6 ≡
SO⋆(12)

SU(6)×U(1)
(6.13)

is an instance of special Kähler manifold which can also be utilized in anN = 2 supergravity

context. The D = 3 algebra is UD=3 = E7(−5). The 16 vector fields of D = 4 N = 6

supergravity with their electric and magnetic field strengths fill the spinor representation

32s of SO
⋆(12), so that the decomposition (2.20), in this case becomes:

adj E7(−5) = adj SO⋆(12)⊕ adj SL(2,R)E ⊕ (2,32s) (6.14)
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E7(−5) ✐❤❣❢❡❞❝❜❛❵

α7

✐

α6

✐

α4

✐α5

✐

α3

✐

α2

✐

α1

ψ = α1 + 2α2 + 3α3 + 4α4 + 2α5 + 3α6 + 2α7

(ψ , α7) = 1 ; (ψ , αi) = 0 i 6= 7

Figure 2. The Dynkin diagram of E7(−5). The only simple root which has grading one with

respect to the highest root ψ is α4 (painted black). With respect to the algebra UD=4 = SO⋆(12)

whose Dynkin diagram is obtained by removal of the black circle, α7 is the highest weight of the

symplectic representation of the vector fields, namely the W = 32s.

The simple root αW is α7 and the highest root is:

ψ = α1 + 2α2 + 3α3 + 4α4 + 2α5 + 3α6 + 2α7 (6.15)

A well adapted basis of simple E7 roots can be written as follows:

α1 = {1,−1, 0, 0, 0, 0, 0} = {α1, 0}
α2 = {0, 1,−1, 0, 0, 0, 0} = {α2, 0}
α3 = {0, 0, 1,−1, 0, 0, 0} = {α3, 0}
α4 = {0, 0, 0, 1,−1, 0, 0} = {α4, 0}
α5 = {0, 0, 0, 0, 1,−1, 0} = {α5, 0}
α6 = {0, 0, 0, 0, 1, 1, 0} = {α6, 0}
α7 =

{
− 1

2 ,−1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2 ,

1√
2

}
=
{
wh,

1√
2

}

(6.16)

In this basis we recognize that the six 6-vectors ᾱi (i = 1, . . . , 6) constitute a simple root

basis for the D6 ≃ SO⋆(12) root system, while:

wh =

{
− 1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2

}
(6.17)

is the highest weight of the spinor 32-dimensional representation of SO⋆(12). Finally in

this basis the highest root ψ defined by eq. (6.15) takes the expected form:

ψ =
{
0, 0, 0, 0, 0, 0,

√
2
}

(6.18)

In this case, as in most cases of lower supersymmetry, neither the algebra UD=4 nor

the algebra UD=3 are maximally split. The Tits Satake projection of E7(−5) is F4(4) and

the explicit form of eq. (6.6) is the following one:

adj(E7(−5)) = adj(SO⋆(12))⊕ adj(SL(2,R)E)⊕ (2,32s)

⇓
adj(F4(4)) = adj(Sp(6,R)⊕ adj(SL(2,R)E)⊕ (2,14′)

(6.19)
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F4 ✐

̟4

✐

̟3

�
❅

✐

̟2

✐❤❣✐❢❡❞❝❜❛❵

̟1

ψ = 2̟1 + 3̟2 + 4̟3 + 2̟4

(ψ , ̟1) = 2 ; (ψ , ̟i) = 0 i 6= 1

Figure 3. The Dynkin diagram of F4(4). The only root which is not orthogonal to the highest

root is ̟V = ̟1. In the Tits Satake projection ΠTS the highest root ψ of F4(4) is the image of the

highest root of E7(−5) and the root ̟V = ̟1 = ΠTS (α7) is the image of the root associated with

the vector fields.

The representation 14′ of Sp(6,R) is that of an antisymmetric symplectic traceless tensor:

dimSp(6,R)

˜
= 14′ (6.20)

The Dynkin diagram of the Tits Satake subalgebra f4(4) is discussed in figure 3.

N=5. The case of N = 5 supergravity is described by figure 4 and it is one of the three

exotic models whose Tits-Satake projection does not produce a Lie algebra root system.

In the N = 5 theory the scalar manifold is a complex coset of rank r = 1,

MN=5,D=4 =
SU(1, 5)

SU(5)×U(1)
(6.21)

and there are 10 vector fields whose electric and magnetic field strengths are assigned to

the 20-dimensional representation of SU(1, 5), which is that of an antisymmetric three-

index tensor

dimSU(1,5) = 20 (6.22)

The decomposition (2.20) takes the explicit form:

adj(E6(−14)) = adj(SU(1, 5)⊕ adj(SL(2,R)E)⊕ (2,20) (6.23)

and we have that the highest root of E6, namely

ψ = α1 + 2α2 + 3α3 + 2α4 + 2α5 + α6 (6.24)

has non vanishing scalar product only with the root α4 in the form depicted in figure 4.
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E6(−14) ✐

α6

✐

α5

✐

α3

✐❤❣❢❡❞❝❜❛❵ α4

✐

α2

✐

α1

ψ = α1 + 2α2 + 3α3 + 2α4 + 2α5 + α6

(ψ , α4) = 1 ; (ψ , αi) = 0 i 6= 4

Figure 4. The Dynkin diagram of E6(−14). The only simple root which has grading one with

respect to the highest root ψ is α7 (painted black). With respect to the algebra UD=4 = SU(5, 1))

whose Dynkin diagram is obtained by removal of the black circle, α4 is the highest weight of the

symplectic representation of the vector fields, namely the W = 20.

Writing a well adapted basis of E6 roots is a little bit more laborious but it can be

done. We find:

α1 =
{
0, 0,−

√
3
2 ,

1
2
√
5
,
√

6
5 , 0
}

= {α1, 0}
α2 =

{
− 1√

2
, 1√

6
, 2√

3
, 0, 0, 0

}
= {α2, 0}

α3 =
{√

2, 0, 0, 0, 0, 0
}

= {α3, 0}
α4 =

{
− 1√

2
, 1√

6
,− 1√

3
, 1√

5
,−
√

3
10 ,

1√
2

}
=
{
wh,

1√
2

}

α5 =
{
− 1√

2
,−
√

3
2 , 0, 0, 0, 0

}
= {α4, 0}

α6 =
{
0,
√

2
3 ,− 1

2
√
3
,−

√
5
2 , 0, 0

}
= {α5, 0}

(6.25)

In this basis we can check that the five 5-vectors ᾱi (i = 1, . . . , 5) constitute a simple root

basis for the A5 ≃ SU(1, 5) root system, namely:

〈ᾱi , ᾱj〉 =




2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 2




= Cartan matrix of A5 (6.26)

while:

wh =

{
− 1√

2
,
1√
6
,− 1√

3
,
1√
5
,−
√

3

10

}
(6.27)

is the highest weight of the 20-dimensional representation of SU(1, 5). Finally in this basis

the highest root ψ defined by eq. (6.24) takes the expected form:

ψ =
{
0, 0, 0, 0, 0, 0,

√
2
}

(6.28)

N=4. The case of N = 4 supergravity is the first where the scalar manifold is not

completely fixed, since we can choose the number nm of vector multiplets that we can

couple to the graviton multiplet. In any case, once nm is fixed the scalar manifold is also

fixed and we have:

MN=4,D=4 =
SL(2,R)0

O(2)
⊗ SO(6, nm)

SO(6)× SO(nm)
(6.29)
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Dℓ=4+k+1

❅
❅

αℓ ✐

�
�

αℓ−1 ✐

✐

αℓ−2

✐

αℓ−3

. . . . . .. . . ✐

α3

✐❤❣❢❡❞❝❜❛❵

α2

✐

α1

ψ = α1 + 2α2 + 2α3 + · · ·+ 2αℓ−2 + αℓ−1 + αℓ
(ψ , α2) = 1 ; (ψ , αi) = 0 i 6= 2

Figure 5. The Dynkin diagram of D4+k+1. The algebra D4+k+1 is that of the group SO(8, 2k + 2)

corresponding to the σ-model reduction of N = 4 supergravity coupled to nm = 2k vector multi-

plets. The only simple root which has non vanishing grading with respect to the highest one ψ is

α2. Removing it (black circle) we are left with the algebra D4+k−1⊕A1 which is indeed the duality

algebra in D = 4, namely SO(6, 2k) ⊕ SL(2,R)0. The black root α2 is the highest weight of the

symplectic representation of the vector fields, namely the W = (20,6+ 2k).

The total number of vectors nv = 6 + nm is also fixed and the symplectic representation

W of the duality algebra

UD=4 = SL(2,R)0 × SO(6, nm) (6.30)

to which the vectors are assigned and which determines the embedding:

SL(2,R)0 × SO(6)× SO(nm) 7→ Sp(12 + 2nm,R) (6.31)

is also fixed, namely W = (20,6+ nm), 20 being the fundamental representation of

SL(2,R)0 and 6+ nm the fundamental vector representation of SO(6, nm).

The D = 3 algebra is, UD=3 = SO(8, nm + 2). Correspondingly the form taken by the

general decomposition (2.20) is the following one:

adj(SO(8, nm+2))=adj(SL(2,R)0)⊕ adj(SO(6, nm))⊕ adj(SL(2,R)E)⊕ (2E,20,6+nm)

(6.32)

where 2E,0 are the fundamental representations respectively of SL(2,R)E and of SL(2,R)0.

In order to give a Dynkin Weyl description of these algebras, we are forced to distin-

guish the case of an odd and even number of vector multiplets. In the first case both UD=3

and UD=4 are non simply laced algebras of the B-type, while in the second case they are

both simply laced algebras of the D-type

nm =

{
2k → UD=4 ≃ Dk+3

2k + 1 → UD=4 ≃ Bk+3

(6.33)

Just for simplicity and for shortness we choose to discuss only the even case nm = 2k which

is described by figure 5.

In this case we consider the UD=3 = SO(8, 2k + 2) Lie algebra whose Dynkin diagram

is that of D5+k. Naming ǫi the unit vectors in an Euclidean ℓ-dimensional space where
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ℓ = 5+k, a well adapted basis of simple roots for the considered algebra is the following one:

α1 =
√
2 ǫ1

α2 = − 1√
2
ǫ1 − ǫ2 +

1√
2
ǫℓ

α3 = ǫ2 − ǫ3

α4 = ǫ3 − ǫ4

. . . = . . .

αℓ−1 = ǫℓ−2 − ǫℓ−1

αℓ = ǫℓ−2 + ǫℓ−1 (6.34)

which is quite different from the usual presentation but yields the correct Cartan matrix.

In this basis the highest root of the algebra:

ψ = α1 + 2α2 + 2α3 + · · ·+ 2αℓ−2 + αℓ−1 + αℓ (6.35)

takes the desired form:

ψ =
√
2 ǫℓ (6.36)

In the same basis the αW = α2 root has also the expect form:

αW =

(
w,

1√
2

)
(6.37)

where:

w = − 1√
2
ǫ1 − ǫ2 (6.38)

is the weight of the symplectic representation W = (20,6+ 2k). Indeed − 1√
2
ǫ1 is the

fundamental weight for the Lie algebra SL(2,R)0, whose root is α1 =
√
2 ǫ1, while −ǫ2 is

the highest weight for the vector representation of the algebra SO(6, 2k), whose roots are

α3, α4, . . . , αℓ.

Next we briefly comment on the Tits Satake projection. The algebra SO(8, nm + 2)

is maximally split only for nm = 5, 6, 7. The case nm = 6, from the superstring view

point, corresponds to the case of Neveu-Schwarz vector multiplets in a toroidal compacti-

fication. For a different number of vector multiplets, in particular for nm > 7 the study of

extremal black holes involves considering the Tits Satake projection, which just yields the

universal algebra

UTSN=4,D=3 = so(8, 9) . (6.39)

7 Tits Satake decompositions of the W representations

As we stressed in the introduction, one of our main goals is to compare the classification

of extremal black holes by means of charge orbits with their classification by means of H⋆

orbits. Charge orbits means orbits of the UD=4 group in the W-representation.
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For this reason, in the present section we consider the decomposition of the W-

representations with respect to Tits-Satake subalgebras and Paint groups for all the non-

exotic models. The relevant W-representations are listed in table 6. In table 7 we listed

the W-representations for the exotic models.

In [96] the paint algebra was defined as the algebra of external automorphism of

the solvable Lie algebra SolvM generating the non-compact symmetric space: M =

U/H, namely

Gpaint = AutExt [SolvM] . (7.1)

where:

AutExt [SolvM] ≡ Aut [SolvM]

SolvM
, (7.2)

Given the paint algebra Gpaint ⊂ U and the Tits Satake subalgebra GTS ⊂ U, whose

construction we have briefly recalled above, following [96] one introduces the sub Tits

Satake and sub paint algebras as the centralizers of the paint algebra and of the Tits

Satake algebra, respectively. In other words we have:

s ∈ GsubTS ⊂ GTS ⊂ U ⇔ [s , Gpaint] = 0 (7.3)

and

t ∈ Gsubpaint ⊂ Gpaint ⊂ U ⇔ [t , GTS] = 0 (7.4)

A very important property of the paint and subpaint algebras is that they are conserved

in the dimensional reduction, namely they are the same for UD=4 and UD=3.

In the next lines we analyze the decomposition of the W-representations with respect

to these subalgebras for each Tits Satake universality class of non maximally split models.

In the case of maximally split models there is no paint algebra and there is nothing with

respect to which to decompose.

7.1 Universality class sp(6,R) ⇒ f4(4)

In this case the sub Tits Satake Lie algebra is

GsubTS = sl(2,R)⊕ sl(2,R)⊕ sl(2,R) ⊂ sp(6,R) = GTS (7.5)

and the W-representation of the maximally split model decomposes as follows:

14′
GsubTS=⇒ (2,1,1)⊕ (1,2,1)⊕ (1,1,2)⊕ (2,2,2) (7.6)

This decomposition combines in the following way with the paint group representations in

the various models belonging to the same universality class.

7.1.1 su(3, 3) model

For this case the paint algebra is

Gpaint = so(2)⊕ so(2) (7.7)
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and the W-representation is the 20 dimensional of su(3, 3) corresponding to an antisym-

metric tensor with a reality condition of the form:

t⋆αβγ =
1

3!
ǫαβγδηθ tδηθ (7.8)

The decomposition of this representation with respect to the Lie algebra Gpaint ⊕ GsubTS

is the following one:

20
Gpaint⊕GsubTS

=⇒ (2, q1|2,1,1)⊕ (2, q2|1,2,1)⊕ (2, q3|1,1,2)⊕ (1, 0|2,2,2) (7.9)

where (2, q) means a doublet of so(2) ⊕ so(2) with a certain grading q with respect to

the generators, while (1, 0) means the singlet that has 0 grading with respect to both

generators. The subpaint algebra in this case is Gsubpaint = 0 and the decomposition of

the same W-representation with respect to Gsubpaint ⊕GTS is:

20
Gsubpaint⊕GTS

=⇒ 6 ⊕ 14 (7.10)

This follows from the decomposition of the 6 of sp(6,R) with respect to the sub Tits Satake

algebra (7.5):

6
GsubTS=⇒ (2,1,1)⊕ (1,2,1)⊕ (1,1,2) (7.11)

7.1.2 so⋆(12) model

For this case the paint algebra is

Gpaint = so(3)⊕ so(3)⊕ so(3) (7.12)

and the W-representation is the 32s dimensional spinorial representation of so⋆(12). The

decomposition of this representation with respect to the Lie algebra Gpaint ⊕GsubTS is the

following one:

32s
Gpaint⊕GsubTS

=⇒ (2, 2, 1|2,1,1)⊕ (2, 1, 2|1,2,1)⊕ (1, 1, 2|1,1,2)⊕ (1, 1, 1|2,2,2) (7.13)

where 2 means the doublet spinor representation of so(3). The subpaint algebra in this case

is Gpaint = so(3)diag and the decomposition of the same W-representation with respect to

Gsubpaint ⊕GTS is:

32s
GTS⊕Gsubpaint

=⇒ (6|3) ⊕ (14′|1) (7.14)

This follows from the decomposition of the product 2×2 of so(3)diag times the Tits Satake

algebra (7.5):

2× 2 = 3 ⊕ 1 (7.15)
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7.1.3 e7(−25) model

For this case the paint algebra is

Gpaint = so(8) (7.16)

and the W-representation is the fundamental 56 dimensional representation of e7(−25) The

decomposition of this representation with respect to the Lie algebra Gpaint ⊕GsubTS is the

following one:

56
Gpaint⊕GsubTS

=⇒ (8v|2,1,1)⊕ (8s|1,2,1)⊕ (8c|1,1,2)⊕ (1|2,2,2) (7.17)

where 8v,s,c are the three inequivalent eight-dimensional representations of so(8), the vector,

the spinor and the conjugate spinor. The subpaint algebra in this case is Gpaint = g2(−14)

with respect to which all three 8-dimensional representations of so(8) branch as follows:

8v,s,c
g2(−14)
=⇒ 7 ⊕ 1 (7.18)

In view of this the decomposition of the same W-representation with respect to Gsubpaint⊕
GTS is:

56
GTS⊕Gsubpaint

=⇒ (6|7) ⊕ (14′|1) (7.19)

7.2 Universality class sl(2,R)⊕ so(2, 3) ⇒ so(4, 5)

This case corresponds to one of the possible infinite families of N = 2 theories with a

symmetric homogeneous special Kähler manifold and a number of vector multiplets larger

than three (n = 3 + p). The other infinite family corresponds instead to one of the three

exotic models.

The generic element of this infinite class corresponds to the following algebras:

UD=4 = sl(2,R)⊕ so(2, 2 + p)

UD=3 = so(4, 4 + p) (7.20)

In this case the sub Tits Satake algebra is:

GsubTS = sl(2,R)⊕sl(2,R)⊕sl(2,R) ≃ sl(2,R)⊕so(2, 2) ⊂ sl(2,R)⊕so(2, 3) = GTS (7.21)

an the paint and subpaint algebras are as follows:

Gpaint = so(p)

Gsubpaint = so(p− 1) (7.22)

The symplectic W representation of UD=4 is the tensor product of the fundamental repre-

sentation of sl(2) with the fundamental vector representation of so(2, 2 + p), namely

W = (2|4+ p) ; dimW = 8 + 2p (7.23)

The decomposition of this representation with respect to GsubTS ⊕ Gsubpaint is the follow-

ing one:

W
GsubTS⊕Gsubpaint

=⇒ (2,2,2|1)⊕ (2,1,1|1)⊕ (2,1,1|p− 1) (7.24)
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where 2,2,2 denotes the tensor product of the three fundamental representations of

sl(2,R)3. Similarly 2,1,1 denotes the doublet of the first sl(2,R) tensored with the sin-

glets of the following two sl(2,R) algebras. The representations appearing in (7.24) can be

grouped in order to reconstruct full representations either of the complete Tits Satake or

of the complete paint algebras. In this way one obtains:

W
GsubTS⊕Gpaint

=⇒ (2,2,2|1)⊕ (2,1,1|p+ 1)

W
GTS⊕Gsubpaint

=⇒ (2,5|1)⊕ (2,1|p− 1) (7.25)

7.3 Universality class sl(2,R)⊕ so(6, 7) ⇒ so(8, 9)

This case, which corresponds to an N = 4 theory with a number of vector multiplets larger

than six (n = 6 + p) presents a very strong similarity with the previous N = 2 case.

The generic element of this infinite class corresponds to the following algebras:

UD=4 = sl(2,R)⊕ so(6, 6 + p)

UD=3 = so(8, 8 + p) (7.26)

In this case the sub Tits Satake algebra is:

GsubTS = sl(2,R)⊕ so(6, 6) ⊂ sl(2,R)⊕ so(6, 7) = GTS (7.27)

an the paint and subpaint algebras are the same as in the previous N = 2 case, namely:

Gpaint = so(p)

Gsubpaint = so(p− 1) (7.28)

The symplectic W representation of UD=4 is the tensor product of the fundamental repre-

sentation of sl(2) with the fundamental vector representation of so(6, 6 + p), namely

W = (2|12+ p) ; dimW = 24 + 2p (7.29)

The decomposition of this representation with respect to GsubTS ⊕ Gsubpaint is the follow-

ing one:

W
GsubTS⊕Gsubpaint

=⇒ (2,12|1)⊕ (2,1|1)⊕ (2,1|p) (7.30)

Just as above the three representations appearing in (7.30) can be grouped in order to

obtain either representation of the complete Tits Satake or of the complete paint algebras.

This yields

W
GsubTS⊕Gpaint

=⇒ (2,12|1)⊕ (2,1|p+ 1)

W
GTS⊕Gsubpaint

=⇒ (2,13|1)⊕ (2,1|p) (7.31)
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7.4 The universality classes sl(2,R)⊕ so(6, n) ⇒ so(8, n+ 2) with n ≤ 5

These classes correspond to the N = 4 theories with a number n = 1, 2, 3, 4, 5 of vector

multiplets. In each case we have the following algebras:

UD=4 = sl(2,R)⊕ so(6, n)

UD=3 = so(8, n+ 2) (7.32)

In all these cases the Tits Satake and sub Tits Satake algebras are:

GTS = sl(2,R)⊕ so(n+ 1, n)

GsubTS = sl(2,R)⊕ so(n, n) (7.33)

and the paint and subpaint algebras are:

Gpaint = so(6− n)

Gsubpaint = so(5− n) (7.34)

The symplectic W representation is the tensor product of the doublet representation of

sl(2) with the fundamental representation of so(6, n), namely

W = (2,6+ n) (7.35)

and its decomposition with respect to the GsubTS ⊕Gsubpaint algebra is as follows

W
GsubTS⊕Gsubpaint

=⇒ (2,2n|1)⊕ (2,1|1)⊕ (2,1|5− n) (7.36)

which, with the same procedure as above leads to:

W
GsubTS⊕Gpaint

=⇒ (2,2n|1)⊕ (2,1|6− n)

W
GTS⊕Gsubpaint

=⇒ (2,2n+ 1|1)⊕ (2,1|5− n) (7.37)

7.5 W-representations of the maximally split non exotic models

In the previous subsections we have analysed the Tits-Satake decomposition of the W-

representation for all those models that are non maximally split. The remaining models are

the maximally split ones for which there is no paint algebra and the Tits Satake projection

is the identity map. For the reader’s convenience we have extracted from table 3 the list

of such models and presented it in table 5. As we see from the table we have essentially

five type of models:

1. The E7(7) model corresponding to N = 8 supergravity where the W-representation

is the fundamental 56.

2. The SU(1, 1) non exotic model where the W-representation is the j = 3
2 of so(1, 2) ∼

su(1, 1).
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TS TS coset coset Paint subP susy

# D=4 D=3 D=4 D=3 Group Group

1 E7(7)

SU(8)

E8(8)

SO⋆(16)

E7(7)

SU(8)

E8(8)

SO⋆(16)
1 1 N =8

2
SU(1,1)
U(1)

G2(2)

SL(2,R)×SL(2,R)
SU(1,1)
U(1)

G2(2)

SL(2,R)×SL(2,R)
1 1 N =2

n=1

3
Sp(6,R)

SU(3)×U(1)

F4(4)

Sp(6,R)×SL(2,R)
Sp(6,R)

SU(3)×U(1)

F4(4)

Sp(6,R)×SL(2,R)
1 1 N =2

n = 6

11
SL(2,R)
O(2)

×
SO(6,5)

SO(6)×SO(5)
SO(8,7)

SO(6,2)×SO(2,5)
SL(2,R)
O(2)

×
SO(6,5)

SO(6)×SO(5)
SO(8,7)

SO(6,2)×SO(2,5)
1 1 N =4

n=5

12
SL(2,R)
O(2)

×
SO(6,6)

SO(6)×SO(6))
SO(8,8)

SO(6,2)×SO(2,6)
SL(2,R)
O(2)

×
SO(6,6)

SO(6)×SO(6))
SO(8,8)

SO(6,2)×SO(2,6)
1 1 N =4

n=6

13
SL(2,R)
O(2)

×
SO(6,7)

SO(6)×SO(7))
SO(8,9)

SO(6,2)×SO(2,7)
SL(2,R)
O(2)

×
SO(6,7)

SO(6)×SO(7))
SO(8,9)

SO(6,2)×SO(2,7)
1 1 N =4

n=7

14
SL(2,R)
O(2)

×
SO(2,1)
SO(2)

SO(4,3)
SO(2,2)×SO(2,1)

SL(2,R)
O(2)

×
SO(2,1)
SO(2)

SO(4,3)
SO(2,2)×SO(2,1)

1 1 N =2

n=2

15
SL(2,R)
O(2)

×
SO(2,2)

SO(2)×SO(2)
SO(4,4)

SO(2,2)×SO(2,2)
SL(2,R)
O(2)

×
SO(2,2)

SO(2)×SO(2)
SO(4,4)

SO(2,2)×SO(2,2)
1 1 N =2

n=3

16
SL(2,R)
O(2)

×
SO(2,3)

SO(2)×SO(3)
SO(4,5)

SO(2,2)×SO(2,3)
SL(2,R)
O(2)

×
SO(2,3)

SO(2)×SO(3)
SO(4,5)

SO(2,2)×SO(2,3)
1 1 N =2

n=4

Table 5. The list of non-exotic homogenous symmetric scalar manifolds appearing in D = 4

supergravity which are also maximally split. For these models the paint group is the identity group.

3. The Sp(6,R) model where the W-representation is the 14′ (antisymmetric symplectic

traceless three-tensor).

4. The models sl(2,R)⊕ so(q, q) where the W-representation is the (2, 2q), namely the

tensor product of the two fundamentals.

5. The models sl(2,R) ⊕ so(q, q + 1) where the W-representation is the (2, 2q + 1),

namely the tensor product of the two fundamentals.

Therefore, for the above maximally split models, the charge classification of black holes

reduces to the classification of UD=4 orbits in the mentioned W-representations. Actu-

ally such orbits are sufficient also for the non maximally split models. Indeed each of the

above 5-models correspond to one Tits Satake universality class and, within each univer-

sality class, the only relevant part of the W-representation is the subpaint group singlet

which is universal for all members of the class. This is precisely what we verified in the

previous subsections.
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For instance for all members of the universality class of Sp(6,R), the W-representation

splits as follows with respect to the subalgebra sp(6,R)⊕Gsubpaint:

W
sp(6,R)⊕Gsubpaint

=⇒ (6 | Dsubpaint) +
(
14′ |1subpaint

)
(7.38)

where the representation Dsubpaint is the following one for the three non-maximally split

members of the class:

Dsubpaint =





1 of 1 for the su(3, 3)−model

3 of so(3) for the so⋆(12)−model

7 of g2(−14) for the e7(−25) −model

(7.39)

Clearly the condition:

(6 | Dsubpaint) = 0 (7.40)

imposed on a vector in the W-representation breaks the group UD=4 to its Tits Satake sub-

group. The key point is that each W-orbit of the big group UD=4 crosses the locus (7.40) so

that the classification of Sp(6,R) orbits in the 14′-representation exhausts the classification

of W-orbits for all members of the universality class.

In order to prove that the gauge (7.40) is always reachable it suffices to show that

the representation (6 | Dsubpaint) always appears at least once in the decomposition of the

Lie algebra UD=4 with respect to the subalgebra sp(6,R) ⊕ Gsubpaint. The corresponding

parameters of the big group can be used to set to zero the projection of the W-vector onto

(6 | Dsubpaint).

The required condition is easily verified since we have:

adj su(3, 3)︸ ︷︷ ︸
35

sp(6,R)
=⇒ adj sp(6,R)︸ ︷︷ ︸

21

⊕6 ⊕ 6 ⊕ 1 ⊕ 1 (7.41)

adj so⋆(12)︸ ︷︷ ︸
66

sp(6,R)⊕so(3)
=⇒ adj sp(6,R)︸ ︷︷ ︸

21

⊕ adj so(3)︸ ︷︷ ︸
3

⊕ (6,3) ⊕ (6,3)⊕ (1,3) ⊕ (1,3)

adj e7(−25)︸ ︷︷ ︸
133

sp(6,R)⊕g2(−14)
=⇒ adj sp(6,R)︸ ︷︷ ︸

21

⊕ adj g2(−14)︸ ︷︷ ︸
14

⊕ (6,7) ⊕ (6,7)⊕ (1,7) ⊕ (1,7)

The reader cannot avoid being impressed by the striking similarity of the above decomposi-

tions which encode the very essence of Tits Satake universality. Indeed the representations

of the common Tits Satake subalgebra appearing in the decomposition of the adjoint are

the same for all members of the class. They are simply uniformly assigned to the funda-

mental representation of the subpaint algebra which is different in the three cases. The

representation (6 | Dsubpaint) appears twice in these decompositions and can be used to

reach the gauge (7.40) as we claimed above.

For the models of type sl(2,R)⊕so(q, q+p) having sl(2,R)⊕so(q, q+1) as Tits Satake

subalgebra and so(p − 1) as subpaint algebra the decomposition of the W-representation

is the following one:

W = (2,2q+ p)
sl(2,R)⊕so(q,q+1)⊕so(p−1)

=⇒ (2,2q+ 1|1) ⊕ (2,1|p− 1) (7.42)
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and the question is whether each sl(2,R)⊕so(q, q+p) orbit in the (2,2q+ p) representation

intersects the sl(2,R)⊕ so(q, q + 1)⊕ so(p− 1)-invariant locus:

(2,1|p− 1) = 0 (7.43)

The answer is yes since we always have enough parameters in the coset

SL(2,R)× SO(q, q + p)

SL(2,R)× SO(q, q + 1)× SO(p− 1)
(7.44)

to reach the desired gauge (7.43). Indeed let us observe the decomposition:

adj [sl(2,R)⊕ so(q, q + p)]

= adj [sl(2,R)]⊕ adj [so(q, q + 1)] ⊕ adj [so(p− 1)] ⊕ (1,2q+ 1|p− 1) (7.45)

The 2q+1 vectors of so(p− 1) appearing in (7.45) are certainly sufficient to set to zero the

2 vectors of so(p− 1) appearing in W.

The conclusion therefore is that the classification of charge-orbits for all supergravity

models can be performed by restriction to the Tits Satake sub-model. The same we show,

in the next section, to be true at the level of the classification based on H⋆ orbits of the

Lax operators, so that the final comparison of the two classifications can be performed by

restriction to the Tits Satake subalgebras.

8 Tits Satake reduction of the H⋆ subalgebra and of its representation K⋆

In the σ-model approach to black hole solutions one arrives at the new coset manifold (2.19).

The structure of the enlarged group UD=3 and of its Lie algebra UD=3 was discussed in

eq. (2.20). The subgroups H⋆ are listed in table (6) for the non exotic models and in

table (7) for the exotic ones. The coset generators fall into a representation of H⋆ that

we name K⋆. The Lax operator L0 which determines the spherically symmetric black hole

solution up to boundary conditions of the scalar fields at infinity is just an element of such

a representation:

L0 ∈ K⋆ (8.1)

so that the classification of spherical black holes is reduced to the classification of H⋆ orbits

in the K⋆ representation. On the other hand, in part one of the paper we already saw how

nilpotent orbits can be associated to multicenter solutions.

In this paper we focus on non-exotic models that admit a regular Tits Satake projection

and we postpone the analysis of the exotic ones to a future publication.

A first general remark concerns the structure of H⋆ in all those models that correspond

to N = 2 supersymmetry. In these cases the H⋆ subalgebra is isomorphic to sl(2,R)⊕UD=4

so that we have a decomposition of the UD=3 Lie algebra with respect to H⋆ completely

analogous to that in equation (2.20), namely:

adj(UD=3) = adj(ÛD=4)⊕ adj(sl(2,R)h⋆)︸ ︷︷ ︸
H⋆

⊕ (2h⋆ ,Ŵ)︸ ︷︷ ︸
K⋆

(8.2)
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Hence the representation K⋆ which contains the Lax operators has a structure analogous

to the representation which contains the generators of UD=4 that originate from the vector

fields, namely: (2h⋆ ,Ŵ). This means that in all these models, by means of exactly the same

argument as utilized above, we can always reach the gauge where the K⋆ representation is

localized on the image of the Tits Satake projection K⋆
TS. For instance, for the models in

the f4(4) universality class we have:

H⋆
TS = sl(2,R)h⋆ ⊕ ̂sp(6,R) (8.3)

and:

H⋆ H⋆
TS⊕Gsubpaint

=⇒ adj sl(2,R)h⋆ ⊕ adj ̂sp(6,R)

⊕ (6 | Dsubpaint) ⊕ (6 | Dsubpaint)

⊕ (1 | Dsubpaint) ⊕ (1 | Dsubpaint)

K⋆ H⋆
TS⊕Gsubpaint

=⇒
(
2h⋆ , 14

′ |1subpaint
)
⊕ (2h⋆ , 6 | Dsubpaint) (8.4)

and the two representations (6 | Dsubpaint) appearing in the adjoint representation of H⋆

can be utilized to get rid of (2h⋆ , 6 | Dsubpaint) appearing in the decomposition of K⋆.

What is important to stress is that, although isomorphic H⋆ and sl(2,R) ⊕ UD=4 are

different subalgebras of UD=3:

UD=3 ⊃ sl(2,R)h⋆ 6= sl(2,R)E ⊂ UD=3 ; UD=3 ⊃ ÛD=4 6= UD=4 ⊂ UD=3 (8.5)

Morevover, while the decomposition (2.20) is universal and holds true for all supergravity

models, the structure (8.3) of the H⋆ subalgebra is peculiar to the N = 2 models. In other

cases the structure of H⋆ is different.

The reduction to the Tits Satake projection however is universal and applies to all non

maximally split cases.

Indeed the remaining cases are of the form:

UD=3

H⋆
=

SO(2 + q, q + 2 + p)

SO(q, 2)× SO(2, q + p)
(8.6)

leading to

K⋆ = (q+ 2,q+ p+ 2)
so(q,2)⊕so(2,q+1)⊕so(p−1)

=⇒ (q+ 2,q+ 1,1)⊕ (q+ 2,1,p− 1) (8.7)

where:

so(q, 2)⊕ so(2, q + 1) = H⋆
TS (8.8)

so(p− 1) = Gsubpaint (8.9)

Considering the coset:

H⋆

H⋆TS ×Gsubpaint
=

SO(2, q + p)

SO(q + 1, 2)× SO(p− 1)
(8.10)
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# UD=3 H⋆ K⋆ UD=4 rep.W Hc

1 e8(8) so⋆(16) 128s e7(7) 56 su(8)

2 g2(2)
̂sl(2,R)⊕ sl(2,R)h⋆

(
43/2 , 2h⋆

)
sl(2,R) 43/2 so(2)

3 f4(4)
̂sp(6,R)⊕ sl(2,R)h⋆

(
1̂4

′
, 2h⋆

)
sp(6,R) 14′ u(3)

4 e6(2)
̂su(3, 3)⊕ sl(2,R)h⋆

(
2̂0 , 2h⋆

)
su(3, 3) 20 su(3)⊕ su(3)

⊕u(1)

5 e7(−5)
̂so⋆(12)⊕ sl(2,R)h⋆

(
3̂2spin , 2h⋆

)
so⋆(12) 32spin u(6)

6 e8(−24) ̂e7(−25) ⊕ sl(2,R)h⋆

(
5̂6 , 2h⋆

)
e7(−25) 56 u(6)

7 so(8, 3) so(6, 2)⊕ so(2, 1) (8 , 3) so(6, 1)⊕ sl(2,R) (7,2) so(6)⊕ u(1)

8 so(8, 4) so(6, 2)⊕ so(2, 2) (8 , 4) so(6, 2)⊕ sl(2,R) (8,2) so(6)⊕ so(2)

⊕u(1)

9 so(8, 5) so(6, 2)⊕ so(2, 3) (8 , 5) so(6, 3)⊕ sl(2,R) (9,2) so(6)⊕ so(3)

⊕u(1)

10 so(8, 6) so(6, 2)⊕ so(2, 4) (8 , 6) so(6, 4)⊕ sl(2,R) (10,2) so(6)⊕ so(4)

⊕u(1)

11 so(8, 7) so(6, 2)⊕ so(2, 5) (8 , 7) so(6, 5)⊕ sl(2,R) (11,2) so(6)⊕ so(5)

⊕u(1)

12 so(8, 8) so(6, 2)⊕ so(2, 6) (8 , 8) so(6, 6)⊕ sl(2,R) (12,2) so(6)⊕ so(6)

⊕u(1)

13 so(8, 8 + p) so(6, 2)⊕ so(2, 6 + p) (8 , 8+ p) so(6, 6 + p)⊕ sl(2,R) (12+ p,2) so(6)⊕ so(6 + p)

⊕u(1)

14 so(4, 3) ̂sl(2,R)⊕ ̂so(2, 1)
(
2̂ , 3̂ , 2h⋆

)
sl(2,R)⊕ so(2, 1) (2 , 3) so(2)⊕ u(1)

⊕sl(2,R)h⋆

15 so(4, 4) ̂sl(2,R)⊕ ̂so(2, 2)
(
2̂ , 4̂ , 2h⋆

)
sl(2,R)⊕ so(2, 2) (2 , 4) so(2)⊕ so(2)

⊕sl(2,R)h⋆ ⊕u(1)

16 so(4, 4 + p) ̂sl(2,R)⊕ ̂so(2, 2 + p)
(
2̂ , 4̂+ p , 2h⋆

)
sl(2,R)⊕ so(2, 2) (2 , 4+ p) so(2)⊕ so(2 + p)

⊕sl(2,R)h⋆ ⊕u(1)

Table 6. Table of H⋆ subalgebras of UD=3, K
⋆-representations and W representations of UD=4 for

the supergravity models based on non-exotic scalar symmetric spaces.

we see that its (q + 3)× (p− 1) parameters are arranged into the

(q+ 3|p− 1) (8.11)

representation of so(q + 1, 2) ⊕ so(p − 1) and can be used to put to zero the component

(q+ 2,1,p− 1) in the decomposition (8.7). Note that the N = 4 cases with more than 6

vector multiplets are covered by the above formulae by setting:

q = 6 ; p > 1 (8.12)
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# UD=3 H⋆ K⋆ UD=4 symp. rep. W Hc

1e su(p + 2, 2) ̂su(p+1, 1)⊕ û(1) (p+2,2h⋆) su(p + 1, 1)⊕ u(1) p+2 su(p + 1)

⊕sl(2,R)h⋆ ⊕u(1)

2e su(p+2, 4) su(p+1, 2)⊕ u(1) (p+3,3) su(p+1, 1)⊕ u(1) p+ 4 su(p+1)⊕ su(3)

⊕su(1, 2) ⊕u(1)

3e e6(−14) so⋆(10)⊕ so(2) (16s,2) su(5, 1) 10 u(5)

Table 7. Table of H⋆ subalgebras of UD=3, K
⋆-representations and W representations of UD=4 for

the supergravity models based on exotic scalar symmetric spaces.

Similarly the N = 2 cases with more than 3 vector multiplets are covered by the above

formulae by setting:

q = 2 ; p > 1 (8.13)

Finally theN = 4 cases with less than 6 vector multiplets are covered by the above formulae

by setting:

q = n ; p = 6 − n ; n = 1, 2, 3, 4, 5 (8.14)

9 The general structure of the H⋆ ⊕K⋆ decomposition in the maximally

split models

In the previous section we have shown that all H⋆ orbits in the K⋆ representation cross the

locus defined by:

ΠTS (K
⋆) = K⋆ (9.1)

where ΠTS is the Tits-Satake projection. In other words just as for the W-representation

of UD=4, it suffices to classify the orbits H⋆TS in the K⋆
TS representation. In view of this

result, in the present section we study the general structure of the H⋆ ⊕K⋆ decomposition

for maximally split algebras UD=3.

A key point in our following discussion is provided by the structure of the root system of

UD=3 as described in section 6.3. The entire set of positive roots can be written as follows:

0 < a =





α = {α, 0}
w =

{
w, 1√

2

}

ψ =
{
0,
√
2
}

(9.2)

where α > 0 denotes the set of all positive roots of UD=4, while w denotes the complete

set of weights (positive, negative and null) of the W representation of UD=4. The root ψ

is the highest root of the UD=3 root system and is also the root of the Ehlers subalgebra

sl(2,R)E . Accordingly, a basis of the Cartan subalgebra of UD=3 is constructed as follows:

CSA︸︷︷︸
of UD=3

= span of





H1 , H2 , . . . , Hr︸ ︷︷ ︸
CSA generators of UD=4

, Hψ︸︷︷︸
CSA generator of sl(2,R)E





(9.3)
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For all maximally split Lie algebras U of rank r+ 1, the maximal compact subalgebra

H ⊂ U is generated by:

T a = Ea − E−a (9.4)

while the complementary orthogonal space K is generated by

Ka = Ea + E−a (9.5)

KI = HI ; I = 1, . . . , r + 1 (9.6)

The splitting H⋆⊕K⋆ is obtained by means of just one change of sign which, thanks to the

structure (9.2) of the root system is consistent, namely still singles out a subalgebra.

The generators of the H⋆ subalgebra are as follows:

Tα⋆ = Eα − E−α

Tw
⋆ = Ew + E−w

Tψ⋆ = Eψ − E−ψ (9.7)

while the generators of the K⋆ complementary subspace are as follows:

Kα
⋆ = Eα + E−α

Kw
⋆ = Ew − E−w

Kψ
⋆ = Eψ + E−ψ

KI = HI ; I = 1, . . . , r + 1 (9.8)

From eq. (9.7) we see that H⋆ contains the maximal compact subalgebra of the original

UD=4 and the maximal compact subalgebra so(2) ⊂ sl(2, R)E of the Ehlers group. Using

this structure we can now compare the classification of K⋆ orbits with the classification of

W-orbits.

10 H⋆-orbits in the K⋆-representation versus UD=4-orbits in the

W-representation

In the σ-model approach the complete black hole spherically symmetric supergravity solu-

tion is obtained from two data,8 namely the Lax operator L0 evaluated at spatial infinity

(see eq. (8.1)) and the coset representative L0 also evaluated at spatial infinity. In terms

of these data one defines the matrix of conserved Noether charges:

QNoether = L0 L0 L
−1
0 = L(τ)L(τ)L−1(τ) (10.1)

from which the electromagnetic charges of the black hole, belonging to the W-

representation of UD=4, can be obtained by means of the following trace:

Qw = Tr
(
QNoether T w

)
(10.2)

8See papers [78–80, 82, 86, 87] for detailed explanations.
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where

T w ∝ Ew (10.3)

are the generators of the solvable Lie algebra corresponding to the W-representation.

It is important to stress that, because of physical boundary conditions, the coset

representative at spatial infinity L0 belongs to the subgroup UD=4 ⊂ UD=3. Indeed it

simply encodes the boundary values at infinity of the D = 4 scalar fields:

UD=3 ⊃ UD=4 ∋ L0 = exp

[
φα0 E

α +
r∑

i=1

φi0Hi

]
(10.4)

Using this information in eq. (10.2) we obtain

Qw = Tr
(
L0 L

−1
0 (φ)T wL0(φ)

)
= R(φ)ww′ Qw′

(10.5)

where:

Qw′

= Tr
(
L0 T w′

)
(10.6)

are the electromagnetic charges obtained with no scalar field dressing at infinity and

R(φ)ww′ ∈ UD=4 (10.7)

is the matrix representing the group element L0(φ) in the W-representation.

This result has a very significant consequence. The scalar field dressing at infinity

simply rotates the charge vector along the same W-orbit and is therefore irrelevant.

Hence we conclude that for each Lax operator, the W-orbit of charges is completely

determined and unique. The next question that was already tackled in the introduc-

tion is whether the charge-orbit W is the same for all Lax operators belonging to the

same H⋆-orbit. As already anticipated, the answer is no and it is quite easy to produce

counter examples.

Yet if we impose the condition that the Taub-NUT charge should be zero:

Tr
(
L0 L

E
+

)
= 0 (10.8)

then for all Lax operators in the same H⋆, satisfying the additional constraint (10.8), the

corresponding charges Qw = Tr (L0 T
w) fall into the same W-orbit. This happens for all

the cases displayed in our tables.

We were not able to prove this statement, but we assert it as a conjecture, since we

analyzed all cases displayed in the tables and it was always true, no counter example being

ever found.

In the case of multicenter non spherically symmetric solutions our conjecture appears

to be true as long as we impose the condition of vanishing of the Taub-NUT current:

jTN = 0 (10.9)

So doing, at every pole of the involved harmonic functions, we obtain a black hole that

always falls into the same W-orbit.

What happens instead when the Taub-NUT current is turned on cannot be predicted

in general terms at the present status of our knowledge and more study is certainly in order.
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11 Conclusions and perspectives

In this paper we examined the systematics of extremal stationary solutions of supergravity

models whose scalar manifold is a symmetric coset space.

We provided a comprehensive group theoretical analysis of all such theories, orga-

nizing them in universality classes according to their Tits Satake projection. This was

instrumental to our double classification of stationary solutions according to orbits of the

non-compact isotropy subgroup H⋆ in the three-dimensional approach, and to orbits of the

symplectic W-representation of the duality group UD=4 in the four-dimensional approach.

In both cases we provided full evidence that the solutions can be gauge rotated to the Tits

Satake subalgebra so that classifying nilpotent orbits for the finite list of maximally split

coset manifolds UTS/H
⋆
TS suffices to classify all stationary supergravity black holes. In

force of this, restricting our attention to the maximally split cases, we provided the general

form of the H⋆ subalgebra which can be considered one of the new results attained by our

paper (section 9).

Within this general group-theoretical setup we analyzed the construction of multicen-

ter solutions following the strategy laid down in [83, 98–102] which utilizes the nilpotent

subalgebra singled out by every nilpotent orbit. We provided the missing link necessary to

transform such a strategy into a complete constructive algorithm: such link is the general

procedure described in subsection 3.2 for the transformation of the coset representative

from the symmetric to the solvable gauge where the supergravity fields can be read off. We

consider this another relevant result of our paper.

Next we performed a complete survey of the stationary solutions associated with the

nilpotent orbits of the S3-model, considering the structure of charge-orbits for the corre-

sponding black holes. In this case the D = 4 duality algebra is UD=4 = sl(2,R) and the

W-representation encoding the charges Q, is the j = 3
2 of sl(2,R). We found that there

are the following orbits:9

• J4(Q) = 0 with stability subgroup ΓQ = Q given by Γ =

(
1 0

c 1

)
, i.e. by a parabolic

subgroup of SL(2,R). This orbit corresponds to the very small black holes.

• J4(Q) = 0 with stability subgroup ΓQ = Q given by Γ =

(
1 0

0 1

)
i.e. by the identity

of SL(2,R). This orbit corresponds to the small black holes.

• J4(Q) > 0 with stability subgroup ΓQ = Q given by Γ = Z3 ⊂ SL(2,R) . This orbit

corresponds to the regular BPS black holes.

9As we already mentioned the authors express their gratitude to Alessio Marrani who attracted their

attention, after the first appearance of the present paper in the arXive, to paper [105] where the existence

of a discrete stability subgroup for the charges of the regular BPS orbit in the S3 model had already been

found.
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• J4(Q) < 0 with stability subgroup ΓQ = Q given by Γ =

(
1 0

0 1

)
i.e. by the identity

of SL(2,R). This orbit corresponds to the regular non BPS black holes. . .

• J4(Q) > 0 with stability subgroup ΓQ = Q, given by Γ =

(
1 0

0 1

)
i.e. by the identity

of SL(2,R) This orbit corresponds to the generically singular very large black holes. . .

Up to our knowledge, this detailed structure of the S3 model was not discussed in the

literature so far and can be considered still another of our main results. The above pattern

is quite inspiring and leads to the conjecture that also in other models the charges of BPS

black holes might be characterized by their invariance under some suitable finite subgroup

of the duality group.

In our analysis of the multicenter solutions we came to the conclusion that, within each

H⋆ orbit, when the vanishing of the Taub-NUT current is imposed, all the black holes that

are located at the various poles of the involved harmonic functions, emerge with charges

always assigned to the same W-orbit. Hence at vanishing Taub-NUT current the main

question that motivated our paper has been answered. At least in the S3 model there is a

rigid association between the H⋆ orbit utilized to construct the solution and the W-orbit

of their charges.

Confirming this rigid association for other Tits Satake universality classes is one of the

issue that emerge from our paper and that we live for future publications. Other issues

raised by our results that we plan to further investigate are:

1. The appropriate interpretation of the solutions associated with higher nilpotency

orbits.

2. Fitting of extremal and non extremal rotating black holes into the scheme.
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A The complete form of the fields for the O3|11 orbit

In this appendix we present the complete result for the scalar fields of the three-dimensional

σ-model parameterized by four harmonic functions H1,2,3,4 in the case of the Large BPS

orbit O3
11
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[79] P. Fré’ and A.S. Sorin, The arrow of time and the Weyl group: All Supergravity billiards are

integrable, arXiv:0710.1059 [INSPIRE].
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