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Abstract We present a new measure for evaluating focused
versus overview eye movement behavior in a stimulus
divided by areas of interest. The measure can be used for
overall data, as well as data over time. Using data from an
ongoing project with mathematical problem solving, we
describe how to calculate the measure and how to carry out
a statistical evaluation of the results.
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Introduction

This article describes a new measure: transition sequences
between areas of interest, or in short, TS–AOI. This measure
is used for analyzing data coming from the dynamic behavior
of eye-movements when areas of interest (AOIs) are
explored.1 In this study, the AOI is a limited area on a
stimulus encapsulating a word in a text or an object in a
picture. The new measure combines two features that existing
measures have not combined to date. First, it classifies
subsequences of eye-movement data as focused behavior
(looking within or between a few positions) versus overview
behavior (looking at many or all positions in a sequence).

Second, it represents gaze position data with AOIs that can be
given semantic meaning in relation to the experiment at hand.

The need for the new measure was revealed in a project
investigating mathematical problem solving, where we were
interested in dynamic changes in eye movement behavior over
time, using an AOI representation of stimuli. We specifically
wanted to analyze the transitions among the areas that
contained relevant information for solving the given task—
for example, to know how participants change between an
overview and a focused behavior over time, since these two
behaviors signify two cognitive processes that could be
useful for determining what a participant is doing over time
in a task. In mathematical problem solving, focused
inspection of a few AOIs could be a comparison between
two mathematical objects, while a sequence over many AOIs
could be overview scanning or search for a specific element.

Focused versus overview eye-movement behavior is a well-
known distinction in eye-tracking research. Early observations
by Buswell (1935) found that art viewing involves two kinds
of eye-movement behavior, either short fixations over the
whole painting or longer fixations in a delimited area of the
painting. They correspond to overview and focused eye-
movement, respectively. More recently, these two behaviors
were reinvestigated by Unema, Pannasch, Joos, and
Velichkovsky (2005), using the terms ambient versus focal
search. Groner, Walder, and Groner (1984) and Zangemeister,
Sherman, and Stark (1995) also studied these eye movement
characteristics, using the terms global versus local search.

Sequences of AOI hits are often analyzed using
transition matrices (Ponsoda, Scott, & Findlay, 1995),
Markov models (Simola, Salojärvi, & Kojo, 2008), or
varieties of the string edit similarity measures (Choi,
Mosley, & Stark, 1995). Change over time and space has
also been studied using proportion-over-time analyses
(Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995)
and time series analysis (Uttal, 1983).

1 The AOI is used as in established eye-tracking research literature.
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However, as we will argue next, although all these
methods have useful qualities, they do not combine the use
of AOIs with analysis of subsequences of focused and
overview behaviors. We then show not only that the new
unique AOI measure is clearly distinct from already
existing measures, but also that it is a general measure
sensitive to small differences in overall visual behavior
during complex tasks. And it can be easily integrated with
other measures, in order to have a deeper and broader look
at data from eye-movement behavior. This measure lends
itself well to a range of domains where the aim of the study is
to examine eye-movement behavior over time. In usability
research, human factor, and advertisement studies, AOI
sequences are commonly used in data analysis. Our own
application is problem solving and educational psychology,
but psycholinguistic visual world and general real-world
studies that use AOIs and investigate sequences are equally
likely to benefit from implementing this measure.

Method

Participants Forty-six Swedish university students partici-
pated in the study. Students had different knowledge
backgrounds in mathematics. Twenty-four had no previous
university courses in mathematics, and 22 had one year of
mathematics studies at an engineering faculty. We later
divided the participants into two equally large groups on
the basis of their overall score (number of correct answers)–
low-ability and high-ability participants.

Materials All 43 mathematical stimuli had exactly five AOIs,
which were the same distinct objects as in Fig. 1. There was
always one text, graph, or formula, as in this case, which is
referred to as the input (labeled “I”), and four alternatives
(labeled “A”-“D”), which are all of the same type but
different from the input: 15 presented a single formula to the
right on the screen, with four text alternatives to the left on
the screen; 12 presented a single graph occupying the top
two thirds of the screen, with four alternatives containing
text under the graph; 16 presented a text occupying the top
one third of the screen, with four alternatives containing
formulas below the text to the right on the screen. The
content of the AOIs varied in size depending on the content;
for example, a short formula resulted in a smaller AOI,
whereas a graph required a larger AOI. There were no
overlaps between the AOIs. All stimuli were sized to fit the
screen specified in the Apparatus section.

Apparatus We used an SMI HiSpeed eye tracker with a
sampling frequency of 1250 Hz to collect transitions, which
are eye-movements between the different AOIs. In a
sequence such as IAIB, a participant first looks at the

input, then at alternative A, then at the input, and finally at
alternative B. Stimuli were presented on a computer screen
(380 × 304 mm) with E-Prime, at a distance of 56 cm.

Procedure The participant was seated in front of the eye-
tracker and placed his or her head in the chin rest of the tower-
mounted system to stabilize viewer position. We calibrated the
eye tracker and presented a practice block in order to
familiarize the participant with the task, which was to
determine which of the four alternatives (A–D)was an accurate
representation of the single representation (I) and corresponded
to the single representation according to some rule or feature.
All stimuli were thereafter presented in random order. Each
participant took his or her own time to solve the task, but each
stimulus was presented for a maximum of 40 s, which was pre-
tested as a sufficiently long time to solve the task. Participants
chose their answer by clicking on it with the mouse.

The problem to be solved

Figure 1 shows 1 out of 43 mathematical-problem-solving
tasks from the study that will exemplify our measure.

In this study, we wanted to answer questions such as the
following: When participants work with these mathematical
tasks, do they mostly go back and forth between a couple of
AOIs (which we call focused behavior), or do they very
often circle all five AOIs in a sequence (which we call
overview scanning)? Do they sequence all five AOIs in the
early phase and only then make transitions back and forth
between a few AOIs?

y =         -3     7
2 - x

y skär den vertikala  axeln i en 
punkt med negativt y-värde.

y skär den horisontella axeln i 
en punkt med negativt x-värde.

y har en vertikal asymptot x = 3. 

y har en horisontell asymptot y
= 3.

Fig. 1 Mathematical-problem-solving task: Find the correct written
description of the function in the formula (I = input). Translations of the
four alternatives are A,“y cuts the vertical axis in a point with negative
y-value”; B, “y cuts the vertical axis in a point with negative x-value”;
C, “y has a vertical asymptotex = 3”: D, “y has a vertical asymptotey = 3”
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We were interested in such an analysis because it could
provide information about changes in problem-solving behav-
ior over time. In our particular application, we want to use the
results in future intervention studies to examine how students
can be supported when reading mathematical representations.

The existing measures

Here, we present seven already existing measures, or
groups of measures, and evaluate them against the require-
ments that the experimental design in our problem-solving
study place on our proposed measure. That is, we examine
how the measure accounts for the two properties of interest:
representation of position, using AOIs, and the frequency of
focused versus overview sequences. We have not included
pure position comparisons and spatial dispersion measures
that obviously do not take sequences into account—for
instance, the Mannan similarity measure (Mannan, Ruddock,
&Wooding, 1996) or the Kullback–Leibler distance measure
(Tatler, Baddeley, & Gilchrist, 2005).

Local versus global The degree to which a scanpath is local
is operationalized as the proportion of saccades with an
amplitude below a certain threshold (Groner et al., 1984),
which is typically selected to be around 1.5°. Local scans
(short saccades) are argued to correspond to detailed
inspection, while global scans (long saccades) reveal
overview looking. There are three drawbacks of the local
versus global measure for our problem-solving task. (1) It
cannot take AOI data as input. (2) Detected local short
amplitudes are likely to simply reflect close inspection inside
an AOI (as in Fig. 2). (3) Moreover, the measure does not
involve any analysis of sequences.

Ambient versus focal The distinction between ambient and
focal processing combines saccadic amplitudes with fixation
durations: An ambient scan is recognized by long saccades
and short fixations, while a focal scan involves short
saccades and long fixations. Unema et al. (2005) showed
that when viewing pictures, participants start with an ambient
overview scan and only then scan the picture elements
focally. From the perspective of our study, drawbacks with
this measure are, again, that it is not able to accept AOI data
and that detected focal processing can be internal to AOIs.
Sequences are not involved in the analysis.

Proportion of time analyses When the proportion of
participants that look at a specific AOI is plotted over
time, the resulting graph can be used to study how quickly
and in what order AOIs are seen (Tanenhaus et al., 1995).
This is useful for general latency studies and for the
comparison between groups (Andrà et al., 2009), but no

sequence information is used in the measure, so it tells us
nothing about the scan sequences of individual participants.

Autocorrelation (ACF) Autocorrelation is defined using a
transformation that maps a pattern onto itself, which is why
it is called autocorrelation. One of the pioneers who applied
ACF to eye-movement research is Uttal (1983), who
considered discrete 2-D patterns. For a discrete 2-D pattern
f(x, y), the autocorrelation function for translations is
written as Aða; bÞ ¼

P
x

P
y
f ðx; yÞ $ f ðxþ a; yþ bÞ½ '. As such, it

is a measure of the dynamics over space, while our needs
are a measure that encapsulates changes over time, and we
will therefore use time as the coordinate (Andrà et al.,
2009). Also, autocorrelation does not distinguish between
focused and overview behavior.

String edit methods When the scanpaths of each participant
are represented with a string of AOIs, the string edit measure
can quantify the overall similarity between the scanpaths of
two participants—represented as strings of AOIs—by count-
ing the number of edit operations required to transform one of
the two scanpaths into the other (Choi et al., 1995; Cristino,
Mathôt, Theeuwes, & Gilchrist, 2010). These strings
represent sequences over full trials of participants but are
used only for pairwise comparisons, not for calculating the
frequency of types of sequencies. Also, string edit methods
do not concern measurements of changes over time.

Transition matrices and Markov chain models A transition
matrix is a table of the number of transitions between all
pairs of AOIs, examplified in Table 1, which, for our five
AOIs, would be a 5 × 5 table. As such, it quantifies the
frequency of sequences of length 2 AOIs. In our mathe-
matics education project, we would like to study sequences
up to length 5, but as we will explain below, transition

Fig. 2 This fictitious raw scanpath is an overview scan through the
five AOIs, but the local versus global, as well as the ambient versus
focal, measures would detect much local inspection (short saccades)
inside the AOIs, resulting in a high local/focal score
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matrices of higher orders become very complex as
sequence length increases, because of the exponential
growth of the number of different sequences. We have
found only one study using transition matrix analysis with
sequences of length 3—namely, Ahlstrom and Friedman-
Berg (2006), who studied transition sequences in an air
traffic controller’s weather station. The authors found very
sparse matrices and almost no frequent sequences of length
3. Markov chain models are a variety of transition matrices
quantifying the probability of sequences of length 2. When
successive transition matrices (“chaining” them) are multi-
plied, the probability of longer paths can be calculated, but
it is not a calculation that can give us the relative
prevalence of selected groups of longer sequences (such
as overview vs. focused behavior), but only probabilistic
estimations of how likely longer single sequences are
(Ross, 2006).

Triplet frequencies Groner et al. (1984) counted triplets of
AOIs, sequences of length 3, from a face scene with seven
AOIs. They found that back-and-forth movements between
the eyes were the most common triplets. This is close to our
measure, but we need to extend it to longer sequences and
add a method for statistical analysis that works with all
numbers of AOIs and all sequence lengths.

This overview shows that if we are interested in counting
the number of sequences of a particular kind, current
measures are limited. None of the measures described can
answer questions about how common overall scanning of
AOI is, in comparison with movements back and forth
between a few AOIs.

Transition sequences with unique AOIs: The first step
toward a new measure

For purposes of presentation, this section introduces the
new measure by an example using fictitious data. We then
show how the measure works on the real data from a large
data set that it was developed for. In this part, we

anonymize the AOIs, but later in the article, we again
differentiate between all five AOIs.

A transition matrix is a full catalogue of all sequences
of length equal to the dimensionality of the matrix. For
instance, keeping score of all sequences of length 2
results in a transition matrix with 52 ( 5 ¼ 20 cells, as in
Table 1. With sequence length 5, when there are n AOIs, a
five-dimensional transition matrix representation of all
sequences requires 5 $ ð5( 1Þn(2 cells, which equals 1,280
cells for five AOIs. Unless enormous amounts of data are
recorded, the vast majority of these cells will be empty.
This exponential growth and the resulting sparseness of
transition matrices as the sequence length increases can be
dealt with in two very different ways. The first approach is
the probabilistic method of the Markov chains—that is, to
convert the transition frequencies to probabilities and
ignore probabilities at or close to zero. Since this leaves
us only with the possibility of calculating the most
probable path at a given state, but not frequencies for all
kinds of sequences, Markov chain models are not a viable
solution.

The second approach to the exponential growth
problem is to group the 1,280 sequences into a smaller
number of categories. This gives cells with enough data
in each even when there are smaller amounts of data, but
the grouping of sequences into categories must be done
in a way that makes sense to the research question.
Fortunately, this is possible in an analysis of overview
versus focused eye-movement behavior: If we have five
AOIs (I, A, B, C, and D), we want to know how
common it is that participants sequence all five AOIs in
a row (represented as ACDBI), as compared with
sequences that involve only two AOIs (such as IAIAI
or BDBDB). In our mathematics stimulus of Fig. 1,
looking at all five AOIs in a row would be indicative of an
overview search, while an IAIAI search sequence is likely
to involve some form of comparison between the I and A
content. In general, a long sequence with only two AOIs
involves a more focused search than one where all five
AOIs are involved. We will call such sequences unique-2
and unique-5. Using uniqueness analysis allows our
analysis to work with four classes of sequence types,
rather than with 1,280 cells. Of course, viewing IAIAI and
BDBDB as equal is a strong reduction of the amount of
information in the data, so that we can no longer
differentiate between which AOIs the scanpath traverses.
We will return to this issue later.

The measure is calculated in the following way.
Suppose, for instance, that for a hypothetical participant
and trial, we record a scanpath over AOIs. We transform it
into an AOI sequence, such as IAIBACIAIABCDIAIAI,
where each letter is an entry into an AOI. Consecutive
fixations in the same AOI are reduced to one, as in a

Table 1 Transition diagram from the fictitious AOI sequence
IAIBACIAIABCDIAIAI. The two most frequent transitions are IA
(value 5) and AI (4), while all other transition pairs are infrequent,
resulting in 1 s and 0 s in the cells

From to I to A to B to C to D

I – 5 1 0 0

A 4 – 1 1 0

B 0 1 – 1 0

C 1 0 0 – 1

D 1 0 0 0 –
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compressed string edit representation. String truncation due
to length differences is not necessary. TS–AOI sequences
are then defined by letting a window of size 5 travel along
the AOI sequence. First, the window will encounter IAIBA
and see that there are three unique AOIs (i.e., I, A, B). Next,
we move the window one step and find AIBAC, which has
four unique AOIs. We continue like this, until we have
reached IAIAI at the end, which has only two unique AOIs.
In total, we will have 14 AOI uniqueness numbers from the
recorded sequence of 18 AOIs—namely, 3-4–-4–4–3–3–3–
4–5–5–5–4–3–2. We now count how many unique-2,
unique-3, unique-4, and unique-5 AOIs there are in this
sequence, and we find one unique-2, five unique-3, five
unique-4, and three unique-5AOIs. In Table 2, an example
is shown.

Table 2 examplifies a simple analysis of the sequence
of AOI uniqueness numbers. We compare the number of
two-TS–AOI windows with the three-, four- and five-
unique windows. To our hypothetical participant (number 1),
we have added 4 more fictitious participants and can make a
table of all 5 with these numbers. These 5 participants exhibit
very different behaviors. Participant 2 has many 5s, which
means that this participant has more or less circulated all five
AOIs round and round. Participant 3 has very many 2s, which
corresponds to making many pairwise comparisons, such as
IAIAI, although we do not know which pair of AOIs. The last
2 participants have tendencies in each direction: participant 4
toward pairwise comparisons and participant 5 to circling the
AOIs.

After this introduction, let us now look at how the
measure works with real data, instead of fictitious data.
Figure 3 shows the data from all 43 trials and 41
participants divided into the two groups of high and low
ability. The tendency is clear: High-ability students make
more focused sequences between just a few AOIs (unique-2
and unique-3), while low-ability students make more
overview scans with sequences that involve four and five
AOIs. Figure 4 shows the first five transitions in all trials—
that is, the first window of five AOIs in the sequence from
just after the onset of the stimulus. The only difference is
that low-ability participants make even more unique-5 and

fewer unique-2 sequences just after onset. But the really
large difference in real data is just before the click to
answer, shown in Fig. 5. Toward the very end of trials,
high-ability students make 25% pairwise comparisons—
that is, cases with five consecutive dwells, in which only
two unique AOIs were visited—and another 43% unique-3
sequences.

Our proposed measure is thus able to detect difference in
real data, relating to focused versus overview scans across
AOIs. In the next section, we will look at how the measure
behaves over time and then how we can calculate statistics
on the measure.

Transition sequences with unique AOIs: time turns up

In Figs. 4–5, we saw a difference in scanning behavior
between our two participant groups at the onset of trials, as
compared with the end. We will now look more closely at
the behavior over time. For each moment in time—that is,
each stop of the window over the AOI sequences in the
upper part of Table 3—our measure calculates a histogram,
resulting in the lower part of Table 3. When the histograms

Table 2 Number of windows with two, three, four, or five unique
AOIs for each of 5 fictitious participants

Unique-2s Unique-3s Unique-4s Unique-5s

Part. 1 1 5 5 3

Part. 2 0 1 1 12

Part. 3 11 2 1 0

Part. 4 9 2 3 0

Part. 5 0 4 4 6

Fig. 3 High-ability students make more focused (unique-2 and unique-3)
sequences over the entire trial

Fig. 4 The first window of five transitions,with only small differences
from the data for the whole trial

Behav Res (2011) 43:987–998 991



are put into a sequence, we can see and analyze the
development over time. Most of the fictitious participants
have 4 s and 5 s at the early stages, indicating an early
scanning behavior over many AOIs, while during later stages
in the table, they generally have lower uniqueness numbers,
indicating that they go back and forth between a small number
of AOIs. As above, these data reveal sequence information,
but not which AOIs are visited.

Let us now return to the real data. In order to simplify
graphs, and because they appear to show a very similar
effect (according to Fig. 4), we will from now on collapse
unique-2 and unique-3 into one group for focused behavior
and unique-4 and unique-5 into a single group for overview
scanning.2 Since focused and overview curves are comple-
mentary (they sum to one), we highlight the focused
(unique-2 and −3) curve.

Figure 6 shows data over time for a single high-ability
participant and all 43 tasks. On average, this participant
starts with a quick pairwise looking behavior, followed by
an equally short scan over many or all AOIs, and then more
in-depth comparisons of fewer AOIs. Figure 7 shows a
single low-ability participant with a less distinct pattern.

In Fig. 8, we summarize the data for all trials and all
participants, separated into high- and low-ability. We show
only the proportion of focused behavior (unique-2 and
unique-3 data). The graph shows that high-ability students
make more focused movements than do low-ability
students throughout the entire trial (upper graph), but the

difference is larger in the beginning (transition number 5–6,
since number 1–4 was consumed by the first window) and
after around transition 9. A binomial test, which is used to
test whether a value is significantly different from chance
level, shows that high-ability participants make significant-
ly more focused sequences than chance throughout. As later
calculation will show, the chance probability for the
collapsed unique-2 and unique-3 categories is about
.3436. The figure shows how the low-ability group hovers
around .5 throughout the graph, significantly more focused
than chance only at some points in time.

As a consequence, since high-ability participants make
significantly more focused sequences than chance through-
out the graph, and the low-ability group hovers around .5
throughout the graph (significantly more focused than
chance only at some points intime), it is possible to
compare the two groups with each other at different time
points and conclude that, in most cases, between-group
differences are significant. This result can be achieved also

2 Our research question examined two opposite behaviors (comparing
two or few items vs. looking at almost everything), which governed the
separation between focused behavior and overview scanning. Since the
data for unique-2 and unique-3 were similar, as well as the data for
unique-4 and unique-5, we decided to simplify the graphs by collapsing
them. This was done purely to facilitate reading and the continuing
discussion of our new measure in this article. We acknowledge the fact
that for some research questions, it may be necessary to include only
comparisons between exactly two items, thus including only unique-2
strings, or that for some questions, it may be appropriate to include only
overview scanning, where all items are included. In our example, it would
refer to including only unique-5.

Fig. 5 The very last window before participants clicked the selected
alternative and ended the trial

Table 3 Upper part shows sequences of the number of unique AOIs
for successive moving windows. The lower part of the table shows the
successive histograms—the four vertical values belonging to each
uniqueness number—calculated for the values for all participants in
the same column. Time goes from left to right

Sequences of Uniqueness Values

Participant 1 4–3–4–4–3–3–3–4–5–5–5–4–3–2

Participant 2 5–4–5–4–3–4–5–4–3–2–3–2–3–2

Participant 3 4–4–5–3–3–4–3–3–3–2–3–4–2–3

Participant 4 5–5–5–4–3–2–2–3–3–2–3–2–3–2

Participant 5 5–4–5–5–4–3–3–4–3–3–2–2–3–2

Histograms Over Time

Number of unique-2s 0–0–0–0–0–1–1–0–0–3–1–3–1–4

Number of unique-3s 0–1–0–1–4–2–3–2–4–1–3–0–4–1

Number of unique-4s 2–3–1–3–1–2–0–3–0–0–0–2–0–0

Number of unique-5s 3–1–4–1–0–0–1–0–1–1–1–0–0–0

Fig. 6 Behavior of a typical single high-ability participant over time,
collapsed over all 43 stimuli. The transition number on the x-axis
starts with 5 because transitions 1–5 are included in the first window
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using, for example, a t-test for independent populations at
each time point, but in this case, the information that high-
ability participants are above chance level at each time
point would be missed.

Observe that the time dimension in the figures signifies
the order of the windows for calculating the number of
unique AOIs. Since the first window always consumes four
transitions, time in these diagrams will start at the fifth
transition, and its unit will be number of transitions from
onset. The first value in the curve therefore represents not
just a point in time, but a whole window that can be a few
seconds long.

Furthermore, this over-time measure ignores whether a
participant dwelled for a longer or shorter time at a
particular AOI between transitions. It reflects only transi-
tion order. When we summarize data from the same
transition number across several participants, we must be
aware that these data may originate from quite different
points in actual time.

A simple test to verify that this is not the case would be
to examine whether the number of transitions per time unit
is the same between participants, which can be assessed
using an ANOVA test. However, many times, in practice,

this simple test is useless, since dwell times within AOIs
often differ significantly between participants.

Hence, it could be useful to test whether dwell times can
be considered as exponentially distributed (Ross, 2006). If
dwell times have an exponential distribution, in fact, the
assumptions for applying an ANOVA to our measure hold,
and this is a classic result in literature (see, e.g., Ross,
2006). Testing the exponential distribution of dwell times
can be performed using the classic chi-square test or the
Kolmogorov–Smirnov test (Ross, 2006) on the distribution
of dwell times.

Since dwell times often have an exponential distribution
(Holmqvist et al., 2011), our method does not lose
generality because of this constraint. To sum up, even if
dwell times differ significantly among participants (as an
ANOVA test may highlight), it is enough for applying this
measure that dwell times have an exponential distribution.
This condition is satisfied in most experimental situations.

The participants in the study that we use for exemplifi-
cation ended their trials by selecting the alternative they
judged was the correct one. If we want to analyze their
behavior just before the click, when they were ready to give
their answer, we have to align the sequences at their
endpoints of the trials, before we summarize over partic-
ipants. Figure 9 shows such data. We can clearly see that
the high-ability participants stick with their focused eye-
movement behavior to the very end.

Two settings for the transition sequences
with unique AOIs

There are two settings for this TS–AOI measure. The first is
its window size, which we call w. All the examples above
use a five-AOI window; that is, the window stretches over
five AOIs in the recorded AOI sequence, because there are

Fig. 8 All participants, by groups, and all 43 stimuli. Xs indicate that
the value is significantly different from chance level (34%), according
to a binomial test

Fig. 7 Data from a typical single low-ability participant, all 43 stimuli

Fig. 9 These data are aligned so that the end of trial corresponds to
time 0 in the diagram. Time 1 is the last window of five AOIs before
the end of trial, time 2 the second to last, and so forth. This also means
that the data are reversed, so time is ordered in the opposite direction
from that in the other graphs. Xs indicate that the value is significantly
different from chance level (34%), according to a binomial test
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five AOIs in the stimulus and it is possible to visit all five
in one consecutive sweep. Since five AOIs is the maximum
number of AOIs to visit, there is no need to have a larger
window than there are AOIs.

But what is the maximal window size? In a stimulus
with 10 AOIs, is an AOI window size of 10 reasonable?
There are at least two arguments that can be made. First, the
statistical treatment of this type of data indicates that 10
AOIs and a window size of 10 are feasible, but with more
AOIs and longer sequences, data become more and more
skewed to the higher uniqueness categories. Second, it
would be possible to argue that in cases in which low
uniqueness values are taken to indicate focused compar-
isons, the window size should probably not be larger than
the number of items that a participant can hold in memory
(Miller, 1956), because otherwise we would not be
measuring comparisons. This is likely to be in the same
general range, not much more than 10.

The other setting is the step size when the window is
moved ahead in the recorded AOI sequence. We have used
a one-step setting above. The shortest possible step size
gives the best temporal resolution to the measure, but a
moving window undermines the independency requirement
for many statistical tests. One solution would be to move
the window not one step, but five steps, so as to get
successive samples of size 5. This will essentially give
independence (since no data points in one window are
present in the adjacent window) and allow for classical
hypothesis testing, but at the cost of less data. Fortunately,
other statistical solutions exist.

Transition sequences with unique AOIs: statistical
methods

In this section, we present statistical methods for the
measure we propose. As was stated earlier, we wanted to
know what students are doing while engaged in a
mathematical task and to find out what kind of differences
there are in students’ eye-movement behavior over time. In
the following, we will exemplify how to (1) compare
transition sequences with unique AOIs over time, (2)
compare different intervals (i.e., eye-movement behavior
early vs. late in a task), and (3) perform statistical testing.

We first address the independence issue: When a moving
window is used over the original sequence of transitions,
values in the sequence of uniqueness values are not
independent of their neighboring values. This undermines
some uses of variance tests such as ANOVAs and the t-test.
In particular, we cannot test in Fig. 8 whether the
proportion of focused (unique-2 and unique-3) sequences
at transition 5 is significantly lower than that at transition 6,
because data at transitions 5 and 6 are calculated from

overlapping windows and, hence, share the same origin.
Nor can we use these well-known classical tests, such as
ANOVAs, to compare the levels of our groups over time.

However, there is an alternative statistical method for the
same type of comparison, based on so-called time series
analysis (Box, Jenkins, & Reinsel, 1994), that can be carried
out in most statistical softwares (SPSS, R, etc.). It resembles
work by Uttal (1975) but uses the temporal coordinate, t, to
compute the correlation between a certain instant t and
another instant t + l, where l is the lag. The following step-
by-step description is a summary of the procedure, but
consult literature on time series analysis for details.

Assume that we have two series of uniqueness propor-
tions, as in Figs. 8 and 9, that we wish to compare between
groups or conditions or to compare an earlier stage against
a later. Comparing the high-ability participants against the
low-ability participants therefore corresponds to performing
this test for both series of values and making sure that they
both pass the test (insignificant autocorrelation values and
normal distribution) and that they are centered around
different averages (for instance, 0.7 vs. 0.5).

1. For each of the two series—for instance, for the high-
ability participants in Fig. 8—investigate whether the
curve is approximately constant at a certain level (such
as 0.7). If it is not, derivate it to achieve a constant level.

2. Calculate the averages of both series (now approxi-
mately constant). It is these that we actually compare.

3. Subtract the average of each series from the values in it,
so as to make the series centered around zero. Check
that the centered values have a normal distribution with
a mean of 0.

4. Estimate what are known as the autocorrelation
functions (ACFs) and the partial autocorrelation func-
tions (PACFs) on the centered values. The ACF and the
PACF values are insignificant—that is, approximately
zero3—for a lag greater than a (small) value. This
means that the values are not correlated with each other
for a long time.4 To give an idea, this can be considered
as a further check of constantness in the series.

5. Estimate the ACF and the PACF on the residuals. The
two series are significantly zero if the residuals are
randomly distributed around zero. Such a test does not
give information on the behavior, but it simply allows
us to verify a posteriori the goodness-of-fit of the
model to data. In the case in which residuals do not

3 When an appropriate statistical software is used, confidence intervals
for the zero values of the ACF and the PACF are provided by it.
4 Assuming that the ACFand the PACF are approximately zero for a
lag greater than a certain value does not lead to a loss of generality of
the model. It sounds reasonable, in fact, to suppose that, after a certain
time interval, values would not be autocorrelated.
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satisfy this condition, it could be necessary to change
the parameters that characterize the model.

The second statistical issue that needs to be addressed is
the chance probabilities of the distribution of data across
the four classes with uniqueness values of 2–5, which we
need for binomial tests. It may be tempting to assume that
the four classes (unique-2 to unique-5) would exhibit an
equal distribution of 25% chance level to each. This is not
the case, however.

In order to correctly calculate chance levels, we employ
MATLAB calculations and combinatorics. It turns out that
the actual distributions of the number of possible unique-k
sequences depends heavily on the number of AOIs n, the
value k, and, to some extent, the window size w. Table 4
shows the distribution of all possible strings for a window
length w of five and the number of AOIs n from 2 to 12. In
our mathematic-problem-solving study, we used w = 5 and
n = 5, which means that the chance probability of making a
unique-2 sequence is 1/21 of the chance for a unique-3
sequence, and even a sixth compared with making a
unique-5 sequence. Recalculated as normalized probabili-
ties, we have (u-2,.0156; u-3,.328; u-4,.562; u-5,.0938).
This chance distribution resembles that of the low-ability
participants just before they clicked to answer (Fig. 5), but
even then, these participants make many more u-2
sequences (8%) than they would have if they had looked
at the stimulus completely at random (1.5%). After we have
calculated these chance levels, the true binomial test allows
us to correctly test the hypothesis that, for instance, the
high-ability students make many more unique-2 transition
sequences than chance.

Table 4 gives the basis for calculating chance probabil-
ities for many types of studies were the window size w = 5.

But if the number of AOIs n is larger than 12, it is useful to
know that the numbers in Table 4 are calculated from Eqs.
1–5 below. Note that these are valid only for w = 5.

u( 2 ¼ w $ ðw( 1Þ ð1Þ

u( 3 ¼ w $ ðw( 1Þ $ ðn( 2Þð2ðw(2Þ ( 1Þ ð2Þ

u( 4 ¼ 6 $ w $ ðw( 1Þ $ ððn( 2Þ2 ( ðn( 2ÞÞ ð3Þ

u( 5 ¼ w $ ðw( 1Þ $ ððn( 3Þ3 ( ðn( 3ÞÞ ð4Þ

All ¼ w $ ðw( 1Þðn( 1Þ3 ð5Þ

Rather than presenting tables with chance-level calcu-
lations for other ws with large numbers, we present the
equations for calculating chance levels for window sizes 4
and 6 and for all n. For window sizes w = 4, the
corresponding Eqs. 6–9 give the number of possible
transition sequences for all ns. Note that there are only
small differences from Eqs. 1–5; in particular, Eq. 9 is
quadratic, and Eq. 5 is cubic. Also, compare Eqs. 4 and 8.
Nevertheless, the calculation for unique-2 and unique-3
values is the same for all examined window sizes:

u( 2 ¼ w $ ðw( 1Þ ð6Þ

u( 3 ¼ w $ ðw( 1Þ $ ðn( 2Þð2ðw(2Þ ( 1Þ ð7Þ

u( 4 ¼ w $ ðw( 1Þ $ ððn( 2Þ2 ( ðn( 2ÞÞ ð8Þ

All ¼ w $ ðw( 1Þðn( 1Þ2 ð9Þ

For w = 6, the equations for calculating all possible
transition sequences change some more, as shown in
Eqs. 10–15. For window size w = 7, the equations are
quite complex, but one thing remains constant: As we
increase the windowsize—which corresponds to increasing
the dimensionality of the underlying transition matrix—the
number of cases with low uniqueness values remains slow-
growing, and the bulk of the growth in the transition matrix
is consumed by the higher uniqueness categories. In fact,
the number of unique-2 sequences is always constant in n,
the number of unique-3 always linear in n, and generally it

Table 4 The number of possible unique-2 (u-2) to unique-5 (u-5)
sequences given a number n of AOIs and a window length w = 5.
“All” is the total number of transition sequences of length w in an
n-dimensional transition matrix, AOI repetitions excluded

w n u-2 u-3 u-4 u-5 All

5 2 20 20

5 3 20 140 160

5 4 20 280 240 540

5 5 20 420 720 120 1,280

5 6 20 560 1,440 480 2,500

5 7 20 700 2,400 1,200 4,320

5 8 20 840 3,600 2,400 6,860

5 9 20 980 5,040 4,200 10,240

5 10 20 1,120 6,720 6,720 14,580

5 11 20 1,260 8,640 10,080 20,000

5 12 20 1,400 10,800 14,400 26,620
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appears that the number of possible unique-k transition
sequences is described by a polynomial of grade k-2:

u( 2 ¼ w $ ðw( 1Þ ð10Þ

u( 3 ¼ w $ ðw( 1Þ $ ðn( 2Þð2ðw(2Þ ( 1Þ ð11Þ

u( 4 ¼ 25 $ w $ ðw( 1Þ $ ððn( 2Þ2 ( ðn( 2ÞÞ ð12Þ

u( 5 ¼ 10 $ w $ ðw( 1Þ $ ððn( 3Þ3 ( ðn( 3ÞÞ ð13Þ

u( 6 ¼ w $ ðw( 1Þ $ ððn( 2Þ4( 6

$ ðn( 2Þ3 þ 11 $ ðn( 2Þ2 ( 6 $ ðn( 2ÞÞ
ð14Þ

All ¼ w $ ðw( 1Þðn( 1Þ4 ð15Þ

In other words, the more AOIs we have, and the longer
the sequences are that we measure, the less likely it is that
our participant is going to make pairwise unique-2 move-
ments back and forth between two AOIs. For instance, with
a window of w = 7 AOIs and a total of n = 11 AOIs in the
stimulus, the unique-6 sequences are 45,360 times more
likely, as compared with unique-2 sequences.

Transition sequences with unique AOIs:
When the information in a specific AOI counts

One major drawback with the method above is that we
disregard the AOI identity completely. For instance, the
measure counts how many unique-2 sequences there were,
but it cannot distinguish between AIAIA and BCBCB,
although these two sequences appear to correspond to two
very different cognitive processes. In this section, we present a
development of the measure that includes AOI identity.

Let us continue using the number of AOIs n = 5 and
window size w = 5, as above. We will now assume that
AIAIA and IAIAI can be considered identical but that they
are different from BCBCB, as in Fig. 10. More generally,
sequences with the same uniqueness number and the same
AOIs will be considered identical, even if the order is
different or the number of instances of each is different. For
instance, the two unique-4 sequences IACBI and CIABC
are considered equal, but they are different from DBAIA.

Statistically, this is just a further division of each
uniqueness category into subcategories. The unique-2
category of sequences have

5
2

! "
¼ 10 such subcategories,

one containing the two AIAIA and IAIAI, and one

subcategory each for the corresponding sequences involv-
ing the AOI pairs (I,B), (I,C), (I,D), (A,B), (A,C), (A,D),
(B,C), (B,D), and (C,D). Each such category has two
members, which are sequences.

For the unique-3 category, there are
5
3

! "
¼ 10 subcatego-

ries, although now each subcategory involves three AOIs, as
in Fig. 11. Similarly, the unique-4 category has five–that
is,

5
4

! "
—subcategories with four identical AOIs in each. The

unique-5 category does not have any subcategories,
since

5
5

! "
¼ 1.

In total, we have 26 subcategories, rather than four
categories, when the number of AOIs n = 5 and window
size w = 5. The increase in number of categories allows
finer experimental distinctions to be made but will also
require more data to distribute among the categories, or
significance levels will not be reached. In general, the
number of categories can be calculated as in Eq. 16.

Number of subcategories ¼
Xminðn;w(1Þ

i¼2

n
i

! "
ð16Þ

Baseline chance probabilities for each subcategory can
easily be calculated by dividing the values in Table 4 by the
corresponding number of subcategories. For instance, we
read a total of 420 possible unique-3 sequences. Divided
bythe

5
3

! "
¼ 10 subcategories, we have a chance level of

each subcategory of 42 possible sequences, or a normalized
base probability of 42/1280 = 3.2% for each unique-3
subcategory. The other base line probabilities for n =5 and

Fig. 10 Of the total 20 unique-2 sequences (n = 5, w = 5), there are
10 subcategories, each with two members. The two subcategories
shown are the unique-2 with I and A subcategory of sequences and the
unique-2 with C and D

Fig. 11 Of the total 420 unique-3 sequences (n = 5, w = 5), there are
10 subcategories, each with 42 members. The single subcategory
partially shown is the unique-3 subcategory with I, A, and B
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w = 5 range from 0.15% 2
1280

# $
each for the two unique-2

subcategories to 11.25% 144
1280

# $
for the five unique-4

subcategories.

Discussion

We have proposed the TS–AOI measure to sort sequences
of transitions into meaningful groups. None of the existing
measures we mentioned at the outset of this article combine
AOI-based sequences with an analysis of overview and
focused visual behavior. Although they both adopt similar
AOI sequences, the TS–AOI measure differs from the
string edit method by analyzing frequencies, rather than
pairwise similarities. The intended goal of the TS–AOI
measure is similar to that of the local versus global and the
ambient versus focal measures—namely, to classify focused
versus overview looking—but the TS–AOI measure works
on AOI sequence data, which allows for detailed classifi-
cation of sequences founded on a meaningful division of
space.

In its basic form, the TS–AOI measure has four groups
when the sequence length is five and, more generally, min
(n-1, w-1) groups when n is the number of AOIs and w is
the sequence length. This is a reduction in the number of
groups in data from the exponential number w $ ðw( 1Þn(2

of cells in the w-dimensional transition matrix for n AOIs to
a number (min(n-1, w-1)) that is almost constant. Still,
meaningful analyses can be made, as we have shown with
the mathematical-problem-solving data.

In its second form, the TS–AOI measure distinguishes
sequences in each uniqueness category on the basis of the
AOIs in it. With length 5 and five AOIs, there are 26 such
groups of sequences.When n grows, the number of groups of
sequences grows exponentially, but much more slowly than
the number of cells in the corresponding transition matrix.

It is easy to write a program to calculate uniqueness
values, and computational tractability is very good, with a
constant number of calculations per sequence. We have
given examples of methods that allow for statistical analysis
of the output from the measures.

Using the measure on real data, we have shown
significant differences between high- and low-ability
participants in our mathematical-problem-solving task.
The high-ability group makes more focused sequences
throughout the trials, and this difference reaches its peak
just before the click is made to answer. Furthermore, when
applying the measure to data from mathematical problem
solving, we have shown a strong task- and competence-
related effect on scanning: High-ability participants pre-
dominantly make focused (unique-3 and unique-2) transition
sequences at the onset of the stimulus. This viewing behavior
differs from a long line of research on picture viewing

(Buswell, 1935; Unema et al., 2005), which has shown that
overview scanning starts very soon after picture onset.5

The possibility of making over-time analysis of unique-
ness values is another attractive feature of the measure.
Although the temporal resolution is coarse, it is sufficient
for applied studies like ours. This problem stems from
using AOI sequences and is general for all measures
operating on AOI sequences.

A clear limitation is the upper limit on the number of AOIs
that can be included. In our example, we used 5 AOIs. Using
the TS–AOI measure with 100 AOIs would not be successful,
simply because with such a large n, the chance baseline will
be totally dominated by unique-5 sequences with w = 5. Our
estimations indicate that the measure works for about 3–12
AOIs. Nevertheless, this range covers most typical AOI
numbers in studies. Sequence lengths could be between 3
and 10 AOIs. Depending on the research question and how
semantic meaning is defined, the method can be used with
stimuli of higher complexity, including paintings or real-
world images—for example, examining the skills of a person
processing complex stimuli requiring reading and/or integra-
tion of various information, such as weather forecasting,
medical diagnosis of x-ray images, and so forth.

A further limitation is that dwell time in AOIs—that is, the
duration between transitions—is not included in the proposed
measure. Low dwell times mean a short inspection time in the
AOIs and would indicate different processing, as compared
with long dwells. Dwell time can be additionally analyzed in a
Markov chain model when the time is assumed to be
exponentially distributed (Ross, 2006).

All in all, we consider the unique number of AOIs
measure to be a useful and productive addition to previous
measures of scanning across multiple AOIs.
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