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Abstract

We study in detail the analytic properties of the Thermodynamic Bethe Ansatz (TBA) equations for
the anomalous dimensions of composite operators in the planar limit of the 3D N = 6 superconformal
Chern–Simons gauge theory and derive functional relations for the jump discontinuities across the branch
cuts in the complex rapidity plane. These relations encode the analytic structure of the Y functions and
are extremely similar to the ones obtained for the previously-studied AdS5/CFT4 case. Together with the
Y-system and more basic analyticity conditions, they are completely equivalent to the TBA equations. We
expect these results to be useful to derive alternative nonlinear integral equations for the AdS4/CFT3 spec-
trum.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the research in high energy theoretical physics has been characterised by the
discovery of deep connections between strings, supersymmetric gauge theories and integrable
models. A first link between a quantum integrable model and multicolour reggeised gluon scat-
tering was discovered by Lipatov in [1], see also [2]. More recently, the methods of integrability
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have turned out to be very efficient for the study of some prominent examples of string/gauge
theories related by the AdS/CFT correspondence [3–5]. For a review of the rapidly developing
field of integrability in AdS/CFT the reader can consult [6].

In this paper we are concerned with the Thermodynamic Bethe Ansatz (TBA) approach to the
computation of the planar spectrum of the AdS4/CFT3 correspondence [7]. This is the spectrum
of the anomalous dimensions of local gauge invariant operators in the N = 6 superconformal
Chern–Simons gauge theory, or, equivalently, the energy spectrum of Type IIA string theory on
AdS4 ×CP

4. The development of this subject has been parallel and inspired by the study of the
spectrum of the AdS5/CFT4 correspondence, and we will often refer to the latter. In fact, it is in
the context AdS5/CFT4 that integrability was originally discovered.

In the context of AdS4/CFT3, Asymptotic Bethe Ansatz (ABA) equations for anomalous
dimensions of composite trace operators were proposed in a series of seminal works [8–11],
however a crucial limitation has soon emerged as a consequence of the asymptotic character of
these equations: the BA equations do not contain information on the finite size contributions that
appear when the site-to-site interaction range in the loop expansion of the dilatation operator
becomes greater than the number of elementary operators in the trace.

Although, for supersymmetry reasons, these wrapping effects [12–14] do not affect special
families of (protected) operators, in general these corrections become particularly relevant in the
semiclassical limit of string theory corresponding to the strong coupling regime on the gauge
theory side.

This limitation can be surmounted through the use of the Thermodynamic Bethe Ansatz tech-
nique [15]; a method originally proposed by Al.B. Zamolodchikov [16] to study the ground state
energy of perturbed conformal field theories on a cylinder geometry using the exact knowledge
of the scattering data. The method was later adapted to the study of excited states [17–19]. The
use of the TBA method to overcome the wrapping problem in AdS/CFT was advocated in [14]
and implemented in [21–23] for the AdS5/CFT4 case, and in [24,25] for the AdS4/CFT3 case
(see also the review [26]). As a result of this procedure, the value of anomalous dimensions as
function of the coupling constant is represented in terms of the pseudoenergies εa , solutions of
a set of nonlinear coupled integral equations: the TBA equations. Starting from the latter, sets of
finite difference functional relations for Ya = eεa , the Y-systems [33–36], have been derived for
the AdS4/CFT3 and AdS5/CFT4 spectra in [21–25]. Apart for a subtle small difference crucial to
describe certain subsectors of the AdS4/CFT3 theory, the earlier proposal by Gromov, Kazakov
and Vieira coming from symmetry arguments [20] were confirmed.

Y-systems are currently playing an important rôle in Cluster Algebra, gluon scattering ampli-
tudes and other areas of mathematical physics [37]. They are related to discrete Hirota’s equations
and they are central in the TBA setup since they exhibit a very high degree of universality: the
whole set of excited states of a given theory is associated to the same Y-system with different
states differing only in the number and positions of the 1+Ya zeros in a certain fundamental strip.
In principle, one can then obtain TBA equations describing the excited states by making natu-
ral assumptions on the position of these zeroes and reconstructing the TBA from the Y-system.
So far, excited state TBA equations have been conjectured only for particular subsectors of the
AdS/CFT theories, although a rich picture is already emerging [21,25,27–32].

In relativistic-invariant models the Y functions are, in general, meromorphic in the rapidity
u with zeros and poles both linked to 1 + Ya zeros through the Y-system. The situation for
the AdS/CFT-related models is further complicated by the presence of square root branch cuts
inside and at the border of a certain fundamental strip. According to the known Y-system to TBA
transformation procedures, full information on the Y function jump discontinuities across these
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closest cuts should be independently supplied. The main goal of the paper [44] was to show that,
for the AdS5/CFT4 case, the relevant analytic structure can be encoded in the Y-system together
with a set of state-independent functional relations involving points on different Riemann sheets.
Indeed, the results of [44] turned out to be very useful both for finding new families of excited
states [46] and for the derivation of important alternative nonlinear integral equations [48,49] for
the anomalous dimensions.

In this paper we shall discuss the AdS4/CFT3 case using a somehow complementary ap-
proach: while in [44] it was shown in detail how to transform the functional relations to the
TBA form, here we will start from the AdS4/CFT3 TBA and describe, in reasonable detail, how
to extract the full set of discontinuity relations. A useful additional identity for the fermionic
nodes is derived carefully in Appendix B showing that it is a consequence of the fundamental
discontinuity relations and of the Y-system.

The paper is organised as follows. Section 2 contains the TBA equations of [24,25]. The
Y-system and the new functional relations are presented in Section 3. In Section 4, we provide a
concise derivation of these relations from the TBA equations, while in Section 5 we show how
to generate, from the standard Y-system, other non-fundamental identities describing the branch
cuts far from the real axis.

There are four appendices. Appendix A contains a list of the kernels entering the TBA equa-
tions, in Appendix B we derive a useful additional relation for the fermionic nodes, and in
Appendix C we list other identities, which can be used to check that the Y-system supplemented
by the branch cut information is equivalent to the TBA. Finally, in Appendix D, we rewrite the
fundamental set of relations in terms of the T functions, connecting with the results of [46,49].

2. The TBA equations

The TBA equations for the spectrum of AdS4/CFT3 are an infinite set of coupled nonlin-
ear integral equations, depending explicitly on an integer parameter L related to the number
of elementary fields in the composite operator under consideration, and depending on the cou-
pling1 h through the form of the integral kernels φa,b . Their solutions are a set of pseudoenergies
εa(u), of the following species: εQ|I (u), εQ|II(u), εw|M(u), εv|N(u), εy|−(u), εy|+(u), where
Q,M,N ∈ N

+.
It is often useful to consider the so-called Y functions, obtained by exponentiating the pseu-

doenergies: Ya(u) = eεa(u). We also set

La(u) = ln
(
1 + 1/Ya(u)

)
. (2.1)

The TBA equations describing the ground state have been derived in [24,25] and can be written
as

εQ|α(u) = lnλQ|α + LẼQ(u)

−
∑
β

∞∑
Q′=1

LQ′|β ∗ φ(Q′|β),(Q|α)(u)

1 In the case of AdS4/CFT3, the coupling h entering the S-matrix elements is a so far undetermined function of the
t’Hooft coupling h = h(λ).
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+
∞∑

M=1

Lv|M ∗ φ(v|M),Q(u)

+
2∫

−2

dz
[
Ly|−(z)φ(y|−),Q(z,u) − Ly|+(z)φ(y|+),Q(z,u)

]
, (2.2)

εy|∓(u) = lnλy|∓ −
∞∑

Q=1

(LQ|I + LQ|II) ∗ φQ,(y|∓)(u)

+
∞∑

M=1

(Lv|N − Lw|M) ∗ φM(u), (2.3)

εv|K(u) = lnλv|K −
∞∑

Q=1

(LQ|I + LQ|II) ∗ φQ,(v|K)(u)

+
∞∑

M=1

Lv|M ∗ φM,K(u) +
2∫

−2

dz
(
Ly|−(z) − Ly|+(z)

)
φK(z − u), (2.4)

εw|K(u) = lnλv|K +
∞∑

M=1

Lw|M ∗ φM,K(u)

+
2∫

−2

dz
(
Ly|−(z) − Ly|+(z)

)
φK(z − u), (2.5)

for α ∈ {I, II}, K,Q ∈ N
+, where the fugacities λa will be specified below. The integral kernels

φa,b(z, u) appearing in the TBA equations are defined in Appendix A, together with the function
ẼQ(u), which represents the infinite volume energy of a Q-particle bound state in the mirror
theory.

The ground state energy can be computed as

F̃ (L) = − 1

L

∞∑
Q=1

∫
R

du

2π

dp̃Q

du

(
LQ|I (u) + LQ|II(u)

)
, (2.6)

where p̃Q is the mirror momentum, also defined in Appendix A. This quantity is exactly zero, as
dictated by supersymmetry, as soon as the fugacities reach the values

λQ|α = (−1)Q, λv|K = λw|K = 1, λy|± = −1
(
α ∈ {I, II},K,Q ∈ N

+)
. (2.7)

This singular limit of the TBA equations can be regularised by taking

λ2Q−1|I = −eiϕ, λ2Q−1|II = −e−iϕ, λ2Q|I = λ2Q|II = 1,

λv|K = λw|K = 1, λy|± = −1, (2.8)

such that the TBA equations are regular for ϕ �= 0 and the ground state energy tends to zero as
ϕ → 0.

There is an important difference between this system and the TBA equations describing two-
dimensional relativistic quantum field theories in finite volume: the S-matrix elements listed
in Appendix A contain, in addition to poles and zeroes, also square root branch points in the
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Table 1
Square-root branch points for the Y functions.

Function Singularity position

Yy(u) u = ±2 + in0/h, n0 = 0,±2,±4, . . .

Yw|M(u)

Yv|M(u) u = ±2 + inM/h, nM = ±M,±(M + 2),±(M + 4), . . .

YM|I (u), YM|II(u)

rapidity plane. As a consequence, the TBA solutions are multivalued functions with infinitely
many square root branch points, whose locations are summarised in Table 1 for the different Y
functions.2 The branch cuts are clearly visible, in the AdS5/CFT4 case, in the numerical study
presented in [45].

Let us introduce an important convention which becomes relevant when the solutions to the
TBA are continued into the complex rapidity plane. We work on sections of the Riemann surface
obtained by tracing every branch cut as a horizontal, semi-infinite segment external to the strip
|Re(u)| < 2. More explicitly, we draw branch cuts of the form: (−∞,−2) ∪ (+2,+∞) + in/h,
where the possible values of n ∈ Z are listed in Table 1. Moreover, we denote as the “first” Rie-
mann sheet the one containing the physical values of the Y functions on the real axis. Whenever
we need to reach values of the Y functions on another sheet, we will indicate it explicitly.

Finally, let us remind the reader that, according to the methods developed in [17,18] for
relativistic invariant models, the nontrivial anomalous dimensions corresponding to excited
states can be obtained by considering the same TBA equations (2.2)–(2.5) and (2.6) but with
different integration contours enclosing a finite number of zeroes {u(−1)

a,j } or poles {u(0)
a,j } of

1+1/Ya(u). These contour-trapped pole singularities of d
du

ln (1 + 1/Ya(u)) lead to extra source

terms ∓ lnSa,b(u
(−1/0)
a,j , u) in the TBA equations. The positions of the poles {u(0)

a,j } are tied, via

the Y-system [17,18], to the positions of the roots {u(−1)
a,j }, which are constrained by auxiliary con-

sistency conditions of the form Ya(u
(−1)
a,j ) = −1. The later play the rôle of exact Bethe equations.

The best understood excited state TBA equations in AdS/CFT are the ones describing the sl2
sector, initially conjectured in [21] for AdS5/CFT4 and generalised to AdS4/CFT3 in [25]. In
this case the Y functions are symmetric Yn|I = Yn|II and the deformed contour picks the relevant
singularities on the second Riemann sheet, so that the exact Bethe equations can be written as
Y1|I ((uj )�) = Y1|II((uj )�) = −1, where uj ∈ R are the Bethe roots and u� denotes the image
of u reached by analytic continuation through the branch cut with Im(u) = +1/h.3 We refer the
reader to the papers cited above for the explicit form of excited state TBA equations in the sl2
sector, and to [27–32] for other very interesting studies on this subject.

An important consequence of the methods described above is that the sets of Y functions
describing different excited states share the same analytic structure in the rapidity plane. In par-
ticular, every analytic functional relation satisfied by the Y functions, such as the ones described
in the next section, must be state-independent. This is in turn a very important information as it
opens the way to systematic methods to derive excited state equations [46].

2 This has to be considered as a maximal list of branch points. In fact, on some particular Riemann sheets, the branching
may disappear at some of the locations listed in the table, at least for the Yw|N functions (see Appendix D). However the
branch points appear to be all nontrivial on the first Riemann sheet, on which the Y-system is defined.

3 Notice that, because the Y1|α functions are real on the first sheet, these equations could also be rewritten as
Y1|I ((uj )�) = Y1|II((uj )�) = −1, with u� denoting the image of u reached after entering the cut at Im(u) = −1/h.
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Fig. 1. The lattice associated to the AdS4/CFT3 Y-system. The (a, s) labels of the nodes of the diagram are related to the
labels of the Y functions by (Q,0, α) = (Q|α), (1,1) = (y|−), (2,2) = (y|+), (n,1) = (v|n − 1), (1, n) = (w|n − 1).

3. The extended Y-system

When evaluated on the first Riemann sheet, the solutions to the AdS4/CFT3 TBA satisfy the
following set of functional relations (the Y-system)

Y1|I
(

u + i

h

)
Y1|II

(
u − i

h

)
= (1 + Y2|I (u))

(1 + 1
Yy|−(u)

)
, (3.1)

Y1|II
(

u + i

h

)
Y1|I

(
u − i

h

)
= (1 + Y2|II(u))

(1 + 1
Yy|−(u)

)
, (3.2)

YQ|I
(

u + i

h

)
YQ|II

(
u − i

h

)
= (1 + YQ−1|II(u))(1 + YQ+1|I (u))

(1 + 1
Y(v|Q−1)(u)

)
, Q = 2,3, . . . , (3.3)

YQ|II
(

u + i

h

)
YQ|I

(
u − i

h

)
= (1 + YQ−1|I (u))(1 + YQ+1|II(u))

(1 + 1
Y(v|Q−1)(u)

)
, Q = 2,3, . . . , (3.4)

Yy|−
(

u + i

h

)
Yy|−

(
u − i

h

)
= (1 + Yv|1(u))

(1 + Yw|1(u))

∏
α=I,II

(
1 + 1

Y1|α(u)

)−1

, (3.5)

Yw|M
(

u + i

h

)
Yw|M

(
u − i

h

)
=

∞∏
N=1

(
1 + Yw|N(u)

)AMN

[ (1 + 1
Yy|−(u)

)

(1 + 1
Yy|+(u)

)

]δM,1

, (3.6)

Yv|M
(

u + i

h

)
Yv|M

(
u − i

h

)
=

∏∞
N=1(1 + Yv|N(u))AMN∏
α=I,II(1 + 1

YM+1|α(u)
)

[
(1 + Yy|−(u))

(1 + Yy|+(u))

]δM,1

, (3.7)

where AMN = δM,N+1 − δM,N−1. The AdS4/CFT3 Y-system has been rigorously derived from
the TBA equations in [24,25], where the appropriate choice of Riemann section was discussed.
In the special symmetric case YQ|I = YQ|II , these relations coincide with those originally conjec-
tured in [20] and associated to the diagram in Fig. 1 (see Appendix D for more details). Notice
that, contrary to the case in relativistic two-dimensional QFTs, where the Y’s are meromorphic
functions of the rapidity, the Y-system contains much less information than the TBA: in fact, it
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Fig. 2. The second sheet image u∗ of u.

hides away completely the presence of the branch points. However, analogously to what was done
in [44] for the AdS5/CFT4 Y-system, we can encode the missing information in an additional set
of local functional relations describing the branching properties of the Y functions. In order to
present the result, let us introduce some notation, following [44]. We denote with u∗ the image
of the point u obtained by analytic continuation along the path represented in Fig. 2, encircling
the point −2.4 Then, let f (u) be a function with a square root branch point at u = −2 + i

h
N .

We describe its local branching properties with a “discontinuity” function, denoted by [f (u)]N .
It is defined as the difference between f (u+ i

h
N) and its image after encircling the branch point

−2 + i
h
N , namely:

[
f (u)

]
N

= f

(
u + i

h
N

)
− f

(
u∗ + i

h
N

)
. (3.8)

We call it a discontinuity function because, if we restrict to u ∈ (−∞,−2)∪ (+2,+∞)+ i0+, it
returns the value of the jump across the branch cut with imaginary part +N/h. However, (3.8) is
more general and defines a new complex function living on a multi-sheeted surface. Notice that,
in general, [f (u)]N itself has infinitely many branch points corresponding to the branch points
of f (u).

Finally, let us introduce the following important quantities:


α(u) = [
lnY1|α(u)

]
+1, α = I, II. (3.9)

We are now ready to write down the extra analytic information that completes the Y-system.
First of all, we assume the knowledge of the position of the branch points inside or on the border
of the physical strip | Im(u)| < 1/h, namely the fact that Yy|±(u) have two branch points at
u = ±2, while Y1|w(u), Y1|v(u) and Y1|α(u) (α = I, II) have four branch points at u = ±2 + i/h,
u = ±2 − i/h.

The first fundamental property is that Yy|± are two branches of the same function:

Yy|−(u∗) = Yy|+(u). (3.10)

The remaining functional relations are:

[lnYw|1]1 = ln

(
1 + 1/Yy|−
1 + 1/Yy|+

)
, [lnYv|1]1 = ln

(
1 + Yy|−
1 + Yy|+

)
, (3.11)

[
ln

(
Yy|−
Yy|+

)]
±2N

= −
N∑

Q=1

∑
α=I,II

[
ln

(
1 + 1

YQ|α

)]
±(2N−Q)

, (3.12)

4 It would be completely equivalent to encircle the branch point +2, because the topology of the Riemann surface on
which the Y functions are defined is symmetric under reflection across the imaginary axis.



A. Cavaglià et al. / Nuclear Physics B 877 [FS] (2013) 852–884 859
[

α

]
±2N

= ∓
[

ln

(
1 + 1

Yy|∓

)]
±2N

∓
N∑

M=1

[
ln

(
1 + 1

Yv|M

)]
±(2N−M)

∓ ln

(
Yy|−
Yy|+

)
,

(3.13)

with α = I, II, N = 1,2, . . . . These relations are extremely similar to the ones appearing in the
context of the AdS5/CFT4 correspondence and discovered in [44]. Together with (3.1)–(3.7),
they constitute a fundamental set of local and state-independent equations, which is completely
equivalent to the TBA.

In the next section, we show how (3.11)–(3.13) can be extracted from the TBA equations.
The reconstruction of the ground state TBA from the Y-system equations (3.1)–(3.7) extended
by (3.10)–(3.13) is essentially the same as the one contained in [44] for the AdS5/CFT4 case
and we do not report it here, while the method to turn these conditions into excited state TBA
equations can be found in [46].

As a final comment, notice that there is no dependence on α in the rhs of (3.13). There-
fore, although we expect that ε1|I (u) �= ε1|II(u) for particular excited state solutions, the related
discontinuity functions are equal, as confirmed by the expression for the ground state (4.12)
below. In fact, because the two wings α = I, II enter symmetrically in (4.12), any process of
analytic continuation will preserve this property, and we conclude that 
I (u) = 
II(u) for any
state.

4. A sketch of the derivation

In this section we provide a concise derivation of (3.11)–(3.13) from the TBA. The idea is
to compute the discontinuity functions relative to branch points located in or on the border of
the physical strip | Im(u)| < 1/h, which contains the essential analytic information necessary for
the reconstruction of the TBA equations. We confine our attention to the following functions:
[lnYw|1]+1, [lnYv|1]+1, [lnYy|−]0, [lnY1|α]+1 (α = I, II). In fact, functions of the form [lnYa]−1
can easily be recovered from the ones listed above using the standard Y-system (3.1)–(3.7).

4.0.1. The discontinuity relations for the v and w functions
The easiest quantity to compute is:

[
lnYw|1(u)

]
+1 = εw|1

(
u + i

h

)
− εw|1

(
u∗ + i

h

)
. (4.1)

We start from the TBA equation

εw|1(u) =
∞∑

M=1

Lw|M ∗ φM,1(u) +
2∫

−2

dz
(
Ly|−(z) − Ly|+(z)

)
φ1(z − u). (4.2)

When analytically continuing equations of TBA type one has to notice that a change in the ex-
ternal variable induces a motion of the poles of the integral kernels. Whenever a pole crosses the
integration contour on the real axis, the form of the equation must be modified, either by deform-
ing the contour or by adding a residue term. Notice that all the kernels in (4.2) are meromorphic
and therefore no branching can occur as long as the poles stay bounded away from the real axis.
Considering the kernels in (4.2), this proves that εw|1 is analytic for | Im(u)| < 1/h.
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To study the analyticity on the border of this strip we can concentrate on two terms in the rhs
of (4.2): the convolution

I1(u) = Lw|2 ∗ φ2,1(u), (4.3)

which is potentially dangerous because φ2,1(u) = φ1(u) + φ3(u) and φ1(z − u) has two poles at
z = u ± i

h
, and the integral

I2(u) =
2∫

−2

dz
(
Ly|−(z) − Ly|+(z)

)
φ1(z − u). (4.4)

In the case of (4.3) the integration contour lies on the real axis. With a slight deformation it
is possible to avoid any contact with the poles, so that this term is analytic on the whole line
Im(u) = 1/h. In the case of (4.4), deforming the contour we have

I2(u + i/h) =
∮
C

dz
(
Ly|−(z) − Ly|+(z)

)
φ1(z − u − i/h), (4.5)

where the contour C is represented in Fig. 3. However, contrary to the previous case, it is now
impossible to avoid trapping the contour when one of the points −2 or +2 is encircled. Therefore,
taking the residue with the appropriate sign, we find

I2(u∗ + i/h) = I2(u + i/h) − (
Ly|−(z) − Ly|+(z)

)
. (4.6)

Subtracting (4.6) from (4.5), we finally find the first relation in (3.11). Notice that, for simplicity,
we have performed the calculation using a clockwise-oriented path for the continuation u +
i/h → u∗ + i/h as shown in Fig. 3. The reader can check that following an anticlockwise path
would lead to the same result (therefore showing that the branching is of square-root type) using
the property Ly|+(u∗) = Ly|−(u), Ly|−(u∗) = Ly|+(u). The fact that εy|±(u) are branches of the
same function is a consequence of the TBA equation (2.3) and of the identity (A.7).

The second relation in (3.11) can be derived exactly in the same way after rewriting the rele-
vant TBA equation as5

εv|1(u) = −
∞∑

Q=2

(LQ|I + LQ|II) ∗ φQ−1(u) +
∞∑

M=1

Lv|M ∗ φM,1(u)

+
2∫

−2

dz
(
Λy|−(z) − Λy|+(z)

)
φ1(z − u). (4.8)

4.0.2. The discontinuity relations for the fermionic nodes
Let us now consider the fermionic excitations εy . The value of[

lnYy|−(u)
]

0 = εy|−(u) − εy|−(u∗) (4.9)

5 We have used Eq. (4.10) and the simple kernel identity:

+2∫
−2

ds
(
K(z − iQ/h, s) − K(z + iQ/h, s)

)
φ1(s − u) + φQ−1(z − u) = φQ,(v|1)(z, u). (4.7)
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Fig. 3. An illustration of Eqs. (4.5) and (4.6). The “plus” and “minus” circles represent the poles of the kernel φ1(z − u)

(with residues ±1, respectively) after the shift u → u + i/h, while the dashed arrows represent the motion of the poles
as a result of u + i/h → u∗ + i/h.

can be read from the TBA equations:

εy|−(u) − εy|+(u)

= −
∞∑

Q=1

∞∫
−∞

dv
(
LQ|I (v) + LQ|II(v)

)(
K(v − iQ/h,u) − K(v + iQ/h,u)

)
, (4.10)

where we used the identity (A.12).
Notice that, contrary to the case of [lnYw|1(u)]1, [lnYv|1(u)]1, (4.10) is a non-local ex-

pression, and therefore we expect its form to depend on the particular excited state under
consideration. However, in analogy to what seen in [44] in the AdS5/CFT4 context, we can
trade it for an infinite number of local functional relations describing the discontinuity functions
[lnYy|−(u)/Yy|+(u)]±2N , N = 1,2, . . . . To compute these quantities, it is sufficient to note that,
under the analytic continuation u → u± i2N/h, (4.10) is modified by a number of residue terms.
For example if u → u + i2N/h, N ∈N, with u < Im(u) < 1/h, |Re(u)| < 2, we have

ln
Yy|−(u + i2N/h)

Yy|+(u + i2N/h)

= −
∞∑

Q=1

∞∫
−∞

dv
(
LQ|I (v) + LQ|II(v)

)(
K(v − iQ/h,u + i2N/h)

− K(v + iQ/h,u + 2iN/h)
)

−
2N∑

Q=1

(
LQ|I

(
u + i(2N − Q)/h

) + LQ|II
(
u + i(2N − Q)/h

))
. (4.11)

The analytic continuation u + i2N/h → u∗ + i2N/h has no effect on the convolution in (4.11)
and is nontrivial only for half of the residue terms in the last line, because LQ|α(u) is analytic for
| Im(u)| < Q/h. This gives precisely (3.12).
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Fig. 4. The contour γ̄o .

Fig. 5. The contour γ̄x .

4.0.3. Discontinuity relations for the functions 
I = 
II

Finally, let us consider the quantities


α(u) = [
lnY1|α(u)

]
+1 = ε1|α(u + i/h) − ε1|α(u∗ + i/h).

The analytic continuation of the TBA equation (2.2) leads to the following expression, valid for
0 < Im(u) < 2

h
:


I(u) = 
II(u)

= L lnx2(u) − Ly|−(u) +
∮
γ̄o

ds Ly(s)K(s,u)

+
∞∑

N=1

∞∫
−∞

ds Lv|N(s)K{N}(s, u) ds + 
Σ
4 (u), (4.12)

where γ̄o is the integration contour shown in Fig. 4,

K{N}(s, u) ≡ K(s + iN/h,u) + K(s − iN/h,u) (4.13)

and


Σ
4 (u) =

∑
α=I,II

∞∑
Q=1

∞∫
−∞

ds LQ|α(s)KΣ
Q (s,u). (4.14)

The kernel KΣ
Q sums up the contribution of the dressing factor, appeared already in the

AdS5/CFT4 context and is defined by

KΣ
Q (s,u) = KΣ

Q,1(s, u + i/h) − KΣ
Q,1(s, u∗ + i/h). (4.15)

Using (A.10), it is easy to show that

KΣ
Q (s,u) =

∮
γ̄x

dt φQ,y(s, t)

∮
γ̄x

dzK
[2]
Γ (t − z)K(z,u) −

∮
γ̄x

dt φQ,y(s, t)K
[2]
Γ (t − u),

(4.16)

where γ̄x is the integration contour shown in Fig. 5. Again, Eq. (4.12) is non-local, and in order
to express its analytic content in a state-independent way we consider the following quantities:[


I
]
±2N

= [

II]

±2N
, N = 1,2, . . . . (4.17)

By analytic continuation of (4.12) using the techniques illustrated in the previous paragraphs, we
find
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[

α

]
±2N

= ∓[Ly|∓]±2N ∓
N∑

M=1

[Lv|M ]±(2N−M) + [

Σ

4

]
±2N

, α = I, II. (4.18)

The last term can be computed explicitly from Eqs. (4.15)–(4.17). Notice that the first con-
volution on the rhs of (4.16) has a trivial monodromy for u far from the real axis, and
therefore we can discard it. On the contrary, applying the sequence of analytic continuations
u → (u ± i2N/h) → u∗ ± i2N/h for | Im(u)| < 1/h, |Re(u)| < 2, the second convolution in
(4.16) transforms as follows:

−
∮
γ̄x

dt φQ,y(s, t)K
[2]
Γ (t − u) → −

∮
γ̄x

dt φQ,y(s, t)K
[2]
Γ

(
t − (u ± i2N/h)

)

→ −
∮
γ̄x

dt φQ,y(s, t)K
[2]
Γ

(
t − (u ± i2N/h)

) ∓ (
φQ,(y|−)(s, u) − φQ,(y|+)(s, u)

)
.

(4.19)

Therefore we find

[

Σ

4 (u)
]
±2N

=
∑

α=I,II

∞∑
Q=1

∞∫
−∞

ds LQ|α(s)
(
KΣ

Q (s,u ± i2N/h) − KΣ
Q (s,u∗ ± i2N/h)

)

= ±
∑

α=I,II

∞∑
Q=1

∞∫
−∞

ds LQ|α(s)
(
φQ,(y|−)(s, u) − φQ,(y|+)(s, u)

)
= ∓ ln

(
Yy|−(u)/Yy|+(u)

)
. (4.20)

Combining the latter with (4.18), we recover (3.13).

5. More discontinuity relations

In this section we show how to deduce further constraints relating branch points lying inside
and outside of the physical strip, using only the standard Y-system (3.1)–(3.7). As seen in [44]
in the AdS5/CFT4 case, these additional discontinuity relations are useful for the purpose of
deriving the TBA in its canonical form from the extended Y-system (an alternative inversion
procedure is presented in [46]).

We illustrate the strategy in the case of the YM|w functions. From the Y-system equation

lnYM|w
(
u + i(K + 1)/h

) + lnYM|w
(
u + i(K − 1)/h

)
= (1 − δM,1)ΛM−1|w(u + iK/h) + ΛM+1|w(u + iK/h)

+ δM,1
(
Ly|−(u + iK/h) − Ly|+(u + iK/h)

)
(5.1)

it follows that[
lnYM|w(u)

]
K+1 + [

lnYM|w(u)
]
K−1

= (1 − δM,1)
[
ΛM−1|w(u)

]
K

+ [
ΛM+1|w(u)

]
K

+ δM,1
[(

Ly|−(u) − Ly|+(u)
)]

K
, (5.2)

for K ∈ Z. To derive more complicated identities, it is convenient to introduce a pictorial no-
tation. We represent a shifted Y-system equation such as (5.1) for M = 2,3, . . . by a diagram
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Fig. 6. An illustration of relation (5.1) for M = 2 and K = 5.

Fig. 7. An illustration of relation (5.1) for M = 1 and K = 5.

connecting the nodes (M,K + 1), (M,K − 1), (M − 1,K), (M + 1,K) on an N× Z grid, see
Fig. 6. For M = 1, we can employ a different symbol to signal the contribution of the y|± func-
tions, as is done by using a black square in Fig. 7. When iterating (5.1), we obtain more complex
graphs such as the ones in Figs. 8 and 9. The rule to associate an equation to the graph is very
simple. A white circle on the node (M,N) with M ∈ N

+ gives a term +ΛM|w(u + iN/h) for
every horizontal link and a term − lnYM|w(u + iN/h) for every vertical link departing from it.
A black square on the node (0,N) represents the term Ly|−(u + iN/h) − Ly|+(u + iN/h). For
example, Figs. 8 and 9 represent, respectively, the N = 2 and N = 3 cases of the equation:

lnYw|2
(
u + i(2 + 2N)/h

)
= D

w|2
+(2+2N)(u) + Λw|N+3

(
u + i(1 + N)/h

)
+ Lw|N+2(u + iN/h) − lnYw|N+1

(
u + i(N − 1)/h

)
, (5.3)

where the function D
w|2
(2+2N)(u) is defined as

D
w|2
(2+2N)(u) = Ly|−(u + i2N/h) − Ly|+(u + i2N/h) + Lw|1

(
u + i(2N + 1)/h

)
+

N∑
k=1

(
Lw|k

(
u + i(2N − k)/h

) + 2Lw|k+1
(
u + i(2N − k + 1)/h

)
+ Lw|k+2

(
u + i(2N − k + 2)/h

))
. (5.4)

Notice that D
w|2
(2+2N)(u) sums up the contribution of the nodes that lie on or above the diagonal.

In Figs. 8 and 9, this part of the graph is shown enclosed by a rectangular frame. Using the fact
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Fig. 8. A representation of Eq. (5.3) with N = 2. The nodes in the blue rectangular frame correspond to the function

D
w|2
6 .

Fig. 9. A representation of Eq. (5.3) with N = 3. The nodes in the blue rectangular frame correspond to the function

D
w|2
8 .

that the branch points of lnYw|M(u) closest to the real axis have Im(u) = ±M/h, (5.3) implies
that

[
lnYw|2(u)

]
(2+2N)

= [
D

w|2
(2+2N)(u)

]
0 − δN,0

[
lnY1|w(u)

]
−1. (5.5)

Eqs. (5.4) and (5.5) constitute an example of a discontinuity relation derived using only the
standard Y-system. Notice that the term [lnY1|w(u)]−1 in the last line can be determined using
the fundamental discontinuity relation (3.13).
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As a last comment on the structure of these relations, notice that the part of the graph of Fig. 9
lying strictly above the diagonal coincides with the framed part of the graph in Fig. 8, translated
by two units upwards. This property is reflected by the following general identity:

D
w|2
(2N+2)(u) − D

w|2
2N (u + i2/h)

= 2Lw|N+1
(
u + i(N + 1)/h

) + Lw|N(u + iN/h) + Lw|N+2
(
u + i(N + 2)/h

)
, (5.6)

for N = 0,1, . . . , where the terms on the rhs correspond to nodes lying on the diagonal in the sub-
graph defining D

w|2
(2N+2)(u). Clearly, the set of identities (5.6) allows one to define the D

w|2
(2+2N)(u)

functions recursively, starting from D
w|2
2 (u). Relations of this form were shown to be very con-

venient for the purpose of deriving the TBA equations from the extended Y-system in [44].
Although we do not repeat here this calculation, we list all the relevant equations in Appendix C.

6. Conclusions

In this paper we have derived, starting from the Thermodynamic Bethe Ansatz equations de-
scribing the AdS4/CFT3 spectrum, a set of functional relations that characterise the analytic
structure of the Y functions. Extremely similar results have been previously derived for the
AdS5/CFT4 TBA, and with essentially the same proof as the one contained in [44], one could
show that the Y-system (3.1)–(3.7), extended by the new relations (3.10)–(3.13), is equivalent
to the TBA. The advantage is that the new functional relations, contrary to the integral TBA
equations, take the same form for all the excited states of the theory.

We expect this result to have the same applications as in the AdS5/CFT4 case. In particular,
in that context the discontinuity relations have been used to derive rigorously excited state TBA
equations [46] and also to prove the equivalence between the TBA and a much handier finite set
of nonlinear integral equations,6 the FiNLIE proposed in [49]. The study of the properties of the
T-system presented in Appendix D is a preliminary step in this direction.

Very recently a new and much simpler formulation of the AdS5/CFT4 spectral problem has
appeared, the Pμ-system [50]. We believe that our results will be useful in achieving a similar
simplification also for the theory considered here.
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Appendix A. Basic definitions

In many of the S-matrix elements as well as in the energy and momentum of elementary
excitations in the mirror ABA equations appears the Zhukovsky map defined as

x(u) =
(

u

2
− i

√
1 − u2

4

)
. (A.1)

Notice that x(u) has two square-root branch points at u = ±2 and that it behaves as x(u∗) =
1/x(u) under analytic continuation. The first Riemann sheet is defined by the condition Im(x) <

0. The momentum and energy of Q-particle bound states in the mirror ABA can be written as
functions of the rapidity u as

p̃Q(u) = ih

2

(√
4 −

(
u + i

Q

h

)2

−
√

4 −
(

u − i
Q

h

)2
)

,

ẼQ(u) = ln
x(u − iQ/h)

x(u + iQ/h)
. (A.2)

The kernels appearing in the TBA equations (2.2)–(2.5) are defined as:

φa,b(u, z) = 1

2πi

d

du
lnSa,b(u, z).

For different values of the indices a, b, the S-matrix elements Sa,b(u, z) are defined as

S(v|M),Q(u, z) = SQ,(v|M)(z,u) =
(

x(z − i
h
Q) − x(u + i

h
M)

x(z + i
h
Q) − x(u + i

h
M)

)(
x(z + i

h
Q)

x(z − i
h
Q)

)

×
(

x(z − i
h
Q) − x(u − i

h
M)

x(z + i
h
Q) − x(u − i

h
M)

)M−1∏
j=1

(
z − u − i

h
(Q − M + 2j)

z − u + i
h
(Q − M + 2j)

)
,

(A.3)

SM(u) =
(

u − i
h
M

u + i
h
M

)
, (A.4)

SK,M(u)

=
(

u − i
h
|K − M|

u + i
h
|K − M|

)(
u − i

h
(K + M)

u + i
h
(K + M)

) min(K,M)−1∏
k=1

(
u − i

h
(|K − M| + 2k)

u + i
h
(|K − M| + 2k)

)2

. (A.5)

Moreover, we have

S(y|∓),Q(u, z) = SQ,(y|∓)(z, u) =
(

x(z − i
h
Q) − (x(u))±1

x(z + i
h
Q) − (x(u))±1

)√√√√x(z + i
h
Q)

x(z − i
h
Q)

. (A.6)

Notice that we have the important property

S(y|−),Q(z,u∗) = S(y|+),Q(z,u). (A.7)

The elements S(Q|α),(Q′|β)(u, z) are:
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S(Q|α),(Q′|β)(u, z) = S0
(Q|α),(Q′|β)(u − z)

(
ΣQ,Q′

(u, z)
)−1

, (A.8)

where ΣQ,Q is the improved dressing factor defined in [42]

ΣQ,Q′
(u, z) =

Q∏
k=1

Q′∏
l=1

(1 − 1
x(u+ i

h
(Q+2−2k))x(z+ i

h
(Q′−2l))

1 − 1
x(u+ i

h
(Q−2k))x(z+ i

h
(Q′+2−2l))

)
σQ,Q′

(u, z), (A.9)

and σQ,Q′
(u, z) is the dressing factor for the direct theory [38–41,43] with both arguments con-

tinued to mirror kinematics. The following equivalent expression was derived in [20]:

KΣ
Q′Q(u, v) = 1

2πi

d

du
lnΣQ′Q(u, v)

=
∮
γ̄x

ds φQ′,y(u, s)

∮
γ̄x

dt K
[2]
Γ (s − t)φy,Q(t, v). (A.10)

The definition of S0
(Q|α),(Q′|β)

(u) can be found in Appendix A of [24], and we omit it here as it
is rather lenghty and does not enter the computations presented in this paper.

Finally, the following kernels appear in the computations of Section 4:

K(u, z) =
√

4 − z2

2πi
√

4 − u2(u − z)
(A.11)

satisfying

K(z − iQ/h,u) − K(z + iQ/h,u) = φQ,(y|−)(z, u) − φQ,(y|+)(z, u), (A.12)

and

K
[2]
Γ (z) = 1

2πi

d

dz
ln

�(1 − ihz/2)

�(1 + ihz/2)
. (A.13)

Appendix B. Additional relations for the fermionic Y functions

In this appendix, we show how to derive the following identity:[
ln

(
(Yy|−)(Yy|+)

)]
±2M

= 2
M∑

j=1

[Lv|j − Lw|j ]±(2M−j) −
M∑

Q=1

[LQ|I + LQ|II]±(2M−Q), (B.1)

M = 0,1, . . . from the extended Y-system (3.1)–(3.7), (3.10)–(3.13).
A similar calculation was presented in Appendix F of [44] in the AdS5/CFT4 case, but the

demonstration contained a logical gap. The amended derivation we present here can be easily
adapted to the AdS5/CFT4 case.7

We start by considering the following relation, which is an immediate consequence of the
Y-system equation (3.5) and is valid for any N ∈ Z:

7 This answers the question raised in the footnote (43) of [49], and shows that (B.1), and its analogue F.5 of [44], can
be derived from the extended Y-system and do not need to be independently postulated.
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2
[
ln(Yy|−)

]
±2N

+ 2
[
ln(Yy|−)

]
±(2N−2)

= [
ln

(
(Yy|−)(Yy|+)

) + ln(Yy|−/Yy|+)
]
±2N

+ [
ln

(
(Yy|−)(Yy|+)

) + ln(Yy|−/Yy|+)
]
±(2N−2)

= 2

[
Λv|1 − Λw|1 −

∑
α=I,II

L1|α
]

±(2N−1)

= 2

[
Lv|1 − Lw|1 + ln(Yv|1/Yw|1) −

∑
α=I,II

L1|α
]

±(2N−1)

, (B.2)

where we have set Λa(u) = ln(1 + Ya(u)). Next, we use the following identity, which can be
derived iterating the Y-system equations (3.6) and (3.7) (for example, one can use the graphical
method described in Section 5):

[
ln(Yv|1/Yw|1)

]
±(2N−1)

= [
ln(Yy|−/Yy|+)

]
±(2N−2)

−
∑

α=I,II

N∑
Q=2

[LQ|α]±(2N−Q)

+
N−1∑
j=1

∑
k�1

Ajk[Lv|j − Lw|j ]±(2N−1−k)

+ [Lv|N − Lw|N ]±N − δN,1
[
ln(Yv|1/Yw|1)

]
∓1, (B.3)

for N = 1,2, . . . and where Ajk = δj,k+1 + δj,k−1. Combining (B.3) and (B.2) we find:[
ln(Yy|−Yy|+)

]
±2N

+ [
ln(Yy|−Yy|+)

]
±(2N−2)

= 2
N∑

j=1

[Lv|j − Lw|j ]±(2N−j) + 2
N−1∑
j=1

[Lv|j − Lw|j ]±(2N−2−j)

− 2
∑

α=I,II

N∑
Q=1

[LQ|α]±(2N−Q) − [
ln(Yy|−/Yy|+)

]
±2N

+ [
ln(Yy|−/Yy|+)

]
±(2N−2)

− 2δN,1
[
ln(Yv|1/Yw|1)

]
∓1. (B.4)

Now we can invoke three of the fundamental relations, namely the two identities in (3.11) (lead-
ing to [ln(Yv|1/Yw|1)]∓1 = ln(Yy|−/Yy|+)) and (3.12), to evaluate the terms in the last two lines
of (B.4). The result is[

ln(Yy|−Yy|+)
]
±2N

+ [
ln(Yy|−Yy|+)

]
±(2N−2)

= 2
N∑

j=1

[Lv|j − Lw|j ]±(2N−j) + 2
N−1∑
j=1

[Lv|j − Lw|j ]±(2N−2−j)

−
∑

α=I,II

(
N∑

Q=1

[LQ|α]±(2N−Q) +
N−1∑
Q=1

[LQ|α]±(2N−Q−2)

)
, N = 0,1, . . . . (B.5)

Finally, because of (3.11) we have [ln(Yy|−Yy|+)]0 = 0. Using this fact we can solve (B.5) recur-
sively and finally get (B.2).
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Appendix C. A list of useful identities

For the sake of completeness, below we list a number of identities that can be derived using
only the structure of the basic Y-system (3.1)–(3.7), according to the method of Section 5. As
shown in [44] (see Sections 7–9 of that paper), these relations are useful for the purpose of
reconstructing the TBA equations.

The discontinuities of the lnYv|M(u) functions satisfy:[
lnYw|M(u)

]
±(M+2N)

= [
D

w|M
±(M+2N)(u) − δN,0 lnY1|w(u ∓ i/h)

]
0 (C.1)

for N = 0,1, . . . , where the D
w|M
±(M+2N)(u) functions are defined iteratively by

D
w|M
±(2N+M)(u) − D

w|M
±(2N+M−2)(u ± i2/h)

= 2
M+N−1∑
k=N+1

Lw|k(u ± ik/h) + Lw|N(u ± iN/h)

+ Lw|M+N

(
u ± i(M + N)/h

)
, (C.2)

with

D
w|M
±M (u) = Ly|−(u) − Ly|+(u) +

M−1∑
k=1

Lw|k(u ± ik/h). (C.3)

The discontinuities of the lnYv|M(u) functions satisfy[
lnYv|M(u)

]
±(M+2N)

= [
D

v|M
±(M+2N)(u) − δN,0 lnYv|1(u ∓ i/h)

]
0, (C.4)

and the D
v|M
±(M+2N)(u) functions are defined by

D
v|M
±(M+2N)(u) − D

v|M
±(M+2N−2)(u ± i2/h)

= Lv|N(u ± iN/h) + Lv|M+N

(
u ± i(M + N)/h

)
+ 2

M+N−1∑
k=N+1

Lv|k(u ± ik/h) −
M+N∑

Q=N+1

∑
α=I,II

LQ|α(u ± iQ/h), (C.5)

with

D
v|M
±M (u) = Λy|−(u) − Λy|+(u) +

M−1∑
k=1

Lv|k(u ± ik/h). (C.6)

The discontinuities of the lnYQ|α functions satisfy[
lnYQ|α(u)

]
±(Q+2P)

= [
D

Q|α
±Q (u) − δP,1 lnY1|β(u ∓ i/h)

]
0 (C.7)

for P = 1,2, . . . , where α ∈ {I, II}, β ∈ {I, II}, α = β if Q is odd and α �= β if Q is even.
The D

Q|α
±(Q+2P)(u) functions are defined by8

8 Given a real number r ∈ R, we denote its integer part as �r ∈ Z.
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D
Q|α
±(Q+2P)(u) − D

Q|α
±(Q+2P−2)(u ± i2/h)

= LP |β(u ± iP/h) + LQ+P |α
(
u ± i(Q + P)/h

)

+ 2

� Q−1
2 ∑

k=1

LQ+P−2k|α
(
u ± i(Q + P − 2k)/h

) −
Q+P−1∑
N=P

Lv|N(u ± iN/h)

+ 2

� Q
2 ∑

k=1

LQ+P+1−2k|γ
(
u ± i(Q + P + 1 − 2k)/h

)
, (C.8)

where α,β, γ ∈ {I, II}, γ �= α, α = β if Q is odd and α �= β if Q is even, and:

D
Q|α
±Q (u) =

� Q−1
2 ∑

k=1

LQ−2k|α
(
u ± i(Q − 2k)/h

) +
� Q

2 ∑
k=1

LQ+1−2k|γ
(
u ± i(Q + 1 − 2k)/h

)

−
(

Q−1∑
N=1

Lv|N(u ± iN/h) + Ly(u)

)
, (C.9)

with α,γ ∈ {I, II} and γ �= α.

Appendix D. The T-system

In this section we will reconsider the discontinuity relations (3.10)–(3.13), from the point of
view of the T-system, as done in [46,49] in the case of AdS5/CFT4. In particular, following [49],
we show how to encode the analytic content of the TBA equations into a set of very symmetric
constraints for the T functions.

The Y-system of AdS4/CFT3 is naturally related to the diagram represented in Fig. 1. In fact,
let us associate a Y function to every node of the diagram, using an additional index α ∈ {I, II}
to distinguish the functions living on the two wings. Then the Y-system relations (3.1)–(3.7) can
be written in a universal form using the incidence matrix of the diagram9:

Yn,s(u + i/h)Yn,s(u − i/h) = (1 + Yn,s+1(u))(1 + Yn,s−1(u))

(1 + 1/Yn+1,s(u))(1 + 1/Yn−1,s(u))
,

s > 1, (n, s) �= (2,2),

Yn,1(u + i/h)Yn,1(u − i/h) = (1 + Yn,2(u))(1 + Y I
n,0(u))(1 + Y II

n,0(u))

(1 + 1/Yn+1,1(u))(1 + 1/Yn−1,1(u))
,

Y α
n,0(u + i/h)Y

β

n,0(u − i/h) = (1 + Yn,1(u))

(1 + 1/Yα
n+1,0(u))(1 + 1/Y

β

n−1,0(u))
,

α,β ∈ {I, II}, α �= β. (D.1)

Notice that we have to exclude the node (2,2), as there is no local Y-system equation in this case.
The Y functions in the double index notation are related to the ones used in the rest of this paper
and in [24] by:

9 However, we point out that the diagram in Fig. 1 does not capture the crossing between the two wings in the lhs of
the Y-system equations for the nodes (n,0, α), α = I, II. For non-symmetric states such that Yn|I �= Yn|II , we need to
keep track of this important subtlety.
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Yα
Q,0 = 1/YQ|α, for Q� 1, α = I, II,

Y1,1 = 1/Yy|−,

Y2,2 = Yy|+,

Yn,1 = 1/Yv|n−1, for n� 2,

Y1,n = Yw|n−1, for n� 2.

The T functions live on a lattice obtained by adding extra nodes to the diagram in Fig. 1. We
denote them as

Tn,s, with (n, s) ∈ N×N
+, s � 2 or n� 2,

T α
n,l, with (n, l) ∈ N× {−1,0}, α ∈ {I, II},

and they are assumed to be zero when the indices are outside the domain indicated above. They
are related to the Y functions by:

Yn,s(u) = Tn,s+1(u)Tn,s−1(u)

Tn+1,s(u)Tn−1,s (u)
, for s � 2, n � 1, (D.2)

Yn,1(u) = Tn,2(u)T I
n,0(u)T II

n,0(u)

Tn+1,1(u)Tn−1,1(u)
, for n� 1,

Y α
n,0(u) = Tn,1(u)T

β

n,−1(u)

T α
n+1,0(u)T

β

n−1,0(u)
, for n� 1, α,β ∈ {I, II}, β �= α.

The Y-system is satisfied provided the T functions obey discrete Hirota equations on the lattice:
the T-system. For the AdS4/CFT3 diagram, the T-system relations take the usual form for s � 2:

Tn,s(u + i/h)Tn,s(u − i/h) = (1 − δn,0)Tn+1,s (u)Tn−1,s (u) + Tn,s−1(u)Tn,s+1(u), (D.3)

while there is a cubic term when s = 1

Tn,1(u + i/h)Tn,1(u − i/h)

= (1 − δn,0)Tn+1,1(u)Tn−1,1(u) + T I
n,0(u)T II

n,0(u)Tn,2(u), (D.4)

and the equations with s = −1,0 are

T α
n,0(u + i/h)T

β

n,0(u − i/h) = (1 − δn,0)T
α
n+1,0(u)T

β

n−1,0(u) + T
β

n,−1(u)Tn,+1(u),

T α
n,−1(u + i/h)T

β

n,−1(u − i/h) = T α
n+1,−1(u)T

β

n−1,−1(u) (n �= 0), (D.5)

with α,β ∈ {I, II} and β �= α.
It is well known that the same solution to the Y-system is parametrised by a large family

of equivalent solutions to the T-system, connected by gauge transformations. A generic gauge
transformation preserving the validity of the T-system (D.3)–(D.6) and leaving invariant the Y
functions can be written as follows:

T α
n,0 → f [n]

α g[n]
α h[−n]j [−n]T α

n,0, for α ∈ {I, II}, n ∈ N,

T α
n,−1 → (fα)[n−1]

(fα)[n+1]
(gα)[n+1]

(gα)[n−1]
(h)[−n−1]

(h)[−n+1]
(j)[−n+1]

(j)[−n−1] T
α
n,−1,

for α,β ∈ {I, II}, α �= β and n ∈N,

Tn,s → (fI fII)
[n+s](gI gII)

[n−s](h2)[−n+s](
j2)[−n−s]

Tn,s, for s ∈ N
+, n ∈ N, (D.6)
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where fI , fII, gI , gII, h, j are arbitrary functions and we have adopted the notation: A[a](u) ≡
A(u + ia/h) to denote imaginary shifts in the rapidity.

Let us now translate the discontinuity relations in terms of the T functions. A straightforward
calculation shows that the two equations in (3.11) can be rewritten in the following form:

T1,1(u − i/h)T1,1(u∗ + i/h)

T2,2(u − i/h)T2,2(u∗ + i/h)

T2,3(u)

T0,1(u)
= E(u)

E(u∗)
(D.7)

and

T2,2(u − i/h)T2,2(u∗ + i/h)

T1,1(u − i/h)T1,1(u∗ + i/h)

T I
1,0(u)T II

1,0(u)

T3,2(u)
= F(u)

F (u∗)
, (D.8)

where we have defined

E(u) = T1,3(u + i/h)T0,2(u∗ + i/h),

F (u) = T3,1(u∗ + i/h)
∏

α=I,II

T α
2,0(u + i/h). (D.9)

It was discovered in [46] in the AdS5/CFT4 context that the remaining, infinitely many discon-
tinuity relations can be greatly simplified by making appropriate assumptions on the analyticity
strips of the T functions. Moreover, in [49] it was shown that there exist two special gauges where
the analytic information contained in the discontinuity relations can be recast in a very symmet-
ric form. They were denoted with the fonts T and T, with the Tn,s functions having particularly
convenient analytic properties in the upper band of the diagram defined by n � s and the Tn,s

functions being particularly well behaved in the right band defined by s � n. We conclude this
section by showing how the same can be achieved in the present case.

A closed set of properties of the T functions in these two special gauges is given below in (i),
(ii), (iii), (iv), (a), (b), (c), (d). This set of conditions, together with the transformation (D.23),
encodes the same analytic information as the original TBA equations, or, equivalently, the ex-
tended Y-system of Section 3. In the following we provide an almost complete proof and make
further observations.

We follow very closely Appendix C of [49], where similar calculations are presented. Let
us borrow a useful notation: we denote as An the class of functions meromorphic in the strip
| Im(u)| < n/h. In general, we expect T functions in An to have branch points at ±2 + in/h,
±2 − in/h. Then, we start by considering a gauge, which we denote generically with the font
T ≡ t , such that the t functions are real10 and satisfy

tαn,−1 = 1, tαn,0 ∈An+1, tn,1 ∈ An, (D.10)

for n ∈ N, α ∈ {I, II}.
Let us now consider the discontinuity relation (3.12). When expanding the factors (1+1/Yv|n)

in terms of the t functions, their jump discontinuities cancel pairwise (see similar calculations
in [46,49]) and we find that this condition is equivalent to11[

ln b(u)
]

2N
= 0, N = 1,2, . . . , (D.11)

10 In the case of non-symmetric states such that Y I
n,0 �= Y II

n,0, the requirement of reality has to be replaced with t̄ I
n,0 =

t II
n,0.
11 To be precise, the requirement tα

n,0 ∈ An+1 is enough to prove (D.11). The other conditions in (D.10) have been
added for future convenience.
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where

b(u) = Y1,1(u)Y2,2(u)
∏

α=I,II

tα0,0(u − i/h)

tα1,0(u)
= t2,3(u)

t3,2(u)

tI0,0(u − i/h)t II
0,0(u − i/h)

t0,1(u)
. (D.12)

Therefore the function b(u) defined above is meromorphic in the upper half plane. Notice that
b(u) is still a gauge-dependent quantity. However, following [49], let us define a transition func-
tion f , analytic for Im(u) > −1/h, such that

b(u) ≡ f 2(u + i/h)

f 2(u − i/h)
. (D.13)

Then, making a gauge transformation of the form12

Tn,s = f [n+s]f [n−s]f̄ [−n+s]f̄ [−n−s]tn,s , for s ∈N
+, n ∈N,

Tα
n,0 = f [n]f̄ [−n]tαn,0, for α ∈ {I, II}, n ∈ N,

Tα
n,−1 = tαa,−1 = 1, for α ∈ {I, II}, n ∈N, (D.14)

we find a gauge satisfying

T2,3(u)

T3,2(u)

TI
0,0(u − i/h)TII

0,0(u − i/h)

T0,1(u)
= 1. (D.15)

Following [49], we can now prove the following analytic properties of the T gauge:

(i) The T functions are real, and we have

Tα
n,−1 = 1, Tα

n,0 ∈ An+1, Tn,1 ∈An, Tn,2 ∈ An−1,

n ∈ N, α ∈ {I, II}. (D.16)

(ii) The two quantities TI
0,0, TII

0,0 are periodic:

Tα
0,0(u + i/h) = Tα

0,0(u − i/h), α ∈ {I, II}. (D.17)

(iii) Finally, the T functions enjoy the following “group-theoretical” properties:

T0,n = (
TI

0,0TII
0,0

)[n]
n = 1,2, . . . , (D.18)

Tn,2 = T2,n, n = 2,3, . . . . (D.19)

Here is a brief summary of the proof. Property (i) follows from the fact the transformation is
real and does not change the analyticity domains of the t functions. Then, the complex conjugate
of (D.15) implies that the product TI

0,0TII
0,0 is periodic, and from TI

0,−1 = TII
0,−1 = 1 and the prod-

uct of the T-system equations for the (0,0, I ) and (0,0, II) nodes we find T0,1 = (TI
0,0TII

0,0)
[+1].

Comparing this equation with the T-system at one of the above mentioned nodes, we find that

12 Notice that we denote with f̄ the complex conjugate function such that f̄ (u) = (f (u∗))∗ .
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not only their product, but each of the functions TI
0,0 and TII

0,0 is periodic, thus establishing prop-
erty (ii). Moreover, (D.15) now implies T3,2 = T2,3. Eqs. (D.18)–(D.19) for general n can be
demonstrated by iterating the T-system and using (D.17).

In the rest of this section we also make the crucial hypothesis that it is possible to choose

(iv) TI
0,0 = TII

0,0. (D.20)

Because many of the following results depend on this assumption, it is worth making a com-
ment. Condition (D.20) is certainly true in the important subsector of the symmetric states such
that Yn|I = Yn|II ∀n, which includes the best-studied case of the sl2 states [25,32]. Moreover we
argue that this choice can be made even for some non-symmetric subsectors and possibly for all
states. We reason as follows. Even if TI

0,0 �= TII
0,0, the ratio w(u) = TI

0,0/TII
0,0 is necessarily mero-

morphic, because the property 
I = 
II proved in Section 3 implies that ln TI
0,0 and ln TII

0,0 have

the same discontinuities.13 Therefore, we can define a gauge transformation that sets TI
0,0 = TII

0,0

by taking gI =
√

TI
0,0/TII

0,0 and gII = 1/gI in (D.6), with all the other transition functions being

unity. Notice that this transformation does not spoil any other property of the T gauge, on the
condition that gI (u) = √

w(u) is still meromorphic and no new branch cuts are introduced by the
square root. We believe that this is indeed the case for the physical solutions to the AdS4/CFT3
T-system.

Finally, here we leave open the problem of proving the uniqueness of the T gauge. However,
by analogy with the AdS5/CFT4 case it is natural to expect that it can be fixed completely
(modulo a constant rescaling of the form Tα

n,0 → kTα
n,0, Tn,s → k2Tn,s , with k ∈ R) by adding

the further requirement that the T functions do not have poles and have the minimal amount of
zeroes in their analyticity strips.

To further underline the analogy with the AdS5/CFT4 case treated in [49], it is useful to
introduce the notation

F = TI
0,0 = TII

0,0. (D.21)

The absence of the square root in this definition, as compared to the AdS5/CFT4 case, is simply
due to the different structure of the Y-system, but we will see that F plays the same rôle in many
respects.

An interesting observation is that, as already noticed in [49], F is strictly related to the dress-
ing factor. In fact, from the regularity strips of T functions we expect F to have the closest
branch points at distance ±i/h from the real axis. From (D.18) and the identity Y1,1Y2,2 =
(T I

1,0T
II
1,0T2,3)/(T0,1T3,2) it is possible to prove

Y1,1(u)Y2,2(u) = F(u∗ + i/h)

F(u + i/h)
(D.22)

13 In fact, using the identity Tα
0,0 = T1,1/(Y

β
1,0Tβ

2,0) (α �= β ) we get [ln Tα
0,0]1 = [ln T1,1]1 − 
, α = I, II, where


 = 
I = 
II . Therefore [ln TI
0,0]1 = [ln TII

0,0]1 and because of the periodicity this is sufficient to prove that TI
0,0/TII

0,0
is meromorphic.
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and, because of the periodicity (D.17), [lnF]1 = [lnF](1+2n) = − lnY1,1Y2,2, ∀n ∈ Z. Accord-
ing to (4.20), a periodic jump discontinuity equal to ± lnY1,1Y2,2 characterises precisely the
contribution of the dressing factor to the TBA equations.

Following [49], let us now introduce a new gauge T by14

Tn,s = (−1)n(s+1)Tn,s

(
F [n+s])n−2

, s � 1,

T
α
n,0 = (−1)nTα

n,0

(√
F [n])n−2

,

T
α
n,−1 = Tα

n,−1 = 1. (D.23)

From (D.23), it follows immediately that the T functions are real and satisfy

T0,s = 1 for s � −1,

T2,s = T2,s ∈As for s � 2, T1,1 ∈ A1. (D.24)

Moreover, it is possible to show that

T1,s ∈ As , s � 1. (D.25)

In fact, using (D.18)–(D.19) and the transformation (D.23), one finds

Y11

Y22
= T3,2

T2,3

T 2
1,2T

I
1,0T

II
1,0

T0,1T
2
2,1

= T
2
1,2TI

1,0TII
1,0

T2
2,1

. (D.26)

Recalling the analyticity strips of the T functions and remembering that Y11/Y22 =
1/(Yy|−Yy|+) ∈ A2, this shows that T1,2 ∈ A2. The analyticity strips for T1,s , s � 3 can be
established, for example, by considering the various identities (B.1),15 which were derived in
Appendix B.

Now let us consider the set of discontinuity relations (3.13). Repeating the derivation of Sec-
tion D.3 in [49], one can show that these relations can be rewritten as[


α(u) + ln
T0,1(u)

T1,1(u + i/h)

]
2N

= − lnY1,1(u)Y2,2(u), N ∈ N
+, (D.27)

and using the identity


α(u) = lnT1,1(u + i/h) − lnT1,1(u∗ + i/h)

= ln T1,1(u + i/h) − lnT1,1(u∗ + i/h) −F(u + i/h)

14 Although this transformation has a quite unusual form, it defines a new solution to the T-system thanks to the period-
icity of F .
15 Let us exemplify the derivation by showing that T1,3 ∈A3. The first subcase of (B.1) can be written as[

ln
Y11

Y22

]
±2

= 2

[
ln

(1 + 1/Y1,2)

(1 + Y2,1)

]
±1

+
∑
α

[
ln

(
1 + Yα

1,0
)]

±1.

Expressing (1 + 1/Y1,2) in the T gauge and (1 + Y2,1), (1 + Y1,0) in the T gauge, the above expression becomes

[
ln

Y11

Y22

]
±2

=
[

ln
T

2
1,2TI

1,0TII
1,0

T2
2,1

]
±2

− [
lnT2

1,3
]
±1,

and comparing this result with (D.26) we deduce that the last term on the rhs vanishes. Therefore T1,3 has no branch
points with Im(u) = ±1/h and using T1,2 ∈ A2 the T-system implies T1,3 ∈ A3.
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we find

[
lnT1,1(u∗ ± i/h)

]
2N

= 0, N = 1,2, . . . . (D.28)

This condition tells us that, when evaluated on a Riemann section defined with only “short” cuts
of the form (−2,+2) + in/h, the function T1,1 has only two cuts with Im(u) = ±1/h. Because
of this surprising property, this Riemann section was called the “magic sheet” in [49]. Borrowing
a further notation, we will denote with a hat T̂ the analytic continuation of the T functions on a
sheet with only short cuts, starting from their real values. Notice that, as discussed in Section 3,
the Y-system and the T-system are naturally defined on a Riemann sheet with “long” branch cuts
of the form (−∞,−2) ∪ (+2,+∞) + in/h, a convention that is precisely the opposite of the
“magic sheet” prescription.

The T gauge enjoys precisely the same analytic properties as the gauge denoted with the
same font in [49], describing the right band of the AdS5/CFT4 diagram. Let us list the relevant
properties, postponing the proof.

The first three properties state that, when evaluated on the magic sheet, the T̂a,s functions
with s � a have at most two branch cuts16 each:

(a) For n� 1, T̂1,n has only two branch cuts on the magic sheet: (−2,2) ± in/h.
(b) For m� 2, T̂2,m has only four branch cuts on the magic sheet:

(−2,2) ± i(m − 1)/h, (−2,2) ± i(m + 1)/h.
(c) For n�−1, T̂0,n = 1.

Moreover, the T̂ functions possess a special discrete symmetry, which in [49] was identified
with a quantum version of the Z4 symmetry of the AdS5/CFT4 sigma model. To discover this
special symmetry one has to consider an extended domain given by the infinite horizontal band:

B= {
(a, s) ∈ Z

2
∣∣ 0 � a � 2

}
. (D.29)

The solution on B is constructed by assigning the values of T̂ to the nodes with s � a and using
the T-system on the magic sheet to populate the rest of the domain. We use the font T̂ for the
nodes with s < a in B, to emphasise that they may differ from the values of the T̂a,s functions
on corresponding nodes of the original AdS4/CFT3 diagram.17 With these notations, the special
discrete symmetry can be written as follows:

16 Incidentally, they also show that, in the magic sheet kinematics, each of the Y-functions Ŷw|n with n � 1 has only
two short branch cuts, a property that is very hard to guess from the TBA.
17 Notice that, for s > a, the analyticity strips of the T functions are wide enough that the T-system equations hold even

if we change T→ T̂. However, this is no longer true at the nodes with s = a and we expect that, for s < a, the T functions
on B bear no resemblance with the T functions on the corresponding nodes of the original AdS4/CFT3 diagram. A good
example is provided by the node (1,0). In B we find T̂1,0 = 0, while in the original diagram there are two functions

T̂
I , T̂II , and they are both different from zero according to (D.33).
1,0 1,0
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(d) T̂a,−s = (−1)aT̂a,s , s � a, T̂a,−s = (−1)aT̂a,s , s < a. (D.30)

Although a complete proof of these properties can already be found in [49] in the similar
AdS5/CFT4 case, we find it useful to provide a partially alternative argument. We start by show-
ing that

T̂2,2(u) = T̂1,1(u + 2i/h)T̂1,1(u − 2i/h). (D.31)

One possible way to establish this result is to notice that, as shown in the following Section D.1,
the ratio G(u) = (T̂1,1(u + 2i/h)T̂1,1(u − 2i/h))/T̂2,2(u) can be rewritten as the following
combination of Y functions:

G(u) = (1 + 1/Y2,2(u + i/h))(1 + 1/Y2,2(u − i/h))(1 + 1/Y2,1(u))

Y I
1,0(u�)Y II

1,0(u�)
. (D.32)

Here, u� denotes the image of the point u on the Riemann sheet reached by analytic continuation
through the branch cut with Im(u) = +1/h and u�, conversely, is the image of u reached after
following a path that encircles one of the branch points with Im(u) = −1/h. As we show in
Appendix D.2 below, from the TBA it is possible to prove that this quantity is precisely one, and
this establishes (D.31).

Notice that, using the T-system on the nodes (2, s) together with condition (D.31), this result
can be generalised to T̂2,s(u) = T̂1,1(u + si/h)T̂1,1(u − si/h) for s � 1. Since T̂1,1 has only
one pair of branch cuts, this proves property (b).

To establish the remaining properties of the T̂ functions, let us derive some preliminary useful
relations. Notice that (D.19) implies T3,2 = T2,3F , so that in the T gauge the identity Y1,1Y2,2 =
(T I

1,0T
II
1,0T2,3)/(T0,1T3,2) takes the form Y1,1Y2,2 = (TI

1,0T
II
1,0)/(F). Comparing this result with

(D.22), we find the important expression

T
I
1,0(u)TII

1,0(u) =F(u∗ + i/h). (D.33)

Finally, let us rewrite the discontinuity relations (D.7)–(D.8) in the T gauge. From the properties
of the T functions listed above and using (D.33), it is possible to show that (D.8) is equivalent to

T̂2,2(u − i/h)T̂2,2(u + i/h) = T̂1,1(u − i/h)T̂1,1(u + i/h)T̂2,3(u). (D.34)

The constraint (D.7) leads to the same equation but multiplied by a factor T1,3(u + i/h)/

(T1,3(u∗ + i/h)) that we must set to one, therefore this provides another confirmation that
T1,3 ∈ A3.

Condition (D.34) is crucial to prove the symmetry property (d). In fact, it contains precisely
the information needed to extend the solution from the right band into the left part of B. Consider
the T-system equation in B: T̂2,2(u + i/h)T̂2,2(u − i/h) = T̂2,3(u)T̂2,1(u), where T̂2,1(u) is so
far unknown and defined by the previous relation. Comparing this equation with (D.34) we find

T̂2,1(u) = T̂1,1(u − i/h)T̂1,1(u + i/h), (D.35)
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and matching (D.35) with T̂1,1(u − i/h)T̂1,1(u + i/h) = T̂1,0(u)T̂1,2(u) + T̂2,1(u)T̂0,1(u) we
get

T̂1,0(u) = 0. (D.36)

Moreover, from (D.35) we can compute T̂2,1(u + i/h)T̂2,1(u − i/h) = T̂
2
1,1(u)T̂1,1(u +

2i/h)T̂1,1(u − 2i/h). Using condition (D.31), we find that in order to match the T-system equa-
tion T̂2,1(u + i/h)T̂2,1(u − i/h) = T̂2,0(u)T̂2,2(u) we have to take

T̂2,0 = T̂
2
1,1. (D.37)

Using (D.37) and the T-system at the nodes (1,0) and (2,0) it is now easy to check that a solution
constructed using the symmetry (D.30) satisfies the T-system at all nodes of B.

Finally, we refer the reader to a complex proof contained in [49], Section 4.2. The authors
show that a solution of the T-system on B with the above mentioned properties including the
discrete symmetry also has to satisfy

[ln T̂1,n]±(n+2m) = 0, n,m = 1,2, . . . . (D.38)

Therefore, all T̂1,s have only two branch cuts, establishing (a).
This concludes the proof of the properties of the T functions. Summarising, the set of condi-

tions (i), (ii), (iii), (iv), (a), (b), (c), (d), together with the transformation (D.23), is completely
equivalent to the discontinuity relations.

Similarly to the AdS5/CFT4 case, a discrete symmetry can also be derived for the T̂ functions.
This symmetry emerges when considering the T functions on the magic sheet and extending them
from the upper band to the following vertical domain:

C = {
(n, s,α)

∣∣ n ∈ Z, s ∈ {−1,0}, α ∈ {I, II}} ∪ {
(n, s)

∣∣ n ∈ Z, s ∈ {1,2}}. (D.39)

The original values T̂n,s are assigned to the nodes with n � s and the remaining T functions are
computed by enforcing the validity of the T-system in the magic sheet kinematics in C. By very
similar calculations as the ones reported above, one can construct a solution with the following
symmetry:

T̂γ

n,−1 = −T̂γ

−n,−1 = 1, T̂α
n,0 = T̂β

−n,0,

T̂n,1 = −T̂−n,1, T̂n,2 = T̂−n,2, (D.40)

with n ∈ Z, α, β , γ ∈ {I, II}, α �= β . For simplicity of notation, we have used the same font T̂n,s

for all the T functions in (D.40). The reader should be aware that they differ from the T functions
on the original diagram when n < s.

Notice that there is a discontinuity in the first relation of (D.40), and that the value of T̂γ

0,−1
appears double valued. In fact, the attentive reader will notice that T-system equations hold ev-
erywhere in C apart from the nodes (0,−1, γ ), γ ∈ {I, II}. We can give an interpretation of this
fact by viewing the extension of the T functions from the upper band to the whole of C as an
analytic continuation in their discrete indices. In this case the analytic continuation introduces a
branch point on each of the wings at the index value (0,0, γ ), γ = I, II, and we trace the branch
cuts to the left of these points, so that they cross the nodes (0,−1, γ ).

As a last comment, let us compare the structure of these constraints with the ones found
in [49] for AdS5/CFT4. While the T gauge has precisely the same properties in the two systems,
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an important difference lies in the shape of the vertical domain on which the T̂ functions are
endowed of their version of the discrete symmetry. In the AdS5/CFT4 case, this was a strip
Z × {−2,−1,0,1,2}, while in the present case it is given by C defined in (D.39). It should
be possible to derive FiNLIEs for the present case by adapting straightforwardly the methods
of [49]. However one ingredient is still missing, namely finding a parametrisation of the T-system
on C in terms of a finite number of Q functions.

Finally, while the quantity F plays in many respects the same rôle here as in the AdS5/CFT4
case, there is an important difference: in AdS5/CFT4, single zeroes of F are interpreted as Bethe
roots of the sl2 sector, while in the present case we expect the Bethe roots to correspond to double
zeroes of F . In fact, one can derive the expression

∏
α=I,II

(
1 + Yα

1,0(u)
) =

∏
α=I,II T

α
1,0(u + i/h)Tα

1,0(u − i/h)

T
I
2,0(u)TII

2,0(u)
= F(u�)F(u�)

T
I
2,0(u)TII

2,0(u)
(D.41)

and by the analytic continuation u → u� we find

∏
α=I,II

(
1 + Yα

1,0(u�)
) = F(u)F((u�)�)∏

β=I,II T
β

2,0(u)
. (D.42)

Excited state TBA equations for the sl2 subsector have been conjectured in [20,21] for
AdS5/CFT4 and [25] for AdS4/CFT3. In our notation, the Bethe roots uj are described by the
condition Y1|α((uj )�) = −1, α ∈ {I, II}, therefore they are zeroes of the lhs of (D.42). Because
of the symmetry Y I

1,0 = Y II
1,0 in this sector and since F(u) �= F((u�)�), we expect that F ex-

hibits a double zero. In AdS5/CFT4, we would have the same expression (D.42) but without the
products over the α, β indices, thus leading to a single zero.

D.1. Proof of Eq. (D.32)

Consider the identity

(
1 + 1/Y1,1(u)

) = T1,1(u + i/h)T1,1(u − i/h)

T1,0(u)T1,2(u)
.

After the analytic continuation u → u∗ we get (using the fact that T1,2(u) has no branch points
on the real axis and identity (D.33))

(
1 + Y2,2(u)

) = T1,1(u∗ + i/h)T1,1(u∗ − i/h)

F(u + i/h)T1,2(u)
.

Shifting the previous expression starting from real u allows us to reconstruct the product of
T̂1,1(u + 2i/h)T̂1,1(u − 2i/h). Using T1,2(u + i/h)T1,2(u − i/h) = (1 + Y1,2(u))T2,2(u) we
arrive at (for real u)

(
1 + Y2,2(u + i/h)

)(
1 + Y2,2(u − i/h)

)(
1 + Y1,2(u)

) = G(u)
T1,1(u�)T1,1(u�)

F2(u)
,

where u� (or u�, respectively) is the image of the point u reached by analytic continuation

through the branch cut with Im(u) = +1/h (resp. Im(u) = −1/h). Moreover using Yα
1,0 = T1,1

T
α
2,0

we can rewrite the above identity as
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(
1 + Y2,2(u + i/h)

)(
1 + Y2,2(u − i/h)

)(
1 + Y1,2(u)

)
= G(u)

Y I
1,0(u�)

Y I
1,0(u)

Y II
1,0(u�)

Y II
1,0(u)

T
2
1,1(u)

F2(u)
.

At the same time we have:∏
α

(
1 + 1/Yα

1,0(u)
) =

∏
α T

α
1,0(u + i/h)Tα

1,0(u − i/h)

T
2
1,1(u)

= F(u�)F(u�)

T
2
1,1(u)

,

where the last equality follows from (D.33) and the periodicity of F , while using (D.22) we find

F(u�)F(u�)

F2(u)
= (

Y1,1Y2,2(u + i/h)
)(

Y1,1Y2,2(u − i/h)
)
.

Putting all together and using the Y-system relation (3.5) we arrive at (D.32).

D.2. Proof that G(u) = 1

We prove this relation starting from the TBA. We start by noticing that the relevant TBA
kernels and the driving term satisfy the following identities:

Ẽ1(u�) + Ẽ1(u�) = 0,

φ(y|±),1(z, u�) + φ(y|±),1(z, u�) = −φ1(z − u),

φ(v|M),1(z, u�) + φ(v|M),1(z, u�) = −φM,1(z − u),

φ(Q′|α),(1|I )(z, u�) + φ(Q′|α),(1|II)(z, u�) = −φQ′,(v|1)(z, u), ∀α ∈ {I, II}. (D.43)

When applying the above analytic continuation to the convolutions in the TBA equations describ-
ing ε1|α(u), some residue terms need to be taken into account. To list the relevant properties, let
us give the following definitions:

A(u) =
2∫

−2

dz
(
a(z)φ(y|−),1(z, u) − a(z∗)φ(y|+),Q(z,u)

)
,

BM(u) =
∞∫

−∞
dzb(z)φ(v|M),Q(u),

CQ,α,β(u) =
∞∫

−∞
dz c(z)φ(Q|α),(1|β)(z, u).

where a denotes a function with two square root branch points at u = ±2 and b, c are two
functions regular on the real axis. Then a careful monitoring of the movement of singularities
leads to the following properties:

A(u�) + A(u�) = −
2∫

−2

dz
(
a(z) − a(z∗)

)
φ1(z − u) − a+(u + i/h) − a+(u − i/h),

BM(u�) + BM(u�) = −b ∗ φM,1(u) − δM,1b(u),
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CQ,α,I (u�) + CQ,α,II(u�) = −
∞∫

−∞
dz c(z)φQ,(v|1)(z, u),

where a+(u) = a(u∗).
Using these relations, from the TBA equation describing ε1|α(u) we obtain

ε1|I (u�) + ε1|II(u�) =
∑
β

∞∑
Q=1

LQ|β ∗ φQ,(v|1)(u) −
∞∑

M=1

Lv|M ∗ φM,1(u)

−
2∫

−2

dz
[
Ly|−(z) − Ly|+(z)

]
φ1(z − u)

− Ly|+(u + i/h) − Ly|+(u − i/h) − Lv|1(u) (D.44)

and by comparison with the TBA equation for εv|1(u) this can be rewritten as

ε1|I (u�) + ε1|II(u�) = −Ly|+(u + i/h) − Ly|+(u − i/h) − ln
(
1 + Yv|1(u)

)
. (D.45)

This is precisely the statement that G(u) = 1.
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