

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Neuregulin1/ErbB expression regulation in the injured rat peripheral nerve during degeneration and regeneration

This is the author's manuscript

Original Citation:

Availability:

This version is available http://hdl.handle.net/2318/1548126 since 2016-01-18T17:03:12Z

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

Print this Page

Presentation Abstract

Program#/Poster#: 368.07

Presentation Title:	Neuregulin1/ErbB expression regulation in the injured rat peripheral nerve during degeneration and regeneration
Location:	S102
Presentation time:	Monday, Oct 19, 2015, 2:30 PM - 2:45 PM
Topic:	++A.07.b. Regeneration: PNS
Authors:	*G. GAMBAROTTA ¹ , G. RONCHI ² , K. HAASTERT-TALINI ⁴ , B. E. FORNASARI ² , A. CROSIO ³ , I. PERROTEAU ² , S. GEUNA ² ; ¹ Dept. of Clin. and Biol. Sci., Univ. of Torino, Orbassano, Italy; ² Dept. of Clin. and Biol. Sci., Univ. of Torino, Orbassano (Torino), Italy; ³ Traumatology Department, Reconstructive Microsurgery Unit, Univ. of Torino, Torino, Italy; ⁴ Inst. of Neuroanatomy, Hannover Med. Sch. and Ctr. for Systems Neurosci. (ZSN), Hannover, Germany
Abstract:	Following injury to peripheral nerves, Schwann cells dedifferentiate, proliferate, migrate and, when axon regeneration occurs, redifferentiate into a myelinating phenotype. Schwann cells promote regeneration through the creation of a permissive environment for axon regrowth and the production of neurotrophic factors. Neuregulin1 (NRG1) is a polymorphic factor involved in the myelination and remyelination processes. Through three injury models, the expression of different NRG1 isoforms and of their ErbB receptors was investigated in the distal portion of the rat median nerve under degenerating conditions (unrepaired cut nerve) or under regenerating conditions after a mild (nerve crush) and more severe (end-to-end repair of cut nerve) injury. Following peripheral nerve injury, distinct and consecutive phases occur: nerve degeneration, axonal regrowth, nerve regeneration and maturation. A detailed mRNA and protein expression analysis of the NRG1/ErbB system was carried out, focusing the attention not only on soluble and transmembrane NRG1 isoforms, but also on alpha and beta as well as type a, b, and c isoforms. Expression specificity during the distinct and consecutive phases occurring after nerve injury and regeneration or the progress in nerve degeneration was observed. Nerve ultrastructure changes were evaluated by electron microscopy and related to the results of mRNA and protein expression analyses. At the

	mRNA level, soluble NRG1 isoforms alpha and beta, as well as type a and b,
	are strongly up-regulated early, during nerve degeneration and the early phases
	of axonal regrowth, but their expression does not seem to be differentially
	regulated under regeneration and degeneration conditions. ErbB receptors are
	strongly regulated in the different phases, but at the protein level ErbBs are
	similarly regulated in the different injury models. On the contrary, we observed
	that transmembrane NRG1 isoforms are differentially regulated, at the protein
	level, under degeneration and regeneration conditions, thus suggesting that
	their expression could be a good marker to follow and monitor the regeneration
	process. This accurate regulation suggests that each member of the
	NRG1/ErbB system plays a specific role following nerve injury, that could be
	clinically exploited to promote nerve regeneration. This project has received
	funding from the European Union's Seventh Programme for research,
	technological development and demonstration.
Disclosures:	G. Gambarotta: None. G. Ronchi: None. K. Haastert-Talini: None. B.E.
	Fornasari: None. A. Crosio: None. I. Perroteau: None. S. Geuna: None.
Keyword (s):	NEUREGULIN
	NERVE INJURY
	REGENERATION
Support:	EU 7FP Grant 278612