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Abstract: It is generally accepted that estrogens affect and modulate the development and progression of chronic kidney 

diseases (CKD) not related to diabetes. Clinical studies have indeed demonstrated that the severity and rate
 
of progression 

of renal damage tends to be greater among men,
 
compared with women. Experimental studies also support the notion that 

female sex is protective and male sex permissive, for the development of CKD in non-diabetics, through the opposing 

actions of estrogens and testosterone. However, when we consider diabetes-induced kidney damage, in the setting of 

either type 1 or type 2 diabetes, the contribution of gender to the progression of renal disease is somewhat uncertain. 

Previous studies on the effects of estrogens in the pathogenesis of progressive kidney damage have primarily focused on 

mesangial cells. More recently, data on the effects of estrogens on podocytes, the cell type whose role may include initia-

tion of progressive diabetic renal disease, became available. 

The aim of this review will be to summarize the main clinical and experimental data on the effects of estrogens on the 

progression of diabetes-induced kidney injury. In particular, we will highlight the possible biological effects of estrogens 

on podocytes, especially considering those critical for the pathogenesis of diabetic kidney damage. 
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The influence of estrogens on the development and pro-
gression of diabetic kidney damage, although a subject of 
intense translational research effort, remains a matter of 
controversy [1-5]. The aim of this review will be to 
summarize the clinical and experimental data regarding the 
effects of estrogens on the development and progression of 
diabetes-induced kidney damage, with special regards to the 
most recent data concerning podocyte injury and 
dysfunction.  

It is generally accepted that estrogens affect and modu-
late the development and progression of chronic kidney dis-
eases (CKD) not related to diabetes [1, 4, 5]. Several clinical 
studies have indeed demonstrated that the severity and rate

 
of 

progression of renal damage tend to be greater among men,
 

compared with age-matched women, independently of the 
presence of other causative factors such as hypertension, 
dietary protein intake, circulating lipid levels, and, in the 
majority of cases, etiology of renal disease [4-6]. This is, for 
instance, true for membranous nephropathy [7], IgA neph-
ropathy [8], and polycystic kidney disease [9]. However, 
other studies have also reported that gender difference has 
little or no influence on the progression of renal diseases [6, 
10-12], and that the progression of kidney damage may be 
even faster in postmenopausal women [11].  
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Experimental studies also support the notion that female 
sex is protective, and male sex permissive, for the 
development of CKD in non-diabetics, through the opposing 
actions of estrogens and testosterone [4, 5]. For instance, 
data from our laboratory showed that estrogen deficiency 
accelerates the progression [13], and 17 -estradiol (E2) re-
placement retards the development of glomerulosclerosis 
(GS) in ovariectomized sclerosis-prone ROP Os/+ mice [14]. 
In contrast, female mice transgenic for an ER  gene deletion 
( ERKO) develop GS because of their elevated blood testos-
terone levels (8-times higher than those of their female lit-
termates) [15]. Indeed, ovariectomy prevents the onset of 
glomerular dysfunction in female ERKO mice by eliminat-
ing their endogenous testosterone production [15]. In con-
trast, testosterone supplementation induces GS in ovariec-
tomized B6 mice, whereas estrogen deficiency following 
ovariectomy had no deleterious effects on the glomerulus of 
B6 mice [15].  

The uncertainty of the contribution of gender to the 
progression of renal disease is even greater when we 
consider diabetes-induced kidney damage, in the setting of 
either type 1 or type 2 diabetes [2, 3]. Several clinical studies 
indicate that diabetic kidney damage progresses faster in 
males than in females [16-22]. However, some studies show 
that female sex accelerates the disease progression [23-26], 
while others report no difference in the incidence and/or rate 
of progression of renal disease between men and women 
[27-29].  

For instance, male sex appeared to be a risk factor for the 
development of micro- and macro-albuminuria in a study on 
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normotensive type 1 diabetic patients with either absent or 
mild CKD [21, 22], as well as in an other study on patients 
with established diabetic nephropathy [17]. On the contrary, 
no sex differences were reported in a randomized trial of 
captopril in type 1 diabetic patients after a 3-year follow-up 
[27, 30], or in a prospective study regarding the effects of 
smoking [31], and in a Danish study on normoalbuminuric 
type 1 diabetic patients followed for 10 years [29]. Finally, 
in some studies female sex appears to be a risk factor for the 
development of diabetic nephropathy in type 1 diabetes, 
although many of these studies were performed in children 
or pubertal patients, a fact that could affect and limit the 
validity of their conclusions [23-26].  

Similar to type 1 diabetes, conflicting data have also been 
reported in type 2 diabetes. Most of the studies described a 
greater prevalence of albuminuria in male compared to 
female patients [32-34], or an increased risk for the 
development of diabetic nephropathy associated with male 
sex [35]. However, renal disease was reported to progress 
faster in females than in males in two large randomized trials 
[36, 37], although the inclusion in these studies of many 
women of postmenopausal age could have played a 
significant role in the outcome of these results. More 
conclusive data was derived from studies in African, 
Americans, Hispanics, and Pima Indians [38-40].  In these 
populations, women appear at greater risk for developing 
end-stage renal disease associated with type 2 diabetes than 
men [38-40].  

Few interventional studies have tested the effects of 
estrogen supplementation on the progression of diabetic 
kidney damage. Administration of estrogens together with a 
synthetic progestin reduced proteinuria and improved 
creatinine clearance in postmenopausal women with type 2 
diabetes [41], and prevented the development of albuminuria 
in the Insulin Resistance Atherosclerosis Study [42]. Analo-
gously, the selective estrogen-receptor modulator raloxifene 
attenuated the progression of albuminuria in postmenopausal 
women with type 2 diabetes [43]. However, an association 
between estrogen treatment, alone or in combination with 
progestin, and increased risk for microalbuminuria has been 
reported in pre- and post-menopausal women [44], whereas 
no change on microalbuminuria caused by prolonged hyper-
glycemia was induced by 6-month treatment with estrogen 
and medroxyprogesterone in postmenopausal women with 
type 2 diabetes [45]. Furthermore, the use of oral con-
traceptives containing high concentrations of estrogens, but 
not of those containing low doses, has been linked to the 
development of albuminuria in women with type 1 diabetes 
[46, 47]. 

In experimental studies, E2 supplementation, either from 
the onset or after several weeks of untreated diabetes, exerts 
a protective effect on the development of functional 
(albuminuria) and structural (GS and tubulointerstitial 
fibrosis) kidney damage [48-52]. These effects are mediated 
by different cellular mechanisms, including reduction of 
TGF-  synthesis, decreased accumulation of collagen type 
IV, laminin, and fibronectin, and increased production of 
matrix metalloproteinases (MMPs) [48-52]. Also raloxifene 
has been shown to diminish albuminuria, GS and 
tubulointerstitial fibrosis via similar effects [53, 54]. It has 

been also reported however, that E2 has no effect on 
albuminuria in OLEFT rats [55], or that it exacerbates 
diabetic renal disease in sucrose-fed diabetic rats [56], 
suggesting that E2 effect may depend on the disease model 
examined, the timing of treatment, and the dosage. 
Interestingly, female ERKO mice, which spontaneously 
develop GS due to inappropriate amounts of testosterone 
[15], are protected from the development of albuminuria and 
GS induced by experimental diabetes [57], further stressing 
the importance of better understanding the biological actions 
of sex hormones in the specific setting of diabetes.       

The studies on the cellular effects of estrogens in the 
pathogenesis of progressive kidney damage, in our labora-
tory and others, have primarily focused on mesangial cells, 
for years considered the key player in the events leading to 
the progression of renal injury. In contrast, little data are 
available on the effects of estrogens on podocytes [52], the 
cell type whose role may include initiation of progressive 
diabetic renal disease [58-62]. The ability of the kidney to 
replace damaged or lost podocytes is limited since podocytes 
exhibit a reduced potential to regenerate via mitosis in the 
glomerulus [59, 63]. Thus, progressive podocyte damage 
characterized by foot process effacement, vacuolization, and 
detachment of podocytes from the glomerular basement 
membrane which finally leads to the irreversible loss of 
podocytes are now considered important, if not essential, 
initial events in the development and progression of diabetic 
GS [58-63]. Following we will highlight the possible bio-
logical effects of estrogens on podocytes, with particular 
regards to the events critical for the pathogenesis of diabetes-
induced kidney damage.  

REGULATION OF PODOCYTE ESTROGEN 
RECEPTORS BY E2 

The physiologic effects of estrogens are mediated by two 
distinct estrogen receptor (ER) subtypes, ER  and ER  [64, 
65]. ER expression has been localized on podocytes by 
histochemical studies [66]. Our laboratory confirmed by 
mRNA and western analysis the expression of ER  and ER  
subtypes [52]. Previous studies found that total kidney and 
mesangial cell ER  expression are regulated by the level of 
estrogens [14, 67-69]. This appears to be the case for 
podocyte ER  expression. In podocytes isolated from 
diabetic mice treated with E2, neither ER  copy number nor 
protein expression was regulated by treatment. We did, 
however, find an increase in ER  protein expression without 
a change in ER  mRNA copy number, suggesting a post-
translational regulation, such as protein stabilization [70, 71]. 
As ER  expression regulates apoptosis and cell cycle in 
breast cancer cells [72], the increase in the ER  protein 
expression in podocytes could lead to cell cycle changes and 
increased cell survival, an effect which could protect against 
podocyte depletion in diabetic kidney injury. 

E2 EFFECT ON PODOCYTE APOPTOSIS  

Podocytes are terminally differentiated cells with a lim-
ited capacity to re-enter the cell cycle and proliferate. In dia-
betes-induced kidney injury, a reduction in podocyte density 
appears to be a critical determinant for the development of 
proteinuria and the progression of kidney dysfunction [73]. 
Studies using diabetic murine models suggest that apoptosis 



30    Current Diabetes Reviews, 2011, Vol. 7, No. 1 Doublier et al. 

 

of podocytes leads to a reduction in the density of podocytes 
[73]. Podocyte apoptosis is mediated by multiple signaling 
pathways (see recent review by Chuang et al.) [74], includ-
ing the activation of p38 mitogen-activated protein kinase 
(MAPK) and TGF- 1. Phosphorylation of p38 leads to the 
activation of the apoptosis machinery in podocytes. Ad-
vanced glycation end products (AGEs) activate p38 and trig-
ger the apoptosis of podocytes in a FOXO4-dependent man-
ner and may also activate TGF . In contrast, activation of 
phosphoinositide 3-kinase (PI3K) and its downstream target 
AKT (protein kinase B) protects against podocyte in-
jury/apoptosis.  Although it is well established that estrogens 
can inhibit apoptosis in a variety of cells and tissues, the 
mechanisms underlying this are not clearly understood.  We 
and others have proposed that the regulation of signaling 
pathways, including those described above, by estrogens 
could protect against podocyte apoptosis. Data generated in 
our laboratory showed that E2 treatment protects podocytes 
from apoptosis induced in vitro by TGF  and TNF-  [75]. 
This effect may be mediated by activation of the PI3K-AKT 
signaling cascade, since podocytes isolated from diabetic 
mice treated with E2 have increased levels of AKT phos-
phorylation (unpublished data). Moreover, when we studied 
db/db mice at the onset of albuminuria (12 weeks-old), we 
found that glomeruli of db/db mice show reduced AKT 
phosphorylation compared to db/+ mice [76].  In addition, 
podocytes isolated from db/db mice with diabetes at the 
onset of albuminuria, even if cultured in normal-glucose 
medium, showed impaired insulin-dependent AKT 
phosphorylation, which is associated with enhanced 
susceptibility to cell death [76].  Finally, since mitochondrial 
respiratory chain (MRC) derived reactive oxygen species 
(ROS) can trigger apoptosis, estrogens could potentially de-
crease ROS induced events by regulating podocyte antioxi-
dant levels including Mn-superoxide dismutase (MnSOD) 
and glutathione (GSH) [77].  These experiments and other 
similar studies are ongoing in our laboratory. 

REGULATION OF CYTOKINES AND SIGNALING 
PATHWAYS BY E2 TREATMENT 

There is mounting evidence that TGF  promotes diabetic 
GS in part by mediating apoptosis and depletion of 
podocytes [78-81].  Treatment of diabetic mice with an anti-
TGF  antibody shortly after the onset of diabetes reduces 
albumin excretion and protects against podocyte loss [82]. In 
addition, Niranjan et al. identified a Notch1-dependent acti-
vation of p53 leading to TGF -induced podocyte apoptosis 
in a murine model of type 1 diabetes-induced kidney damage 
[83, 84]. TGF  is also activated in podocytes by ROS, which 
accumulate when podocytes are exposed to AGEs and hy-
perglycemia [85].  

TGF  activates multiple signaling pathways, both Smad-
dependent and -independent [86-88]. Based on our data, we 
propose that estrogens regulate many of these pathways and 
thereby protect against the deleterious effects of TGF  
receptor activation. E2 has been shown in breast cancer cells 
to inhibit Smad3 transcriptional activity through Ap-1 tran-
scription factors in an ER-dependent manner [89]. Whether 
this is the case in podocytes remains to be explored. In our 
study, we found that E2 treatment of isolated podocytes 
decreased the activation of ERK, another downstream 

signaling pathway in TGF  activation [52]. These data are 
consistent with earlier immunohistochemical findings that 
activated ERK is present in podocytes of diabetic kidneys, 
and can be correlated with the severity of glomerular lesions 
[90]. We also found a decrease in glomerular TGF  mRNA. 
Although podocyte production of TGF  has not been 
documented, the reduction in glomerular TGF  could also 
prevent podocyte ERK activation. Since the ERK signaling 
pathway has been shown to cross talk with Smads and 
enhance collagen type I expression in human mesangial cells 
[91, 92], it is possible that a similar pathway occurs in 
podocytes.   

REGULATION OF PODOCYTE MMPS BY 
ESTROGENS 

Matrix metalloproteinases (MMPs) are crucial for 
maintaining the balance between extracellular matrix 
synthesis and degradation [93]. Specifically, MMP-2 and 
MMP-9 degrade type IV collagen, one of the major compo-
nents of the glomerular basement membrane (GBM). Pre-
serving the balance between MMPs and collagen is critical 
since alterations of the GBM could result in microalbuminu-
ria, subsequent macroproteinuria, and eventual renal failure 
[94].  In glomeruli [93] and mesangial cells, MMP-2 activity 
and transcriptional activation is regulated by continuous in 
vivo E2 treatment [14]. Maric and colleagues reported that 
kidney MMP-2 activity is upregulated after E2 treatment in a 
rat model of type I diabetes [48]. Our study in type 2 diabetic 
mice shows that E2 treatment participates in the remodeling 
of the diabetic GBM through MMP production, as collagen 
and laminin deposition were reduced in the glomeruli of 
treated db/db mice [52]. A recent study using podocytes iso-
lated from non-diabetic mice showed that MMP-2 and -9 
activity were enhanced by in vitro administration of TGF , 
suggesting that TGF  might increase degradation of the 
GBM [95]. In contrast, our study in db/db mice revealed that 
podocytes isolated from the E2 treated mice had increased 
MMP-2 and MMP-9 activity at the same time that TGF  
mRNA was decreased. It is possible therefore that in our 
model the increase in MMPs prevents GBM thickening by 
preserving matrix composition.  

A study performed by Bai et al. on podocytes isolated 
from non-diabetic mice revealed that high glucose levels 
modulated MMP-9 activity and ( 5) type IV collagen secre-
tion [96]. This was in part mediated by the glucose induction 
of ERK1/2 and the transcriptional factor Ets-1. Since our 
data suggest that estrogens can regulate ERK activation as 
discussed above, this may be one of the signaling pathways 
regulating MMP-9 in our model.   

E2 EFFECT ON PODOCYTE CYTOSKELETON  

Podocytes are specialized cells responsible for 
maintaining the selective filtration barrier of the renal 
glomerulus. Podocytes consist of a cell body, major 
processes and foot processes (FP). The FP surrounds the 
glomerular capillary wall and form specialized intercellular 
junctions, the slit diaphragm (SD) protein complex. In addi-
tion, there are apical and basal membrane domains [74, 97]. 
The submembranous regions of all three compartments are 
linked to each other through the actin cytoskeleton. Disrup-
tion of any of the three domains or the underlying actin cy-
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toskeleton can lead to FP effacement and disruption of the 
glomerular filtration barrier [98, 99] The signaling molecules 
and pathways involved in the regulation of podocyte actin 
cytoskeleton were recently reviewed by Faul et al. [98].  

As discussed above, injury of podocytes contributes to 
the development of diabetic kidney damage [62, 73, 100]. 
Recent studies have demonstrated that stress proteins may be 
induced and may be involved in the modulation of podocyte 
injury [101, 102]. In particular, HSP27, a stress protein in-
volved in actin polymerization, is localized in podocytes 
[101]. HSP27 preserves actin structure, and facilitates sur-
vival in an injury environment [101, 102]. Increased activa-
tion of glomerular p38MAPK is associated with decreased 
phosphorylation of HSP27, changes in actin cytoskeleton, 
podocyte effacement, and proteinuria [101, 102]. E2 has been 
shown to induce expression and phosphorylation of HSP27 
in the brain and breast cancer cells [103, 104], however, to 
date there are no data on the regulation of HSP27 by estro-
gens in podocytes. Since podocyte damage and albumin ex-
cretion are decreased in a model of type 2 diabetes after E2 
supplementation [52, 53] we propose that E2 treatment may 
prevent the decrease in HSP27 phosphorylation and the sub-
sequent downstream events.  

In summary: The role of estrogens in progression of dia-
betic kidney damage is still a matter of controversy and a 
subject of intense investigation. We outlined the main 
clinical and experimental data available, with particular 
regards to the possible biological effects of E2 on podocytes, 
the cell type that the most recent studies indicated as crucial 
for the initiation of progressive diabetic renal disease.  

(Fig. 1) depicts some of the signalling pathways and of 
the molecular mechanisms that are potential targets of 
estrogen action in podocytes. Further studies will be needed 

gen action in podocytes. Further studies will be needed to 
fully elucidate the effects of estrogens in the progression of 
diabetes-induced kidney damage.  
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