
09 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

ReCon: An Online Task ReConfiguration Approach for Robust Plan Execution

Publisher:

Published version:

DOI:10.1007/978-3-319-25210-0_16

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1551758 since 2016-06-28T13:50:17Z

ReCon: an Online Task ReConfiguration

Approach for Robust Plan Execution

Enrico Scala∗1, Roberto Micalizio†1, and Pietro Torasso‡1

1Dipartimento di Informatica - Universita’ di Torino, Italy

January 30, 2016

Abstract

The paper presents an approach for the robust plan execution in pres-
ence of consumable and continuous resources. Plan execution is a critical
activity since a number of unexpected situations could prevent the feasi-
bility of tasks to be accomplished; however, many robotic scenarios (e.g.
in space exploration) disallow robotic systems to perform significant devi-
ations from the original plan formulation. In order to both (i) preserve the
”stability” of the current plan and (ii) provide the system with a reason-
able level of autonomy in handling unexpected situations, an innovative
approach based on task reconfiguration is presented. Exploiting an en-
riched action formulation grounding on the notion of execution modalities,
ReCon replaces the replanning mechanism with a novel reconfiguration
mechanism, handled by means of a CSP solver. The paper studies the
system for a typical planetary rover mission and provides a rich exper-
imental analysis showing that, when the anomalies refer to unexpected
resources consumption, the reconfiguration is not only more efficient but
also more effective than a plan adaptation mechanism. The experiments
are performed by evaluating the recovery performances depending on con-
straints on computational costs.

1 Introduction

The management of a plan for a robotic agent operating in hazardous and ex-
treme environments is a critical activity that has to take into account several
challenges. In particular, in the context of space exploration, a planetary rover
operates in an environment which is just partially observable and loosely pre-
dictable. As a consequence, the rover must have some form of autonomy in order

∗scala@di.unito.it
†micalizio@di.unito.it
‡torasso@di.unito.it

1

to guarantee robust plan execution (i.e., reacting to unexpected contingencies).
The rover’s autonomy, however, is typically bounded both because of limita-
tions of on-board computational power, and because the rover is not in general
allowed to change significantly the high level plan synthesized on Earth. Space
missions therefore exemplify situations where contingencies occur, but plan re-
pair must be achieved through novel techniques trading-off rover’s autonomy
and the stability of the mission plan.

Robust plan execution has been tackled in two ways: on-line and off-line.
On-line approaches, such as [14, 18, 13, 4, 27, 20], interleave execution and
replanning: whenever unexpected contingencies cause the failure of an action,
the plan execution is stopped and a new plan is synthesized as a result of a
new planning phase. Off-line approaches, such as [3, 8], avoid replanning by
anticipating, at planning time, the possible contingencies. The result of such a
planning phase is a contingent plan that encodes choices between functionally
equivalent sub-plans1. At execution time, the plan executor is able to select a
contingent plan according to the current contextual conditions. However, as for
instance in the work of [24], the focus is mainly on the temporal dimension and
they do not consider consumable and continuous resources.

In this paper we propose a novel on-line methodology to achieve robust plan
execution, which is explicitly devised to deal with unexpected deviations in the
consumption of rover’s resources. First, in line with the action-based approach
a-la STRIPS [11] and differently from the constrained based planning [12, 22],
we model consumable resources as numeric fluents (introduced in PDDL 2.1
[11]). Then, we enrich the model of the rover’s actions by introducing a set of
execution modalities. The basic idea is that the propositional effects of an action
can be achieved under different configurations of the rover’s devices. These
configurations, however, may have a different impact on the consumption of the
resources. An execution modality explicitly models the resource consumption
profile when an action is carried out in a given rover’s configuration. The
integration of execution modality at the PDDL level allows a seamless integration
between planning and execution.

Relying on the concept of execution modalities, we propose to handle excep-
tions arising in planetary rover domains as a reconfiguration of action modalities,
rather than as a replanning problem. In particular, the paper proposes a plan
execution strategy, denoted as ReCon; once (significant) deviations from the
nominal trajectory are detected, ReCon intervenes by reconfiguring the modali-
ties of the actions still to be performed with the purpose of restoring the validity
of resource constraints imposed by the rover mission.

To accomplish its task ReCon uses Choco2 as CSP solver, so that it takes
advantage of both the power of the constraint programming and the high level
representation of PDDL.

After introducing a motivating example, we describe the employed action

1The notion of alternative (sub)plans is also presented for (off-line) scheduling; for details
see [1].

2The software is at disposal at http://www.emn.fr/z-info/choco-solver/, while the work
has been presented in [23].

2

Figure 1: A simple mission plan.

model, enriched with the notion of execution modality. Then we introduce the
ReCon strategy and an example showing how the system actually works in a
exploration rover mission. Finally, an experimental section, which evaluates the
competence and the efficiency of the strategy w.r.t. a traditional replanning
from scratch and the LPG-ADAPT system reported in [15].

2 Motivating Example

Let us consider a planetary rover in charge of exploring (and analyzing) a num-
ber of potentially interesting sites and able to transmit information towards the
Earth. In doing so the rover is capable of moving, taking pictures, and start-
ing the data upload once the pieces of information must be transmitted. For
simplicity reasons, consider the mission plan of Figure 1, involving take picture,
drive and communications activities. This mission represents a feasible solution
for a planning problem with goal: {in(r1,l3), mem>=120, pwr>=0, time<=115} ; that
is, at the end of plan the rover must be located in l3 (propositional fluent),
the free memory must be (at least) 120 memory units, there must be a positive
amount of power, and the mission must be completed within 115 secs.

The figure shows how the four actions (regular boxes) change the status
of the rover over the time (rounded-corner boxes)3. Note that the status of a
rover involves both propositional fluents, (e.g., in(r1, l1) meaning rover r1

is in location l1); and numeric fluents: memory represents the amount of free
memory, power is the amount of available power, time is the mission time given
in seconds, and com_cost is an overall cost associated with communications.

The estimates about the rover’s status are inferred by predicting, determin-
istically, the effects of the actions. In particular, the numeric fluents have been
estimated by using a “default setting” (i.e., a standard modality) associated
with each action.

Let us now assume that during the execution of the first drive action the
rover has to travel across a rough terrain. Such an unexpected condition affects
the drive as the rover is forced to slowdown4, and as a consequence the drive
action takes a longer time to be completed; the effects are propagated till the
last snapshot, s 4 where the goal constraint time <= 115 is no longer satisfied.

3To simplify the picture, we show in the rover’s status just a subset of the whole status
variables.

4The slowdown command of the rover may be the consequence of a reactive supervisor,
which operates as a continuous controller as shown in [21].

3

After detecting this inconsistency, approaches based on a pure replanning
step would compute a new plan achieving the goal by changing the original
mission. For instance, some actions could be skipped in order to compensate
the time lost during the first drive.

However, robotic systems as a planetary rover have typically different con-
figurations of actions to be executed and each configuration can have a different
impact on the mission progress. For instance the robotic systems described in
[5] and in [21] can perform a drive action in fast or slow modes. Reliable trans-
mission to the earth, for example, can be slow and cheap, or fast and expensive,
depending on the devices actually used.

Our proposal is to explicitly represent such different configurations within
the action models, and hence try to resolve an impasse via a reconfiguration of
the actions still to be performed. Intuitively, our objective is to keep the high
level plan structure unchanged, but to adjust the modalities of the actions still
to be performed. In section 5 we will see an example of such a reconfiguration.

In the next section we will introduce the rover action model that explicitly
expresses the set of execution modality at disposal.

3 Modeling Rover’s Actions

As shown in the previous section, a planetary rover can perform the same set
of actions via different configurations of parameters or devices. To capture this
aspect, this section introduces the rover action model adopted in this work.
As reported in [25], the model exploits (and extends) the numeric PDDL 2.1
action model [11], i.e. where the numeric fluent notion has been proposed. In
particular, we use the numeric fluents to model continuous and consumable
resources.

The intuition is that, while actions differ each other in terms of qualitative
effects (e.g. a drive action models how the position of the rover changes after the
action application), the expected result of an action can actually be obtained in
many different ways by appropriately configuring the rover’s devices (e.g. the
drive action can be performed with several engine configurations). Of course,
different configurations have in general different resource profiles and it is there-
fore possible that the execution of an action in a given configuration would lead
to a constraint violation, whereas the same action performed in another con-
figuration would not. We call these alternative configurations modalities and
we propose to capture the impact of a specific modality by modeling the use
of specific configurations in terms of pre/post conditions on the numeric fluents
involved; such modalities become explicit in the action model definition.

The resulting model expresses the rover actions at two different levels of
abstraction. The higher one is the qualitative level indicating ”what” the ac-
tion does. The lower one is the quantitative level expressing ”how” the action
achieves its effect.

The idea of alternative behaviors has also been investigated in (off-line)
scheduling, where the notion of Temporal Network with Alternatives has been

4

introduced [1]. It is quite evident however that, as anticipated in the intro-
duction, the concept of execution modality is inspired to an (on-line) action
centered approach [4], rather than on a constraints/scheduling based one [6].

By recalling our motivating example, Figure 2 shows the model of the drive
action. The action template drive (?r, ?l1, ?l2) requires a rover ?r to
move from a location ?l1 to location ?l2. :modalities introduces the set of
modalities associated with a drive; in particular, we express for this action,
three alternative modalities:
- safe: the rover moves slowly and far from obstacles; intuitively the action
should spend more time but consuming less power
- cruise: the rover moves at its cruise speed and can go closer to obstacles;
- agile: the rover moves faster than cruise, consuming more power but re-
quiring less time.
The :precondition and :effect fields list the applicability conditions and the
effects, respectively, and are structured as follows: first a propositional formula
encodes the condition under which the action can be applied; the second field
(:effect) indicates the positive and the negative effects of the action. For each
modality m in :modalities we have the amount of resources required (nu-
meric precondition) or consumed/produced (numeric effect) by the action when
performed under that specific modality m.

For instance, the preconditions (reachable ?l1, ?l2) and (in ?r1, ?l1) are two
atoms required as preconditions for the application of the action. These two
atoms must be satisfied independently of the modality actually used to perform
the drive action. While the comparison (safe: (>= (power ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r))))) means that the modality safe can be
selected when the rover’s power is at least larger than a threshold given by eval-
uating the expression on the right side. Analogously,
(safe: (decrease (power ?r) (*(safe_cons ?r) (/ (distance ?l1 ?l2)

(safe_speed ?r)))) describes in the effects how the rover’s power is reduced after
the execution of the drive action. More precisely, we have modeled the power
consumption as a function depending on the duration of the drive action (com-
puted considering distance and speed) and the average power consumption per
time unit given a specific modality. For instance, in safe modality, the amount of
power consumed depends on two parameters (safe_cons ?r) and (safe_speed ?r)

which are the average consumption and the average speed for the safe modality,
respectively, while (distance ?l1 ?l2) is the distance between the two locations
?l1 and ?l2.
Finally, note that in the numeric effects of each modality, the model updates
also the fluent time according to the selected modality. Also in this case, the
duration of the action is estimated by a function associated with each possible
action modality.

Analogously to the drive action we model modalities also for the Take Picture
(TP) and the Communication (COMM). For TP we have the low (LR) and high
(HR) resolution modalities which differ in the quality of the taken picture and
the occupied memory. Intuitively, the more the resolution is, the more the
memory consumption will be.

5

(:action drive

:parameters (?r - robot ?l1 - site ?l2 - site)

:modalities (safe,normal,agile)

:precondition (and (in ?r ?l1) (road ?l1 ?l2)

(safe: (>= (power ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r)))))

(cruise: (>= (power ?r) (* (cruise_cons ?r)

(/ (distance ?l1 ?l2) (cruise_speed ?r)))))

(agile: (>= (power ?r) (* (agile_cons ?r)

(/ (distance ?l1 ?l2) (agile_speed ?r)))))

)

:effect

(and

(in ?r ?l2) (not (in ?r ?l1))

(safe: (decrease (power ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r))))

(increase (time) (/ (distance ?l1 ?l2)) (safe_speed ?r)))

(increase (powerC ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r))))

(cruise: (decrease (power ?r) (* (cruise_cons ?r)

(/ (distance ?l1 ?l2) (cruise_speed ?r))))

(increase (time) (/ (distance ?l1 ?l2)) (cruise_speed ?r))

(increase (powerC ?r) (* (cruise_cons ?r)

(/ (distance ?l1 ?l2) (cruise_speed ?r)))))

(agile: (decrease (power ?r) (* (agile_cons ?r)

(/ (distance ?l1 ?l2) (agile_speed ?r))))

(increase (time) (/ (distance ?l1 ?l2)) (agile_speed ?r))

(increase (powerC ?r) (* (agile_cons ?r)

(/ (distance ?l1 ?l2) (agile_speed ?r)))))

)

Figure 2: The augmented model of a drive action.

Figure 3 reports the model of the communication action; it is worth noticing
that execution modalities correspond to two different communication channels:
CH1 with low overall comm cost and low bandwidth, and CH2 with high overall
comm cost but high bandwidth.

The selection of action modalities has to take into account that complex
dependencies among resources could exist. For instance, even if a high resolution
TP takes the same time as a low resolution TP, the selection has a big impact
on the amount of time spent globally, too. As a matter of facts, as long as the
amount of stored information increases, the time spent by a (possible) successive
COMM grows up accordingly, which means that also the global mission horizon
will be revised.

Given the rover’s actions defined so far, a rover mission plan is a total or-
dered set of fully instantiated rover’s action templates5. Given a particular

5The plan can be also generated automatically by exploiting a numeric planner system,

6

(:action comm

:parameters (?r - robot ?l1 - site)

:modalities (ch1,ch2)

:precondition (and(in ?r ?l1)

(ch1: (and (> (memoryC ?r) 0) (>= (power ?r)

(/ (memoryC ?r) (bandwith-ch1 ?r)))))

(ch2: (and (> (memoryC ?r) 0) (>= (power ?r)

(/ (memoryC ?r) (bandwith-ch2 ?r)))))

:effect

(and (infoSent ?r ?l1)

(ch1: (assign (memoryC ?r) 0)

(increase (memory ?r) (memoryC ?r))

(increase (time) (/ (memoryC ?r) (bandwith-ch1 ?r)))

(increase (powerC ?r) (* (ch1-cons ?r)

(/ (memoryC ?r) (bandwith-ch1 ?r)))

(decrease (power ?r) (* (ch1-cons ?r)

(/ (memoryC ?r) (bandwith-ch1 ?r)))

(increase (comm_cost) 1)))

(ch2: (assign (memoryC ?r) 0)

(increase (memory ?r) (memoryC ?r))

(increase (time) (/ (memoryC ?r) (bandwith-ch2 ?r)))

(increase (powerC ?r) (* (ch2-cons ?r)

(/ (memoryC ?r) (bandwith-ch2 ?r))))

(decrease (power ?r) (* (ch2-cons ?r)

(/ (memoryC ?r) (bandwith-ch2 ?r))))

(increase (comm_cost) 3))

)

Figure 3: The augmented model of a communication action.

rover’s state S and a given set of goals G to be reached (including both propo-
sitional/classical conditions and constraints on the amount of resources), the
mission plan is valid iff it achieves G from S.
Executing the mission plan. As we have seen in the previous section, the
rover’s mission can be threatened many times by unexpected contingencies; so
the validity of the mission can be easily compromised during its actual execution.

Nevertheless, when the detected unexpected contingency at execution time
just invalidates the resource consumption expectations, even if the current
modality allocation would not be consistent with the constraints involved in
the plan and in the goal, there could be ”other” allocations of modalities still
feasible. By exploiting this intuition, the next section introduces an adaptive
execution technique which, instead of abandoning the mission being executed,
tries first to repair the flaws via a reconfiguration of the action modalities. The

properly modified to handle actions with modalities (e.g., the Metric-FF planning system [17]
or LPG [16]).

7

reconfiguration considers all those actions still to be executed.
Given a plan P, to indicate when a plan is just resource inconsistent, we will
use the predicate res incon over P, i.e. we will say res incon(P). Otherwise we
will say that the plan is valid or structurally invalid. This latter case happens
when, given the current plan formulation, at least an action in the plan is not
propositional applicable, or there is at least a missing (propositional) goal.

4 ReCon: adaptive plan execution

In this section we describe how the plan adaptation process is actually carried
on by exploiting a Constraint Satisfaction Problem representation. The main
strategy implemented, namely ReCon, is a continual planning agent [4],[9], ex-
tended to deal with the rover actions model presented in the previous section.
In order to handle the CSP representation, ReCon exploits two further sub-
modules: Update by means of which new observations are asserted within
the CSP representation, and Adapt which has the task of making the mission
execution adaptive to the incoming situation.

4.1 The Continual Planning Loop

Algorithm 1 shows the main steps required to execute and (just in case) adapt
the plan being executed. The algorithm takes in input the initial rover’s state
S0, the mission goal Goal, and the plan P expressed as discussed in the previous
section. Note that each action has to have a particular modality of execution
instantiated. The algorithm returns Success when the execution of the whole
mission plan achieves the goal; Failure otherwise. In this case, a failure means
that there is no way to adapt the current plan in order to reach the goal satisfying
mission constraints. To recover from this failure, a replanning step altering the
structure of the plan should be invoked, but this step requires the intervention
of the ground control station on Earth.

The first step of the algorithm is to build a CSPModel representing the
mission plan (line 1). As thoroughly described in [25], our approach inherits the
main steps by Lopez et al. in [19] in which the planning problem is addressed
as a CSP6. As a difference w.r.t. the classical planning, the encoding exploited
by our approach needs to store variables for the modalities to be chosen, and
variables for the numeric fluents involved in the plan. Numeric fluents vari-
ables are replicated as many steps in the plan. The purpose is to capture all
the possible evolutions of resources profiles given the modalities that will be
selected. The constraints oblige the selection of the modality to be consistent
with the resource belonging to the previous and successive time step. Moreover,
further constraints allow only reconfigurations consistent with the current ob-
servation acquired (which at start-up corresponds to the initial state), and the
goals/requirement of the mission.

6Alternative CSP conversions are possible; for instance see [2].

8

Algorithm 1: ReCon

Input: S0, Goal, P
Output: Success or Failure

1 CSPModel = Init(S0, Goal, P) ;
2 i = 0;
3 while ¬ P is completed do
4 execute(ai, curMod(ai));
5 obsi+1 = observe();
6 if P is structurally invalid w.r.t. obsi+1 and Goal then
7 return Failure

8 else
9 Update(CSPModel,ai,num(obsi+1));

10 if res incon(P) then
11 newP = Adapt(CSPModel,i,Goal,P);
12 if newP 6= ∅ then
13 P = newP

14 else
15 return Failure

16 i = i + 1

17 return Success

Once the CSPModel has been built, the algorithm loops over the execution
of the plan. Each iteration corresponds to the execution of the i-th action in
the plan. At the end of the action execution the process verifies the current
observation obsi+1 with the rest of the mission to be executed. In case the plan
is structurally invalid (some propositional conditions are not satisfied or the goal
cannot be reached) ReCon stops the plan execution and returns a failure; i.e.,
a replanning procedure is required.

Otherwise we can have two other situations. First, there have been no
consistent deviations from the nominal predictions therefore the execution can
proceed with the remaining part of the plan. Second the plan is just resource
inconsistent (res incon(P), line 10). In this latter case, ReCon has to adapt
the current plan by finding an alternative assignments to action modalities that
satisfies the numeric constraints (line 11). If the adaptation has success, a new
non-empty plan newP is returned and substituted to the old one. This new plan
is actually the old plan, but with a different allocations of action modalities.
Otherwise, the plan cannot be adapted and a failure is returned; in this case,
the plan execution is stopped and a new planning phase is needed.

9

4.2 Update

The Update step is sketched in Algorithm 2. The algorithm takes in input
the CSP model to update, the last performed action ai, and the set NObs of
observations about numeric fluents. The algorithm starts by asserting within
the model that the i-th action has been performed; see lines 1 and 2 in which
variable modi is constrained to assume the special value exec. In particular, a
first role of the exec value is to prevent the adaptation process to change the
modality of an action that has already been performed, as we will see in the
following section. Moreover, exec allows also the acquisition of observations
even when the observed values are completely unexpected. In fact, by assigning
the modality of action ai to exec, we relax all the constraints over the numeric
variables at step i + 1-th (which encode the action effects). This is done in
lines 3-5 in which we iterate over the numeric fluents N j mentioned in the
effects of action ai, and assign to the corresponding variable at i+ 1-th step the
value observed in NObs. On the other hand, all the numeric fluents that are
not mentioned in the effects of action ai do not change, so the corresponding
variables at step i+ 1 assume the same values as in the previous i-th step (lines
6-8). The idea of the Update is to make the CSP aware of the current new
observations and the modalities already executed. In this way, a reconfiguration
task does not need to rebuild the structure completely from scratch.

Algorithm 2: Update

Input: CSPModel, ai,NObs
Output: modified CSPModel

1 delConstraint(CSPModel,modi=curMod(ai));
2 addConstraint(CSPModel,modi=exec);
3 foreach N j ∈ affected(ai) do
4 addConstraint(CSPModel,

5 (modi=exec)→ N j
i+1=get(NObs,N j

i+1))

6 foreach N j ∈ ¬affected(ai) do
7 addConstraint(CSPModel,

8 (modi=exec)→ N j
i+1=N j

i)

4.3 Adapt

The Adapt module, shown in Algorithm 3, takes in input the CSP model, the
index i of the last action performed by the rover, the mission goal, and the plan
P ; the algorithm returns a new adapted plan, if it exists, or an empty plan when
no solution exists.

The algorithm starts by removing from CSPModel the constraints on the
modalities of actions still to be performed; i.e., each variable modk with k greater
than i is no longer constrained (ai is the last performed action and its modality

10

is set to exec) (lines 1-2). This step is essential since the current CSPModel
is inconsistent; that is, the current assignment of modalities does not satisfies
the global constraints. By removing these constraints, we allow the CSP solver
to search in the space of possible assignments to modality variables (i.e., the
actual decisional variables, since the numeric fluents are just side effects of the
modality selection), and find an alternative assignment that satisfies the global
constraints (line 3). If the solver returns an empty solution, then there is no
way to adapt the current plan and Adapt returns no solution. Otherwise (lines
6-10), at least a solution has been found. In this last case, a new assignment of
modalities to the variables modk (k : i + 1..|P |) is extracted from the solution,
and this assignment is returned to the ReCon algorithm as a new plan newP
such that the actions are the same as in P , but the modality labels associated
with the actions ai+1, .., a|P | are different.

Note that, in order to keep updated the CSP model for future adaptations,
the returned assignment of modalities is also asserted in CSPModel; see lines
6 to 10.

Algorithm 3: Adapt

Input: CSPModel, i,Goal,P
Output: a new plan, if any

1 for k=i+1 to |P | do
2 delConstraint(CSPModel modk=currentMod(ak))

3 Solution = solve(CSPModel);
4 if Solution = null then
5 return ∅
6 else
7 newP=extractModalitiesVar(Solution);
8 for k=i+1 to |newP | do
9 addConstraint(CSPModel, modi=curMod(newP [i]))

10 return newP

5 Running the Mission Rover Example

Let us consider again the example in Figure 1, and let us see how ReCon manages
its execution. First of all, the plan model must be enriched with the execution
modalities as previously explained; Figure 4 (top) shows the initial configuration
of action modalities: the drive actions have cruise modalities, the take picture
(TP) has HR (high resolution) modality, and the communication (Comm) uses
the low bandwidth channel (CH1). This is the enriched plan ReCon receives in
input.

Now, let us assume that the actual execution of the first drive action takes a
longer time than expected, 47s instead of 38s, and consumes more power, 3775

11

Figure 4: The initial configuration of modalities (above), and the reconfigured
plan (below).

Joule instead of 3100 Joule. While the discrepancy on power is not a big issue as
it will not cause a failure, the discrepancy on time will cause the violation of the
constraint time <=115; in fact, performing the subsequent actions in their initial
modalities would require 120 seconds. In other words, the assignment of modal-
ities to the subsequent actions does not satisfies the mission constraints. This
situation is detected by ReCon that intervenes and, by means of the Adapt al-
gorithm discussed above, tries to find an alternative configuration of modalities.

Let us assume that communication cost is constrained; that is, the mission
goal includes the constraint com_cost = 1; this prevents ReCon from using the
fast communication channel. The more intuitive decision is to promote the
execution of the drive to agile. However, this would cause the violation on the
constraint concerning the maximum amount of power to be spent. Therefore
ReCon has to look for an alternative assignments of modalities.

It is interesting to note that a lower resolution image consumes less memory,
meaning that the successive communication, in our case (COMM R1 L3), will
need less time (and also less power) for achieving its effects. For this reason
ReCon demotes the next activity, i.e. TP, to be execute to modality LR and so
the global constraints are now satisfied.

Of course, we assume that mission constraints leave ReCon some room to
repair resource inconsistent situations. For instance, if the mission has required
an hard constraint on the quality of the taken images, the low resolution would
have not been possible, and hence an overall replanning would have been nec-
essary.

In principle, by flattening all the actions and the given modalities as ex-
plained in [28], replanning is possible as alternative to the reconfiguration mech-
anism. In this case, however, the problem to be handled would become much
more difficult, since all the possible action sequences applicable starting from
the current state could be explored.

To highlight the complexity arising from a replanning formulation, let us
assume that in our example there is a connection from location l3 to l4, and
from l2 and l4. That is, the rover can move not only from l1 to l2, but also

12

from l2 to l4 and from l4 to l3, for all the provided modalities. In addition, for
simplicity reasons, assume that from that point (l3), the only possible sequence
of actions toward the goal is given by a2 and a3.

While the reconfiguration mechanism can focus just on the impact on re-
sources given by the selection of modalities for the next actions (TP, DRIVE,
COMM), it is quite evident that a traditional replanner should deal with a larger
search space. As matter of fact, it should consider also the (several) possible
trajectories of states given by exploring the alternatives ways of reaching loca-
tion l2 (drive(r1,l2,l4)), for all the possible modalities of execution. That is, it
will have to cope with both the propositional and resource constraints of the
arising planning problem. For a deeper discussion on this aspect, and on the
computational complexity relation between the reconfiguration and the overall
numeric planning problem see [28, 25].

As we will see in the next section, this different characterization is crucial
for determining the performance of the reconfiguration over replanning from
scratch, and even over the state of the art plan repair strategy presented in [10].

6 Experimental Validation

To assess the effectiveness of our proposal, we evaluated two main parameters:
(1) the computational cost of reconfiguration, and (2) the competence of ReCon,
that is, the ability of completing a mission.

To this aim, we have compared ReCon with three alternative strategies:
REPLAN, LPG-ADAPT and NoRep. Whenever the plan becomes resources
inconsistent, both REPLAN and LPG-ADAPT stop the execution of the plan
and try to recover from the impasse. REPLAN searches a new plan completely
from scratch, while LPG-ADAPT uses the old plan as a guidance to speed-up
the resolution process7. Conversely, NoRep just stops the plan execution as soon
as it is no longer valid. We used REPLAN and LPG-ADAPT to better assess
the contribution of ReCon w.r.t. the current state of the art in (re)planning
dealing with consumable resources.

We have implemented ReCon in Java 1.7 by exploiting the PPMaJaL li-
brary8; the Choco CSP solver (version 2.1.3)9 has been used in the Adapt
algorithm to find an alternative configuration. Concerning the REPLAN strat-
egy, we invoke Metric-FF [17] by converting the rover actions with modalities
in PDDL 2.1 actions. In order to study the effectiveness of the strategy in an
on-line plan execution context, we allotted each computation with a time dead-
line; this parameter is critical for the competence of the system being tested.
For this reason, we report results obtained with three different time deadlines: 5

7LPG-ADAPT, [15], is the plan adaptation extension of LPG, [16], one of the more awarded
systems throughout the planning competitions of the last decade. LPG-ADAPT can be con-
sidered the state of the art in the context of plan adaptation.

8www.di.unito.it/ ∼scala
9The Choco Solver implements the state of the art algorithms for constraint program-

ming and has already been used in space applications, see [6]. Choco can be downloaded at
http://www.emn.fr/z-info/choco-solver/.

13

secs, 30 secs and 60 secs. Each time deadline corresponds to the maximum time
that is given to the reconfiguration/replanning for providing a valid solution,
once a plan becomes invalid throughout the whole execution process.

Our tests set consists of 168 plans; each plan involves up to 34 actions (i.e.,
drives, take pictures, and communications), it is fully instantiated (a modality
has been assigned to each action), and feasible since all the goal constraints are
satisfied when the plan execution starts.

To simulate unexpected deviations in the consumption of the resources, we
have run10 each test in thirteen different settings. In each of these settings we
have noised the amount of resources consumed by the actions. In particular,
in setting 1, an action consumes 10% more than expected at planning time. In
setting 2, the noise was increased to 15%, and so on until in setting 13 where the
noise was set to 70%, i.e. an action consumes 70% more resources than initially
predicted.

On the left of Figures 5, 6 and 7 we report the competence - measured as
the percentage of performed actions in the plan - of the three strategies, in
the thirteen settings of noise we have considered. As expected, the competence
decreases as long as the amount of noise increases, for all the strategies tested.
ReCon resulted more competent than both REPLAN and LPG-ADAPT. Even
though REPLAN and LPG-ADAPT can modify all the aspects of the plan
structure, and hence they are theoretical more competent than ReCon, the
search spaces generated by the overall arising planning problems turned out
to be too large from the point of view of REPLAN and LPG-ADAPT. The
timeouts are reached by a large number of cases in all cpu-time settings, and
this is the reason of a lower competence of REPLAN and LPG-ADAPT. In
particular we can observe a large gap between the percentage of plan completed
by ReCon and REPLAN in all the cpu-time settings. In our experiments, also
with an increased cpu-time at disposal, REPLAN was not able to find solutions
for many cases. As refers the comparison with LPG-ADAPT, the gap is more
limited for the high level of noise, showing how LPG-ADAPT can effectively
takes advantage from the knowledge of the previous plan. It is worth noting
that, as expected, this gap decreases as long as the noise increase; this is of
course due to the contribution of the flexibility of the search space in which
LPG-ADAPT and REPLAN can find a solution.

Observing the differences between the competence of the systems over the
various cpu-time setting, it is clear that this parameter is crucial for the compe-
tence of LPG-ADAPT, while it does not affect the competence of ReCon, and
neither of REPLAN. As expected, the LPG-ADAPT competence is quite com-
petitive with ReCon for the 60 secs; in particular in the first 4 settings of noise,
ReCon outperforms LPG-ADAPT, while with larger noises, LPG-ADAPT has
more or less the same performances of ReCon. In the 5 secs setting both LPG-
ADAPT and REPLAN are not competitive at all.

The right column of Figures 5, 6 and 7 reports the computational cost, on
average, of the three strategies. Note that for each case considered, the compu-

10Experiments have run on a 2.53GHz Intel(R) Core(TM)2 Duo processor with 4 GB.

14

tational cost corresponds to the sum of all the attempts to recovery from the
failure (reconfiguration, plan-adaptation or replanning) performed until the end
of the mission. Here the advantage of ReCon is very large in each experimental
setup. In fact, even for the worst case (when the noise is set to be 70%), ReCon
is extremely efficient, indeed it takes, on average, just 1,2 secs. Whereas, even
for the cases with small amount of noise, as you can see in Figure 7, REPLAN
takes about 7 secs of cpu-time till 50 secs employed for the worst cases, while
LPG-ADAPT performs a little bit worse than REPLAN.

Finally, in Figure 8 we conclude by analyzing the number of invocations
of the systems throughout the whole plan execution. Basically we collected
the average number of attempts that the systems have performed whenever
the plan turned out not valid during the execution. Observing the results,
it is quite evident that the reconfiguration mechanism is invoked on average
more times than the other architectures. This happens because, as long as the
plan execution process goes on, the constraints becomes more and more tight,
causing the detection mechanism to be invoked more frequently. Differently,
each invocation of REPLAN generates a completely new plan; therefore the
plan execution till the end is not directly related to the previous plan execution
problem. This is the reason why REPLAN almost preserves the same amount
of invocations throughout the cases we have tested. A similar trend can be
found in comparing LPG-ADAPT with ReCon. Also LPG-ADAPT makes on
the average less repair than ReCon; the difference of performances between
REPLAN and LPG-ADAPT is probably due to the different way the underlying
planning systems (LPG and Metric-FF) explores the search space. Of course
this should be verified testing other numeric planners.

Figure 5: Competence (left) and Cpu-Time (right) - 5 secs setting

7 Conclusions

We have proposed in this paper a novel approach to the problem of robust plan
execution. Rather than recovering from plan failures via a re-planning step (see

15

Figure 6: Competence (left) and Cpu-Time (right) - 30 secs setting

Figure 7: Competence (left) and Cpu-Time (right) - 60 secs setting

e.g., [14, 18, 13, 26]), we have proposed a methodology, called ReCon, based on
the re-configuration of the plan actions. ReCon is justified in all those scenarios
where a pure replanning approach is unfeasible. This is the case, for instance, of
a planetary rover performing a space exploration mission. Albeit a rover must
exhibit some form of autonomy, its autonomy is often bounded by two main
factors: (1) the on-board computational power is not always sufficient to handle
mission recovery problems, and (2) the rover cannot in general deviate from the
given mission plan without the approval from the ground control station.

ReCon presents many advantages w.r.t. re-planning. First of all, as the
experiments have demonstrated, reconfiguring plan actions is computationally
cheaper than synthesizing a new plan from scratch and even trying to adapt
it via a classical plan adaptation tool (as the one reported in [15]). Moreover,
ReCon leaves the high-level structure of the plan (i.e., the sequence of mission
tasks) unchanged, but endows the rover with an appropriate level of autonomy
for handling unexpected contingencies. ReCon can be considered as a comple-
mentary repair strategy to other works in the context of autonomy for space
as those in [7]; as matter of facts, ReCon explores a different dimension of the

16

Figure 8: Average Number of Repairs over all the timeout settings

repair problem, which is based on an action-centered planning representation
rather than on a timeline based perspective [12].

The solution described in this paper has been tested on a challenging domain
such as a space exploration domain, but its applicability is not restricted to
this domain. Many other robotic tasks could benefit of the proposed approach
(combined with a generative approach, see [25]), since in many of them the need
of adapting the plan execution to the resources constrains is very relevant.

The approach we have presented can be improved in a number of ways. A
first important enhancement is the search for an optimal solution. In the current
version, in fact, ReCon just finds one possible configuration that satisfies the
global constraints. In general, one could be interested in finding the best con-
figuration that optimizes a given objective function. Reasonably, the objective
function could take into account the number of changes to action modalities;
for instance, in some cases it is desirable to change the configuration as little as
possible. Of course, the search for an optimal configuration is justified when the
global constraints are not strict, and several alternative solutions are possible.

Acknowledgments

We would like to thank the Choco’s team for making freely available the CSP
solver, Joerg Hoffman for the Metric-FF planning system as well as Alfonso
Gerevini, Alessandro Saetti and Ivan Serina for the LPG-ADAPT system.

References

[1] Barták, R., Ĉepek, O., Hejna, M.: Temporal reasoning in nested temporal net-
works with alternatives. In: Recent Advances in Constraints, Lecture Notes in
Computer Science, vol. 5129, pp. 17–31. Springer Berlin Heidelberg (2008)

[2] Barták, R., Toropila, D.: Solving sequential planning problems via constraint
satisfaction. Fundamamenta Informaticae 99(2), 125–145 (Apr 2010)

[3] Block, S.A., Wehowsky, A.F., Williams, B.C.: Robust execution of contingent,
temporally flexible plans. In: Proc. of National Conference on Artificial Intelli-
gence (AAAI-06): 802-808 (2006)

17

[4] Brenner, M., Nebel, B.: Continual planning and acting in dynamic multiagent
environments. Journal of Autonomous Agents and Multiagent Systems 19(3),
297–331 (2009)

[5] Calisi, D., Iocchi, L., Nardi, D., Scalzo, C., Ziparo, V.A.: Context-based design
of robotic systems. Robotics and Autonomous Systems (RAS) 56(11), 992–1003
(2008)

[6] Cesta, A., Fratini, S.: The timeline representation framework as a planning and
scheduling software development environment. In: Proc. of P&S Special Interest
Group Workshop (PLANSIG-10) (2009)

[7] Chien, S., Johnston, M., Frank, J., Giuliano, M., Kavelaars, A., Lenzen, C.,
Policella, N.: A generalized timeline representation, services, and interface for
automating space mission operations. Tech. Rep. JPL TRS 1992+, Ames Research
Center; Jet Propulsion Laboratory (June 2012)

[8] Conrad, P.R., Williams, B.C.: Drake: An efficient executive for temporal plans
with choice. Journal of Artificial Intelligence Research 42, 607–659 (2011)

[9] desJardins, M., Durfee, E.H., Jr., C.L.O., Wolverton, M.: A survey of research in
distributed, continual planning. AI Magazine 20(4), 13–22 (1999)

[10] Fox, M., Gerevini, A., Long, D., Serina, I.: Plan stability: Replanning versus plan
repair. In: Proc. International Conference on Automated Planning and Scheduling
(ICAPS-06). pp. 212–221 (2006)

[11] Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal plan-
ning domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

[12] Fratini, S., Pecora, F., Cesta, A.: Unifying planning and scheduling as timelines
in a component-based perspective. Archives of Control Sciences 18(2), 231–271
(2008)

[13] Garrido, A., C., G., Onaindia, E.: Anytime plan-adaptation for continuous plan-
ning. In: Proc. of P&S Special Interest Group Workshop (PLANSIG-10) (2010)

[14] Gerevini, A., Serina, I.: Efficient plan adaptation through replanning windows
and heuristic goals. Fundamenta Informaticae 102(3-4), 287–323 (2010)

[15] Gerevini, A., Saetti, A., Serina, I.: Case-based planning for problems with real-
valued fluents: Kernel functions for effective plan retrieval. In: Proc. of European
Conference on AI (ECAI-12). pp. 348–353 (2012)

[16] Gerevini, A., Saetti, I., Serina, A.: An approach to efficient planning with numeri-
cal fluents and multi-criteria plan quality. Artificial Intelligence 172(8-9), 899–944
(2008)

[17] Hoffmann, J.: The metric-ff planning system: Translating ”ignoring delete lists”
to numeric state variables. Journal of Artificial Intelligence Research 20, 291–341
(2003)

[18] van der Krogt, R., de Weerdt, M.: Plan repair as an extension of planning. In:
Proc. International Conference on Automated Planning and Scheduling (ICAPS-
05). pp. 161–170 (2005)

[19] Lopez, A., Bacchus, F.: Generalizing graphplan by formulating planning as a
csp. In: Proc. of International Conference on Artificial Intelligence (IJCAI-03).
pp. 954–960 (2003)

18

[20] Micalizio, R.: Action failure recovery via model-based diagnosis and conformant
planning. Computational Intelligence 29(2), 233–280 (2013)

[21] Micalizio, R., Scala, E., Torasso, P.: Intelligent supervision for robust plan exe-
cution. In: Lecture Notes in Computer Science, vol. 6954. pp. 151–163 (2011)

[22] Muscettola, N.: Hsts: Integrating planning and scheduling. Tech. Rep. CMU-RI-
TR-93-05, Robotics Institute, Pittsburgh, PA (March 1993)

[23] Narendra, J., Rochart, G., Lorca, X.: Choco: an open source java constraint
programming library. In: CPAIOR’08 Workshop on Open-Source Software for
Integer and Contraint Programming (OSSICP’08). pp. 1–10 (2008)

[24] Policella, N., Cesta, A., Oddi, A., Smith, S.: Solve-and-robustify. Journal of
Scheduling 12, 299–314 (2009)

[25] Scala, E., Micalizio, R., Torasso, P.: Robust plan execution via reconfiguration
and replanning. AI Communications p. to appear (2014)

[26] Scala, E.: Numeric kernel for reasoning about plans involving numeric fluents.
Lecture Notes in Computer Science, vol. 8249, pp. 263–275 (2013)

[27] Scala, E.: Numerical kernels for monitoring and repairing plans involving contin-
uous and consumable resources. In: Proc. of International Conference on Agents
and Artificial Intelligence (ICAART-13). pp. 531–534 (2013)

[28] Scala, E.: Reconfiguration and Replanning for robust Execution of Plans Involv-
ing Continous and Consumable Resources. Ph.D. thesis, Department of Computer
Science - University of Turin (2013)

19

