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Abstract
Dynamic contrast enhancement in magnetic resonance imaging (DCE-MRI) is a
promising tool for the clinical diagnosis of tumors, whose implementation may
be improved through the use of suitable hemodynamic models. If one prefers
to avoid assumptions about the tumor physiology, empirical fitting functions
may be adopted. For this purpose, in this paper we discuss the exploitation
of a recently proposed phenomenological universalities (PUN) formalism. In
fact, we show that a novel PUN class may be used to describe the time–signal
intensity curves in both healthy and tumoral tissues, discriminating between
the two cases and thus potentially providing a convenient diagnostic tool. The
proposed approach is applied to analysis of the DCE-MRI data relative to a
study group composed of ten patients with spine tumors.

Introduction

Magnetic resonance imaging (MRI) is a versatile imaging modality and an indispensable tool
in modern diagnostic medicine, with a wide range of applications (Tsekos et al 2008). The
most frequently used MRI method in medicine is the anatomical MRI designed to differentiate
tissue structures (Fayed et al 2006). MRI can produce high-resolution images in multiple
different planes of the interior of the body non-invasively and without the hazard of ionizing
radiation (Yankeelov and Gore 2009).

The intrinsic contrast between soft tissues and many pathological ones is sufficiently
great, so that often contrast agents (CAs) are not needed. Nonetheless, appropriate exogenous
CAs have been developed for use with MRI and are safely employed in many clinical imaging
procedures (van Cara et al 1999). MRI CAs are pharmaceuticals, administered to a subject
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during the imaging procedure, that are designed to increase the contrast between different
tissues. CAs alter the MRI signals and, when they are introduced into the body, they decrease
the relaxation times of the tissue water with which they come into contact, in a way which
depends on how the CAs are distributed within the tissue (Yankeelov and Gore 2009). For
a given region of interest (ROI) the temporal characteristics of the signal intensity (SI) as
the CAs pass through the tissue can be studied and useful information on its physiology and
pathology can be derived (Verstraete and Lang 2000).

In a typical dynamic contrast enhancement (DCE) MRI imaging session, a ROI is selected
for study (e.g. a suspected region) and MR images are collected before, during, and after a CA
is injected into a vein of a patient. Each image acquired corresponds to one time point, and
each pixel in each image can be extracted to find out its own time course, which can then be
analyzed with a mathematical model. There are different methods to analyze these dynamic
data and, among them, semiquantitative parameters may be employed in most routine settings
without the need of specialized software (Tuncbilek et al 2005). These parameters are proved
to be indirect determinants of tumor microcirculation and tissue perfusion (Buadu et al 1996,
Tuncbilek et al 2004, 2003).

Materials and methods

The study group comprised ten patients with spine tumors (whose morphology and histology
make our analysis especially meaningful, since they were all bone metastases from breast
cancer). All of them underwent MR imaging with a 1.5 T whole body scanner (Signa HDx, GE,
Milwaukee) and an eight-channel cervical-thoracic-lumbar (CTL) receiver coil. Conventional
MRI series (sagittal T1, T2 and Short TI inversion recovery (STIR)) were used to locate
tumoral lesions and exhibit their morphologic characteristics. After these preliminary series,
four precontrast sagittal 3D SPoiled GRadient echo (SPGR) sequences (TR/TE/NEX/FA:
6.8ms/2 ms/1/24◦, band width: 25 kHz, slice thickness: 4 mm, matrix: 256 × 192 are used
to minimize artifacts (Taber et al 1998, Claude et al 2000)) were acquired as baseline images
(see figure 1 as an example of slice location). After the precontrast sequences, patients were
given 0.1 mmol kg−1 gadobutrol (Gadovist, Bayer Schering, Berlin, Germany) intravenously
through a peripheral line at 0.7 ml s−1, using a power injector (Medrad Spectris, Maastricht,
The Netherlands), followed by an infusion of 20 cc normal saline at the same velocity. In the
contrast sequence, a multiphase sagittal 3D SPGR was applied with parameters identical to
those used for the precontrast sequence. For each patient a total of 31 phases were acquired
sequentially, each lasting 16 s, for a total time of 8 min.

At the end of the exam, all the images acquired before (baseline), during and after CA
injection were transferred from the scanner to a workstation for data analysis. For each patient
a ROI was manually selected including the lesion (the most enhanced region); see figure 2.
When a tumor was extended in more than a single slice, the ROI was drawn including multiple
images. The malignant ROIs covered areas between 0.15 and 1.5 cm2. The SI of a lesion was
computed as the mean gray value of the pixels belonging to the same ROI. For each patient,
the baseline point was obtained as the mean of the four SIs in the precontrast acquisitions. A
non-enhancing region containing the same type of tissue as in the tumor ROI was also selected
for each patient, with an extension approximately equal to the tumoral one, in order to make
a comparison between the behavior of the two different DCE curves in both malignant and
non-tumoral bones (in the following we will call the latter a ‘normal tissue region’). Each
dataset was normalized by subtracting to each time point the mean precontrast value computed
on the selected ROI. Then the signal intensities were plotted versus time for each patient.
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Figure 1. Images showing an example of slice location in the three plane views for DCE sequence
acquisition in the sagittal direction.

(a) (b)

Figure 2. Examples of typical ROI localization drawn on DCE sagittal images and corresponding
dynamic contrast enhancement curves for both normal tissue (a), and a tumoral lesion (b). Note
the different scales for the SI axes in the two cases.

Evaluation of kinetic variables from DCE-MRI

There are two physiological processes that accompany the faster growth rate of many tumors:
an increased number of vessels and, along with it, an increased permeability. Therefore one
can expect an augmented overall signal enhancement in the proximity of tumors (due to a
greater vascular volume), a larger vessel permeability, and increased flow (Srikanchana et al
2004, Knopp et al 2001, Scalerandi and Sansone 2002).

Extraction of hemodynamic parameters from DCE-MRI data requires the calculation of
contrast medium concentration as a function of time, C(t), either in each image voxel or
in the ROI (Fan et al 2007). Several pharmacokinetic and empirical models for DCE-MRI
hemodynamic parameter estimation have been developed (Gal et al 2007a, Wilburn et al
1999, Rijpkema et al 2001, Montemurro et al 2004). In the simplest model of tissue signal
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enhancement one considers three parameters: maximum signal enhancement, the rate of initial
enhancement (‘wash-in’), and the rate of increased signal decay (‘wash-out’).

Quantitative techniques that are often combined with rapid temporal sampling have been
employed together with pharmacokinetic models of tissues, to evaluate the parameters. These
models require assumptions about the CA perfusion process and the water exchange rates
between prescribed tissue compartments. Among them one finds the general kinetic models
(Daldrup et al 1998), the Tofts (Tofts and Kermode 1991, Tofts et al 1999) and Brix models
(Brix et al 1991), which allow us to evaluate a variety of parameters, depending on the model.

For the implementation of these kinds of analyses, some prior knowledge is typically
required in order to fit the measured DCE-MRI data. This prior knowledge is usually
introduced as additional parameters (e.g. model of bolus injection (Hayton et al 1996), tissue
relaxivity (Rijpkema et al 2001)) to be estimated for each study, or statistically inferred from
previous works (Tofts et al 1995, Furman-Haran and Degani 2002). However, the significance
of such parameters’ evaluation depends on the validity of the theoretical model and on the
assumptions used to interpret the data. This fact can add noise and/or bias to the model-
fitting process, thus reducing the validity of the procedure. Computed quantities are highly
dependent on the method of analysis; thus, a comparison of results from different models is
difficult (Srikanchana et al 2004).

Furthermore, pharmacokinetic models do not always provide a good fit to experimental
data, and therefore they have a limited diagnostic utility (Fan et al 2007). Consequently, three
or more compartment models were formulated in order to obtain a more realistic hemodynamic
description (Port et al 1999), each time with increasing complexity. Also, physiological models
require a knowledge of the contrast medium concentration in the blood as a function of time
(arterial input function (AIF)). Sometimes measuring the AIF is very difficult, causing errors
in the determination of tracer kinetics.

To overcome the problems associated with limited SNR, semiquantitative analysis of
DCE-MRI data can be performed. In this kind of analysis C(t) is not fitted, but contrast medium
uptake and washout are analyzed by simply classifying contrast medium kinetics. Some
common diagnostic parameters include the initial area under the curve, signal enhancement
ratio, maximum slope, time to peak of enhancement, washout ratio and so on (Pickles et al
2009).

One of the most commonly used approaches in clinical evaluation has been proposed
by Kuhl et al (1999) and consists of a classification of curves according to the intermediate
and late postcontrast phases (either wash-out, plateau or persistent behavior). This simplified
approach allows one to analyze only a limited part of the acquired curve (e.g. a single point,
if the maximum or time to maximum enhancement is studied, or a few points if slopes are
computed), thus yielding a local description of the curve, rather than a global view.

As an alternative to these approaches, empirical functions can be used to fit C(t)

accurately, without the need of assumptions about tumor physiology. Unfortunately, however
the mathematical functions employed so far do not have the flexibility to accurately describe
contrast uptake and wash-out for long periods of time (Fan et al 2007). Among them we recall
the Weibull function (Gal et al 2007b)

yweib(t) = At exp(−tB) (1)

with only two fitting parameters (A and B) and the biexponential function

ybiexp(t) = a exp(bt) + c exp(dt), (2)

where the coefficients b and d (both negative) represent the rapidity of the wash-in and wash-out
phases and the parameters a and c their weights.
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Phenomenological universalities as a tool for dataset analysis

The fitting of any given set of experimental data may be just an exercise to find, for practical
purposes, a convenient analytical curve to represent the data or, at a much deeper level, it may
aim to provide a model. In the latter case one should restrict one’ s attention to the raw data
and analyze them independently of the field of application. Such an unbiased procedure may
be provided by the phenomenological universalities (PUN) approach, recently proposed by
Delsanto and collaborators (Castorina et al 2006, Delsanto 2007) and applied to a wide range
of applications (auxology (Delsanto et al 2008), tumor growth (Gliozzi et al 2010, 2009),
nonlinear elasticity (Delsanto et al 2009), and others (Pugno et al 2008, Barberis et al 2010)).

In order to describe PUN methodology from an applicative point of view, let us start with
the first-order nonlinear growth differential equation

dy

dt
= a(y)y, (3)

where a(y) represents the (unknown) growth rate. Equivalently, equation (3) may be written
as

dz

dt
= a(z), (4)

where z = ln(y). To integrate equations (3), or (4), it is necessary to make some assumption
on the rate a, as suggested, e.g., from an analogy of equation (4) with the equations of motion
in dynamics. In them z represents the displacement, a = dz

dt
the velocity and b = da

dt
the

acceleration. Assuming a viscous medium, the force (and therefore b) is proportional, in a
first approximation, to the velocity. We can correspondingly assume that b is given by an
expansion in dz

dt
, i.e.

b =
N∑

i=1

cia
i(t) = βa + γ a2 + · · · . (5)

For example, for N = 2 we have, in addition to the linear term βa, also the quadratic term
γ a2.

We call UN the class generated by the solution of the coupled differential equations (4)
or (3) and (5), when in the latter only the first N terms are considered. The functions y(t) that
one obtains for the first UN classes (N = 0, 1, 2) have a very wide range of applications. In
fact

• for N = 0, i.e. U0, b = 0; y(t) represents a self-catalytic growth function. By integrating
over the two ODE’s, equations (5) and (3), we obtain

y(t) = exp(a0t), (6)

where a0 = a(t = 0). Here and in the following we normalize the variable y(t), so that
y(0) = 1.

• for N = 1, i.e. U1, b = βa and

y(t) = exp[a0/β(exp(βt) − 1)]. (7)

Equation (7) yields the Gompertz law (Gompertz 1825), which has been extensively used
in all kinds of growth problems for almost two centuries.

• for N = 2, i.e. U2, b = βa + γ a2 and

y(t) = exp[1 + a0γ /β(1 − exp(βt))]−1/γ , (8)

which represents a generalization of West’s law (West et al 2001, West and Brown 2004,
West et al 2000).
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In the absence of further information, one can obviously consider any other kind of
assumptions for the relationship b(a) of equation (5) and, correspondingly, obtain novel PUN
classes, different from UN. For example, it is tempting (for completeness) to include in
equation (5) a constant term α. We call the thereby generated classes EUN (i.e. extended UN),
e.g.

• for N = 0, i.e. EU0, b = α and

y(t) = exp
(
a0t + 1

2αt2
)
. (9)

• for N = 1, i.e. EU1, b = α + βa and

y(t) = exp

[
rt +

1

β
(a0 − r) (exp(βt) − 1)

]
, (10)

where r = α
β

.

Formally EUN corresponds, for the kind of integrations performed, to U(N+1). Therefore
we are not considering here further EUN classes beyond EU1.

Application of the EUN formalism to DCE-MRI

A remarkable result of our study is that the class EU1 (which had never been considered before)
may be advantageously employed for the evaluation of DCE-MRI functional studies. In them,
several variables are estimated (Verstraete et al 1994, van der Woude et al 1998), e.g. start of
tumor enhancement (time interval between start of arterial and tumor enhancement), spatial
pattern and progression. The latter has been utilized for the classification in five different
types of the time–SI curves (van Rijswijk et al 2004). Figure 3 shows that all five types may
be obtained in the framework of EU1 (no example of type I is included, since it corresponds
to a flat curve with no enhancement). It is important to remark that while healthy tissues
may yield curves belonging to any of the five types, only curves of the type IV correspond to
tumoral tissues.

As it can be seen from equation (10), the EU1 function has three parameters a0, β and r,
upon which all the features of the SI curves depend.

• a0 controls the steepness of the curve at t = 0. Together with β it primarily affects the
growth rate of the curve in its first part.

• β is in inverse proportion to the time the system takes to reach the knee of the curve.
• The sign of r = α

β
determines the behavior of the second part of the curve and its absolute

value is linked to the rapidity of the change. For r > 0, one can observe a further
enhancement of the intensity of the signal, while for r < 0 there is a wash-out phase.

For some particular values of the parameters, it is possible to predict other features of the
curves. For example, in the case when α = 0 (types II and III), it is easy to calculate the value
of the plateau:

ypl = exp

(
−a0

β

)
. (11)

In this case the parameter 1/β can be viewed as a ‘characteristic time’ of the system, i.e. the
time needed to reach 1 − 1/ee (i.e. 93%) of the asymptotic value ypl.
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Figure 3. Classification of time–SI curves (van Rijswijk et al 2004): type II, gradual increase
of enhancement; type III, rapid initial enhancement followed by a plateau; type IV, rapid initial
enhancement followed by a washout phase; and type V, rapid initial enhancement followed by
sustained later enhancement. Type I is a flat curve with no enhancement and therefore is not
reported in the figure for brevity.

Results

For each of the ten patients with spine tumors involved in our study, DCE-MRI SI curves
were analyzed for both a healthy and a tumoral body region. The resulting 20 curves were
fitted by means of the EU1 function, equation (10). For a comparison, two fitting functions,
i.e. the Weibull function, equation (1), and the biexponential function, equation (2), were
also considered. In order to evaluate the quality of the results, the standard R2 criterion was
employed.

The results of the fitting with EU1 are very promising (particularly for tumoral tissues).
For brevity only the curves corresponding to four out of the twenty cases in the study are
shown in figure 4. Their respective R2 values are reported in table 1. It is clear from the table
that the EU1 results are generally much better than the ones obtained with the biexponential
function, even if the former has only three parameters versus four of the latter. They are even
better than those obtained with the Weibull function, which, however, has only two parameters.
Similar results are obtained in the other 16 cases; they are not reported in figure 4, for brevity,
but the mean values of R2 are considerably better for EU1 than for the other two functions
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Figure 4. Fitting of the DCE curves for the three fitting functions considered: EU1 (continuous
lines), biexponential (dotted lines) and Weibull (dashed lines). Curves for four different cases are
shown, two for tumoral tissues (plots a and b) and two for healthy tissues (plots c and d). The
corresponding R2 values are reported in table 1.

Table 1. Values of R2 for the three fitting functions used in figure 4, and the mean values (and
corresponding standard deviation) of R2 for all the ten patients considered (both normal and tumoral
tissues).

Plots EU1 Biexponential Weibull

a 0.92 0.84 0.78
b 0.96 0.86 0.78
c 0.86 0.88 0.89
d 0.88 0.79 0.74
Mean value norm. tiss. 0.79 ± 0.12 0.67 ± 0.20 0.67 ± 0.21
Mean value tumoral tiss. 0.86 ± 0.07 0.75 ± 0.09 0.71 ± 0.09

(biexponential and Weibull) for both normal and tumoral tissues (see the last two lines of
table 1).

We have also calculated for the 20 cases considered the mean values and standard
deviations of the EU1 parameters (r, β and a0), distinguishing between healthy and tumoral
tissues. They are reported, together with the values M of the SI maxima, in table 2. It is
remarkable that no real difference between healthy and tumoral tissues can be observed for
the parameters r and β (except for a much larger standard deviation in the former, particularly
for r). Conversely, there is a very clear separation between the two cases (healthy and tumoral
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Figure 5. Values of the EU1 parameters for tumoral tissues (solid lines) and healthy tissues (dotted
lines) versus the order number of the datasets.

Table 2. Values of the EU1 parameters and of the SI maximum M, as obtained by fitting the
20 DCE curves analyzed.

Parameter Normal tissue Tumoral tissue

r (0.09 ± 0.18)min−1 (0.09 ± 0.04)min−1

β (−2.3 ± 0.9)min−1 (−2.9 ± 0.5)min−1

a0 (7.7 ± 2.1)min−1 (16.8 ± 2.8)min−1

M (41 ± 26) au (274 ± 89) au

tissues) in the ranges of values of both a0 and M. Indeed, this result, i.e. the possibility of
discriminating healthy from tumoral tissues by evaluating a single parameter (a0 or M), may
be very relevant from a diagnostic point of view. It is also not surprising, since tumoral tissues
are more vascularized, and therefore they are characterized by a more rapid CAs uptake.

The above considerations are confirmed by figure 5, in which the values of the EU1
parameters are plotted versus the order number of the sets of data corresponding to the ten
patients. In fact figures 5(a) and (b) show that the values of r and β are similar for the two cases
(normal and tumoral), but more scattered for healthy tissues (dotted lines), while figure 5(c)
exhibits two well-defined bands separating the ranges of values of a0.

Finally we have also analyzed the correlation between the EU1 parameters a0 and β. We
have found that for the tumoral tissues there is a linear relationship between the two parameters

β = pa0 (12)

where p = −0.175 ± 0.030 (see figure 6). The existence of a relative maximum M for the
function y(t) implies that at a certain time tM,[

∂y(t)

∂t

]
tM

= 0. (13)

It follows

tM = 1

β
ln

r

r − a0
, (14)

and

M = y(tM) = e−1/p
(

1 − a0

r

)−r/β

. (15)
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Figure 7. Maximum of the SI versus set number for tumoral tissues: experimental values (solid
line: M = 274±89) and theoretical values as given by equation (15) (dotted line: M = 256±20).
The value of tM is (1.83 ± 0.31) min; see equation (14).

Using the numerical values of the parameters, as reported in table 2, the values of tM and
M can be calculated and compared with the corresponding experimental values (for tumoral
tissues only); see figure 7. Since rtM � 1/p, from equations (12) and (15), it follows that the
predicted value of M is relatively constant (M = exp(−1/p) = 256 ± 20), in good agreement
with the experimental results.
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Discussion and conclusions

Phenomenological universalities (PUN) represent a novel tool for both cross-disciplinary and
experimental research. For what concerns the first aspect, we note that the PUN approach
offers a simple and systematic method for the classification of different phenomenologies,
independently of their field of application. From the point of view of the interpretation of
experimental datasets, PUN may be applied in many cases to find a good fitting and, when R2

becomes close to 1, to build up a model. Since the analysis may be performed to a very high
level of accuracy, it can act as a ‘magnifying glass’ to detect and quantify small differences
among similar data.

Up to now, only one set of PUN classes had been studied in detail and applied to a variety of
interdisciplinary problems, i.e. UN (Castorina et al 2006, Delsanto 2007, Delsanto et al 2009,
2008, Gliozzi et al 2009). In this contribution we have shown that another PUN class, i.e. EUN
(see equations (9) and (10)), is well suited to solve a very important problem in the medical
field, i.e. the evaluation of DCE-MRI studies. In a typical dynamic contrast enhancement
(DCE) magnetic resonance imaging (MRI) session, a region of interest is selected for study
and MR images are collected before, during and after a contrast agent (CA) is injected into a
vein of a patient.

The power of the proposed approach lies in the capability of describing the whole
process arising from the vascularization of a suspected region, using few parameters (whose
interpretation is quite simple) and without making any assumption on the tissue physiology.
The results of the EU1 analysis can thus be very useful in the diagnosis of a pathology.
Tumors are capable of inducing blood vessel growth to supply the required nutrients, allowing
for tumor expansion. The higher the lesion aggressiveness, the faster the tumor growth,
depending also on tissue vascularization. In fact tumors show both an altered perfusion
(which contributes to a higher vessel concentration near the lesion) and an altered permeability
(which allows a better transmission of nutrients from the blood to the lesion itself). Thus the
blood (with the CAs) reaches the tumor in a shorter time and in a higher amount than in
normal tissues. The resulting SI and time to peak value are indicators of the altered vessel
characteristics.

In a given anatomical region the maximum CA uptake of a lesion is approximately fixed,
due to the presence of a ‘resistance’, given by surrounding structures. Also, the time to peak
has a lower bound, due to bounds in the dimension of blood vessels, which limit the transport
velocity of the CA. For tumors a link between the maximum SI and the time to peak (or
equivalently between the EU1 parameters a0 and β) can be established as a characteristic
value for the studied lesion in a given anatomical region. Thus the values of M and tM or p (the
ratio between β and a0) will change according to the pathology, but also with the anatomical
region.

Using the normalized SI in selected ROIs has the advantage of a simple implementation
since it does not need conversion to contrast concentration. Indeed the radiologist is often
more interested in looking at the entire time course of contrast uptake and ROI percentage
of enhancement, rather than at the numerical value of the concentration uptake. The latter
requires monitoring tissue T1 before and after administration of the CA, resulting in a more
time consuming examination. The EU1 parameters are linked to the initial slope of the curve,
time to reach the maximum, and slope of the late phases. Thus the model is capable to describe
the whole contrast wash-in and wash-out for the ROIs.

To conclude, this first study had the two goals of proposing a new method to fit DCE
curves and finding applications for the universality class EUN. The results obtained on a small
group of patients show that the EU1 approach is very promising. In fact it gives a better
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fitting, compared with other empirical functions, e.g. the Weibull and biexponential functions
(equations (1) and (2)).

A future task will be the application of the EU1 class to a large number of patients with
different pathologies, in order to find out the range of values for the parameters, and also,
possibly, to define threshold values to differentiate tumoral regions from non-malignant ones.
It will also be interesting to study how the parameters vary for different tissues, and to compare
the relative performances of EU1 and of pharmacokinetic models.

Another development will be the implementation of a pixelwise elaboration in the selected
ROIs. In this study we performed a mean of the pixel SIs to test if the EU1 approach would
yield useful information about the tissues under investigation. In a future work a pixel-by-
pixel investigation will be performed to characterize and better define the lesions. In fact,
often a tumor has a core which is different from its periphery, but a detailed analysis can be
performed only if each single pixel is treated separately from the others. Fitting data from
a single pixel may introduce noise error; thus, a sort of quality control on the experimental
curves is necessary for a correct parameter evaluation and overall analysis.
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