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DIHEDRAL MONODROMY AND XIAO FIBRATIONS

ALBERTO ALBANO AND GIAN PIETRO PIROLA

Abstract. We construct three new families of fibrations π : S → B where S is
an algebraic complex surface and B a curve that violate Xiao’s conjecture relating
the relative irregularity and the genus of the general fiber. The fibers of π are
certain étale cyclic covers of hyperelliptic curves that give coverings of P1 with
dihedral monodromy.

As an application, we also show the existence of big and nef effective divisors
in the Brill-Noether range.

1. Introduction

Let S be a smooth complex projective surface, B a smooth curve of genus b and
π : S → B a fibration, i.e., a surjective morphism with connected fibers. Let C be
the general fiber of π and gC its genus. Let q = dimH1(S,OS) be the irregularity
of S and qπ = q − b the relative irregularity of the fibration. The fibration is called
isotrivial if the smooth fibers are all isomorphic.

Assume that the fibration is not isotrivial and b = 0, that is B = P1 is the
projective line. Under these hypotheses Xiao proved in [14] the inequality

q ≤
gC + 1

2

and he conjectured that the inequality

(1) qπ ≤
gC + 1

2

holds in general for non isotrivial fibrations, see also [15], [9].
It was shown in [11] that this conjecture is false by constructing a fibration π with

gC = 4 and qπ = 3 and the failure of the conjecture was linked to the non triviality
of a certain higher Abel-Jacobi map.

This motivates the following

Definition 1.1. Let S be a surface. A fibration π : S → B with general fiber C is
called a Xiao fibration if

qπ >
gC + 1

2
.

Up to now the only examples of Xiao fibrations were the ones constructed in [11].
In this paper we construct three new families of Xiao fibrations associated to cyclic
étale covers of hyperelliptic curves.

2010 Mathematics Subject Classification. 14D06, 14J29, 14H40.
Key words and phrases. Fibrations, irregular surfaces, Prym varieties.
The second author was partially supported by INdAM (GNSAGA); PRIN 2012 “Moduli, strut-

ture geometriche e loro applicazioni”; FAR 2013 (PV) “Varietà algebriche, calcolo algebrico, grafi
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2 ALBERTO ALBANO AND GIAN PIETRO PIROLA

Let us explain the main idea: let E be an hyperelliptic curve of genus g and
f : C → E a cyclic étale cover of odd prime order p. In this situation the hyperelliptic
involution lifts to an automorphism of C and let D be the quotient of C by this
automorphism (see [1], [5]). The lift of the involution and the deck transformations
of the étale cover generate a dihedral group Dp of automorphisms of C. This group
is also the monodromy of the induced ramified cover D → P1.

Let P (C,E) be the (generalized) Prym variety associated to f . In [12] it is proved
that P (C,E) is the product of the jacobian J(D) with itself and hence J(C) is
isogenous to J(D)×J(D)×J(E). We have gC = p(g−1)+1 and gD = (p−1)(g−1)/2.

This construction gives a map

(2) ψ : Hg,p → M(p−1)(g−1)/2

from the moduli space Hg,p of unramified cyclic covers of degree p of hyperelliptic
curves of genus g to the moduli space MgD of curves of genus gD.

We study the fibers of ψ and determine when they are positive dimensional
(Proposition 2.7). In those cases, an irreducible component of the fiber gives a
family of curves C whose Jacobians have a fixed part J(D)× J(D).

In general, from a family of curves one can construct fibrations that have the
curves C of the family as fibers. In our situation, the geometry of the étale covers
allows us to construct these fibrations as subvarieties of an appropriate Hilbert
scheme of the surface D × D and hence we have a lower bound on the relative
irregularity. We will prove the

Theorem 1.2. There exist Xiao fibrations π : S → B with general fiber C in the
following cases:

(1) E of genus g = 2 and covers of degree p = 5. This gives gC = 6, qπ = 4;
(2) E of genus g = 4 and covers of degree p = 3. This gives gC = 10, qπ = 6;
(3) E of genus g = 3 and covers of degree p = 3. This gives gC = 6, qπ = 4;

First of all in section 3 we construct the fibrations associated to the positive
dimensional fibers of ψ and then we analyze the three cases respectively in sections 4,
5 and 6.

In case 1 we compute the differential of the Prym map to show that the fibers
of ψ have dimension 1 and hence the fibrations are in fact surfaces.

In case 2 we find that an irreducible component of the fiber of ψ is the curve D
itself. This allows us to construct the surface S as a ramified double cover of D×D.
From this explicit description we can compute all the invariants of the surface S
(Theorem 5.6).

In case 3 let F be the fiber of ψ. Then F has dimension 2 and generically the
genus of C is 7 so we obtain a threefold such that for a general curve X inside F
the corresponding fibered surface is not a Xiao fibration. We then compactify the
fiber of ψ and analyze the singular curves we obtain at the limit. One can normalize
these curves obtaining a surface with the same relative irregularity and geometric
genus of the generic fiber equal to 6, giving again a Xiao fibration.

We note that for the Xiao fibration found in [11] as well as for all these new ones,
the Xiao conjecture fails only by 1/2, i.e., in all cases one has

(3) qπ =

⌈

gC + 1

2

⌉
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This bound has appeared recently in the work of Barja, González-Alonso and
Naranjo (see [6] and [2]). The main result of [2] says that for a non isotrivial
fibration π : S → B one has

qπ ≤ gC − cπ

where cπ is the Clifford index of the general fiber. When cπ =

⌊

gC − 1

2

⌋

, i.e., cπ is

equal to the Clifford index of the general curve of genus g, the previous inequality
becomes

(4) qπ ≤

⌈

g + 1

2

⌉

In [2] it is conjectured that the inequality (4) holds for all non isotrivial fibrations.
Our work seems to confirm this conjecture. It is an interesting problem to provide
examples of Xiao fibrations with gC arbitrarily high.

Our examples in cases 1. and 2. provide also an answer to a question posed in [8]
(Question 8.6). In fact we have

Proposition 1.3. There exist surfaces S and nef and big effective divisors C on S
in the Brill-Noether range, i.e., such that q(S) < ga(C) < 2q(S)− 1, where ga(C) is
the arithmetic genus of C.

Proof. In cases 1. and 2. the curves C embed into S = D × D with positive self-
intersection by Lemma 2.4 and 2.6. Since q(S) = 2g(D) we have q(S) = (p−1)(g−1)
and since C is smooth we have ga(C) = gC = p(g − 1) + 1, and so C is in the Brill-
Noether range. �

In case 2. the divisor C is even ample (see Remark 5.4).

Acknowledgements. The authors thank Rita Pardini for catching an error in
the first draft of this paper.

2. Dihedral groups and hyperelliptic curves

We recall the following well known result (see [1], [5], [12]):

Proposition 2.1. Let C → E be an étale abelian Galois cover, where E is an
hyperelliptic curve. Then the hyperelliptic involution lifts to an involution on C. If
morever the Galois group is cyclic, then the group generated by the Galois group and
a lift of the involution is a dihedral group Dn of order 2n, where n is the order of
the Galois group.

In the cyclic case we consider the following commutative diagram:

(5) C
p:1

f
//

2:1 ρ

��

E

2:1
��

D
p:1

// P1

where E is an hyperelliptic curve of genus g, E → P1 is the hyperelliptic quotient
and f : C → E is étale and abelian with cyclic Galois group H of odd order p. By
the previous Proposition, C → P1 is Galois with Galois group G = Dp.

Then ρ : C → D is the quotient by a lift of the hyperelliptic involution and
D → P1 is a non-Galois ramified cover with dihedral monodromy.



4 ALBERTO ALBANO AND GIAN PIETRO PIROLA

This can be realized as follows: fix an hyperelliptic curve E of genus g and a
cyclic subgroup H ′ of order p of Pic0(E). This gives the cover C → E. Note that
g(C) = gC = p(g − 1) + 1.

Now let j ∈ Dp ⊆ Aut(C) be a lift of the hyperelliptic involution. Then j has
2g+2 fixed points, one over each Weierstrass point of E (which are the ramification
points of the double cover E → P1). We use here the fact that the order p is odd.

Hence the genus of D is gD = (p− 1)(g − 1)/2.
The ramification of the cover D → P1 is: over every branch point of the hyperel-

liptic covering there are 1 + (p − 1)/2 points. One of these points is non-ramified,
the others have ramification index 1.

Conversely, starting with D → P1 with the above ramification and dihedral mon-
odromy, its Galois closure is C → D → P1.

Associated to the étale cover f : C → E there is a Prym variety P (C,E) defined as
the connected component of the identity of the kernel of the map f∗ : J(C) → J(E)
and J(C) is isogenous to the product P (C,E) × J(E). The main theorem of [12]
identifies precisely the Prym variety:

Theorem 2.2 ([12], Theorem 1). There is an isomorphism of abelian varieties

P (C,E) ∼= J(D)× J(D).

Morever, if h is a generator of the cyclic subgroup H ⊆ Aut(C), then the endo-
morphism η = h∗ + (h−1)∗ of J(C) induces a nontrivial automorphism of J(D) for
p > 3.

Corollary 2.3.

(1) J(C) is isogenous to J(D)× J(D)× J(E).
(2) For p > 3 the curve D is special in moduli since its Jacobian has non trivial

automorphisms.

Hence End(J(D)) ⊗ Q contains at least Q(η) which is isomorphic to the max-
imal real subfield of the cyclotomic field Q(ζ) with ζp = 1. For more results on
endomorphism of Jacobians see [4].

LetHg,p be the moduli space of unramified cyclic covers of degree p of hyperelliptic
curves of genus g. A point in Hg,p is (up to isomorphism) a pair (E,H ′) where E is
an hyperelliptic curve of genus g and H ′ is a cyclic subgroup of order p of Pic0(E).
The dihedral construction of diagram (5) determines uniquely the isomorphism class
of D, since any two lifts of the hyperelliptic involution are conjugated in Aut(C)
and hence gives a morphism

(6) ψ : Hg,p → M(p−1)(g−1)/2

from the moduli space Hg,p to the moduli space MgD of curves of genus gD =
(p− 1)(g − 1)/2.

The image of ψ is clearly contained in the locus of p-gonal curves. When p = 3
the closure of the image is the trigonal locus since for D → P1 a map of degree 3
with simple ramifications, the monodromy is the full symmetric group S3 = D3 and
hence D is in the image of the map ψ. These curves form an open subset of the
trigonal locus which is irreducible.

We study now the fibers of this map and for this we analyze the correspondence
associated to the endomorphism η of J(C).
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Recall that h ∈ H ⊆ Dn is a generator of the cyclic subgroup H and j is a lift
of the hyperelliptic involution. Let j1 = hj and note that j1 is again an involution.
Let γ : C → D ×D be defined by

γ(x) = (ρj(x), ρj1(x)).

where ρj , ρj1 are the quotient maps associated to the involutions. Note that ρj1 =

ρj ◦ h
(p−1)/2.

We have:

Lemma 2.4. The map γ is an embedding.

Proof. If x is not a fixed point for j it follows that the map ρj(x) is smooth at x,
that is the differential dρj is injective at x, a fortiori dγ(x) is injective. Therefore
dγ(x) can fail to be injective only if j(x) = j1(x) = x and this implies h(x) = x.
But since f is étale, h does not have fixed points.

In a similar way we see that γ is injective. Assume by contradiction that γ(x) =
γ(x′), but x 6= x′. Then j(x) = j1(x) = x′ and h(x′) = hj(x) = j1(x) = x′ and as
before h would have a fixed point. �

Remark 2.5. The proof of Theorem 2.2 shows that the induced map γ∗ : J(C) →
J(D)× J(D) is surjective. We will need this remark in Lemma 3.1.

Let (E,H ′) ∈ Hg,p, let [D] = ψ(E,H ′) and let X be an irreducible component of
the fiber ψ−1([D]). The discussion above shows that there is a morphism

(7) α : X → Hilb(D ×D)

fromX to a suitable Hilbert scheme ofD×D given as follows: to a point (E,H ′) ∈ X
we associate the subscheme γ(C) of D ×D.

We now compute the self-intersection of γ(C) inside the surface D ×D.

Lemma 2.6.

γ(C)2 = 8− 2(g − 1)(p − 2)

Proof. Use the genus formula for γ(C) inside D ×D, the formula for the canonical
bundle of the product of two curves and the fact that γ(C) · D′ = 2, where D′ =
D × {P} since the degree of the map ρj : C → D is 2. �

A similar computation appears in [4], Proposition 4.1 where the self intersection
is expressed in terms of characters of the dihedral group.

Proposition 2.7. The map ψ has finite fibers if and only if p ≥ 7, p = 5 and g ≥ 3
or p = 3 and g ≥ 5

Proof. If the map ψ has positive dimensional fibers, then the image of C inside
D ×D must move in an algebraic family. This implies γ(C)2 ≥ 0 and so we obtain
all the cases in the statement except for p = 3 and g = 5.

In this case the curve D is a trigonal curve of genus 4 and C is the graph in D×D
of the trigonal correspondence. Since D has only one or two g13 , the fiber is finite
also in this case.

We show now that for p and g not in the given ranges the fibers are positive
dimensional. Note that Hg,p and M(p−1)(g−1)/2 are irreducible.

When p = 3 and g ≤ 4 we have dimHg,3 > dimMg−1 and so the fibers are
positive dimensional.
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The last case is p = 5 and g = 2. In this case D has also genus 2 so dimH2,5 =
dimM2 = 3. Since J(D) has non trivial endomorphisms by Theorem 2.2 the curve
D is not a general curve of genus 2 and so the image of ψ has dimension at most 2. �

Remark 2.8. Let P : Hg,p → A′

(p−1)(g−1) be the Prym map that to (E,H ′) associates

(P, θP ) where P = P (C,E) is the Prym variety of the cover C → E determined by
H ′ and θP is the natural polarization induced by J(C). Note that θP in general is
not principal (see [12] for details). On the other hand, composing the map ψ with
the Torelli map t we obtain a map T : Hg,p → A(p−1)(g−1) given by T (E,H ′) =
J(D)× J(D) with the product polarization.

By Theorem 2.2 the abelian varieties P and J(D) × J(D) are isomorphic. Since
the Torelli map is injective and an abelian variety has at most a countable number
of polarizations the fibers of ψ have the same dimension as the fibers of the Prym
map P.

We close this section noting that the above construction and Theorem 2.2 give
families of curves of genus (p−1)(g−1)/2 whose Jacobians have a non trivial algebra
of endomorphisms. When the fibers of ψ are finite, these families have dimension
2g − 1. We note that setting g = 2 and p ≥ 7 we recover (at least in characteristic
0) part (1) of the Main Theorem of [4]. When g = 2 and p = 5 the family has
dimension 2.

3. Xiao fibrations

Any subvariety of Mg gives rise to some fibration whose general fibers are the
genus g curves belonging to the family (see [7] for a precise statement). We consider
here the subvarieties given by the positive dimensional fibers of the maps ψ defined
in (6). In this case the corresponding fibrations can be more easily constructed by
using the universal family of appropriate Hilbert schemes.

For X an irreducible component of a fiber of ψ we consider the morphism α : X →
Hilb(D×D) given above in (7). Let Y be the irreducible component of Hilb(D×D)
containing the image α(X) and, if necessary, consider its reduced structure. Let C
be the universal family over Y . Let X be a smooth completion of X. As the Hilbert
scheme is projective, the morphism α extends to a rational map α : X 99K Y and
after blowing up, if necessary, we get a morphism α : B → Y . The pullback of the
universal family over Y gives a fibration

(8) π : SD → B

whose general fibers are curves C that are cyclic covers of the curves E in the fiber
of ψ over [D] of genus gC = p(g − 1) + 1.

Lemma 3.1. For the general D in the image of ψ the relative irregularity of SD is
2gD = (p− 1)(g − 1).

Proof. Let π∗ : Alb(S) → J(B) be the map from the Albanese variety of S to J(B)
induced by π and let K be the connected component of the identity of the kernel
of π∗. By definition, the relative irregularity qπ is the dimension of K.

Let Ct = π−1(t) for t ∈ B and let Et be the corresponding hyperelliptic curve.
Since the family {Et} is not constant in moduli, also {Ct} has varying moduli.
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The composition J(Ct) → Alb(S) → J(B) is trivial since Ct is a fiber of π and
hence the image of J(Ct) is contained in K and as in [11], (0.5), one has that the
image of J(Ct) is in fact equal to K.

The embeddings γt : Ct → D ×D induce a map S → D ×D which is surjective
since the curves Ct do not have not constant moduli and hence a surjective map
Alb(S) → Alb(D×D) = J(D)× J(D). Moreover (γt)∗ factors through Alb(S). By
Remark 2.5 the map (γt)∗ is surjective and hence the restriction toK → J(D)×J(D)
is surjective. This shows qπ ≥ 2gD.

Recall now that J(Ct) is isogenous to J(D) × J(D) × J(Et) (Corollary 2.3) and
so there is a surjective map J(D) × J(D) × J(Et) → K. The image of J(Et) is
constant in K. If at least one curve Et in the family has indecomposable Jacobian,
then this image is 0 and so the relative irregularity is exactly 2gD. �

By Proposition 2.7 there are 4 cases in which we obtain a positive dimensional
B. When B is a curve, the fibration SD is a surface and we may ask if it is a Xiao
fibration. This cannot happen for p = 3, g = 2 but we will see that in the other
three cases we obtain Xiao fibrations. We will study these cases separately.

4. The case g = 2, p = 5

Our first task is to show that the fibers of ψ : H2,5 → M2 have dimension 1. By
Remark 2.8 it is enough to compute the dimension of the fibers of the Prym map.

Let (E,H ′) ∈ H2,5 and f : C → E the associated étale covering. For L a generator

of H ′ we have that C = Spec
(

⊕4
i=0 OE(L

i)
)

and C is a genus 6 curve. Let KC ,

KE be canonical bundles of C and E respectively. The Chevalley-Weil relations are
(see e.g. [10], [13]):

f∗KC =

4
⊕

i=0

KE ⊗ Li

H0(C,KC) =

4
⊕

i=0

H0(E,KE ⊗ Li)

Let P = P (C,E) be the Prym variety: it is an abelian variety of dimension four

and Ω1
P
∼=

(

⊕4
i=1H

0(E,KE ⊗ Li)
)

⊗OP since these are the 1-forms not invariant

under the action of the covering group. Hence

H0(P,Ω1
P )

∼=

4
⊕

i=1

H0(E,KE ⊗ Li)

Under the inclusion P ⊂ J(C), the principal polarization of J(C) defines a polar-
ization θP on P . As in Remark 2.8, sending (E,H ′) to (P, θP ) gives the Prym map
P : H2,5 → A′

4.
We have an inclusion H ′ ∼= Z/5Z in AutP , the automorphism group of the

polarized variety (P, θP ). Clearly the image of P is contained in the locus A′

4(5) of
abelian fourfolds with Z/5Z automorphisms. The Zariski cotangent space to A′

4(5)

is isomorphic to the invariant subspace Sym2H0(P,Ω1
P )

H′

of Sym2H0(P,Ω1
P ).

The codifferential of P can be seen as a linear map

dP∗ : Sym2H0(P,Ω1
P )

H′

→ H0(E, 2KE).
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since H0(E, 2KE) is isomorphic to the cotangent space of H2,5. We have that

Sym2H0(P,Ω1
P )

H′ ∼=
[

H0(KE⊗L)⊗H0(KE⊗L4)
]

⊕
[

H0(KE⊗L2)⊗H0(KE⊗L3)
]

and dP∗ can be identified with the map µ induced by multiplication.

Lemma 4.1. The map µ is injective.

Proof. Since h0(KE ⊗L) = 1 we can write KE ⊗L = OE(P +Q). The hyperelliptic
involution ι on E acts as −1 on J(E) hence we have OE(ι(P )+ ι(Q)) = KE⊗L−1 =
KE ⊗ L4, since the canonical bundle is invariant under automorphisms. Suppose
that µ is not injective.

We then get an equation : ω1 · ω4 + ω2 · ω3 = 0 ∈ H0(E, 2KE), where ωi are
suitable generators of H0(E,KE ⊗ Li). This gives a relation among the divisors:

P +Q+ ι(P ) + ι(Q) = (ω1) + (ω4) = (ω2) + (ω3).

We can then assume OE(P + ι(Q)) = KE ⊗ L2 and OE(ι(P ) + Q) = KE ⊗ L3. It
then follows L = OE(ι(Q) −Q) and since KE = OE(Q+ ι(Q)), we have

KE ⊗ L = OE(2ι(Q))

and since h0(KE ⊗ L) = 1 it must be P = Q = ι(Q). But this would give L = OE

which is a contradiction. �

Proposition 4.2. The map ψ : H2,5 → M2 has fibers of dimension 1.

Proof. Look at the Prym map

P : H2,5 → A′

4(5) ⊆ A′

4

The codifferential is injective and so the differential is surjective. Hence the dimen-
sion of the image is dimA′

4(5) = 2 and so the fibers have dimension 1.
By Remark 2.8 the fibers of ψ have also dimension 1. �

Let D ∈ ψ(H2,5) a generic curve and let X be an irreducible component of the
fiber ψ−1(D). By the general construction explained in Section 3 we obtain a surface
SD with a fibration

π : SD → B

By what we have seen, we get

Proposition 4.3. The fibration π : SD → B is a Xiao fibration with relative irreg-
ularity qπ = 4 and genus of the general fiber gC = 6.

This is case 1 of Theorem 1.2.

5. The case g = 4, p = 3

We present here an explicit example of a Xiao fibration. Let ψ : H4,3 → M3.
In this case we can identify an irreducible component of the fiber ψ−1(D) as being
simply the curve D itself.

In fact, let D be a smooth plane quartic, i.e., a non hyperelliptic curve of genus 3.
A point P ∈ D gives a g13 obtained as |KD −P |. Let fP : D → P1 be the map given
by this linear series and assume that the map fP has simple ramification points,
i.e., the point P is not on any flex tangent to D. Then the monodromy of fP is the
symmetric group S3 and let CP → D → P1 be the Galois closure. Let EP be the
quotient of CP by the alternating group A3 = Z3. Then CP is a curve of genus 10,
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EP is an hyperelliptic curve of genus 4 and the cover CP → EP is étale and hence
gives a point in the fiber ψ−1(D).

Since all g13 on D are of this kind, we find a copy of (an open subset of) D
inside the fiber ψ−1(D). We now give a geometric construction of the Galois closure
and of a smooth compactification S of the fibration. This will allow us to describe
completely S and compute all of its numerical invariants.

Let D ⊂ P2 be a smooth plane quartic curve as above and let S ⊂ D×D×D be
defined as

S = {(P,Q,R) : ∃T ∈ D : P +Q+R+ T ∈ |KD|}.

Note that for P , Q, R distinct the condition simply means that the three points are
collinear. We consider the projections πi : S −→ D, i = 1, 2, 3 on the three factors.
The map β = (π2, π3) : S −→ D×D is a surjective 2 : 1 map so that S is a surface.
In fact

β−1((P,Q)) = {(R,P,Q), (T, P,Q)}

where R and T are the two other points of intersection of the line PQ with the
curve D.

Theorem 5.1. Set π = π1, the first projection, π : S → D. Then π is a fibration with
general fibers smooth of genus 10 and relative irregularity greater or equal than 6.

This is case 2 of Theorem 1.2.

Proof. To compute the genus of the fiber CP = π−1(P ) we let k : CP → S be the
inclusion. The restriction of β gives a natural inclusion βP = β ◦ k : CP → D ×D
and let XP = β(CP ) be the image. Since CP and XP are isomorphic, we compute
the arithmetic genus of XP . To do this, we determine the class of XP in D × D
under numerical equivalence.

Let fP : D → P1 be the 3 : 1 map obtained by projecting the plane curve D from
the point P . Since CP is given by triples (P,Q,R) ∈ S with P fixed, then XP is the
closure of

{(Q,R) ∈ D ×D | Q 6= R, fP (Q) = fP (R)},

Let D1 = {P} × D and D2 = D × {P} and ∆ be the diagonal in D × D. The
self-intersection number X2

P can be computed by taking another point Q ∈ D and
computing XP ·XQ = {(R,T ), (T,R)}, where R and T are the two other points of
intersection of the line PQ with the curve D. Hence X2

P = 2. Moreover, XP ·D1 =
XP ·D2 = 2 and by the Hurwitz formula XP ·∆ = 10.

Let now H = 3(D1 +D2) −∆. One has H2 = H · D1 = H · D2 = 2 and hence
(H −XP ) · (D1 +D2) = 0. Since

XP ·H = XP · (3(D1 +D2)−∆) = 12− 10 = 2

we have
X2

P = H2 = XP ·H = 2

and hence
(H −XP )

2 = 0.

Then by the Hodge index theorem XP is numerically equivalent to H = 3(D1 +
D2)−∆ and using the adjunction formula XP has arithmetic genus 10.

We now show that XP is smooth unless the curve D has a flex Q such that
|3Q + P | = KD. In fact, let Q ∈ D be a simple ramification point for fP . Choose
a local coordinate z on D centered at Q and a local coordinate w on P1 centered
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at fP (Q) such that in these coordinates the map fP is given by w = z2. Using
the local coordinates on D ×D centered at (Q,Q) induced by z, the points on the
curveXP different than (Q,Q) are the pairs (x, y) such that x2 = y2 and x 6= y. Then
a local equation for XP is x = −y which is smooth. If instead |3Q+P | = KD, then
there are similar coordinates systems such that locally the map is given by w = z3

and the above reasoning shows that a local equation for XP is x2 + xy + y2 = 0,
which is singular at the origin.

Since CP is isomorphic to XP we obtain that the fibers of π : S → D are generi-
cally smooth of genus 10.

By Corollary 2.3 we know that J(CP ) has a fixed part of dimension 6 isogenous
to J(D) × J(D). Since CP is big and nef, we can prove that this fixed part is
isomorphic to J(D)× J(D) by showing that there is an inclusion

J(D)× J(D) = Pic0(D ×D) →֒ Pic0(CP ) = J(CP ).

The proof is standard: Ramanujan vanishing gives an injection

H1(D ×D,OD×D) → H1(CP ,OCP
)

so if L ∈ Pic0(D×D) goes to zero in Pic0(CP ), then L must be torsion. Then L gives
an unramified cyclic cover X of D ×D. Since L is trivial on CP , the pull-back of
CP to X splits in a number of connected components. Each component has positive
self-intersection and they don’t meet, and this contradicts the Hodge index theorem.

Then the image of dual map J(CP ) → Alb(S) has dimension ≥ 6. It follows that
the relative irregularity qπ ≥ 6. �

Remark 5.2. A similar computation in local coordinates shows that the surface S
is smooth if all the flexes are simple. When there are flexes of order four, the surface
is singular.

Remark 5.3. Let ϕ : D × D × D → D(3) be the quotient map to the symmetric
product. Then the image of the surface S is D1

3, the set of divisors of degree 3 and
h0 ≥ 2. D1

3 is a ruled surface over D and the lines in the ruling are the g13 of D.

Remark 5.4. The curves XP can also be constructed in the following way: let
ϕ : D ×D → D(2) be the quotient map to the symmetric product and let

DP = {P +Q | Q ∈ D} ⊆ D(2)

(P is fixed). Let τ : D(2) → D(2) be the canonical involution given by τ(P + Q) =
R+ T where P +Q+R+ T is a canonical divisor. Then

XP = ϕ−1 (τ(DP ))

This also shows that XP is an ample divisor in D ×D.

Remark 5.5. There is an S4-action on S: one can define

S = {(P,Q,R, T ) : P +Q+R+ T ∈ |KD|} ⊂ D ×D ×D ×D

The action is obvious. π : S → D is always a fibration and there is an S3-action on
the fibers, which are the CP .

We compute now the numerical invariants of S.

Theorem 5.6. For a generic D the invariants of the surface S are:
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(1) qS = 9,
(2) c2(S) = 96,
(3) K2

S = 216,
(4) pg = 34.

Proof. We assume that all flexes of D are simple, i.e., there are no points Q ∈ D such
that |4Q| = KD. Under this hypothesis, the surface S is smooth. (cf. Remark 5.2).

By Lemma 3.1 we have qπ = 6 and so qS = qπ + g(D) = 9.
We have seen in the previous proof that the fibration π : S → D has one singular

fiber for each flex of D, so it has 24 singular fibers. Then

c2(S) = χtop(S) = χtop(D) · χtop(CP ) + 24 = 96.

To compute K2
S , we study the map β : S → D×D. Let B ⊂ D×D be the branch

locus, so that
B = {(Q,R) ∈ D ×D | QR is tangent to D}

and let R ⊂ S be the ramification locus. Then

KS = β∗(KD×D) +R

where R is such that
β∗R = B

We fix some notation: if P ∈ D is a point, we let as before D1 = {P} × D and
D2 = D × {P} as numerical classes. Then

KD×D = 4D1 + 4D2

and so to compute K2
S it is enough, by the projection formula, to compute the

numerical class of B.
Recall the notation of Remark 5.4: ϕ : D ×D → D(2) is the quotient map to the

symmetric product, ∆ = {(Q,Q) | Q ∈ D} ⊆ D(2) the diagonal, τ : D(2) → D(2) the
canonical involution given by τ(P +Q) = R+T where P +Q+R+T is a canonical
divisor on D and

DP = {P +Q | Q ∈ D} ⊆ D(2)

(P is fixed). The class of ∆ is divisible by 2 and we let δ = 1
2∆.

As ϕ has degree 2, from Remark 5.4 we obtain that ϕ∗XP = 2τ∗DP and from
the proof of Theorem 5.1 we know that the numerical class of XP in D × D is
3(D1 +D2)−∆D×D. Moreover ϕ∗D1 = ϕ∗D2 = DP and ϕ∗δ = ∆D×D.

Hence

τ∗DP =
1

2
ϕ∗XP =

1

2
(6DP −∆) = 3DP − δ

and
KD(2) = 4DP − δ

The basic intersection numbers are

D2
P = 1, DP · δ = 1, δ2 = 1− gD = −2

Since τ is an automorphism of D(2), we have τ∗KD(2) = KD(2) and so the canonical
class KD(2) is invariant under τ . From this we obtain τ∗δ = 8DP − 3δ and hence
τ∗∆ = 16DP − 6δ.

Looking at the composition

S
β
// D ×D

ϕ
// D(2)
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we have ϕ∗(δ) = ∆D×D and observe that ϕ∗(τ(∆)) = B, the branch locus of β. In
fact, if (P,P ) ∈ ∆, then τ(P,P ) = Q+R and the line QR is tangent to D and hence
τ(P,P ) ∈ B. We finally obtain

B = 16(D1 +D2)− 6∆D×D

and we note that from the genus formula on D ×D we have ∆2
D×D = −4.

We now show that B is smooth. From the numerical class we can compute the
arithmetic genus:

pa(B) = 1 +
1

2
(B2 +B ·K) = 33.

On the other hand, the map B → D sending the point (Q,R) to P ∈ D where
Q+ R+ 2P is a canonical divisor of D is a double covering and since all flexes are
simple it is ramified at the 56 points (Q,Q) where the tangent line is a bitangent.
The Riemann-Hurwitz formula then gives g(B) = 33 and so the geometric genus is
equal to the arithmetic genus and hence B is smooth. This shows again that S is
smooth.

We can then use the formula for the invariants of double coverings on page 237
of [3]:

K2
S = 2K2

D×D + 4L ·KD×D + 2L · L

where L =
1

2
B = 8(D1 +D2)− 3∆D×D to obtain

K2
S = 216.

From Noether’s formula we also get χ(OS) = 26 and hence pg = 34. �

Remark 5.7. In the formulas given in [3] there is also one for c2(S), expressed in
terms of the intersection product and c2(D×D). Our computation is different since
it uses the structure of S as a fibration.

6. The case g = 3, p = 3

In this case, the map ψ : H3,3 → M2 has fibers F = ψ−1([D]) of dimension 2.
Using the construction of section 3, a curve X ⊂ F gives a fibration π : S → B. For
a general X, the fibrations does not contradict Xiao’s conjecture since gC = 7 and
the relative irregularity is 2gD = 4. We then look for special covers D → P1 so that
the Galois closure C has geometric genus 6.

Let D be a curve of genus 2, P ∈ D not a Weierstrass point and let fP : D → P1

be the map given by the linear series |3P |. Note that this g13 is base point free since
P is not a Weierstrass point. We now do a construction similar to the previous case.
Define the curve CP as the closure of

{(Q,R) ∈ D ×D | Q 6= R, fP (Q) = fP (R)}

and the induced map ρ : CP → D of degree 2 is given by ρ(Q,R) = T where
|Q+R+ T | = |3P |.

As in the proof of Theorem 5.1, we can show that CP has a simple node at the
point (P,P ) ∈ D ×D. Choose a local coordinate z on D centered at P and a local
coordinate w on P1 centered at fP (P ). In these coordinates the map is given locally
by w = z3 and using the local coordinates on D × D centered at (P,P ) induced
by z, the points on the curve CP different than (P,P ) are the pairs (x, y) such
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that x3 = y3 and x 6= y. Then a local equation for CP is x2 + xy + y2 = 0, which
has a simple node at the origin.

The curve CP is smooth in all other points Q unless |3P | = |3Q|. Since the
3-torsion points in J(D) are finite, for P generic there are no such points Q.

In this way we have a family S1 parametrized by D itself. We can describe this
family explicitely in a way similar to the previous case: let S1 ⊂ D×D×D defined
as

S1 = {(P,Q,R) : ∃T ∈ D : |3P | = |Q+R+ T |}.

The projection on the first factor π1 : S1 → D has fibers the curves CP described
above when P is not a Weiertrass point and the map has a section s : D → S1 given
by s(P ) = (P,P, P ).

All the fibers of the fibration π : S1 → D are singular and desingularizing along
the section we obtain a new fibration π : S → D with general smooth fiber of genus 6
and relative irregularity (at least) 4 and so we get a Xiao fibration. We note that
the numbers are the same as in the case of p = 5, g = 2.

This is case 3 of Theorem 1.2, which is now completely proved.
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[2] Barja, M. Á., González-Alonso, V., Naranjo, J. C.: Xiao’s conjecture for general fibred surfaces.
arXiv 1401.7502.

[3] Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces, Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics
[Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathe-
matics], vol. 4, second edn. Springer-Verlag, Berlin (2004).

[4] Ellenberg, J.S.: Endomorphism algebras of Jacobians. Adv. Math. 162(2), 243–271 (2001).
[5] Farkas, H.M.: Unramified coverings of hyperelliptic Riemann surfaces. In: Complex analysis, I

(College Park, Md., 1985–86), Lecture Notes in Math., vol. 1275, pp. 113–130. Springer, Berlin
(1987).
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