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Abstract. We deal with a boundary value problem associated to a
second order singular equation in the open interval (0, 1]. We first
study the eigenvalue problem in the linear case and discuss the nodal
properties of the eigenfunctions. We then give a global bifurcation result
for nonlinear problems.
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1. Introduction

We are concerned with a second order ODE of the form

−u′′ + q(x)u = λu + g(x, u)u, λ ∈ R, x ∈ (0, 1], (1)

where q ∈ C((0, 1]) satisfies

lim
x→0+

q(x)
l/xα

= 1 (2)

for some l > 0 and α ∈ (0, 5/4), and g ∈ C([0, 1]× R) is such that

lim
u→0

g(x, u) = 0, uniformly in x ∈ (0, 1]. (3)

The constant 5/4 arises in a rather straightforward manner in the study of the
differential operator in the left-hand side of (1) (cf. [13, p. 287-288]); details
are given in Remark 2.3 below.

1Under the auspices of GNAMPA-I.N.d.A.M., Italy. The work has been performed in
the frame of the M.I.U.R. Projects ‘Topological and Variational Methods in the Study of
Nonlinear Phenomena’ and ‘Nonlinear Control: Geometrical Methods and Applications’.
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We will look for solutions u of (1) such that u ∈ H2
0 (0, 1).

When the x-variable belongs to a compact interval, problems of the form (1)
have been very widely studied. A more limited number of contributions is
available in the literature when the x-variable belongs to a (semi)-open interval,
as it is the case in the present paper, or to an unbounded interval [7, 8].

We treat (1) in the framework of bifurcation theory. For this reason, we
first discuss in Section 2 the eigenvalue problem

−u′′ + q(x)u = λu, x ∈ (0, 1], λ ∈ R. (4)

For such singular problems, the well-known embedding of (4) (by an elemen-
tary application of the integration by parts rule, together with the boundary
condition u(0) = 0 = u(1)) in the setting of eigenvalue problems for compact
self-adjoint operators cannot be performed. Thus, the questions of the existence
of eigenvalues and of the nodal properties of the associated eigenfunctions have
various delicate features. For a comprehensive account on the spectral proper-
ties of the Schrödinger operator we refer to the books [12] and [10]; for more
specific results on singular problems in (0, 1) we refer, among many others,
to [5, 15].

However, the linear spectral theory for singular problems is well-established
and can be found, among others, in the classical book by Coddington and
Levinson [4] and in the (relatively) more recent text by Weidmann [13]. The
former monograph focuses on a generalization of the so-called “expansion the-
orem” valid for functions in L2([0, 1]) and, by doing this, a sort of “generalized
shooting method” is performed. On the other hand, in [13] the singular prob-
lem is tackled from an abstract point of view; more precisely, it is considered
the general question of the existence of a self-adjoint realization of the formal
differential expression τu = −u′′ + q(x)u and the important Weyl alternative
theorem [13, Theorem 5.6] is used. It is interesting to observe that the approach
in [4] (based on more elementary ODE techniques) and the abstract one in [13]
lead in different ways to the important concepts of “limit point case” and “limit
circle case”. The knowledge of one (or the other) case is ensured by suitable
assumptions on q and lead to information on the boundary conditions to be
added to (4) in order to have a self-adjoint realization of τ .

In the setting of the present paper, the operator τ is regular at x = 1;
this implies that it is in the limit circle case. Moreover, under assumption (2),
from [13, Theorem 6.4] it follows that τ is in the limit circle case also in x = 0.
Thus, the differential operator A : u 7→ τu with

D(A) = {u ∈ L2(0, 1) : u, u′ ∈ AC(0, 1), τu ∈ L2(0, 1),
lim

x→0+
(xu′(x)− u(x)) = 0 = u(1)}



GLOBAL BIFURCATION FOR A SINGULAR EQUATION 3

is a self-adjoint realization of τ ([13, p. 287-288]). We prove in Proposition 2.2
that in fact D(A) = H2

0 (0, 1); to do this, we need some knowledge of the
behaviour of the solutions of (4) near zero. These estimates are developed in
Proposition 2.1 by means of the classical Levinson theorem [6, Theorem 1.8.1].
Finally, at the end of Section 2 we focus on the nodal properties of a solution
to (4); more precisely, in Proposition 2.4 we prove that (4) is non-oscillatory
and conclude in Proposition 2.5 that the spectrum of A is purely discrete and
that, for every n ∈ N, the eigenfunction associated to the eigenvalue λn has
(n− 1) simple zeros in (0, 1).

Section 3 contains a global bifurcation result (Theorem 3.2) which follows in
a rather straightforward manner as an application of the celebrated Rabinowitz
theorem in [11].

In order to exclude alternative (2) in Theorem 3.2, we use a technique that
we already applied for Hamiltonian systems in R2N in [2] and for planar Dirac-
type systems in [3]. More precisely, we introduce a continuous integer-valued
functional defined on the set of solutions to (1). Due to the singularity at x = 0,
some care is necessary in order to prove its continuity; this is the content of
Proposition 3.4. We can then state and prove our main result (Theorem 3.5).

In what follows, for a given function p we write p(x) ∼ m

xa
, x → 0+, when

lim
x→0+

p(x)
m/xa

= 1 (5)

for some m,a ∈ R+.
Finally, we write

H2
0 (0, 1) = {u ∈ H2(0, 1) : u(0) = 0 = u(1)},

equipped with the norm defined by

||u||2 = ||u||2L2(0,1) + ||u′′||2L2(0,1), ∀ u ∈ H2
0 (0, 1).

2. The linear equation

In this section we study a linear second order equation of the form

−u′′ + q(x)u = λu, x ∈ (0, 1], λ ∈ R. (6)

We will assume that q ∈ C((0, 1]) and that

q(x) ∼ l

xα
, x → 0+, (7)
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for some l > 0 and α ∈ (0, 5/4). Without loss of generality we may suppose
that

q(x) > 0, ∀ x ∈ (0, 1]. (8)

For every u : (0, 1] → R we denote by τu the formal expression

τu = −u′′ + q(x)u;

First of all, we study the asymptotic behaviour of solutions of (6) when
x → 0+; to this aim, let us introduce the change of variables t = − log x and
let

w(t) = u(e−t), ∀ t > 0.

From the relations

w′(t) = −e−tu′(e−t)

w′′(t) = e−tu′(e−t) + e−2tu′′(e−t),
(9)

we deduce that u is a solution of (6) on (0, 1) if and only if w is a solution of

−w′′ − w′ + e−2tq(e−t)w = λe−2tw (10)

on (0,+∞). Equation (10) can be written in the form

Y ′ = (C + R(t))Y, (11)

where Y = (w, z)T and

C =

 0 1

0 −1

 , R(t) =

 0 0

e−2tq(e−t)− λe−2t 0

 , ∀ t > 0. (12)

Now, let us observe that C has eigenvalues λ1 = 0, λ2 = −1 and corresponding
eigenvectors u1 = (1, 0), u2 = (1,−1) and that R ∈ L1(0,+∞); therefore, an
application of [6, Theorem 1.8.1] implies that (11) has two linearly independent
solutions Y1, Y2 such that

Y1(t) = u1 + o(1), t → +∞,

Y2(t) = (u2 + o(1))e−t, t → +∞.
(13)

As a consequence, we obtain the following result:
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Proposition 2.1. For every λ ∈ R the equation (6) has two linearly indepen-
dent solutions u1,λ, u2,λ such that

u1,λ(x) = 1 + o(1), u′1,λ(x) = o

(
1
x

)
x → 0+,

u2,λ(x) = x + o(x), u′2,λ(x) = 1 + o(1), x → 0+,

(14)

and u2,λ ∈ H2(0, 1).
For every f ∈ L2(0, 1) the solutions of τu = f are given by

u(x) = c1u1,0(x) + c2u2,0(x) + uf (x), ∀ x ∈ (0, 1), c1, c2 ∈ R, (15)

where

uf (x) =
∫ x

0
G(x, t)f(t) dt, ∀ x ∈ (0, 1),

G(x, t) = u1,0(t)u2,0(x)− u2,0(t)u1,0(x), ∀ x ∈ (0, 1), t ∈ (0, 1)
(16)

fulfill G ∈ L∞((0, 1)2), uf (0) = 0 = u′f (0) and uf ∈ H2(0, 1).

Proof. The estimates in (14) follow from (9) and (13), while (16) is the usual
variation of constants formula. Moreover, from (14) we obtain that u2,λ, u′2,λ ∈
L2(0, 1). On the other hand we have

q(x)u2,λ(x) ∼ x1−α, x → 0+, (17)

which implies that qu2,λ ∈ L2(0, 1), since α < 5/4 (cf. Remark 2.3 for com-
ments on this restriction); using the fact that τu2,λ = λu2,λ, we deduce that

u′′2,λ = λu2,λ − qu2,λ ∈ L2(0, 1).

From now on, we will indicate ui = ui,0, i = 1, 2. The fact that the function
G defined in (16) belongs to the space L∞((0, 1)2) is a consequence of the
asymptotic estimates (14). Moreover, from (16) we also deduce that uf (0) = 0
and that

u′f (x) =
∫ x

0

(u1(t)u′2(x)− u2(t)u′1(x))f(t) dt, ∀ x ∈ (0, 1), (18)

which implies u′f (0) = 0.
Finally, the condition uf (0) = 0 = u′f (0) guarantees that uf , u′f ∈ L2(0, 1);

as far as the second derivative of uf is concerned, let us observe that we have

τuf = f

and so
u′′f = f − quf . (19)

Using the fact that uf (0) = 0 = u′f (0) and (7), it follows that quf ∈ L2(0, 1);
hence uf ∈ H2(0, 1).
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In what follows, we study the spectral properties of suitable self-adjoint
realizations of τ ; to this aim, let us first observe that the differential operator
τ is regular at x = 1. As a consequence, it is in the limit circle case at x = 1;
moreover, from (7), according to [13, Theorem 6.4], τ is in the limit circle case
also in x = 0.

The differential operator A defined by

D(A) = {u ∈ L2(0, 1) :u, u′ ∈ AC(0, 1), τu ∈ L2(0, 1),
lim

x→0+
(xu′(x)− u(x)) = 0 = u(1)}

Au = τu, ∀ u ∈ D(A),

is then a self-adjoint realization of τ ([13, p. 287-288]). We can show the
validity of the following Proposition:

Proposition 2.2. The relation

D(A) = H2
0 (0, 1)

holds true. Moreover, A has a bounded inverse A−1 : L2(0, 1) → H2
0 (0, 1).

Proof. 1. Let us start proving that H2
0 (0, 1) ⊂ D(A). It is well known that

H2
0 (0, 1) ⊂ C1(0, 1); hence, for every u ∈ H2

0 (0, 1) we have u, u′ ∈ AC(0, 1).
Moreover, using the fact that u(0) = 0 we deduce that

u(x) = u′(0)x + o(x), x → 0+

and
q(x)u(x) = u′(0)x1−α + o(x1−α), x → 0+;

the condition α < 5/4 guarantees again that qu ∈ L2(0, 1) and therefore τu =
−u′′ + qu ∈ L2(0, 1). Finally, the regularity of u and u′ imply that

lim
x→0+

(xu′(x)− u(x)) = 0

and so also the boundary condition in the definition of D(A) is satisfied.
Now, let us prove that D(A) ⊂ H2

0 (0, 1); for every u ∈ D(A) let f = τu ∈
L2(0, 1). From (15) we deduce that u can be written as

u = c1u1 + c2u2 + uf , (20)

for some c1, c2 ∈ R; it is easy to see that the function u1 does not satisfy the
boundary condition given in x = 0 in the definition of D(A), while u2 and uf

do. Hence u ∈ D(A) if and only if c1 = 0; the last statement of Proposition 2.1
implies then that u ∈ H2(0, 1). As in the first part of the proof, the regularity
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of u allows to conclude that the boundary condition in x = 0 given in D(A)
reduces to u(0) = 0.

2. Let us study the invertibility of A; the existence of a bounded inverse of
A is equivalent to the fact that 0 ∈ ρA, being ρA the resolvent of A. Since
A is self-adjoint on H2

0 (0, 1), this follows from the surjectivity of A (cf. [17,
Theorem 5.24]); hence, it is sufficient to prove that A is surjective.

To this aim, let us first observe that condition (8) guarantees that 0 cannot
be an eigenvalue of A. Now, let us fix f ∈ L2(0, 1) and let us prove that there
exists u ∈ H2

0 (0, 1) such that Au = f , i.e. τu = f ; by applying Proposition 2.1
we deduce again that (20) holds true and the same argument of the first part
of the proof implies that c1 = 0.

Hence we obtain u = c2u2 + uf ; from Proposition 2.1 we deduce that this
function belongs to H2(0, 1) and satisfies the boundary condition u(0) = 0. In
order to prove that the missing condition u(1) = 0 is fulfilled for every f ∈
L2(0, 1), let us observe that u2(1) 6= 0, otherwise u2 would be an eigenfunction
of A associated to the zero eigenvalue. Therefore, u(1) = 0 is satisfied if

c2 = −uf (1)
u2(1)

,

for every f ∈ L2(0, 1).

Remark 2.3. As for the restriction α < 5/4, we observe that for the proofs
of Proposition 2.1 and Proposition 2.2 it is sufficient to require the milder
condition α < 3/2. The fact that α < 5/4 is used (cf. [13, p. 287-288]) in
order to obtain that D(A) is the one described above. Finally, we observe that in
the particular case when α < 1 the problem is regular (cf., among others, [9]).

The spectral properties of A are related to the oscillatory behaviour of
solutions of (6). We first recall the following definition:

Definition 2.4. The differential equation (6) is oscillatory if every solution u
has infinitely many zeros in (0, 1). It is non-oscillatory when it is not oscilla-
tory.

We observe that the regularity assumptions on q imply that solutions of (6)
have a finite number of zeros in any interval of the form [a, 1), for every 0 < a <
1. Moreover, from (7) we infer that for every λ ∈ R there exists c(λ) ∈ (0, 1]
such that

λ− q(x) < 0, ∀ x ∈ (0, c(λ)).

An application of the Sturm comparison theorem proves that every solution
of (6) has at most one zero in (0, c(λ)); as a consequence, we obtain the following
result:
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Proposition 2.5. For every λ ∈ R the differential equation (6) is non-oscilla-
tory.

Once Proposition 2.5 is obtained, we can provide in a straightforward way
some useful information on the spectral properties of A; more precisely, denot-
ing by σess the essential spectrum of a given operator, we have:

Proposition 2.6. ([13, Theorem 14.3, Theorem 14.6 and Theorem 14.9], [12,
Theorem XIII.1]) The differential operator A is bounded-below and satisfies

σess(A) = ∅.

Moreover, there exists a sequence {λn}n∈N of simple eigenvalues of A such that

lim
n→+∞

λn = +∞

and for every n ∈ N the eigenfunction un of A associated to the eigenvalue λn

has (n− 1) simple zeros in (0, 1).

Remark 2.7. According to [13], operators of the form τ (defined on functions
whose domain is (0,+∞)) arise when the time independent Schrödinger equa-
tion with spherically symmetric potential

−∆u(x) + V (|x|)u(x) = λu(x), u ∈ L2(Rm) (21)

is reduced to an infinite system of eigenvalue problems associated to the ordinary
differential operators in L2(0,+∞)

τi = − d2

dr2
+

1
r2

[
i(i + m− 2) +

1
4
(m− 1)(m− 3)

]
+ V (r)

(i ∈ N). In Appendix 17.F of [13] it is treated the case of a potential V satisfying
assumptions (which enable to consider Coulomb potentials) that lead to (7).
More precisely, it is shown that for m = 3, i = 0 the operator is in the limit
circle case at zero and self-adjoint extensions of τ0 are described.

3. The main result

In this section we are interested in proving a global bifurcation result for a
nonlinear eigenvalue problem of the form

−u′′ + q(x)u = λu + g(x, u)u, λ ∈ R, x ∈ (0, 1], (22)

where q ∈ C((0, 1]) satisfies (7) and g ∈ C([0, 1]× R) is such that

lim
u→0

g(x, u) = 0, uniformly in x ∈ [0, 1]. (23)
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We will look for solutions u of (22) such that u ∈ H2
0 (0, 1). To this aim,

let Σ denote the set of nontrivial solutions of (22) in H2
0 (0, 1) × R and let

Σ′ = Σ ∪ {(0, λ) ∈ H2
0 (0, 1) × R : λ is an eigenvalue of A}, where A is as in

Section 2.
Let M denote the Nemitskii operator associated to g, given by

M(u)(x) = g(x, u(x))u(x), ∀ x ∈ [0, 1],

for every u ∈ H2
0 (0, 1). We can show the validity of the following:

Proposition 3.1. Assume g ∈ C([0, 1]×R) and (23). Then M : H2
0 (0, 1) −→

L2(0, 1) is a continuous map and satisfies

M(u) = o(||u||), u → 0. (24)

Proof. 1. We first show that Mu ∈ L2(0, 1) when u ∈ H2
0 (0, 1). When this

condition holds, u ∈ L∞(0, 1) and the continuity of g implies that there exists
Cu > 0 such that

|g(x, u(x))u(x)| ≤ Cu, ∀ x ∈ [0, 1].

As a consequence we obtain Mu ∈ L∞(0, 1) ⊂ L2(0, 1).

2. Let us prove that M is continuous. Let us fix u0 ∈ X and let un ∈ X such
that un → u0 when n → +∞; the continuous embedding

H2
0 (0, 1) ⊂ L∞(0, 1)

and the uniform continuity of g on compact subsets of [0, 1]× R ensure that

g(x, un(x)) → g(x, u0(x)) in L∞(0, 1). (25)

This is sufficient to conclude that Mun → Mu0 in L∞(0, 1) and hence Mun →
Mu0 in L2(0, 1).

3. Finally, let us prove (24): using again the fact that H2
0 (0, 1) ⊂ L∞(0, 1), we

have

||Mu||L2(0,1) ≤ ||g(x, u(x))||L∞(0,1)||u||L2(0,1) ≤ ||g(x, u(x))||L∞(0,1)||u||,

for all u ∈ H2
0 (0, 1); hence, we deduce that

||Mu||L2(0,1)

||u||
≤ ||g(x, u(x))||L∞(0,1), ∀ u ∈ H2

0 (0, 1), u 6= 0.

Therefore the result follows from (23) and (25).
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Now, let us observe that the search of solutions u ∈ H2
0 (0, 1) of (22) is

equivalent to the search of solutions of the abstract equation

Au = λu + M(u), (u, λ) ∈ H2
0 (0, 1)× R; (26)

on the other hand, (26) can be written in the form

w = λRw + M(Rw), (w, λ) ∈ L2(0, 1)× R, (27)

where R : L2(0, 1) → H2
0 (0, 1) is the inverse of A (cf. Proposition 2.2).

Now, from [13, Theorem 7.10] we deduce that R is compact; this fact and
the continuity of M guarantee that the operator MR : L2(0, 1) → H2

0 (0, 1) is
compact. Moreover, the condition

M(Rw) = o(||w||L2(0,1)), w → 0, (28)

is a consequence of (24). From an application of the global bifurcation result
of Rabinowitz (cfr. [11]) to (27) we then obtain the following result:

Theorem 3.2. Assume (7) and (23). Then, for every eigenvalue λn of A there
exists a continuum Cn of nontrivial solutions of (22) in H2

0 (0, 1)×R bifurcating
from (0, λn) and such that one of the following conditions holds true:

(1) Cn is unbounded in H2
0 (0, 1)× R;

(2) Cn contains (0, λn′) ∈ Σ′, with n′ 6= n.

Now, let us observe that a more precise description of the bifurcating
branch, eventually leading to exclude condition (2), can be obtained when
there exists a continuous functional j : Σ′ → N (cf. [2, Pr. 2.1]). In order to
define such a functional, we will use the fact that nontrivial solutions of (22)
have a finite number of zeros in (0, 1); this will be a consequence of our next
result.

For every λ ∈ R and for every nontrivial solution u ∈ H2
0 (0, 1) of (22) let us

define qu,λ : (0, 1] → R by qu,λ(x) = q(x)− λ− g(x, u(x)), for every x ∈ (0, 1].
The following Lemma holds true:

Lemma 3.3. For every λ ∈ R and for every nontrivial solution u ∈ H2
0 (0, 1)

of (22) there exists a neighborhood U ⊂ H2
0 (0, 1)×R of (u, λ) and xu,λ ∈ (0, 1)

such that
qv,µ(x) > 0, ∀ (v, µ) ∈ U, x ∈ (0, xu,λ]. (29)

Proof. Let (u, λ) ∈ H2
0 (0, 1)×R, u 6≡ 0, be fixed and let U be the neighborhood

of radius 1 of (u, λ) in H2
0 (0, 1)×R; from the continuous embedding L∞(0, 1) ⊂

H2
0 (0, 1) we deduce that if (w, µ) ∈ Σ ∩ U1 then

||w||L∞(0,1) ≤ 1 + ||u||L∞(0,1), |µ| ≤ 1 + |λ|
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and

q(x)− µ− g(x, w(x)) ≥ q(x)− |λ| − 1− max
x∈[0,1],

|s|≤1+||u||L∞(0,1)

|g(x, s)|, ∀ x ∈ (0, 1).

From (7) we then deduce that there exists x(u,λ) ∈ (0, 1), depending only on
(u, λ), such that

q(x)− µ− g(x,w(x)) > 0, ∀ x ∈ (0, x(u,λ)].

Now, let us observe that for every λ ∈ R and for every nontrivial solution
u ∈ H2

0 (0, 1) of (22) the function u is a nontrivial solution of the linear equation

−w′′ + (q(x)− g(x, u(x))− λ)w = 0. (30)

From Lemma 3.3, with an argument similar to the one which led to Proposi-
tion 2.5, we deduce that all the nontrivial solutions of (30) (in particular u)
have a finite number of zeros in (0, 1). We denote by n(u) this number.

We are then allowed to define the functional j by setting

j(u, λ) =

 n(u) if u 6≡ 0

n− 1 if u ≡ 0 and λ = λn,
(31)

for every (u, λ) ∈ Σ′. Let us observe that the definition j(0, λn) = n − 1 is
suggested by Proposition 2.6.

Proposition 3.4. The function j : Σ′ → N is continuous.

Proof. 1. As for the continuity of j in every point of the form (0, λn), n ∈ N,
we refer to [16, Lemma 2.5].

2. Let us now fix (u0, λ0) ∈ Σ and let (u, λ) ∈ U , with U as in Lemma 3.3; this
Lemma guarantees that both u and u0 have no zeros in (0, xu0,λ0).

On the other hand, in the interval [xu0,λ0 , 1] a standard continuous depen-
dence argument (cf. also [11]) ensures that u and u0 have the same numbers
of zeros if (u, λ) is in a sufficiently small neighborhood of (u0, λ0). As a conse-
quence, we obtain that there exists a neighborhood U0 of (u0, λ0) such that

j(u, λ) = j(u0, λ0), ∀ (u, λ) ∈ U0.

As a consequence, from Theorem 3.2 and Proposition 3.4 we deduce the
final result:
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Theorem 3.5. Assume (7) and (23). Then, for every eigenvalue λn of A there
exists a continuum Cn of nontrivial solutions of (22) in H2

0 (0, 1)×R bifurcating
from (0, λn) and such that condition (1) of Theorem 3.2 holds true and

j(u, λ) = n− 1, ∀ (u, λ) ∈ Cn. (32)

Remark 3.6. Theorem 3.2 can be proved as an application of Stuart’s result
[16, Theorem 1.2] as well. However, since in the situation considered in this
paper the singularity at zero does not affect the compactness of the operator
R defined after (27), we chose to apply Rabinowitz theorem [11]. We finally
mention the interesting paper [1], where global branches of solutions, with pre-
scribed nodal properties, are obtained for a second order degenerate problem in
(0, 1).
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