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Abstract

We investigate globality properties of conserved currents associated
with local variational problems admitting global Euler–Lagrange mor-
phisms. We show that the obstruction to the existence of a global con-
served current is the difference of two conceptually independent cohomol-
ogy classes: one coming from using the symmetries of the Euler–Lagrange
morphism and the other from the system of local Noether currents.
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1 Introduction

Local variational problems arise naturally from the various solutions of the so
called global inverse problem in the calculus of variations. Talking about in-
verse problems in the calculus of variations refers to the question whether a
given set of equations is variational or not; with the advent of the theory of
manifolds and global analysis this question splits naturally in the local and the
global case. From the modern point of view, the local case had its first solution
a long time ago: equations are (locally) variational if and only if they satisfy
Helmholtz conditions. The global case required an entire reformulation of the
calculus of variations. From the seventies on, various authors gave differential
formulations of the calculus of variations: since the variation of a Lagrangian
has a lot in common with the n-th exterior differential in the de Rham com-
plex they succeded, starting from the de Rham complex, to construct various
types of differential complexes such that infact the degree n module consists
of Lagrangians and taking their differential gives Euler–Lagrange equations. In
fact, the geometrical formulations of the Calculus of Variations on fibered man-
ifolds include a large class of theories for which the Euler–Lagrange operator is
a morphism of an exact sequence [3, 4, 13, 16, 18, 20, 21, 22, 23]. The module
in degree n+ 1, consequently contains ‘equations’, i.e. dynamical form, and the
Helmholtz conditions are simply being closed with respect to the differential of
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the complex. At this point the global inverse problems becomes simple homo-
logical algebra: a given equation is an Euler–Lagrange equation if its dynamical
form is the differential of a Lagrangian and this is equivalent to the ‘equation’
being closed in the complex and its cohomolgy class being trivial.

Once established a differential formulation of the Calculus of Variations, one
is however immediately lead to a closer examination of ‘equations’ which are only
locally variational, i.e. which are closed in the complex and define a non trivial
cohomology class; a situation much needed once topologically non trivial spaces
make their appearence in Theoretical Physics (see e.g. [5, 17, 19]): instead of
a global Lagrangian these ‘equations’ admit a system of local Lagrangians, one
for each open set in a suitable covering, which satisfy certain relations among
them. Summing up: to be globally defined — but required only to be locally
variational together with at least one system of local Lagrangians for them —
is the minimal requirement for any set of equations to be considered of interest
in the Calculus of Variations.

Of course, the first question which poses itself regards the existence and glob-
ality of conservation laws. Clearly, this means that one is looking for Noether
type theorems. We tackle this by the following procedure. We give a explicit
definition of local variational problem focused on the global, but only locally
variational equations and not on the system of local Lagrangians. Consequently,
the symmetries we choose for our Noether type theorems are those of the equa-
tions. Then we derive the local and global version of these theorems. We
examine closely the motivation and consequences of our choices. In particular,
we analyze the ‘inner’ structure of the obstruction to the existence of global
conserved currents that arises.

While conservation laws for equations without global Lagrangians have been
studied by several authors, among them [6, 8, 7, 17], a similar discussion, how-
ever, seems not to be in the literature and we hope it will clarify the highly
involved situation somewhat.

2 Local variational problems

Let us consider a fibered manifold π : Y → X, with dim X = n and dim Y =
n+m. For r ≥ 0 we have with the r–jet space JrY of jet prolongations of sections
of the fibered manifold π. We have also the natural fiberings πrs : JrY → JsY ,
r ≥ s, and πr : JrY → X; among these the fiberings πrr−1 are affine bundles
which induce the natural fibered splitting [14]

JrY ×Jr−1Y T ∗Jr−1Y = JrY ×Jr−1Y (T ∗X ⊕ V ∗Jr−1Y .

The above splitting induces also a decomposition of the exterior differential
on Y in the horizontal and vertical differential , (πr+1

r )∗ ◦ d = dH + dV . A
projectable vector field on Y is defined to be a pair (Ξ, ξ), where the vector field
Ξ : Y → TY is a fibered morphism over the vector field ξ : X → TX. By
(jrΞ, ξ) we denote the jet prolongation of (Ξ, ξ), and by jrΞH and jrΞV the
horizontal and the vertical part of jrΞ, respectively.

2



For q ≤ s, we consider the standard sheaves Λps of p–forms on JsY , the
sheaves Hp(s,q) and Hps of horizontal forms, i.e. of local fibered morphisms over

πsq and πs of the type α : JsY →
p
∧T ∗JqY and β : JsY →

p
∧T ∗X, respectively.

We also have the subsheaf Cp(s,q) ⊂ H
p
(s,q) of contact forms, i.e. of sections

α ∈ Hp(s,q) with values into
p
∧(C∗q [Y ]).

According to [13], the above fibered splitting yields the sheaf splittingHp(s+1,s)

=
⊕p

t=0 C
p−t
(s+1,s) ∧H

t
s+1, which restricts to the inclusion Λps ⊂

⊕p
t=0 Cp−ts ∧

Ht,hs+1, where Hp,hs+1 := h(Λps) for 0 < p ≤ n and the map h is defined to be
the restriction to Λps of the projection of the above splitting onto the non–trivial
summand with the highest value of t. Starting from this splitting one can define
the sheaves of contact forms, i.e. forms which ‘do not contribute to the action
integral along sections’ of π : Y →X.

By an abuse of notation, we denote by d kerh the sheaf generated by the
presheaf d kerh. Set then Θ∗r ≡ kerh + d kerh.

Definition 1 The quotient sequence

0 // IRY
// . . . //

En−1
Λnr /Θ

n
r

//
En Λn+1

r /Θn+1
r

//
En+1

Λn+2
r /Θn+2

r
//

En+2
. . . //d 0

is called the r–th order variational sequence associated with the fibered manifold
Y → X. It turns out that it is an exact resolution of the constant sheaf IRY

over Y [14].

The cohomology groups of the corresponding complex of global sections

0 // IRY
// . . . //

En−1
(Λnr /Θ

n
r )Y

//
En (Λn+1

r /Θn+1
r )Y

//
En+1

(Λn+2
r /Θn+2

r )Y
//

En+2
. . . //d 0

will be denoted by H∗VS(Y ). Since the variational sequence is a soft resolution of
the constant sheaf IRY over Y , the cohomology of the complex of global sections
is naturally isomorphic to both the Czech cohomology of Y with coefficients in
the constant sheaf IR and the de Rham cohomology Hk

dRY [13].
The quotient sheaves in the variational sequence can be represented as

sheaves Vkr of k-forms on jet spaces of higher order (see e.g. [10]). Lagrangians
are λ ∈ (Vnr )Y , En(λ) is called a Euler–Lagrange form (being En the Euler–
Lagrange morphism). Dynamical forms are η ∈ (Vn+1

r )Y , En+1(η) := H̃dη is a
Helmohltz form (being
cEn+1 the Helmholtz morphism).

The formulations of the calculus of variations in terms of homological algebra
of differential complexes were introduced in order to solve the so called global
inverse problem. We will sketch it (and its solution) within the framework of
variational sequences. This will lead naturally to what we call local variational
problems.

Let Kr ≡ Ker En. We call En(Vnr ) the sheave of Euler–Lagrange morphisms.
This is justified by the fact that for a global section η ∈ (Vn+1

r )Y we have
η ∈ (En(Vnr ))Y if and only if En+1(η) = 0, which are the Helmholtz conditons
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of local variationality. The global inverse problem is now to find necessary and
sufficient conditions for such a locally variational η to be globally variational.

Then the short exact sequence of sheaves

0 // Kr
// Vnr //

En En(Vnr ) // 0

gives rise to the long exact sequence in Czech cohomology

0 // (Kr)Y
// (Vnr )Y

// (En(Vnr ))Y
//δ
H1(Y ,Kr) // 0 .

Hence, every η ∈ (En(Vnr ))Y defines a cohmology class

δ[η] ∈ H1(Y ,Kr) ' Hn+1
V S (Y ) ' Hn+1

dR (Y ) ' Hn+1(Y ,R)

The solution to global inverse problem is now simple and elegant: η is globally
variational if and only if δ[η] = 0, because only then exists a global section
λ ∈ (Vnr )Y with η = En(λ).

If instead δ[η] 6= 0 then η = En(λ) can be solved only locally, i.e. for
any countable good covering {U i}i∈Z in Y there exist local Lagrangians λi
over each subset U i ⊂ Y with ηi = En(λi). The local Lagrangians satisfy
En((λi − λj)|Ui∩Uj

) = 0 and conversely any system of local sections of with
this property gives rise to a Euler–Lagrange morphism η ∈ (En(Vnr ))Y with
cohomology class δ[η] ∈ H1(Y ,Kr).

Definition 2 A system of local sections λi of (Vnr )Ui for an arbitrary covering
{U i}i∈Z in Y such that En((λi−λj)|Ui∩Uj ) = 0, is what we call a local variational
problem. Two local variational problems are equivalent if and only if they give
rise to the same Euler–Lagrange morphism. The covering {U i}i∈Z in Y together
with the local Lagrangians λi is called a presentation of the local variational
problem.

Remark 1 This definition is fraught with problems. First, the dependence on
the choice of a covering of Y makes the notion of equivalence rather cumbersome
to deal with. To compare two local variational problems one has first to find
their restriction to a common refinement of their respective coverings. Moreover,
two equivalent systems of local Lagrangians already defined with respect to
the same covering can differ by an arbitrary 0-cocycle of variationally trivial
Lagrangians, i.e. an arbitrary collections of local sections (over the U i ⊂ Y ) of
Kr. In consequence, on a give open set, the local Lagrangian from one system
will have in general infinitesimal symmetries different from those of the local
Lagrangian from the other.

This means that the notion of (infinitesimal) symmetry of a Lagrangian
does not carry over to the case of local variational systems. In particular it
can be used no longer even in the case of Euler–Lagrange morphisms which
admit a global Lagrangian. However, a reasonable more restrictive definition of
‘equality’ is not readily available. In the next section we will show a way of how
to deal with the questions of symmetries.
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Note that every cohomology class in Hn+1
dR (Y ) ' Hn+1(Y ,R) gives rise to

local variational problems. Non trivial Hn+1(Y ,R) can appear e.g. when deal-
ing with symmetry breaking, Y will then be fibred (over X) by homogeneous
spaces. Geometrically the same situation arises also in the following example.

Example 1 Consider the fibering

π : S2 × IR2 ×Gl(4)/O(1, 3) 7→ S2 × IR2

Sections of this bundle are (1, 3)-metrics on S2 ×R2.These are, of course, the
possible gravitational fields of a black hole. Here we have H5(Y ,R) ' R, so one
actually gets equations for the gravitational field of a black hole,which are locally
but not globally variational. Of course, we do not claim any physical relevance
for any of them. But note that one can always ‘add’ a global Lagrangian to
a local variational problem by simply adding its restrictions on each open set.
The cohomolgy class of the local variational problem remains unchanged by
this. Thus, for every cohmology class one can find Euler–Lagrange morphisms
representing it, which give rise to equations of the type ‘Einstein equations +
constraints of some kind’.

3 Symmetries and conservation laws

Once the formalism of variational sequences (or any other differential formula-
tions of the calculus of variations) is established, one is lead quite naturally to
consider also equations which are not globally variational. To justify this, it is
crucial that the differential formulations have a very rich mathematical struc-
ture which allows to derive a lot of additional information, both locally and
globally.

Most of all, one should have reasonable conservation laws with preferably
global conserved quantities. For this one wants, of course, Noether type theo-
rems linking symmetries of the local variational problem to conserved quantities.
The first question is, however, what the most natural choice for symmetries of
the local variational problem might be.

We recall that, inspired by [12], for any projectable vector field (Ξ, ξ) one
can define on (Vpr )W , W open in Y , the variational Lie derivative operator
LjrΞ [10]. Then, we have

• if p = n and λ ∈ (Vnr )W , then

LjrΞλ = ΞV En(λ) + dH(jrΞV pdV λ + ξ λ) ; (1)

• if p = n+ 1 and η ∈ (Vn+1
r )W then

LjrΞη = En(ΞV η) + H̃dη(j2r+1ΞV ) . (2)

Hence, from (1) we see that to get conservation laws we need

0 = En(ΞV η)
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for η ∈ (En(Vnr ))W and by (2) this means

LjrΞη = 0 ,

since H̃dη(j2r+1ΞV ) vanishes.
Thus, choosing as symmetries of local variational problems the symmetries of

the corresponding Euler–Lagrange morphism η ∈ (En(Vnr ))Y is the most natural
choice.

Proposition 1 Let ηλ be the Euler–Lagrange morphism of a local variational
problem. Let LjrΞηλ = 0. Then, along the solutions, we have the following local
conservation law

0 = dH(jrΞV pdV λi + ξ λi − β(λi,Ξ)) ,

and, in view of our defintion, it depends only on the local variational problem.
Proof. Locally we have ΞV ηλ = ΞV En(λi). From (1) above we have

then

0 = ΞV ηλ + dH(jrΞV pdV λi
+ ξ λi)− LjrΞλi .

Since all other terms are closed, also LjrΞλi is. In consequence, there is a
β(λi,Ξ) such that

0 = ΞV ηλ + dH(jrΞV pdV λi
+ ξ λi − β(λi,Ξ))

holds. This is, along the solutions, the desired local conservation law. The
symmetries depend only on the Euler–Lagrange morphism, thus, by definition
they depend only on the local variational system. Or, more explicitly, for a
variationally trivial Lagrangian θ we have LjrΞθ = dH(jrΞV pdV θ + ξ θ).
Thus, adding, after restriction to a suitbale refinement, an arbitray 0-cocyle of
variationally trivial Lagrangians we get

0 = ΞV ηλ + (dH(jrΞV pdV λi
+ ξ λi) + dH(jrΞV pdV θi

+ ξ θi)) +
−(LjrΞλi + LjrΞθi) = ΞV ηλ + dH(jrΞV pdV λi

+ ξ λi)− LjrΞλi .

Of course, ε(λi,Ξ) = (jrΞV pdV λi
+ ξ λi) is the usual canonical or Noether

current. To clarify one point: the local conserved current is ε(λi,Ξ)− β(λi,Ξ);
the Noether current ε(λi,Ξ) is conserved if and only if Ξ is also a symmetry of
λi.

We will turn our attention to the global situation now. Note that in our
definition a local variational problem is a global object in the sense that it has a
global Euler–Lagrange morphism defining a topological invariant. Consequently,
there is also a precise relation between our local conservation laws. We will
summarize this in the following propositon.

Proposition 2 Let ηλ be the Euler–Lagrange morphism of a local variational
problem, λi the system of local Lagrangians of an arbitrary given presentation,
then we have
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1. the local currents satisfy dH(ε(λi,Ξ)− β(λi,Ξ)− ε(λj ,Ξ) + β(λj ,Ξ)) = 0;

2. the local currents are the restrictions of a global conserved current, i.e.
ε(λi,Ξ) − β(λi,Ξ) − ε(λj ,Ξ) + β(λj ,Ξ) = 0, if and only if the cohomlogy
class [ΞV ηλ] ∈ Hn

dR(Y ) vanishes.
Proof. ΞV ηλ defines a cohomology class, since 0 = LjrΞη = En(ΞV ηλ).

The local conserved currents are simply the negative of its local potentials. The
first affirmation is one way to state this. Or, explicitly, the formula for the
Lie derivative of the λi shows that the dH(jrΞV pdV λi

+ ξ λi − β(λi,Ξ)) are
the restrictions to the open sets of the corresponding covering of −ΞV ηλ and,
hence, coincide on intersections.

If the local currents are the restrictions of a global one, then this global
current is also a global potential of −ΞV ηλ. This deals with the second affir-
mation.

Remark 2 Recall our above example regarding the gravitational field of the
black hole. For our hypothetical Einstein equations + constraints on

π : S2 × IR2 ×Gl(4)/O(1, 3) 7→ S2 × IR2

the class [ΞV ηλ] ∈ H4
dR(Y ) always vanishes, since H4

dR(Y ) ' 0. Thus, our
conservation laws are always global.

However, using the symmetries of the Euler-lagrange morphism to find con-
servation laws leads to serious practical problems when one is interested in the
global case.

This comes from the fact that also in the case of a bona fide Lagrangian,
when the cohomolgy class [En(λ)] is trivial the cohomolgy class [ΞV En(λ)]
may be non trivial: the contraction of a closed, but cohomologically trivial form
with a vector field is not necessarily cohomologically trivial itself; the simplest
example is that Hn

dR(IRn+1 − 0) can be generated in this way, i.e. we view
(IRn+1 − 0) as the total space of the fibre bundle Sn × IR 7→ Sn and contract a
volume form with a suitable vertical vector field.

If, on the other hand, Ξ is a symmetry of all local Lagrangians λi of a given
presentation of the local variational problem the Noether currents are conserved
and form a system of local potentials of the cohomology class

[ΞV ηλ] ∈ Hn
dR(Y ) .

There is a global Noether current if and only if

0 = [ΞV ηλ] ∈ Hn
dR(Y ) .

In general we have

dH(ε(λi,Ξ)− ε(λj ,Ξ)) = LjrΞλi − LjrΞλj 6= 0 ,

thus neither the LjrΞλi nor the dH(ε(λi,Ξ)) are in general the restrictions of
global closed n-forms. But since the obstruction to have a global closed form
and, hence, a cohomology class is the same in both cases, it vanishes in the
difference. Thus, we can summarize our discussion in the following propositon.
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Proposition 3 The cohomology class [ΞV ηλ], i.e. the obstruction to the ex-
istence of a global conserved current, is the difference of two conceptually in-
dependent cohomology classes. One coming from using the symmetries of the
Euler–Lagrange morphism and the other from the system of local Noether cur-
rents.

Or, in other words, the rather forced use of the symmetries of the Euler–
Lagrange morphism introduces, compared to the use of Lagrangian symmetries,
an additional type of obstruction, which makes it on the whole more difficult to
keep the situation under control.
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