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1 Introduction

With the LHC now starting its operation, the experimental investigation of scattering pro-
cesses at the TeV scale is within reach. Starting from these energies electroweak corrections
are strongly enhanced by Sudakov logarithms of the form (a2, In*" s/M2,)" [1]. The full
evaluation of electroweak one-loop corrections to fermion- or W-pair production is by now
a straightforward task. Two-loop corrections, however, can be obtained only in the high
energy limit. By employing the evolution equation approach the analysis of the dominant
logarithmically enhanced two-loop corrections for four-fermion processes has been pushed
successfully from next-to-leading logarithmic (NLL) approximation [2-6] to NNLL [7] and
even N3LL approximation [8-10], which accounts for all the two-loop logarithmic terms
(for additional work on this topic see e.g. [11-15]). Subsequent analysis performed in the
effective theory framework [16] employing the two-loop anomalous dimensions calculated
in refs. [8-10] have confirmed the formentioned result.

In this paper we consider specifically pair production of W-bosons. Previously, the
electroweak corrections were studied mainly in the context of the electron-positron anni-
hilation. The one-loop corrections have been evaluated for the W-pair production [17-20]
and the W-boson mediated ee™ — 4f processes [21-27]. For high energies the two-loop
logarithmically enhanced terms have been obtained up to the NNLL approximation [4—
6, 28, 29]. The one-loop contribution amounts to typically -20% for 1 TeV and -50% for



3 TeV while two-loop terms vary between 2 and 5% for 1 TeV, for 3 TeV they may even rise
to 20%. For the W-pair production at the LHC the analysis of the one-loop electroweak
logarithms to the NLL approximation is given in [30, 31] with the realistic cuts and the
effect of gauge boson decay included. Beyond one loop the logarithmic corrections to the
partonic cross sections were considered in [32]. In view of the extremely large partonic en-
ergies and with the LHC eventually operating at full luminosity (not to speak of the SLHC)
invariant masses of the W-pair exceeding 1 TeV and approaching 3 TeV seem within reach.
Therefore the evaluation of the enhanced electroweak corrections is of particular interest.
Here we present the explicit result for the one- and two-loop corrections to the partonic
qq — WTW~ and hadronic pp — WHW = cross section in high energy limit in the NNLL
approximation. Note that the cross section of W-pair hadronic production is a subject of
large corrections due to the strong interaction of the initial states. Currently the analysis
of QCD corrections is completed to the NLO and NLL approximation (see [33-35] and
references therein). The size of the corrections depends strongly on a particular observable
and in many cases the available approximation provides a few percent accuracy. As we
will see the two-loop electroweak logarithms become essential at this level of precision and
have to be included in the theoretical predictions.

Our paper is organized as follows: the partonic processes in Born approximation are
introduced in section 2. In section 3 the evolution equation approach is outlined for the
simplified case of a pure SU(2) spontaneously broken gauge theory. The discussion closely
follows ref. [29]. However in the present paper we derive the explicit result for the one-
loop corrections to scattering amplitudes given in appendix A. The generalization to the
SU(2) ® U(1) Standard Model is presented in section 4, which contains a more detailed
analysis of the separation of infrared singularities connected with virtual photon emission.
The results for the one- and the two-loop corrections to the partonic cross section in NNLL
approximation are listed in the appendix B. In section 4.2 we present a numerical study
of these corrections for v§ = 1TeV and 3 TeV respectively. Based on these results, the
corrections to the transverse and longitudinal W-pair production in proton-proton collisions
at 14TeV are presented in section 4.3 together with the discussion of the anticipated
statistical errors. Section 5 contains a brief summary and conclusions. In appendix C we
present the correction to the two-loop NNLL result for the transverse W-pair production
in electron-positron annihilation [29].

2 The partonic process

The partonic processes relevant for the W-pair production at hadron colliders are gluon
fusion and quark-antiquark annihilation. The gluon contribution to the total cross section
is about 5% [36] and we focus on the process ¢g — W' W ™. In the leading order it is
described by the diagrams in Fig. 1.

The kinematics at partonic level is defined by:

Q(pl, >‘+) + Q(p% A*) - W+(k+’ K“Jr) + W_(k*’ K*)’ (2'1)
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Figure 1. Tree level diagrams contributing to the partonic process
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Figure 2. Goldstone equivalence theorem at Born level
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Figure 3. Fermion/scalar scattering in an external singlet vector field and scattering of a gauge
boson in an external scalar field. The momentum of external field satisfies p? = s = —Q?2.

where A and k4 are the helicities of the incoming and outgoing particles respectively. For
on-shell W-bosons, the matrix element can be then expressed as function of the Mandelstam
variables:

§=(pm+p)’ t=m—k)  a=(p—ky) (2:2)
They are related to the scattering angle 6 through the relations:
M2
<1—|—ﬁcos«9), B=1-4"W_ (23
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f:MI%/— <1—ﬁcos€>, u = My, 5

In the high energy limit only final states where the W-bosons have the same polarization
are not suppressed by a factor M‘%V /s or higher. In addition, the case where both W’s
are longitudinal can be reduced by means of the Goldstone equivalence theorem to the
production of a pair of charged Goldstone bosons as shown in Fig. 2.

3 Massive gauge boson production in SU(2) model

Let us, in a first step, neglect the hypercharge and consider a simplified model with spon-
taneously broken gauge group SU(2). The model retains the main features of the massive
gauge boson sector of the Standard Model. In this case the result can be presented in
a simple analytical form and constitutes the basis for the further extension to the full
electroweak theory. We study the process of gauge boson pair production in fermion-
antifermion annihilation at high energy and fixed angle with all kinematical invariants of
the same order and far larger than the gauge boson mass M, |s| ~ [t| ~ |u| > M2 In
this limit the asymptotic energy dependence of the amplitudes is dominated by Sudakov
logarithms [37, 38] and governed by the evolution equations [39-42]. The method of the
evolution equations in the context of the electroweak corrections is described in detail for
fermion pair production in ref. [9, 10] and for W-pair production in ref. [29].

Following ref. [29] we introduce the functions Zy 4 4 which describe the asymptotic
dependence on the large momentum transfer () of the scattering amplitude of the spinor



(1) or scalar (¢) field in an external singlet vector field and of the vector boson (A) in
an external singlet scalar field, i.e. of the respective form factors in the Euclidean region
(see Fig. 3). In leading order in M?/Q? these functions are known to satisfy the following
linear evolution equation [39-42]

0

Q? X
Oln@? / Y i(al@) + Ga(Q) + &(a(M?)

M2 X

Z, = Z, (3.1)

with the solution

QQ
ZZ' = exp {/ dz |:
M2 X

which satisfies the initial condition ZZ‘ Q=2 = 1. Here the perturbative functions ;(«)

(n)

i .

/ ) dj/%(a(x,))‘FCi(Oé(x)) +£Z-(a(M2))” : (3.2)

etc. are given by the series in the coupling constant a(u?), e.g. yi(a) = Yo | (a/dm)"
Then the amplitude of the transverse (longitudinal) gauge boson production Az (Ay) can
be decomposed as follows

Arp = a(purs)ZpZasArs . (3.3)

where AT7 1, is the reduced amplitude and we factor out the Born coupling constant e r,).
The scale dependence of this factor is cancelled by the higher order renormalization group
logarithms replacing p7 1, by a physical scale of the process. In the case of the longitudinal
W-pair the proper scale is pu;, = /s because it describes the interaction of far off-shell
intermediate gauge boson with virtuality of order y/s. For the transverse W-pair production
it is ur = My corresponding to the coupling of the on-shell W-bosons. Note that in an
alternative approach based on the soft-collinear effective theory [32] the normalization
scale of the Born coupling constant for the transverse gauge bosons is set to /s. This
is compensated by an additional 3y contribution to the anomalous dimension CS) which
effectively shift the normalization of the Born coupling constant to Myy, in agreement with
our result.

Due to the factorization property of the Sudakov logarithms associated with the
collinear divergences of the massless theory [44] the reduced amplitude satisfies the simple
renormalization group like equation [45-47]

0 = .~
91n Q2 Az = xr,(a(Q7)Ar L, (3.4)
where Q% = —s and X7, 18 the soft anomalous dimension matrix acting in the space of

the isospin amplitudes. The solution of the above equation is given by the path-ordered

exponent

i @ 4y
A7 1 = Pexp [/ dx XT,L(Q(CU))] Ao 7 (a(M?)), (3.5)

M2

where Ag 7 ;, determines the initial conditions for the evolution equation at ¢ = M. By
calculating the functions entering the evolution equations order by order in o one gets the



logarithmic approximations for the amplitude. By expanding the exponents one gets the

one- and two-loop corrections in the following form
1
A = [2%%2 + (<<”+£<l>+x%2)L] AR + AL fO=Dr L =

1 1 1 1 2
(?2:{8 1Lt 4 Y [d” + 60+ xfi) - 3&)} L+ [%2>+(<<”+5<”+ Xii1)

1
—Bo(C(l)er(T}i)]LQ} o)+ L L+ Om), A= 48 (3.6)

where L = In(Q?/M?) and (3 is the one-loop beta function. The anomalous dimensions
(), ¢(a) and x(«) are mass-independent and can be associated with the infrared di-
vergences of the massless (unbroken) theory. At the same time the functions &;(«) and
Ao,r,.(c) do depend on the infrared structure of the model and require the calculation
in the spontaneously broken phase. All the perturbative coefficients in egs. (3.6) except
.Ag; , are known [29]. In ref. [29] the result for the one-loop correction to the cross sec-
tion [26, 27] has been used to obtain the two-loop NNLL terms. We complete this part of
the calculation and present the explicit result for the one-loop corrections to the amplitude
in appendix A. Our result for the cross section agrees with ref. [26, 27].

The large Yukawa coupling of the third generation quarks to the scalar (Higgs and
Goldstone) bosons results in specific logarithmic corrections proportional to m? /MI%V This
kind of Sudakov logarithms were studied in ref. [40, 41] and have universal structure for any
renormalizable non-gauge theory. The factorization in this case is much simpler than in
gauge theories and the logarithmic corrections are completely determined by the ultraviolet
field renormalization of the external on-shell lines. Since the Yukawa coupling of the initial
light quark states is suppressed the Yukawa enhanced Sudakov logarithms for hadronic
production of W-pair are similar to those for W-pair production in electron-positron an-
nihilation [29]. Thus the Yukawa enhanced corrections can be taken into account through
the modification of the evolution equations for the corresponding Zs-function. The main
complication is that the Yukawa interaction mixes the evolution of the quark and scalar
boson form factors and in general does not commute with the SU(2) coupling. Thus the
evolution equation has a complicated matrix form:

0 < da 2 2 2
omo2Z = [/M 2 7(@(@) + @), avuc(@7)) + &(a(M ))]z, (3.7)

with the solution

Q2
Z = Pexp {/ dz [
M2 X

where y(1) = (=3/2)1, £ = 0, ayu = Mf/(?Ma,) o, and we introduce the five-component
vector

M2 X

[ M0 + ol aviele) + glaar?)] } 2, (38)

Z=(Z4 2y, Zoy Zi_, Zis). (3.9)



The subscript 4+ (—) stand for the right (left) quark fields and Z, corresponds to the
transition of the Higgs boson into the neutral Goldstone boson in the external singlet
vector field. The one-loop anomalous dimension matrix reads [29]

120 000 006 0 -6
| 012000 000 6 -6
¢W="1oo900]+"[1 00 0-1], (3.10)

2
0 0090 0 1 0 0 -1
0 0000 -1-1-1-10

where the first term represents the pure SU(2) contribution, the second term represents

the Yukawa contribution and we introduce the ratio p = ayy/a = ~ 1. The proper

Mt
2M2,
initial condition for the evolution equation which corresponds to the SUf(2) Born ampli-
tudes of the third generation quark and scalar boson production in light quark-antiquark
annihilation is given by the vector Zy = 2(T£, T;’, 3, T2, Tt?’+) =(1,-1,-1,1,0) where
T? stands for the particle isospin and the overall factor of 2 is introduced for convenience.
Since the Yukawa enhanced logarithmic corrections can be attributed to the external on-
shell field renormalization we expect a diagonal form of the corrections. This is indeed the

case due to a nontrivial matrix relation

1 2n 3[)2 n 1 Im+1 3[)2 n
( %(sz) 'ZO = < 9 ) ZO7 ( g{tik) 'ZOZ ( 9 (_3P73P7P/2= —p/2,0) )

(3.11)
where the vector on the right hand side of the second equation represents the one loop
correction C%Zk - Z¢. By factorizing the components of Z(y we can rewrite it as follows

1 1 1
¢ Z0=2p <—3T§, —3T7, —2T£_, —2Tt‘°L, —Tt3+> . (3.12)

The coefficients of Ti?’ in the above expression depend only on the field renormalization of
the particle i as it has been explicitly shown in ref. [48]. For example, for the hypercharge
mediated Born amplitudes of the same process we have different initial conditions Z¢ =
(Yy, Yy, Vo, Vi, Vi) = (1,1,1/3,1/3,4/3) where Y] stands for the particle hypercharge.
However the one loop coefficients are the same as in eq. (3.12)

1 1
e Zo =0 (—3Y¢, =3, — 5 Yooy =5 Vi —YH> : (3.13)

The different form of the odd and even order corrections is dictated by the off-diagonal
character of the matrix of field renormalization by Yukawa interaction.

By expanding the solution for the component Z, we obtain the Yukawa enhanced
logarithmic corrections to the amplitude of the longitudinal W-pair production. Let us
introduce the following notation

(COvuk = [C - 20l (3.14)



where only the terms proportional to the second or fourth power of the top quark mass are
kept on the right hand side. Then the Yukawa contribution to the amplitude (3.6) takes

the following form

AW = Wy L A+ AP |

1 1
AP |y = { AWy L2 + [(C(l) + W 4 4@ (Tlﬂ{) (€M) v,

2 2
+1<(C(1’)2> 2440 4 17(1)L2 (1) O(L 3.15
9 Yuk 92 AO |Yuk + ( )7 ( : )

where Bguk = 9/4 — 3p/2 is the one-loop beta-function of the Yukawa coupling constant
and .A{()U |yvuk is the one-loop nonlogarithmic Yukawa contribution given in the appendix A.

4 W-pair production in the electroweak model

4.1 Analytic results

The electroweak Standard Model with the spontaneously broken SU,(2)xU(1) gauge group
involves both the massive W and Z-bosons and the massless photon. The corrections to the
fully exclusive cross sections due to the virtual photon exchange are infrared divergent and
should be combined with real photon emission to obtain infrared finite physical observables.
The infrared divergences of the virtual corrections are regulated by giving the photon a
small mass A. In the limit \? < MI%V < @? the dependence of the amplitudes on A in
the full theory is the same as in QED. Thus the logarithmic corrections can be separated
into “pure electroweak” Sudakov logarithms and QED Sudakov logarithms of the form
In(Q*/A?) or In(MZ, /A\?).

To disentangle the electroweak and QED logarithms we use the approach of ref. [1, 7, 9,
10]. While the dependence of the amplitudes on the large momentum transfer is governed
by the hard evolution equations (cf. egs. (3.1), (3.4)), their dependence on the photon
mass is governed by the infrared evolution equations [1]. Two sets of equations completely
determine the dependence of the amplitudes on two dimensionless variables @ /My, and
@/ up to the initial conditions which are fixed through the matching to the fixed-order
result. For \? <« MSV the singular dependence of the amplitudes on the infrared regulator
is governed by the QED evolution equation. Its solution to NNLL accuracy in the massless
fermion approximation my = 0 (f # t) is given by the factor

2

ae(N?) 2 ) @ 2 U Q° 2 M, My
U:Uo(ae)exp{ il [—(Qq—i—1> In )\24— 3Qq—4qun£ In )2 +In \2 +21In 32

202) 8T 10 Q2 (95 , 50 i\, 5Q? Q?
+OZ4§T)2) ) [— 5 (@), +< L Qi —20Qq1n1;>1n2 \2 +O<1HA2>]+O(O‘§)}’
(4.1)

where a, is the MS QED coupling constant, and @), is the quark electric charge. The
NNLL approximation for U can be obtained from the result for the fermion-antifermion



production [7] by proper modification of the QED anomalous dimensions. Note that we
take into account the top quark decoupling and eq. (4.1) corresponds to five light flavors in
contrast to ref. [7] where all the quarks were assumed to be massless. To exclude the top
quark contribution in the expressions for the QED anomalous dimensions in [7] N, should
be replaced by N, —1/2. The preexponential factor Uj in eq. (4.1) is factorization scheme

dependent. It is convenient to fix it by normalizing U (c)| = 1. We factorize the

s=\2=M?2
QED factor and write the full theory amplitude as a product v

A= UA.. (4.2)

where A, includes only electroweak Sudakov logarithms. The logarithms of the photon
mass in U are generated by loops with soft photons, photons collinear to the initial state
fermions, and soft photons collinear to the final state gauge bosons, which result in the log-
arithmic dependence of the coefficients on My . In the physically motivated cross section
which is inclusive in respect to the photons with the energy much less than electroweak
scale the singular dependence of U on the photon mass is replaced by the experimental cuts
on the soft photon energy or absorbed into the parton distribution functions. One may eas-
ily change the regularization scheme and use e.g. dimensional regularization which is more
convenient for the analysis of the parton distribution functions. In the present paper we
focus on the pure electroweak part of the amplitude A.,,. The factorization formula (4.2)
implies that the anomalous dimensions corresponding to the electroweak Sudakov loga-
rithms are obtained by subtracting the QED contribution from anomalous dimensions of
the full theory. The functions v, (, and x are mass-independent. Therefore the anomalous
dimensions parametrizing the electroweak logarithms can be obtained by subtracting the
QED contribution from the result of the unbroken symmetry phase calculation to all orders
in the coupling constants. In particular in one loop we get

n _ Lo 0 2 2 (1) _ (1) 5 2
YA = Vab|gy, T o ety T 2QAs s Cas = Capl T Yasty

1 _ @) 2, U 1 _ @ 2 2 U
Xt = Xr SU(2)+4QqSW1nt]l’ X1 =X, SU(2)+(Y‘;KNW+4QQ‘Sw)1nt]l’

(4.3)

where Y, Y4 = 0, Yy = —1 are the hypercharges of quarks, gauge and Goldstone bosons,
s‘f/ = sin® Oy, tg/ = tan? Oy, and Oy is the electroweak mixing angle. The SU(2) part
of the anomalous dimensions can be found in [29] while the hypercharge contribution and
QED subtraction term are given explicitly. The anomalous dimensions for the quark Z-
functions can be found in ref. [7]. The only two-loop coefficients we need are

@ _ (2 52 .9 4 800 o 4
YA = YA SU@) + g A¢ 7fw 97 QA,(b Sy (4.4)

in the MS scheme. On the other hand the functions £ and A are infrared sensitive and
require the use of the true mass eigenstates of the Standard Model in the perturbative cal-
culation. In NNLL approximation one needs the one-loop contribution to these quantities
which can be found by comparing the solution of the evolution equation with the explicit



one-loop result for the amplitudes. In this way we find that the anomalous dimensions 52(1)
get contributions just from the mass difference between My and My and obtain:

2
gl_(l) = 9 [(ng)Q + (?)2%2‘/ — ZQSVQV] In ]\]\522 , 1=, A, o, (4.5)
w

where T? = @Q; — Y;/2 is the third component of the isospin. The expressions for the
nonlogarithmic one-loop corrections to the amplitude .A(()D are rather cumbersome and we
collect them in appendix A. Note that Aél) depends on the normalization of the QED
factor. We use the normalization where all the nonlogarithmic one-loop corrections are
contained in .A(()U. With the above parameters of the evolution at hand we can write down
the two-loop NNLL corrections to the amplitudes as in eq. (3.6). The two-loop Yukawa
contribution in the NLL approximation is given by the interference of the one-loop double
logarithms and the one-loop Yukawa enhanced single logarithms. Thus it is straightforward
to obtain this contribution exactly. For the NNLL two-loop Yukawa contribution we use
the SU(2) model of the previous section with p = m?/(2M2,), which approximates the
exact result with the accuracy of order sin? Ay ~ 0.2.

Now we are in the position to present the final result for the cross sections. We define
the perturbative series as follows

do o! o2 do
= [1 s LRI BN 4.
dcosd [ * (477) - (477) + dcosd (4.6)

The coefficients for the one and two-loop NNLL terms are listed in the appendix B. Below
we present the numerical analysis of the corrections to the partonic and hadronic cross
sections.

4.2 The partonic cross section

For the numerical estimates we adopt the following input values

My = 80.41 GeV, My =91.19 GeV, My =117 GeV, m;=172.7 GeV,
1
a(M%) = 1981 s, = 0.231, (4.7)

and take /s = 1TeV as characteristic example. The one and two-loop corrections for
left-handed w-quarks in the initial state are plotted in Fig. 4 showing a sizable NNLL

contribution.t

The structure of the corrections for the left-handed d-quarks is similar,
see Fig. 5. To facilitate the comparison of the u- and d-quarks cases related by crossing
symmetry in the Born approximation, we plot the cross section for u-quarks as a function
of —cosf. In the Born cross section we always use the physically motivated normalizarion
scale of the coupling constants, which is u = My for the transverse and p = /s for the

longitudinal boson production.

'Numerical results for the partonic cross section have been presented in ref. [32] and qualitatively agree
with our analysis. However a direct comparison of the results is not possible since the authors of [32] use
different power counting and QED subtraction prescription.
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Figure 4. One and two-loop corrections to the partonic cross section for left-handed u-quarks in
the initial state, transverse (left panel) and longitudinal (right panel) WW-bosons at V§=1TeV.

The contribution of the right-handed quarks vanishes for transversally polarized W-
bosons, and for longitudinally polarized bosons it is significantly smaller than the one of
left-handed quarks, see Fig. 6. In one as well as in two-loop approximation one observes
large compensations between LL, NLL and NNLL terms. Evidently the LL approximation,
even when combined with NLL terms only, does not lead to an adequate description of the
full result. In ref. [20] the quality of the high energy approximation has been studied at
one-loop level. The error turns out to be less than a few percents for a partonic center of
mass energy above 500 GeV and a scattering angle in the range 30° < 6 < 150°.

4.3 Hadronic cross section

To obtain transverse momentum and invariant mass distributions for the process pp —
WTW = 4+ X the partonic cross section must be convoluted with the parton distribution
functions fp, i(x1, p2) and Jhaj (22, p2), where up is the factorization scale, z1 and x5 are
the momentum fractions carried by the parton ¢ in the hadron h; and by the parton j in

the hadron hs respectively. The pp-distribution is given by

do
dpr

6y

, 48
dpr (4.8)

1 1 1
= N2 Z/Odwl/odxz I (@1, 15) Fo (2, pF) 0(2122 — Tonin)
C Z_]

,10,
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Figure 5. One and two-loop corrections to the partonic cross section for left-handed d-quarks in
the initial state, transverse (left panel) and longitudinal (right panel) WW-bosons at V§=1TeV.

where N, is the number of colors, the sum is over all possible ¢¢ partonic initial state,
pr = sinH\/ §— 4M5V 2 is the transverse momentum of the W-bosons and we adopt

ur = pr. The quantity
4(p% + M2
Tmin = (pT s W) (49)

is related to the minimal partonic energy that is needed to produce two W-bosons with a
given transverse momentum pr. The partonic differential cross section dé;;/dpr are given
in terms of the angular differential cross section as follows

dé’i]’ _ 4pT dé’w + (tA<—> ,&)

=x1T98. (4.10)
pr - Js— a2 /5 — s - 10050

>

The numerical results are obtained by using the MRST parton distributions [49] and the
integration routine CUHRE from the CUBA library [50]. The upper panel of Fig. 7 shows
the NNLO prp-distributions for the production of transverse and longitudinal W-bosons in
the NNLL approximation. Transverse bosons production is evidently dominant, with the
cross section being about twenty times larger than the one of the longitudinal bosons. The
lower panel of Fig. 7 shows the NLO and NNLO corrections separately. For the production
of transversely polarized W-pairs the one-loop correction reaches 40% at pr = 1TeV and
60% at pr = 2TeV. The two-loop contribution amounts up to 10% at pr = 1 TeV and 20%
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Figure 6. One and two-loop corrections to the partonic cross section for right-handed u-quarks (left
panel) and d-quarks (right panel) in the initial state, and longitudinal WW-bosons at Vs =1TeV.

at pr = 2TeV and partially compensate the one-loop corrections. For the longitudinal
boson production the one-loop correction is about 15% (30%) at pr =1TeV (pr =2TeV),
while the two-loop contribution does not exceed a few percent up to ppr = 2TeV. As
anticipated above the radiative corrections for the longitudinal case are smaller than those
for transverse W bosons. This is because the value of the quadratic Casimir operator of the
SUL(2) electroweak group, which govern the leading logarithmic contribution, is smaller for
the fundamental representation of the longitudinal degrees of freedom than for the adjoint
representation of the transversely polarized W-bosons.

The invariant mass distribution for the W-pair production is defined as follows

do 1 1 1 2 9 da'l'j(M\?VW,OZ)
M., = N2 ;/0 dx1/0 da fry i (21, 5) fro.i (T2, 15) My, (4.11)

where M, = \/(k+ +k_)2 = V3 is the invariant mass of the W-pair system and we
adopt pip = M, . Here the partonic differential cross section dé;;/dM,,, is obtained by
integrating the angular differential cross section in the region — cos Oy, < cos 8 < cos Opmin

A6 (Mg, ) :/COSG“’“‘ deos 9 L0 L
dM dcosf

— €08 Omin

W)é(\/xlxgs — Myw), (4.12)

- 12 —



0.1

0.01 | pp — W-|—+ Wy
0.001 ’\\\ pp — WL+ WL' ———
— N\,
S 00001 | S
5} ~
5 1e05 e
L 1e06 T~
k] ~
5 1e07 ~__
1e-08 | T
1609 1 5_14Tev N
fe-10 L ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
200 400 600 800 1000 1200 1400 1600 1800 2000
pr [GeV]
pp - Wyt Wy PP~ WW
02 +s=14Tev T 02 +s=14Tev
opb—"""" ok
02} 02}
0.4 | 0.4 |
doy o/ do o doy o/ do o
-0.6 t donno/dog ———- -0.6 t donno/dog ———-

200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
pr[GeV] pr[GeV]

Figure 7. Transverse momentum distribution (including corrections) of transverse and longitudinal
W pairs and relative corrections for proton-proton collisions at /s = 14 TeV.

which excludes the range of small angles where the high energy and the Sudakov approxi-
mations are not valid. The results for the invariant mass distribution are plotted in Fig. 8
with an angular cutoff 6, = 30°. To estimate the potential statistical sensitivity, the
corresponding plots are shown for the production cross section of W pairs with pp > pJt.
Taking, as crude estimate, an integrated luminosity of 200 fb—!, about 1200 W pairs with
pr > 600GeV would be produced. Assuming that the experimental analysis would be
based on the final state with one W-boson decaying leptonically and the other hadroni-
cally a fraction of about 4/9 of the pairs could be observed, leading to a nominal statistical
error of about 4%. Under this (optimistic) assumption the one-loop terms would be clearly

relevant and the two-loop terms start to contribute.

5 Summary

In the present paper we derived the one and two-loop electroweak corrections to W-pair
production at the LHC in NNLL approximation in high energy limit. We present the
analytical result for the amplitudes, differential partonic cross sections, hadronic pp- and
invariant mass distributions. The structure of the corrections is similar to the W-pair
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Figure 8. Total invariant mass distribution (including corrections) of transverse and longitudinal
W-pairs (upper panel) and the corrections to the invariant mass distribution (lower panel) for
proton-proton collisions at /s = 14 TeV.

production in e*e” annihilation [29]. In the case of the transverse boson production we
observe the cancellation between the huge NLL and NNLL contributions so that the sum is
dominated by the LL term. For the longitudinal bosons the corrections exhibit significant
cancellation between the LL, NLL and NNLL terms. The maximal effect of the corrections
is on the pp-distribution of the transverse W-pair production and reaches 60% and 20% at
pr = 2TeV in one and two loops, respectively. To push the theoretical error below 1% the
evaluation of the two-loop linear logarithmic terms should be completed, which requires

the calculation of the two-loop mass-dependent anomalous dimensions [9, 10].
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Figure 9. Cross section (including corrections) for transverse and longitudinal W pair production
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A One-loop correction to the gg — WTW ~ amplitudes

In this appendix we give the explicit analytical result, valid in the high energy limit, for
the one and two-loop NNLL amplitudes of the processes:

Arg_: q-(p1) + @y (p2) — Wi (k) + Wy (k-),
Apge © q(p1) + qe(p2) — 01 (ky) + 07 (k-), (A1)

where g+ are the left/right handed fermions in the initial state, which can be either u or
d quarks. The amplitude Ap describes the production of transversely polarized W-bosons
and vanishes for the right-handed initial quarks. The amplitude A,+ describes through
the one-loop Goldstone equivalence theorem the production of the longitudinally polarized
W-bosons. The one-loop corrections to the Goldstone equivalence theorem of Fig. 2 can
be properly described by introducing the following effective wave function counterterm for
the ¢+ field:

ey SWOR) SWeOR) 163,

1
52w + O(a? A2
¢ M2, My oo TtPw Ol (8-2)
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where E%/ is the longitudinal part of the W self-energy, V¢ is the W—¢ self-energy, 5M5V
and 6Zy are the mass and wave function counterterms of the W boson (see also [51]).

The results given in this section are obtained by adopting the MS renormalization
for the couplings and the weak mixing angle and on-shell renormalization for the masses.
As before the renormalization scale in the Born amplitudes is fixed to p% = M‘%V for
the transverse and p? = s for the longitudinal case. The Lorentz-Dirac structure of the
amplitudes in the high energy limit takes a simple form:

Arg = (p) [ faprciArg. + ks (pro€)? Bry_ | w_a(py)
Avgy = 2(02) B wr (1) sy (A3)

5
where wy = H:;/ and we use the relation between the polarization vectors ek (k+) of the

transversely polarized W in the center of mass frame
k) = —e (ko) = (A1)

where k = £ 1 stands for the polarization. The perturbative series for the amplitudes read

Apg. = dma(pd) - <407‘T> AW (P=T,L),  Bry =4na Z ( ) B . (A5)

n=0

where a(pi?) = ae(p?)/s2 (4*) and the coupling constants are supposed to be normalized at
1 = My unless the normalization point is indicated explicitly. The Born amplitudes read:

1 0 1 0
A0 o AL — e BY —

1[0t (u7) 1 t2 (u3) 1
A= e P A= e O] A e A=),
(A.6)

The one-loop contribution to the second transverse Lorentz-Dirac structure of Eq.(A.3) is
particularly simple and does not contain Sudakov logarithms

1 2
S T - VIS R ! (A7)
| A i i
TQU(Q)——< 2£>£[L38+7T2]+3A[L§S+ﬂ2] (2—5£>Lu5+ :
W 1f, la\a, ., | o 1(3 1
= — 1 N ~ L - ~ Lus_ . A
brx 9<+2t>t[“5+ﬂ 9<2+t 18 (A.8)

All the notations are explained at the end of the section. The one-loop corrections to
the remaining Lorentz-Dirac structure can be formally decomposed according to the gauge
coupling constant factor

Al = AL vy 12 Ay + 52 (Abdeam — ALY ) (P=T.0), (A9)

where the last term Agjlq)jF sub, corresponds to the first order term of the expansion of the
singular QED factor (4.1) and cancels the infrared logarithms coming from soft photons
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and from photons collinear to the incoming quarks.? The QED correction factorizes with
respect to the Born amplitude and reads

AL e [ (Q24+1) Ly L+4Qq Ly Lus gLi—QQgLvLZ—(ngJrz) o+ A(l)] yon

9 7 2 4 3 13 2 4
<2—2wz+3w>w L~ [ﬁz <2— 6 W +3w> Zﬂz] 7T2+5wz—3w22,
AO=(?-n A I Ly +L? 11
PRl P w,+3wy, |w, L,— 3 + 2—{—5wZ—3w w, B, | Ly, + +7T +11w, 6w
Z

2 Q Q2 1112 MI%V

(1)
A A2 A2

o = <Q2+1) In <3Q2 4Q,L ut) In +21In }A;Oﬁ (A.10)
where Q2 = —§ — 30" and Qg is the electric charge of the quark. Note that .qu]F gD
vanishes for My ~ A — 0. After the subtraction the A-dependence disappears and we get

the QED contribution in terms of the parameters of the evolution equation

1)
")/ )
APqﬂFvQED ‘AquF,sub = [ q;ED L2 + (CCS}(%ED + SC(I}C)QED (1) >L + ASD1(])7QED] 'ASDOq)Jﬁ

e = —2(@241), W =3@2 Wy = —4QuLu, & =2(@2+1)L,
Abdgm = - (3Q§+2> L, +4QqL, Lut — QL2 — AW, (A.11)

In order to present the result of the remaining SU(2) and Y components, in terms of the
coefficients of the evolution equations, it is necessary to analyze the isospin structure of
the amplitude for left handed quarks. The general SU(2) basis for the amplitude A of the
left-handed quark-antiquark pair transition into two transverse gauge bosons reads

2 2 2 2

Goqr — Ba Byt (s d+)<A1"“"b+A2"""“+Agéabn> (Z‘) a,b=1,2,3,

(A.12)
where B, are SU(2) gauge fields and o, are the Pauli matrices. From the definition W:,jf =
(B1 FiB3)/V/2 we get the following structure for the production of W, W

O_ 0

_ _ - — O 0O_ u—
QLQLHW;WT: (U4 d—l—)(-Al 9 9 + A 2+ 9 +-A3]1> (d >:

a3 (@) () () ) wo
where o1 = (o1 +1i03)/v/2. Thus

1 1
Ay = 2./42 + As, Arg = 2.41 + As. (A.14)

*In contrast to Section 4.1, we normalize here L{(ae){ = 1. In this case the amplitude is

Q2=X2=M3,
manifestly A independent. The numerical estimates are obtained with the normalization of Section 4.1,
where the A dependence survives in the imaginary part of the one-loop amplitude, but does not contribute

to the cross section up to N*LL approximation.

,17,



We introduce now the isospin vector amplitude A of section 3

Ai
Arg_ = [ A2 |- (A.15)
As

The Born amplitudes A(TOQZ_ and .A(Tod)_ of Eq.(A.6) correspond to the vector

1/t
A —2)1/a|. (A.16)
0

For the amplitude A;,_ of the left-handed quark-antiquark pair transition into Goldstone
bosons, the isospin basis is:

Ao (U4 CLr)U; <Z> (®g ‘1>+)U2a <<§> +Aq (@4 di)1l (Z) (®o @)1 (;f) - (A7)

In the first term the sum over a goes from 1 to 3, but only o3 contributes to the production
of charged ¢ pair so that

Apu_ = —iAo+An, Apa. = iAg+An. (A.18)

As for the transverse case we introduce the isospin vector amplitude A, of Section 3

./40
an-(2) o

The Born amplitudes -AL(?), and .AL(S{ of Eq.(A.6) correspond to the vector

1 —1
2 2
e =711 : (A.20)
SR W AT R WA
where Y; (Yy) is the hypercharge of the initial (final) state. The isospin vector amplitudes

can also be decomposed according to the gauge couplings
1 1 1 1 1
AL = AL o AL 2 (AN g — AL ), (P=TLL). (A21)

The expressions for the SU(2) and Y components of the vectorial amplitude are then
written in terms of the parameters of the evolution equation

&
1 Tpq_,i 1 1 1 0 .
A = [ 2y ( W el 4 ng)i,i)L + A;g_,i,}A;g_,i, (i = SU(2),Y).
(A.22)
The coefficients 71()172, CI(}’Z and ng are universal, the other are obtained by explicit calcu-

lation.
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The expression for the amplitudes A(qu), ; and .A(qul ; in terms of the anomalous dimen-
sions can be then obtained by using egs. (A.14), (A.18) and takes the form:

1)
@ _ | Tra- i (1 1
APq7’i_|: 9 (Cpq Z‘Fqu Z+X§>q) 1>L+qu Z:|'A |:X(Pq) L-‘—A :|qu s
(A.23)
where we introduced the notations
(0 0 (0 0
Al = AD) AD) = AR (A.24)
The coefficient are given by:
Transverse W, left-handed quarks, SU(2) component.
—4L 0 4L
(1) 11 9 5 1) ts ut
Vrq_,su@) — — 9 (Tq ,SU@2) — 4’ £Tq ,SU(2) — 2Lz, Xrq_ su) — 0 —4Lys 4Ly |,
Lus Lts 0
1 1 _(1 (1
X(Tu),,SU(Q):QLtS — 4Lys, X(Td) su@) 2Lus — 4Lts, X(Tu) su@) 2Lus, X(Td),,SU(Q):thS’
1 1 1 1 < (1
ASMZ,,SU(Q):A(T)SU(Q), A(Tcg SU@R) A(T)SU(Q A(Tq) SU©2) — =0,

(E ),
1 5 30 62 9 54 485
A(T,)SU(Q): _4 <1 54 ~ 1 s >L2 + L ( >Lts ust <4 9 >Lus +2L Ly + 79

2 ~ ~2 11
+7T <7+3?—52f )— w, + w2 w +

1 2 3
4 02 9 oWy w, —w, —|—Lt+(1—wt>LtW

1 w? —
67 2
1/1 31 1 3 3 1
_4<3+17wZ— 2w22—|—3w§’>LZ—4L§+ 2<1—2wH—|—4w}21 6 H>L +L2

91 19 3 11 5 1
T e e o PR ) R o

(A.25)

Transverse W, left-handed quarks, Y component.

o 1 o 1 (1) 1 ) 1 ) _
T(I—7Y__187 Tq—,Y — 127 Tq_,Y — 8LZ’ ngq) y_07 ngq) Y ngq) Y 07

AS) s =A, Al AN G ea), AL =0

Td_)Y
1 R 1 24 67 w2 i 02
A = F 143" £ )2 1+-)L 1+9. +3.
™Y 36 + +t2 us T g +3t ”s+72+108 * t+ 12
1/5 1/1
36L§ 2<6 —wZ>LZ — 2(@ —|—wZBZ>LXZ. (A.26)
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Longitudinal W, left-handed quarks, SU(2) component.

1) B 1) 21 3 (1) B 1 _(—2Lus—2L4s 4Ly
VLg_,su@) = -3, (Lq_,SU(2) T4 2wm £Lq_,SU(2) =L, X(Lq)_,SU(2)_ ZLut o)

1 _ 1 _ (1 _ (1
X(Lu),,SU(Q)_ Lis = 3Lus, X(Ld) SuU@2) = Lus — 3L4s, X(Lu),,SU(Q)_ 2Lus, X(Ld) SU@) 2L4s,

1 575 5 19 . 416 )

() — L+ + 724 Tin L_—4L,L,— —82im ()

Ay som=| 2 3 % 0 43 132 +ALsue 1,
165~ 4L“tLZ Tog 3"

1 35 15 1471 2 71 1
A(Lu)_,SU(2): 4 i <L12LS+7T2) - 40 <Lz%s+7r ) - Ltu LZ + 79 + 3 772 + 6 i + Ag )SU (2)
Arisvn™ 4 4 (L“” ) T4 <L“s+” ) “luls = gyt g™ T g i ALsuy
_ 135 112 26 . - 15 200 71 .

L(u)-,sw) =9 (LZSJ”TQ) t 4 3 o AL(d)_SU(Q) Y (L§8+772) - - G

27 3 3 1 117 27
A(LI%U(Q) = —17Tw, + 4 w —w —|—4wH + 2wt2 4 (13—|—39wZ— 5 wZ2—|— 5 w?)LZ
+2<1 B+ 0l — H>L + tht+2< )thtW 4LZ+4LX +, L
91 (1 63 27 , 11 301
+[2ﬁz +<4+ 3 w, — 3 wZ>wZBZ]LXZ— [2 3, +<1 8w +8w > HﬁH}
(A.27)

Longitudinal W, left-handed quarks, Y component.

(1) 5 m _ 13 . _5 y __1
Yog_,y = T (Lq,,y =19’ qu,,y— 9Lza ng)i’y = _3Lut 1,
1 _ 1 1 1 1 ~(1
Xg)ﬂy = _3Luta ng),,Y = 0) Ag) Y A( ) A(Lq),,Y: Ag})’a qu),,Y: 0)
o1 1 731 5 , 41 1(5 7 1,
Ary = —12L_ + 3LutLZ g o™ T g 1T+ olg oW + oWy L,
1, 1., 1.1 1
R [262 + <5—wz)wZﬂZ]LXZ - (A.28)

For the right-handed quarks the amplitudes are isospin singlet so that the SU(2) and Y
contributions factorize with respect to the Born amplitude:

(1)

1) T ,
A(Lq+ i [ ) <<Lq+ it £Lq+ i T X(l)

2 Lqy 7,> + ALq+ Z:| ALq+a 1= SU(2), Y. (A29)
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Longitudinal W, right-handed quarks, SU(2) component.

(1) 3 3 1 _ 1
7Lq+,SU(2) 27 CLq+,SU(2) 3 - 211)“ ngl su2) 07 §Lq+,SU(2) 2L27
1 27 1 3 3 5 1 3 3
A(L(1)+7SU(2) —17w, + 4 w — Wy +4wH+2w 2+6+6 T+ (1 w >thtW—|— w, L,
1 117 5 27 4 ) 1 9 9
_4<10—|—39wz— 9 wy, + 9 wZ>LZ+ <1 3wy, —|—4wH—4 )L —{—4LX —{—2LXH
91 1 63 27T 4 11 3 1
+[2ﬂz+<4+8wz_8wZ>wZBZ]LXZ_[26H+<1 g H+8w> HﬁH]L
(A.30)

Longitudinal W, right-handed quarks, Y component.

e
ARy = _;L‘ * gL“tLZ N 21089 - ii”z - ;wz - (2_1“) +411 Z>LZ - ng
1., 12
l[f e
S R PO TR
Al = éL_gLutLZ—9;+;iw2—461m—;wﬁ(é—lwﬁiwﬁ)Lz N
—iLiZ 111[622 + (5—wz>wZﬂZ}LXZ. (A.31)

The NNLL two-loop amplitudes are obtained by using egs. (3.6), (A.14), (A.18):
(2) _ Y- (1)
By, = q Brq L,

APq:F { < 1(>1q)¢> L4‘|‘ [’75:-(1; (Cpq:F +£Pq:F ‘|‘qu¢) [67] ] + [’VPq:F <<Pq:,: +£Pq:F>

+2( ¢ b, )xhe + Db, — (815, — 18x ]Q(J);JrA’QZ’iﬂ%);A&HLZ}A%

%(31) (1) ) (1) A
+{ 2q$ Pq;F |: <CPq;F §Pq;F)XPq:F+[ ]Pq:F [ﬁX]Pq;F—i_fYPq;FAPq;F]LQ}APq;F
(A.32)

where

qu]F fp(;;su(z) + 12 fP(;])F Yy 52 fq(gzba F=7086x4; )_(z(alq) = XI()q) ,SU(2)) >_Q(DZ)+ =0,

80 19
B0 = 1) i BB s 5 s F= G 1808 = X8y s 190,

_ _ _ 1
S I T S AP

Lq+ Lqg+
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with P = T, L and g = u,d. Note that the Yukawa contribution of Eq.(3.15) is partially
(1)

,SU(2)
matrix x gives the following contribution:

contained already in (; and the remaining piece is given by AY“]“ The square of the

2
[Xz]l()}l); = [XQ]S,);,SUm +2X191);,SU(2) (tvzv Xlgz)rrvY o ;Xq(gED> + (tvzv Xlg;):FvY_ vzvxq(gm)

1
X u),,sw): 1615, = 12LssLus +4L5, 1Y) (= 4Las — 12L4s Lus + 16 L,
1
[X2] (LJ_SU@):gLZS—2LtsLus+L%Sa [XQ]E;)HSU(Q):LQ 2LtsLus+9Lt5a [XQ]SI)JF,SU(Q):O’

—27(1 —27(1 —(1 1 1
], = v+ 20 s 85 — 53

—21(1) 2 1 2
[ ] _SU@) _4L 4LtsLusa [X ]g"d) SU(2) _4Lts 4LtsLu57
_ (1) _
] Lu_SU@) —ALGs = ALisLusy 1) g = ~4L8 — ALasLus, [XZ](L{L,SU@) =0
(A.34)
Finally, the pure two-loop quantities qu); are given by:
@ _ @ (2) (2) (2) _ 10400 (2 _ 8000
WPqi rqui,SU(Q) + rYPqi, WVq QED > WU,QED - 243 ) 7d7QE) - 243 )
2) 385 11 , (2 92 2) 70 9 2 520
Yrq_,su@) — 9 + 3 ™y Trg_y = 81’ Yroq_,su@) — 3 +27%, Yy = 81’
2) 35 9 @ 1300 2 676
YLge,su2) — — 3 T Viupy = 81 Videy = 81" (A.35)
Throughout this section the following notations have been used
5 —t - i t
LzlnM,2 —im, Lis=1In 5 +im, Lys=1In 5 + T, Lutzlnf, Ltuzlna,
w

y M, A2
Li:£<LZS+772> u(Lferw) L., ln( th;> valnM%,

M? 1-8; & MZ
Li=1In MQ, in:hll—i-ﬁ:’ Bi=— \/4 -1, wi:MéV, i=Z H,t (A.306)

B One- and two-loop NNLL corrections to the partonic cross section

In this appendix we present the result for the one and two-loop corrections to the partonic
cross section in NNLL approximation. The differential cross sections are obtained from the
amplitudes given in the previous appendix through the relations:

dé 2 a a2
Irq- = g0 SZZ{ATq ‘ _285860 “ATq_{Q(H-Cg)—Re(ATq_B;q);sg CG""BTq_{Qiﬁ sg

C@ SPINk==+1

dULq §83 2 .
c; " 3278 sp;v ‘ LQ]F‘ 1287 ‘ALqJF{ ) sg =sinb, cp = cos. (B.1)
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The perturbative series Eq.(4.6) for the cross section takes the form

. (0)
dGrqy L () d0rqs _ e
deg L (4 > Opgz + <47T> Oz dcg 4T g2
d&l) ar 21 A0 12 a6t Q2T 51 ) 2
dey = N, 16 550 (1+c5) | Arg | dc; = N, g 5% |.AquF . (B.2)

We expand the corrections terms & PZ)]F in powers of the large logarithm £ = In($§ /M‘%V)

Ohay = gy L7+ bpg L+ chy, 60 = al) £t bl L) L2 (B3)

Pax Pqx PqF Pgy

Numerically for the one-loop coefficients we get

al) =485, b — ( — 6.77 + 4?)@ £ 2771, + 4.86,

»

(1) (C @\ 2 U
i = (= 24841557 248" JEE+312—47 Lul+ (5,25 — 497 )1, —0.701,~3.24

(t-a)a K i a2> )
+ | (4.03, =248 )I2—3
%+t t )"

IS Rt

12+ (4.55 - 4.97ztf>zu - 2.48} :
t
al,) =-5.00, Bl — ( 738+ 4ﬁ>lt 4 3.381, +5.40,

t £2 n
A= (- 9248 +1.55  — 2.48 A2>lf+3l§—4s loli+ (5.40 —4.97 A>lt—0.85 l,—3.37
- u u u u

+ (52;2; [(4,032 - 2.4822)1,? - 3? 2+ (4.55 - 4.972)@ - 2.48] ;
att) = 250, B = 4971, +0.971, — 2.81,

A 1.55? 12— 0.552 1240241, — 0.241, + 70.47;

al) =265, B\ = —5.181, + 1.181, — 2.27,

A= 1.452 12— 0.45? 12 40.300 — 0.301, + 1.01;

all) =125, bh), = —0.431; +0.431, — 6.69,

Al = 0.20? 12— 0.202 12— 0111, +0.111, + 46.23;

W _ W _
apq, = —1.20, byg, =0.221; —0.221, — 6.85,
= 0.102 12— o.mj 12— 0.050 +0.051, + 46.31. (B.4)
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The two-loop coefficients read

a'?) =11.76, b2 — (32 82 —19.40 . >z — 13421, — 17.34,
@) 0 TRA

Cru_ = (3495 - 2250, +16.04 12 -10.7212 + ( — 34.13 — 20. 33 Ly ls

+<—44.44+37.211f>l +9.241; — 28.46 + 39. 8

t—0) 1 a2 7 N
(t=a)al( 4 56 12, 04 2414.55 124+ ( —22.06 +24.08" )1, +12.04] ;
2412 U t
@ _ @ _ t
a?) =1252, b2 = <36.94 . 20.01a>zt —16.931, — 20.89,

t {2 t

A2 = (39 69 — 25.20 . + 16.42 A2>z§ — 92802 + (— 41.00 — 18.48 )lu I,
u U u

t £2

+( = 53.63+40.13 " )l + 15.581, — 23.56 + 39.48 .

u u

(a—t)t

a2 442

al) =312, b2 — 12421, — 2421, +10.54,

t {2 7 t
— 92018 " +12.42° V2415010 24 — 2277 + 2485 )i, +12.42| ;
i a2 )t t i

2 = (— 3.87? + 12.34> 2+ (1.372 + 0.47> 12— 0.811,1; +23.931, — 6.341,—274.80 ;
a?) =352, b\%) = 13.761, — 3.141, + 9.44,

) = <— 3.85 + 13.44> 2+ (1.19‘2 + 0.70) 12— 2141, 1, + 21.331, — 5.911,—101.71;
al)l =0.78, b\, = 0541 — 0.541, +10.11,

) = (0.34 + 0.25?)@ + (— 0.16 — 0.252)53 —0.191, I — 2301, + 2.301, — 88.00;
aly) =072, b%) = —0261, +0.261, + 10.03,

i\ ~
c(de)+ - (0.14 + 0.12ﬁ>z§ + (— 0.10 — 0.12?)@ —0.051, 1y — 1.191; + 1.191,, — 85.17B.5)
Here [, = In(—4/3) and I; = In(—£/35).

C Correction to the two-loop result for the ete~™ — WTW ~ production
(1)

In ref. [29] the contribution of the imaginary part of the anomalous dimension matrix x
(given in eq. (A.25) above) has been missed in the numerical estimates. This contribution
changes the NNLL two-loop correction in the transverse boson production cross section. It

results in an additional term

in the coefficient of the quadratic logarithm in eqgs. (14, 33) of ref. [29].
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