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Abstract: We study minimizers of a Gross—Pitaevskii energy describing a two-
component Bose—Finstein condensate confined in a radially symmetric harmonic trap
and set into rotation. We consider the case of coexistence of the components in the
Thomas—Fermi regime, where a small parameter € conveys a singular perturbation. The
minimizer of the energy without rotation is determined as the positive solution of a sys-
tem of coupled PDEs, for which we show uniqueness. The limiting problem for e = 0
has degenerate and irregular behavior at specific radii, where the gradient blows up. By
means of a perturbation argument, we obtain precise estimates for the convergence of
the minimizer to this limiting profile, as ¢ tends to 0. For low rotation, based on these es-
timates, we can show that the ground states remain real valued and do not have vortices,
even in the region of small density.

1. Introduction

1.1. The problem. Inthis paper, we study the behavior of the minimizers of the following
energy functional describing a two component Bose—Einstein condensate
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The parameters g1, g2, g, € and 2 are positive: 2 is the angular velocity corresponding
to the rotation of the condensate, x+ = (—x2, x1) and - is the scalar product for vectors,
whereas (, ) is the complex scalar product, so that we have
iuVu —iuVu [U0y U — iUy U (U0, — [Ux U
X

1 L
- (iu, Vi) = R
x— - (u,Vu) =x 5 X2 ) 1 2

Here, g; is the self interaction of each component (intracomponent coupling), while g
measures the effect of interaction between the two components (intercomponent cou-
pling). We are interested in studying the existence and behavior of the minimizers in
the limit when ¢ is small, describing strong interactions, also called the Thomas—Fermi
limit. We assume the condition

g’ < g8, (1.3)

which implies that the two components #; and u» of the minimizers can coexist, as
opposed to the segregation case g> > g;g>. Additionally, we can assume without loss
of generality that

0<g <g-. (1.4)
We start with the analysis of the minimizers of the energy functional Eg without
rotation, namely with 2 = 0. Up to multiplication by a complex number of modulus 1,

the minimizers (91, 2,¢) of Eg in ‘H are positive solutions of the following system of
coupled Gross—Pitaevskii equations:

—? Anp e+ X201 e+ 81N P 01e + g1 elmoe P =A1eni, inR%E (1.52)

—? A e+ |x1P e +221m0.e P M2e +8INLe P Me = Ao emne  inRZ, (1.5b)
Nie(x) — 0 as |x| > o0, i =1,2, (1.5¢)

where A1 ¢, A2  are the Lagrange multipliers due to the constraints. We will also refer to
the positive minimizers as ground state solutions. Formally setting ¢ = 0 in (1.5) gives
rise to the nonlinear algebraic system

Ix>n1 +ginj +gmn3 = riom  inR2
(1.6)
X122 + g2n3 + gnina = Aoomz  inR2,

where n; > 0O satisfy [|9;:ll,2@g2y = 1,7 = 1,2. In the region where neither n; is
identically zero, this yields the system

ginT+gns = Ao — x|,
(1.7)
g’l% + gzn% =20 — x|

This leads to the condition (1.3) and the fact that the supports of 5; are compact sets:
more precisely, the supports of n; are either 2 disks or a disk and an annulus. The limiting

geometry is two disks when
g1+./gf +8212

0 . 1.8
<g< 1 (1.8)
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This condition is more restrictive than (1.3), in the sense that (1.4) and (1.8) together
imply (1.3). If, on the contrary, we assume that

g1+ g +8g12

4 9
then the limiting configuration consists of a disk and an annulus; in this case, the as-
sumption g1 < g» implies g > gi. It is helpful to introduce the following quantities:

g > (1.9)

2

r=1-% rn=1-% r=1-2_ (1.10)
81 82 8182
Under the assumptions (1.3)—(1.4) and (1.8), we prove that
’71‘2,5_"” uniformlyinR2 ase —>0,i=1,2, (1.11)

where ./ay, ./a> are the solutions to (1.6) with L? constraint 1, so that

az0(x), lx| < R0,
ajo(x), |x|<Rpo,
ay(x)= ay(x)=1{ a2.000) + La10(x), Rio=<|x[=Ra0.
0, |x| = R0,
0, |x| > R2,0,

(1.12)

with Ry 0 < R, determined explicitly in terms of g, g1, g2 [see (3.5)], and

2 2
R2 O_Rl,O

I 2 ' 2
ao(x)=—=(Rig—Ix[?), azox)=—= +—(R7o—1x]7), (1.13)
gr 10 82 or 1o

1
0(x) + a1 0(x) = — (R3¢ — ). (1.14)
82 82

We note that Ry o < Ry 0if g1 < g2 and a; = az if g1 = g». Moreover, we show that
Aie = Aio,i = 1,2, where

g
Ao = 5R§,O +ToRT . Ao = R3,. (1.15)

Because of (1.3)—(1.4), we always have that I" and ', are positive. On the other
hand, I' can have either sign: if g < g1, the singular limits a; consist of two decreasing
functions, and in the case g > g1, a2 is increasing near the origin and up to Ry o [though
it remains strictly positive under assumption (1.8)] and then decreasing, while a; is
decreasing. If g = g1, we have that a; is constant on the ball of radius R 9. We remark
that the first derivatives of \/a; and ,/a; have an infinite jump discontinuity across the
circles x| = Ry and |x| = R respectively, while the first derivative of ,/a; has a
finite jump discontinuity across |x| = Ry (if g1 < g2). In particular, neither function
belongs to the Sobolev space H'!(R?). Actually, their maximal regularity is that of the
Holder space C% (R2).

In the case of (1.3)—(1.4) and (1.9), that is when a; is supported in a disk and a3 in
an annulus, we also define the corresponding functions ¢; and prove (1.11).



512 A. Aftalion, B. Noris, C. Sourdis

Based on the estimates for the convergence in (1.11), we will show that for a large
range of velocities €2, the minimizers of £ in H coincide with the minimizers of EY,
provided that ¢ > 0 is sufficiently small.

The aim of this paper is threefold:

(1) prove the uniqueness of the positive solution (11 ¢, 172.¢) of (1.5) (given any A1 . and
A2,¢), and of the minimizer of E? in H (modulo a constant complex phase),

(2) get precise estimates on the convergence, as ¢ — 0, of (11, 72,¢), the positive
minimizer of Eg in ‘H, to the singular limit (\/ai, \/a2) defined in (1.12),

(3) prove that for Q2 below a critical velocity, the minimizers of E f? in H have no vortices
in R2, provided that ¢ > 0 is sufficiently small.

Point 1 relies on the division of two possible positive solutions componentwise, and
proving that each quotient is equal to a constant of modulus 1.

Point 2 is the extension to the system of the results of [27] for a single equation.
The idea is to apply a perturbation argument to construct a positive solution to (1.29),
“near” (,/ai, v/az2). Then, the uniqueness result in Point 1 allows us to conclude that the
constructed solution is indeed the ground state. Therefore, we are able to obtain precise
asymptotic estimates for the behavior of the ground state as ¢ — 0. We emphasize that,
even though the system (1.5) is coupled, we are going to reduce it, at leading order, to two
independent Gross—Pitaevskii equations. The proof of Point 2, when both condensates
are disks, with different techniques, is the topic of a paper in preparation by Gallo [20].

Point 3 relies on fine estimates for the Jacobian from [25]. It consists in extending
the proof of [3] for a single equation to the system, which works well once the difficult
results of points 1 and 2 have been established.

1.2. Motivation and known results. Two component condensates can describe a single
isotope in two different hyperfine spin states, two different isotopes of the same atom
or isotopes of two different atoms. We refer to [4] for more details on the modeling and
the experimental references.

According to the respective values of g1, g2, g and €2, the minimizers exhibit very
different properties in terms of shape of the bulk, defects and coexistence of the com-
ponents or spatial separation, as ¢ — 0. In a recent paper, Aftalion and Mason [4] have
produced phase diagrams to classify the types of minimizers according to the parameters
of the problem. Below, we summarize their findings.

e Coexisting condensates with vortex lattices: each condensate is a disk, and, for suf-
ficiently large rotation, displays a vortex lattice. The specificity is that each vortex
in component 1 creates a peak in component 2 and vice versa. It is this interaction
between peaks and vortices that governs the shape of the vortex lattice. For some
parameter regimes, the square lattice gets stabilized because it has less energy than
the triangular lattice [5].

e Phase separation with radial symmetry: component 1 is a disk while component 2 is
an annulus. New defects emerge, such as giant skyrmions and the presence of peaks
inside the annulus, corresponding to vortices in the disk.

e Phase separation and complete breaking of symmetry with either droplets or vortex
sheets.

It turns out that the sign of the parameter I defined in (1.10) plays an important
role: if I' > 0, the two components coexist while if [' < 0, they separate or segregate
(case of droplets, vortex sheets). In the case of no rotation, the segregation behavior in
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two component condensates has been studied by many authors: regularity of the wave
function [30], regularity of the interface [16], asymptotic behavior near the interface
[12,13,18], I'-convergence to a Modica—Mortola type energy [6] in the case of a trapped
condensate. On the other hand, the case of coexistence is the topic of emerging works in
terms of vortices: [5] for a trapped condensate and [8] for a homogeneous condensate.
Among other things, the results of this paper are the first step to get a description of
vortices for a trapped two component condensate. Indeed, in order to understand the
behaviour of vortices in a trapped condensate, one has first to understand the effect of
the trap at leading order on the profile. Therefore, one requires very precise estimates on
the ground state at 2 = O for small ¢. This is the analogue of what has been obtained for
the single component case that we now recall. Many papers [1,3,21,24,27] have studied
the one component analogue of the energy functional (1.1), namely the functional

2 2
Q [Vul |xI* > ¥V 4 1.
J; (u):/]RZ[ 3 +E|u| +E|u| — Qx— - (iu, Vu) ; dx (1.16)

under the constraint fRZ |u|2 dx = 1, where y is some positive constant.
In the following theorem we have collected various results from [3,21,27] (see also
Appendix A herein) concerning the minimizers of the energy Jf without rotation.

Theorem 1.1. For every ¢ > 0, there exists a unique positive minimizer 0 of .180 with
L? constraint 1, and any minimizer has the form ¢'“n, for some a € R. The minimizer
ne is radial and there is a unique pair (N, A¢), which is a solution of

—€2An + |x|277 + 7/173 =AXen), X € R?, nx) — Oas |x| — oo, (1.17)
with n positive. Let

Ao— 2
2ol x| < Ry,

ap(x) =
0, |x| > Ro,

where Ay > 0 is uniquely determined from the condition fRz ap(x)dx = 1 and Ry =

VAo

There exist constants ¢, C,5 > 0, with § < %, such that the following properties
hold:

Ihe — Aol < C|logele?,
1
lne — \/aO”Loo(Rz) < Ce3s,

ne(r) —vao(r)| < Ce%\/ao(r), O0<r=|x|<Ro— 8%,

e — v/@oll Loo(x|<ro—s) < C|logele?,

and

r— Ro

wIr

ne(r) < Ces exp [—c ] , >Ry,

&

for sufficiently small ¢ > 0.
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In fact, given A > 0, the assertions of the above theorem hold for the unique positive
solution of equation (1.17) with A in place of A,. Using these estimates and a Jacobian
estimate from [25], the following theorem is proven in [3]:

Theorem 1.2. Assume that u., n. minimize respectively J€Q, Jg under the constraint of
L? norm 1. There exist &0, wo, @1 > 0 such that if 0 < & < & and Q2 < wo|loge| —
o1 log | loge| then ug = e'“n; in R? for some constant .

This leads, in particular, to the uniqueness of the ground state for small €2.

1.3. Main results. Our first result concerns uniqueness and radial symmetry for the
problem without rotation.

Theorem 1.3. Assume that (1.3) holds.

(1) Let us fix some Ai ¢ > 0, i = 1, 2. Then, the positive solution of (1.5) is unique, if it
exists.

(2) The positive minimizer (1,¢, 02.¢) of ES in ’H is unique and radially symmetric.
Every other minimizer has the form (e'“'n1 ¢, €'“2n2.¢), where a1, ap are constants.
If g1 = ga then ny ¢ = .

In the case g1 = g», the system reduces to a single equation. Therefore, for the next
result, we can assume that
81 < 82 (1.18)

Our main result provides estimates on the convergence of the positive minimizer
(11,6, M2,¢) to its limiting profile (\/a1, \/az) as & — 0, first in the case of two disks.

Theorem 1.4. Assume that (1.3), (1.8) and (1.18) hold. Recall that the a; are defined
by (1.12)—(1.13) and A; 0 by (1.15). Let (N1.¢, n2.¢) be the positive minimizer of Eg in
H. Then, (n1.¢, N2.¢) is a solution of (1.5), for some positive Lagrange multipliers A1 ¢,
A2.¢, and there exist constants ¢, C, § > 0, with § < min {%, M}, such that the

following estimates hold:
|Aie = Aiol < Cllogele?, (1.19)
1
1mi,e — aill pow2y < Cé3, (1.20)

e () = Var ()| = Ce3 i), Il = Rip— 5, (1.21)

2
2
Z 1Mie — ~/aillLoeqxi<R0—5) + 12,6 — /a2 llLoo(Ry g+5<|x|<R20—8) < Cllogele”,

i=1

(1.22)
and
1 r—Rio .
nie(r) < Ce3 exp [—c—z’] , r>Rio, i=1,2, (1.23)
£3

for sufficiently small ¢ > 0.
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This theorem is the natural extension of what is known for a single condensate
described in Theorem 1.1. The fine behavior of the minimizer near R; ¢ and Rj g, as
& — 0, is established in Theorem 4.1 in Sect. 4. It is based on a perturbation argument,
which proves very powerful in this system case, where we have not managed to extend
the sub and super solutions techniques of [2,3].

Based on the above, we can show the absence of vortices for the minimizers of E gz
with small rotation.

Theorem 1.5. Assume that (1.3), (1.4) and (1.8) hold. Let (u1 ¢, uz ) be a minimizer
ongz in 'H. There exist &g, wg, w1 > 0 such that if 0 < ¢ < g9 and Q < wo|loge| —

wi log|loge| then u; o = et Mg in szor some constants o;, i = 1, 2.

In the case of a disk and an annlus, that is, when (1.9) holds instead of (1.8), we
can prove the equivalent of Theorem 1.4. Generalizing Theorem 1.5 is harder, because
vortices may exist in the central hole of component 2 and this has to be tackled by
techniques other than the ones in this paper.

Theorem 1.6. Assume that (1.3), (1.9) and (1.18) hold. We define the functions a; by

aro(r) + Earo(r), 0=r =Ry,
al,O(r)’ Rio E r S Rl,O’
ay(r) = 1
where a;o(r) = o (/\i,o—ﬁkm,o—rmi’z) )
0, r = Ry,
(1.24)
[0, 0<r< Rz_’(),
a2,0(r), Ry, <r <R,
a(r) = (1.25)
aro(r) + Faior), Rio<r <R3,
0 r>R3,.
and

8 8 _
)»2,0=(R§',0)2, k1,0—5k2,0=F2Rio and Ay — g—l)»l,o = FI(R2’0)2 (1.26)

where A1.0, A2,0 will be given by (3.8). Let (n1.¢, n2.¢) be the positive minimizer of Eg in
‘H. Then there exist constants c, C, § > 0, such that, for sufficiently small ¢ > 0, (1.19),
(1.20) hold, (1.21) holds for i = 1 and is replaced, fori = 2 by

‘nz,g(r) - \/az(r)} < Celar(r), forRyg+ed <Ix| < Rig—es, (1.27)

(1.23) holds with R;,O instead of R0, and on fixed compact sets away from |x| = Ry o
and |x| = Rit,o’ (N6, M2.¢) is close to (\Jay, \Jaz) with an error of order O(| logsl)sz.

We point out that if go < g1, then an analogous theorem holds exchanging the
subscript 1 and 2 in the formulae.
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1.4. Methods of proof and outline of the paper. Theorem 1.3 is proved by assuming
that there are two solutions, studying their ratio componentwise and writing the system
satisfied by the ratio, as inspired by [15,28]. For the first part of the theorem, we need
decay properties at infinity of the solutions of (1.5) that we prove in a similar way to a
Liouville theorem in [11]. We point out that the system is non-cooperative, and the usual
moving plane method does not seem to apply easily in this case to derive radial symmetry
of positive solutions. Nevertheless, our result implies that since positive solutions of (1.5)
are unique, they are thus radial.

For the second part of the theorem, we use the decay of finite energy solutions and
extra estimates for radial functions. A key relation is the following splitting of energy:
if (n1, ) is a ground state among radial functions, then for any (u1, us), Eg (uy, up) =
Eg(m, n2) + Fso(vl, v2), where v; = u;/n; and

2 2
FS(U17U2):;AZ{71|VU[| +§T}i(|vi| —1) ]dx
8 2.2 2 5
+F/Rz ninz (1 — v (1 — [va|7) dx. (1.28)

The condition I' > 0, that is, g > ,/g1g2, implies that Feo(vl, v2) > 0. If we assume

that (uy, uy) is a ground state of Eg then using the sign of FEO, we find that (u1, us)
is equal, up to a multiplication by a complex number of modulus 1, to (11, 12). Thus,
any ground state is radially symmetric and equal, up to a multiplication by a complex
number of modulus 1, to (ny, 172).

Theorem 1.4 contains a fine asymptotic behaviour of the ground state (1 ¢, 112,¢) as
¢ tends to zero. The difficulty is especially in the regions near Rj ¢, R0, where the
approximate inverted parabola matches an exponentially small function in a region of
size €2/3. The general procedure is to first construct a sufficiently good approximate
solution to the problem (1.5), for small ¢ > 0, with coefficients A; . and A, being
equal to the unique Lagrange multipliers that are provided by Theorem 1.3. Then, using
the invertibility properties of the linearized operator about this approximate solution,
we perturb it to a genuine solution. The first uniqueness result of Theorem 1.3 implies
that this constructed solution coincides with the positive minimizer of Ef in H. The
method is a generalization to the system case of the tools developed in [27] for the single
equation.

In order to construct this approximate solution, we rewrite the system (1.5) as

—e2anm + g (1} = ane) +gm (1 —aze) =0, (1.29)
—e2 A+ gomn (13 — a2 () +gm2 (0} — @ (0)) =0, (1.29)
ni(x) -0 as |x| >o00, i =1,2, (1.29¢)

where aj ¢, az . are the € equivalent to (1.13), that is,

1 8 1 8
al,s(x):_ (Kl,s_g)‘la - 1—‘2|X|2) , aZ,s(x):gz_l_, (kZ,a_g_lkl,s_Flpdz) s

g1l
(1.30)
and

1 g
R, = ™ (,\1,8 - g—zxz,g) . R, =l (1.31)
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At leading order, in the regions where neither 7; is close to zero, we expect that the
€2 An; terms are negligible so that at leading order,

g1 (M —are) +g (1 - a.0) =0, (1.320)
82 (’7% - aZ,s(x)) +g (n% — a1,€(x)) =0. (1.32b)

Near R o, the term ezAn 1 cannot be neglected so that we use (1.32b) to express n% —az
and insert it into (1.29a) to find a scalar equation for n;. In the region of coexistence,
that is, in the disk of radius R g, 12 is obtained from 7; by (1.32b), while outside this
disk, 11 is small and can be neglected in (1.29b). This reduces the system (1.29) to two
independent approximate scalar problems:

2
g
— &2 An + (gl - 5) n1 (77% - al,s(x)) =0, x e R% n(x) = Oas |x| - oo,

(1.33a)

— 2 Am+gam (775 - a2,£(x)_ial,a(x)) =0, x € R% m(x) — Oas|x| — oo,
(1.33b)

whose unique positive solutions are called 7; . and 75 .. The properties of 7j; . and
n2.e can be deduced from an analogue of Theorem A.l (see Proposition 4.2 below).
We point out that they are linearly nondegenerate, which implies that the spectrum
of the associated linearized operators to (1.33a) and (1.33b) consists only of positive
eigenvalues. The main features of a1 » and ay . that are used for studying 7, . and 72 ¢
are thata; o and ap ¢ + éalyg change sign once, from positive to negative as |x| crosses
R; ¢ and R; . respectively and that

/
aj ,(Ri1¢) > —c <0 and (ag,g + ial,g) (Rye) > —c' <0 ase - 0. (1.34)
’ 82

N
. N A + .
In particular, 77 , and 73 , converge to (aj,0)" and (az,o + g%al,o) , uniformly on R?,

ase — 0.

Equation (1.33a) provides an effective approximation for (1.29a) up to a neighbor-
hood of Ry, where the term &2 An; is expected to be of equal or higher order than
g2Any as ¢ — 0. The approximate solutions to (1.29) that are constructed in this way
match in C*, in fixed intervals contained between R; .0 and R; o. Therefore, we can pick
any point in (R 9, R3,0), for instance the middle point, and we can smoothly glue the
solutions together, via a standard interpolation argument to create a global approximate
solution to the problem (1.29). We remark that, in order to estimate the remainder that
this approximation leaves in (1.29), we have to prove some new estimates for the be-
havior of the derivatives of the ground states of (1.33a) and (1.33b) near R and R; ¢
respectively, as ¢ — 0.

The next step is to study the associated linearized operator to the system (1.29) about
this approximation [see (4.41) below]. To this end, as before, our approach is to reduce
the corresponding coupled linearized system to the two independent scalar linearized
problems that are associated to (1.33a) and (1.33b). As we have already remarked, the
spectrum of the latter scalar operators consists only of strictly positive eigenvalues. This
property allows us to apply a domain decomposition argument to handle the “two center”
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difficulty of the problem. We are able to show that the associated linearized operator
to the system (1.29) about the approximate solution is invertible, for small ¢ > 0, and
estimate its inverse in various suitable Sobolev L2?-norms. We point out that this is in
contrast to the scalar case, where it is more convenient to estimate the inverse in uniform
norms (see [21,27]). Armed with these estimates, we can apply a contraction mapping
argument to prove the existence of a true solution to (1.29), near the approximate one
with respect to a suitable e-dependent Sobolev norm, for small ¢ > 0. Finally, we can
show that the solution is positive and obtain the uniform estimates of Theorem 1.4 by
building on the Sobolev estimates and making use of the equation. In particular, we also
make use of some carefully chosen weighted uniform norms, see (4.109), which are
partly motivated by [31].

We note that our approach can be extended to cover the more complicated case of
the disk and annulus configuration, that is, when (1.9) is assumed.

In order to prove Theorem 1.5, we need to study some auxiliary functions &; ., in-
volving the primitive of 577,-2, - (8), where (11, n2,¢) is the positive minimizer of Eg For
this purpose, we use the estimates that link (1.29) to (1.33), obtained in the proof of The-
orem 1.4, to derive the estimates for &; . as perturbations of those for the scalar equation.
Then, we use a division trick which splits the energy as the sum of the energy of the
minimizer without rotation plus a reduced energy (see Lemma 7.5). The reduced energy
bears similarities to a weighted coupled Ginzburg-Landau energy and, after integrating
by parts, includes a Jacobian (see Lemma 7.6). Assumption (1.3) allows us to treat this
coupled energy as two uncoupled ones of analogous form, and conclude by following
the arguments of [3], which are based on the control of the auxiliary functions and a
Jacobian estimate due to [25].

The organization of the paper is as follows: in Sect. 2, we prove Theorem 1.3. In
Sect. 3, we obtain the first rough estimates for the asymptotic behavior of (n%, o n%’ ) as
& — 0. In Sect. 4, we apply the perturbation argument to prove Theorem 1.4. In Sect.
5, we prove Theorem 1.6. In Sect. 6, we study some auxiliary functions that will be
useful for the estimates with rotation. In Sect. 7, we prove Theorem 1.5. We close the
paper with two appendixes. In Appendix A, we summarize some known results about
the scalar ground states of Theorem 1.1, in a more general setting, and derive estimates
for their derivatives. In Appendix B, we have postponed the proof of a technical estimate
from Sect. 4 that is related to our use of the weighted norms.

1.5. Notation. By c¢/C we denote small/large positive generic constant, whose values
may decrease/increase from line to line. By O(-) and o(-), we denote the standard Landau
symbols. We write r = |x| to denote the Euclidean distance of a point x from the origin.
By Bgr we denote the Euclidean ball of radius R and center 0.

2. Uniqueness Issues

In this section, we prove Theorem 1.3. Since the result holds for every ¢ > 0, we often
omit the subscript ¢.

2.1. Uniqueness of positive solutions of (1.5). Given positive A1 ¢, A2, We want to
prove the uniqueness of the positive solutions of (1.5). We use some ideas from [15]
which deals with a class of scalar equations in bounded domains. In order to extend it
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to the entire space, we have to establish some control on the decay of positive, possibly
non-radial, solutions.

Lemma 2.1. Let (11, uy) be a positive solution of (1.5a)—(1.5b), then

RV )Li,s()hi,e + )Lj,e + 1)

ul < hie/gi. Vil powe < C . L i=1,2, j#i

The proof is adapted from [3] and [24].

Proof. Let w; = (\/giui — /M i)/, then Kato’s inequality yields

Aw] > Y=o Aw; > Xwiz0)~ 5 uz (git? — rie),
where x is the characteristic function of a set. Then we obtain

Ew; +
Aw;- = X{wiZO}lg—wl (ew; +2/Aje) = (w+)3

A non-existence result by Brezis [14] implies that w;r = 0, so that the first bound is
proved. In fact, since u; is bounded, it follows by a standard barrier argument that (1.5¢)
is also satisfied.

Now fix x € R, L > 0 and for y € By (x), let z; (y) = u; (¢(y — x)). Then

—Azj = =2y —x[ +8iz} + 825 — i) = hie(y), (i # ).

We have proved above that there exists C > 0 independent of ¢ and of x such that
lhiell Lo By (x)) < Cy/Aie(Aie +Aj e +1). Standard regularity theory for elliptic equa-
tions implies ||Vz;|lL B, (x)) < C/Aie(Aie +Xj e+ 1), and in turn the second part of
the statement. O

This implies in particular uniform bounds for the solutions of (1.5). In the follow-
ing lemma, we prove that positive solutions of (1.5) decay super-exponentially fast as
|x] = oo.

Lemma 2.2. Let (u1, up) be a positive solution of (1.5). For every k > 0, let rj =
VA +k)Ai e and

1 k
Wi(S)=Igg}Mi'eXP(—Z ok —(s? —r2)) for s>r>r;, i=1,2.

Then we have u;(x) < W;(|x|) for |x| = r > r;, i = 1, 2. Moreover,
i (0] + Vi ()] < Cee™HF x e R2, i =12, @.1)

Proof. Givenk > 0,letr > r; = /(1 +k)A; . For [x| > r we have A; , < |1x+|k, and
hence |x|* — Aie > 1f_—k|x|2, so that u; satisfies

u; k 2 u; 2 2
—Aui+8—T|x| S—Aui+8—2(|x| —)»i,s)———(gzu +guj) =0
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for every |x| > r (here j # i). On the other hand, it is easy to check that

I L
P2 14k

|x|2 >0 for|x|>r, W;i(r)>u;x)for|x| =r.

Suppose by contradiction that W; — u; is negative somewhere in the exterior of B, . Since
both functions go to zero at infinity, there exists x, with |x| > r, where W; — u; reaches
its minimum: W;(|x]) — u;(x) < 0 and AW;(|x|) — Au;(x) > 0. By subtracting the
two differential inequalities satisfied by u; and W;, and then evaluating at x, we obtain
a contradiction.

Lemma 2.1 implies a uniform bound for max u;. Using (1.5), we obtain that

A ()] < Cee™ Iy € Bi(xr), x R
By standard interior elliptic estimates, we deduce (2.1). O

Proposition 2.3. Assume (1.3). Given X; . > 0, then problem (1.5) has at most one
positive solution.

Proof. Let (11, n2) and (u1, uz) be two positive solutions of (1.5) with the same Aj .
and Ay .. Then, the function ; = u; /n; solves the following equation with j # i:
= V-7 Vi) = uiAmi = nidu

2y,
= ’78—‘2& [ain?(1 = w2 + g1 = vD)]. (22)

We want to show that ; is identically equal to 1. To this end, we multiply Eq. (2.2) by
(¢? — 1)/4; in a ball of radius R to obtain

1 niz
/BR inﬁvw(l + P)+ et = 02+ el - D] - 1)]] dx

1

n? u?
=/ ui — — \Vu; = == —n; |Vni t -vdo,
dBR Ui ni

where v denotes the outer unit normal vector to d Bg. We sum the previous identities for
i = 1, 2 and then we use the following inequality

2gnim (Wi — D@3 — DI < (g1 — i@ — D+ (g2 — yIns (¥ — D, (2.3)

where 0 < y < min{gi, g2} is such that

8§=8 —VYV8&—V; 2.4
which exists by (1.3). We get

2
Z/B in?wiﬁ (1 + #) + gy—zn?(wf - 1)2} dx
i=1" PR i

2 n? u2
< / u; — L Vu; — £ — ni VYVnit - vdo. (2.5)
= JoBr Ui uli
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To conclude that ¥; = 1, it is enough to show that there exist Ry — oo such that the
right-hand side of (2.5), with R = Ry, tends to zero as k — oo. This task will take up
the rest of the proof.

Let x be a smooth cutoff function in R? which is identically equal to 1 in the unit
ball and identically equal to O outside of the ball of radius 2. For all R > 1, we define
XrR = x(-/R). In the remaining part of this proof, we denote by C, a positive generic
constant which is independent of R > 1. We multiply (2.2) by r* X[%I//l', where o > 2

(r = |x|), and integrate the resulting identity by parts over R? to find that

1 X
/ X3 (raV% +ar® 1;%’) v dx+/ rYi2 xRV xrn; Vi dx| < Ce,
Bg

Bar

where we have also made use of (2.1) and of the definition of ;. Our motivation for
including X]% comes from [11, Thm. 1.8]. Thanks to the elementary inequalities

1
< dxprn} Vil + de,%r“ 29202 Vd >0,

X
‘X;zera l;wm?wi
and

[2r gV V| = g IV + A a0,

choosing a sufficiently small d > 0 (independent of R), via (2.1), we infer that

/R rexan? Vit dx < Ce.

By Lebesgue’s monotone convergence theorem, letting R — oo in the above relation,
we obtain that

/ r nl|V1//l| dx < C,.
R2

Replacing ¥; by its value and using (2.1), we find that

Vn
/ r“u?' il dx < C,.
R2 n?

Reversing the roles of u; and n;, and summing, we reach

2|V7I 2|Vu|
(e Y

i=1 !

Therefore, by the co-area formula, there exists a sequence Ry — oo such that

\Y Vu;|?
Rk/ (2| 7721 711‘2| ;')d0—>0 as k — oo.
BRkl 1 i u;

1

To conclude, we note that the above relation, the Cauchy-Schwarz inequality, and (2.1),
imply that the right-hand side of (2.5) at R = Ry tends to zero as k — 00, as desired.
We remark that, in the case of radial symmetry, one can argue directly, analogously to
[3], by making use of Lemma 2.8 below. O
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Remark 2.4. If g1 = g2 and Ay ¢ = Ay ¢, then n; = n2. Indeed, (11, n2) and (12, n1) are
both positive solutions to (1.5) and we can apply Proposition 2.3.

Remark 2.5. The uniqueness result of Proposition 2.3 yields radial symmetry of u
and us.

We observe that the proof of Proposition 2.3 applies to provide also the following
local uniqueness result, since in this case, the boundary terms vanish.

Proposition 2.6. Assume (1.3). Given A; . > 0,i = 1, 2, and a bounded domain B C R2
with Lipschitz continuous boundary, if (n1, n2) and (1, uz) are positive solutions to the
elliptic system in (1.5) on B such that u; = n; on B fori = 1,2, then u; = n; in B.

2.2. Uniqueness and radial symmetry of the ground state. 'We now turn to the uniqueness
and radial symmetry of the positive minimizer of the energy without rotation

Vuil® | 1xP? :
E(ul,uz)—z/ [ ol + 6’2|u,»|4 dx+ﬁ 2|u1|2|u2|2dx

in the space ‘H which is defined in (1.2).

If (u1, up) minimizes Eg in H, then the diamagnetic inequality implies Eg(|u1 [, lu2])
< Eg(ul, u3), so that u; differs from |u;| by a constant complex phase. In fact, by the
strong maximum principle, we can assume that u; are positive functions. By elliptic
regularity, positive minimizers of ES in H lead to smooth solutions of (1.5a)—(1.5b) for
some positive Lagrange multipliers A1 ., A2 .. Nevertheless, we have to prove that (1.5¢)
holds too. A priori, we only know that it holds for radial functions by the Strauss lemma
[32]. In the subsequent lemma, we provide a lower bound for the decay rate of positive
solutions to (1.5) as |x| — oo. The following proof is adapted from [3] and [24].

Lemma 2.7. Let (uy, us) be a positive solution of (1.5). Let
w;(s) = %%n uj - exp (—%(Aw2 — r2)) Jor s >r > /Aig,

where, fori, j = 1,2 and j # i, we have defined

1 1 1 A
o = — + T+—2(1+gj’8).
Aig )\.i’g &€ 8jhie
Then u;(x) > w;(|x|) for |x| > r > /Aj¢.

Proof. We know from Lemma 2.1 that ul2 < Aie/gi fori =1, 2. Thus, u; satisfies

)\'.
—& Au; +u; (|x|2 +gﬂ) >0, xeR% (j#i).
8j
On the other hand, our choice of «; implies that

Aj
—SzAwi+wi (|x| +g—) <w; (2ai52 + £)Lj,g+(1 — sza?)ki,s) =0, |x|>r,
8j 8j

where we have used that 1 — szaiz < 0. The maximum principle can now be applied, as
in Lemma 2.2, to yield the desired lower bound. O



Thomas-Fermi Approximation 523

In the case of radial solutions, we can show the following lemma analogous to the
one in [3].

Lemma 2.8. Let (uy, us) be a positive radial solution of (1.5). There exists C; > 0
independent of r such that, fori = 1, 2, we have

lu;(r)| < Cerui(r)  for r > 2\/Aj,.

Proof. Since u; is radial, and r > 2,/ ., an application of Lemma 2.2 (with k = 3)
yields that

ui(ry=W;(r) and u;(s) < W;(s) for s > r.

It follows that u}(r) < W/(r) < 0. Similarly, an application of Lemma 2.7 yields that
u;(r) = w/(r) = —a;ru;(r), completing the proof. O

In order to proceed, we need the following splitting of the energy:

Proposition 2.9. Assume (1.3). Let (n1, n2) be a minimizer among radial functions in
H withn; > 0. Let (u1, uz) € H. Then the splitting of energy (1.28) holds.

Proof. We test the equation for n; by n; (|v; |2—1) in a ball of radius R and then integrate
by parts. As a result, we get the term

| {onful = ve2nn - @ v} av= [ snndul - s

Br Bg

12
+/ (M—m)Vm-vda,
aBg \ i

Lemmas 2.1 and 2.8 apply to n; to provide

12
/ (_|u1| — 771‘) Vn; -vdo| < Cg/ Rlui)*do + Ca/ R’7i2 do,
- i 3B dBRr

Note that the conditions (11, n2), (41, u2) € H imply the existence of a sequence Ry —
oo such that the integrals above vanish along Ry via the co-area formula. Therefore, we
have

/]RZ(|V771'|2(|viI2 — 1) +2n;Vn; - (Vu;, v;)) dx

1
= =5 |, Wl = DO + ginf + gnj) dx,

where the Lagrange multiplier term has disappeared because fRz niz(lvi >~ 1)dx =0.
We replace the last equality into the definition of Eg (uy, up) to find

EO(Ml uz) = EO(’?IUI» n202)

Vo (T oy VB ;
—Z ni - (Vvi, v ) 22 ,| l| +4 2771|vt| X
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8 2.2 2 2
+=— [ ninzlvil*|va|” dx
262 Jpo !
Vi |2 2|Vvl| X2 5, g 4, 2 2
+ —n + -1
Z/]RZ< 2 2e n; 482771 e 2”1(|U1| )

8 2.2 2012 2 2
+— vi|“|va | — |vi]© = |va|” +2) dx.
262 /Rzﬂmz(l o2l = vt = [v2|" +2)

By collecting the term Eg(n 1, 72) in the previous expression, the result follows. O

2.3. Proof of Theorem 1.3.

Proof. Giveni;, > 0,i = 1, 2, the first assertion of the theorem is proven in Proposition
2.3.

Now, let (11, n2) be a minimizer of Eg in ‘H among radial functions, and let (u1, us)
be a minimizer of ES in H. Since (11, n2) is an admissible test function, we have

Eg(ul, uy) < Eg(m, 1n2). Consequently, the quantity Fg(vl, v2), defined in (1.28),
satisfies

F(vi,v2) = EQ(u1, uz) — EQ(q1,m2) < 0.
On the other hand, recalling (2.4), we find that

F(vl,v2>>z/( Vv |? +4Z2n§‘<|vi|2—1>2)dxzo.

This implies that Fso(vl, vy) = 0 and that |v;| = 1 for i = 1,2, which implies the
second assertion of the theorem. If g = g then 1 = 12, as (11, n2) and (12, n1) are
both minimizers. O

3. Preliminary Estimates for the Energy Minimizer Without Rotation

In this section we prove that, under assumptions (1.3), (1.8) and (1.18), the positive
minimizer (11, 12) provided by Theorem 1.3 satisfies

nl-z — a; in L2(R2) and Xj.— XAip as € = 0.

This result is achieved through the estimate of the energy of the minimizer.

3.1. Limiting profiles. We recall briefly how to calculate the limiting configuration
(1.12). We first assume the case of two disks

={x e R*: |x| < Rio}.

where Ry < R» to be determined later. If x € Dj, formally let ¢ = 0 in (1.5) and
solve the resulting algebraic system in n%, n%. This provides, for x € Dy,

1 g 2
ayo(x) = —= | Ar,0 — —A2,0 — I20x]7), 3.1
g1l g2
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1
ao(x) = — (Kz,o - iM,o - Fllez), (3.2)
gr 81

and also the value of R o, which is the radius at which a; ¢ vanishes:

1 8
R’ = — ()\.1 0— —A\2 ()). 3.3)
1o I ’ g

If x € D>\Dj, then n; = 0 and formally with ¢ = 0 in (1.5), we solve the resulting

equation for n%, to obtain the following limiting behavior for n%:
A2.0 — |x|?
220 2 i B2, = aa. (3.4)
82 '

Notice that (A0 — |x|2)/g2 =axo+ éal,o, in agreement with our definition of a; in
(1.12). Finally, by imposing the normalization conditions [|a1 || ;2 r2) = llazll 2r2) = 1,
we obtain

and hence
g 2l oy 2&2+g)
1 -

== 3.5
0 s 2,0 T (3-5)

Notice that, in our setting, the condition (1.18) is equivalent to Ry o < R, as can
be deduced from (3.5). Next observe that the monotonicity of a; o depends on the sign
of I'1. If I'1 > 0, then a o is decreasing and

a2,0(x) = a20(R1,0) = (R3 o — R )/g> > 0, x € Dy. (3.6)

If I'y = 0 then ay ¢ is constant, whereas it is increasing when I'; < 0. In this last case,
we have, for x € R?,

1
az,0(x) > az0(0) = — ()»2,0 - EM,O) , 3.7
gr g1

which is a positive constant thanks to (1.8). Condition (1.8) is thus equivalent to having
two disks.

In the case of a disk plus annulus, we assume that a; is supported in a disk D of
radius Rp, and ap on an annulus

Dy={x eR*: Ry, < |x| < R} o}

with Ri 0 < Rio < RZO. Other rearrangements of Rj o, Ri 0 R;,o can be excluded,
see [S5]. In the coexistence region, that is Rio < |x| < R1,0, (,/a1,0, \/2,0) given by
(3.1)—(3.2) is the solution of (1.7). The fact that a; vanishes at R o and a; at Rio and
R;,o yields (1.26). If

Ao —r?

81

A20 — r2

82

— +
r< Rz,o < Rz,o’ a» =0anda; =

Rio<r, ar=0anday =
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which are consistent with (1.24)—(1.25). The computations of the L? norms provide

2
g1(1+3(1=T2)?)

T

2
818, (1 —T')
Ao = and 0 — Ao =+/—TiTs 22:7T' (3.8)

3.2. Energy estimates. In order to obtain some energy estimates, we first rewrite the
energy functional in a different form.

Lemma 3.1. Assume (1.3), (1.8) and (1.18). Let (uy,u) € H, then Eg(ul, uy) =
Eg(ul, uy) + K, where

EX(u1,uz) = Zz:/ ‘WW'Z + 2 —a-)z} dx
ey “re | 2 42! !

+%/ (u1? = an)(ual® — az) dx
& R2

r
2¢e RZ\DI

|uy |20t1_’0 dx
2 2 g -
+o— (glurl” + g2luz|”) (az,o + —al,o) dx
2% JR2\D, 82
and K is the following constant (depending on ¢€)

_ A1,0+ 220 1

K 57 12 /Rz(glaf + gza% +2gajaz) dx.
Proof. We note that
21,0, x € Dy,
2 _ 2,8
|X|*+ gra1 + gay = | D2|x|7+ ZA20, x € D2\D1,

|x|2, X € RQ\DZ,
and

A20, X € Dy,

2
x|*+ grap + gay =
| I g2az + gai |x|2’ X ERZ\DZ.

Therefore, we have:

gilun]* +20x P ur 1 + galua* + 20x [ uz ) + 2g[uy | |ua |
= g1(u1* — a)? + galuz* — a2)* + 2g(Ju1 1> — @) (|ua|* — a2)
+2lur 21X + g1a1 + gaz) + 2Juz[*(1x|* + goaz + gay)
—g1a} — g2a3 — 2gajaz.

Inserting the above in the definition of Eg, and rearranging the terms, gives the statement.
0

The following proposition provides some estimates for the minimizer which will be
used in the sequel for estimating the associated Lagrange multipliers.
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Proposition 3.2. Assume (1.3), (1.8) and (1.18). Let (n1, 112) be the positive minimizer
of Eg in 'H that is provided by Theorem 1.3. If ¢ > 0 is sufficiently small, fori = 1,2,
we have

/ |Vni|?dx < C|logel, (3.9)
RZ
/ n? — ai)? dx < C&*|logel, (3.10)
Rz
/ niay g dx +/ (gt + g2113) (az,o + ﬁal,o) dx < Ce?|logel.
R2\ Dy ’ R2\D, 82
(3.11)

In particular, ’71'2 — a;in L*>(R®) ase — 0.
Proof. First, we claim that, for small ¢ > 0, we have
E2(m1.m) < Cllogel, (3.12)

with Eg defined in Lemma 3.1. This is proved as in [2] and [3], therefore we only give
a sketch here. Consider the competitor functions

s he(ai)
C lhe@ad) 2 e

s/e if 0 <s <&,

, where hg(s):lx/E s = g2

It is proved in the aforementioned papers that
1 - Cé? S/ he(ai)?dx < 1
RZ
/ |Vhe(ai)* dx < C|logel
RZ
/ (hs(ai)z — Cli)z dx < C82.
RZ

Here we are implicitly using assumption (1.8) which ensures that g; are positive [recall
(3.6), (3.7)]. In addition notice that

2
2 / (he(@1)* = ar)(he(a)* — az)dx < ) / (he(a)” — a;)* dx
IR i-1 /R

and that

~) " - g -
/ ’7%“1 odx = / (877% + gzn%) (az,o + —al,o) dx =0.
R2\D, ’ R2\D, 82

Therefore, we have obtained E?(f] 1, M2) < C|loge]|. Finally, let (11, n2) be the positive
minimizer, the decomposition proved in the previous lemma provides

EOn1, m) + K < E(iy, i) + K,

so that (3.12) is proved.
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On the other hand, relation (2.4) implies

28 ‘/ (17 — a3 — az) dx
R2

< [ for =} - a0 +e2 = )07 - a2} .
R2

The result follows by combining this inequality with (3.12). O

In the following proposition, we derive a preliminary estimate for the Lagrange
multipliers. Even though this estimate is far from optimal, its form will play an important
role when we improve it in Proposition 4.18.

Proposition 3.3. Assume (1.3), (1.8) and (1.18). Let (n1, n2) be the positive minimizer
of Eg in 'H. Let A; ¢ be the associated Lagrange multipliers in (1.5). There exists C > 0
independent of € such that, fori = 1,2,

IAie — Aiol < Celloge|'/? (3.13)
where A; o are defined in (1.15). Given (1.31), this implies
|Ris — Riol < C8|loge|%, i=1,2. (3.14)

Proof. We test the equation for 1 in (1.5) by 5 itself, integrate by parts [since 1 €
H'(R?)], and then subtract A1 o from both sides to obtain

me=ro= [ {90E +nteP + i+ g0 = 210) .

With calculations similar to the one used in the proof of Lemma 3.1, we rewrite the right
hand side of the previous expression in the following form:

/Rz {212+ g10F = a1 + gt = an @ — ) + qrar (o} —an)
+gar — an) dx+air [

_ g B
a, 0'7% dx + g/ (02’0 + —al,O) n% dx.
R2\D; ’ R2\ D, 82

‘We notice that

‘/Rzal {e10F = a0+ g3 )} dx

2
< larll 2 (211} — @il 2

+g||77% - ‘12||L2(R2)) .

Hence by applying Proposition 3.2 we obtain the convergence of A1 .. The convergence
of A2 ¢ can be proved similarly. O

Remark 3.4. The equivalent of Proposition 3.2 and 3.3 hold when (1.9) is assumed
instead of (1.8). The only difference is that (3.11) has to be replaced by

2 - 2
/ 1,64y o dx +/ 103,64y o dX
{lx|>R1,0} {IxI=R; o}

. _
+ / (817 s + 8213, (az,o + —al,o) dx < Ce*|logel.
{Ix|=Rj o} 82
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4. Refined Estimates for the Energy Minimizer Without Rotation

In this section we capture the fine behavior of the minimizer (11, 72,¢), as € — 0,
by means of a perturbation argument. Since this type of approach is in principle not
applicable to problems with integral constraints, we argue indirectly as follows. First,
given (A1, A2¢) as in the previous section, for small & > 0, we construct a positive
radial solution of (1.5) “near” (aj, a) by a perturbation argument. Then, the uniqueness
result in Theorem 1.3 will imply that this solution coincides with the unique positive
minimizer of E? in H.

4.1. The main result concerning the minimizer without rotation.

Theorem 4.1. Assume that (1.3), (1.8) and (1.18) hold. Let (1, n2) be the positive
minimizer of Eg inH. Let 1 ¢ be the associated Lagrange multipliers in (1.5). There exist

constants ¢, C, D > Q0 and § € ((), J—‘min{Rlyo, Ry — Rl,o}) such that the following
estimates hold: Estimates for the Lagrange multipliers

IAie — Aio| < Cllogel|e?, which implies that |R; ¢ — R;o| < C|logele?, i =1,2;
(4.1
Outer estimates

1,6 = /atelLooei<ri—8) + IM2.e — /a2l Lo <R1 —8) < Ce?, 4.2)

H Mme = |d2e+ ial,s H < Ce?, 4.3)
19 L®(R) ¢+8<|x|<Ry,:—9)

uniformly as ¢ — 0;
Algebraic decay estimates

Mo ) =v/are () = O (63 = Riel3) s o) =vaze () = O (e = Ril™2),

(4.4)

and

ifr € [Rie — 8, Rio — De3), and

8 _3\ . 2
)= @)+ (V=0 (1 = Roel ) if relRoe=5, Roe=Deil,

4.5)
uniformly as ¢ — 0;
Exponential decay estimates
1 Rie—r .
Nie(r) = Ce3 exp [C — ] s Fr=Rie, =12, (4.6)
£3

and

2 Rig—r
M. (r) = \/az,a(r) + é%al,g(r)+0<s§> exp [cl’—

2
&3

}+O(sz> ifr € [Rie, Ric+8],

4.7)
uniformly as ¢ — 0;
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Inner estimates

1 _1 1 r—Rie
nl,e(r)=83 (g1l (’,Bl,ev ((81F)3,31,s—2')
3
O(e+Ir = Rial?) if r € [Rie =5, Riel
N (4.8)
O(e) exp ICR"Ezr] if r € [Ry¢, Ry ¢ +6],
3

&3

g g _1 2 1. r—Ry
m.e(r) = /az,sm + ) = (il 3657, V2 ((glr)aﬂl,g—zs)

&3

4 2 FE 3\ .
O (&3 +1r = RuoPelr = Riel+edlr = Riel?) if r € [Rie=0, Ric)

+
O(e3) exp [c’“+"]+0(s2> if r € [Rie, Rie +3],
&3
(4.9)
and
1 -4 1, T— R
Mme(r) =¢€3g, 6,32,8‘/ <823 ,32,8—2’6)
£3
3 .
O (e+1r = Rocl?) if 7 € [Roe =8, Rael,
+ (4.10)
O(e) exp [CRZ—[F] if r € [Rye, Roc +36],
e3

uniformly as ¢ — 0, where V is the Hastings—McLeod solution [23] to the Painlevé-I1
equation [19], namely the unique solution of the boundary value problem

V' = v +s), s € R; v(s) —v/—s — 0ass — —o0, v(s) — Oass — oo, (4.11)

and

1

1 g 3
Ble = (_aaﬂg(Rl,es))’2 » Bre= (_aé,g(RZ,s) - Eai’g(RZ,a)) .

The proof of this theorem will be completed in Sect. 4.8. Note that in the case
g1 = &2, then an analogous of this theorem holds. It is simpler since 1y ¢ = 12,¢ so that
Ry ¢ = Ry . The result is just a consequence of Theorem A.1 in the appendix.

4.2. An approximate solution. In this subsection we construct a sufficiently good ap-
proximate solution (71 ¢, 72,¢) to the problem (1.29) such that ; . > O and 9, . — /a;,
uniformly on R2,ase — 0,i = 1, 2. The building blocks of our construction will be
the unique positive solutions 7)1, and 72  of the reduced problems (1.33a) and (1.33b)
respectively.
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4.2.1. The reduced problems. The asymptotic behavior of 7); ., i = 1,2, as ¢ — 0, can
be deduced, after a proper constant re-scaling, from the following proposition which is
a special case of the more general result that we prove in Appendix A.

Proposition 4.2. Suppose that A, satisfy Lo — Ao as € — 0, for some Ao > 0, and let
Ae(x) = he — plx?, x € R?,

with > 0 independent of .
There exists a unique positive solution u of the problem

2Au=u (u2 - Ag(x)) , xeR% u(x) — 0as |x| - oo.

This solution is radially symmetric and, for small ¢ > 0, satisfies the following proper-
ties:
1
lue — /A o) < Ce3y e = v/ Aell ey <r,—s) < CE, (4.12)

1
where rg = (M_lkg)z,for some § € (O, %ro), ro = (u_lko)l/z, and
ug(r) < Ce-% exp {ce_%(r‘9 — r)} , r > 4.13)

In fact, the potential of the associated linearized operator satisfies the lower bound

clr —rel +ce3 if |r —re| <8,
3ul(r) — Ae(r) = (4.14)

c otherwise.

More precisely, we have

3
O(8+|r—r8|7) if re —8 <r <re,

1 r—rg
ue(r) = &3,V (/3—2) + (4.15)
&3 O(e)exp{—c'r—f] if re <r <re+3,

&3

where V is the Hastings—McLeod solution, as described in (4.11), and

1
Be = (_A;(Vs))3 .
Furthermore, we have

r —rg

() = e 32V (ﬁg ) +0 (e% +lr— r8|%) if I —re| <8,  (4.16)

2
£3

uniformly, as ¢ — 0. Moreover, there exists D > 0 such that the following estimates
hold forr € [re — 8,1y — Deg]:

ue) = VA = 20U —re[ ), ul — (VA) =200 —re D),

(4.17)
Au; — A (VA) = 20(r —re7D),

uniformly, as ¢ — 0.
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4.2.2. Gluing approximate solutions. Consider a one-dimensional smooth cutoff func-
tion ¢ such that

c)y=1 ift <R, —6; ¢(@)=0 ift > R, 4.18)
where, for convenience, we have denoted

_ Rl,s + R2,£

5 , (4.19)

&

and 6 > 0 is a small number that is independent of small ¢ > 0. Note that { can be
chosen independent of ¢ > 0 as well. We recall that 7 ¢, 72, are the solutions of (1.33).
In view of (4.13), let

M e(x) = C(xDA1e(x), x € R (4.20)
Then, let

1

~ § 8 2
M2,e(X) = (az,s(X) +—aye(x) — —n%,g) » |x| = Re +36. (4.21)
82 82

The motivation for this comes from neglecting the term £2An, in (1.29b), since it is
expected to be of higher order, compared to the other terms, in the region |x| < R . — 4.
From (4.12), it follows that

1

2
M2,6(x) — (az,sm + 5a1,g(x>) = O(e?), inC*(Re < |x| < Re +98), ase — 0.
82

In other words, recalling (4.18) and (4.21), we have that
2.6 (X) — fi2.e(x) = O(e?), inC*(Re < |x| < R, +8), ase — 0. (4.22)

Thus, we can smoothly interpolate between 7 . and 7, . to obtain a new approximation
172.¢ such that

ﬁz,é‘(-x)s |-x| E Re:
M2,6(x) = { fi2,6(x) + Oc2(€%), Ry < |x| < Ry +36, (4.23)
ﬁZ,s(x)s [x] > Re + 6.

To conclude, we define our approximate solution of the system (1.29), for small
e > 0, to be the pair (771 ¢, 7j2.¢), as described by (4.20) and (4.23). We point out that
this approximation satisfies the desired limiting behavior

(M1.e, ﬁz,g) — (4J/ai1, +/a2), uniformly in Rz, ase — 0, 4.24)

where a and a are as in (1.12). Moreover, estimates that quantify this convergence can
be derived easily from the corresponding ones that are available for the ground states
N1.e and 72, from Proposition 4.2.
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4.3. Estimates for the error on the approximate solution. The remainder thatis left when
substituting the approximate solution (7] ¢, 172.¢) to the system (1.29) is

E; —&2 Afj1e + 81716 (ﬁ%s - al,s) + 8716 (ﬁ%s - aZ,s)

g(ﬁl,Sa ﬁZ,S) =
E; _EZA;D,S + 8¢ (ﬁ%’e - 02,8) +8M.e (ﬁ%,e - al,e)
(4.25)
The next proposition provides estimates for the L?-norms of E;, i = 1,2, which
follow from some delicate pointwise estimates that will be established in the process.

Proposition 4.3. The following estimates hold for small ¢ > 0:

IEill 22y < Ce™ °,  E2llp2gy <k, < Ce

I

5 2
3 and ||E2||L2(|x\>Rs) = Ce”.

(4.26)

Proof. 1t follows from the construction of 77; . and 72 ¢, via (4.13), that

Wit

E; =0 if|x] <R, —dor|x| >Ry |Ei] < Ce ¢ ° if R, —§ < |x| < R..
4.27)
On the other side, we have

Ey = —*Afj if |x| < R — 5

2
E, = —ezAﬁggg +O(e™® ) uniformly if R, — 8 < |x| < R,, ase — 0; (4.28)
Ey =0if |x| > Re +8; |E2| < Ce?if Ry < |x| < Ry + 6 (recall (4.22)).
In view of the previous observations, we only have to show the second relation in

(4.26). In fact, since A7 . remains uniformly bounded if |[r — Ry .| > §ase — 0, it
suffices to show that

||A772,s||L2(|,_R1 (<) = C87% for small ¢ > 0. (4.29)

It follows readily from (4.21) and (4.23) that
|Afpel < CAT IViLel® + C |1 Al e + | VALe*| +C if [r — Ryl <8, (4.30)

Next, we estimate the terms in the right-hand side by making use of Proposition 4.2. To
this end, we need to derive a relation for A7 . in terms of the Hastings—McLeod solution

near R; .. Making use of (1.33a), (4.15) and the natural bound |V (s)| < C(|s |% +1), s €
R, setting € = (g F)’%s, after a tedious calculation, we arrive at

R R 2 r— Ry, r— Ry, r— Ry,
H1eAfLe =& 3pV2 (/3—) [v2 (ﬁa — 8)+/38 —
£3 3

£3

]

[SI[o%)

4
e 2lr —RiP+e3r —Ri)P+e ' Ir — Ry

)
) @31

( |
_1 1 _2 _35 5
+o(s Sr—Ryel? +e 3 r—Ryol+14e 3 [r—Rye|3
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uniformly if [r — Ry ¢| < 8, as & — 0, where 8 = —aj .(Ry ). Similarly, but with

considerably less effort, it follows from (4.16), and the bound |V/(s)} <C(|s|+ 1)’%,
that

|Vﬁ1,g(r)|2=é§ﬂ;‘[ (ﬁs R”)] +0O(1),

23
uniformly if |[r — Ry .| <6, ase — 0. (4.32)

It follows readily from the estimates in (4.17) that
it Vi el* < C, (4.33)
and

e e +[Viine? = O (1+62r = Rie ™), (4.34)

uniformly in —=§ <r — Ry, < —C e%, as ¢ — 0. Keep in mind that our eventual goal
is to show (4.29). In view of (4.30), the above relations imply the partial estimate

. _1
||Anz,elle(_BSr_RmS_t:%) < Ceg™3 forsmalle > 0. (4.35)

On the other side, by the exponential decay of 7; . for r > R; ., we certainly have that

< Ce™ 3 forsmalle > 0. (4.36)

A7 7
I 772,6”LOO( B o<r—Ri.<) —

In the remaining interval (R o — s%, Ry + 8%) we use the inner estimates (4.15),
(4.31), and (4.32), which in particular imply that

1 IViel* < C, (4.37)

L2 — Ry,
nlaAnla+|vn18| =¢& 3/3 ,88 ~2 /38 —
£3 £3

[ (,Ba ;”)} ]+0(81), 438)

uniformly if [r — Ry ¢| < s%, as ¢ — 0 [for obtaining the last relation, we have also
used (4.11)]. In order to proceed, we need the following easy estimate:

and

V)V () + [V ()] = O(s|™) as |s| — oo, (4.39)

which follows from the asymptotic behavior V (s) = (—s)% +0 (|s|_%) as s — —o0,

and from the super-exponential decay of V and its derivatives as s — o0o. Now, by
(4.37), (4.38), and (4.39), via (4.30), we deduce that

- _1
||An2’€||L2(|r—R1_s\5gT72) < Ce™3 forsmall & > 0. (4.40)

Finally, the desired estimate (4.29) follows directly from (4.35), (4.36) and (4.40). O
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4.4. Linear analysis. In this part of the paper we are going to study the linearization of
(1.29) about the approximate solution (171 ¢, 172.¢), namely the linear operator

—&2Ag + [g1 (i, —are) + g3, — az,s)] @ +2801eT2.6W
Lp.¥) = :
—e2AY + [ 2GR, — aze) + 8 — @10 | ¥ + 281 eiha e
4.41)
for (p, ¥) € D(L) = {(u,v) € H*R?) x H*(R?) : [go [x[*(u? + v})dx < oo}. By
Friedrichs extension, the operator L is self-adjoint in L*(R?) x L%*(R?) with domain
D(L).

4.4.1. Energy estimates for L. We estimate from below the quotient

(Llp, ¥). (9. ¥)
{(p. ¥), (9, ¥))

. (9. ¥) € DIO\O,0),

which turns out to be positive, where (-, -) symbolizes the usual inner product in L2 (}Rz) X
L?*(R?) while < -, - > is a suitably weighted one. In turn, these lower bounds provide
a-priori estimates for the problem L(¢, ¥) = (f1, f2)-

Energy estimates in Bg,. In the sequel, we carry out this plan in detail in the domain
Bg, . Analogous results can be deduced in R\ Bg, which we will describe later.

In view of (4.21) and (4.23), which imply that 73 , —a . = —;;2(77%’8 —ay¢)in Bg,,
we can conveniently rewrite (4.41) in Bg, as

— ZA _ﬁ 3V2 _ 2g_2v2 Dod T
eTAQ+ 1|81 = &7 ) BN, —a1e) | 9+ 2507 @ + 281NV
Llp, ) = ,

_ngl/f + 2g2ﬁ§,81ﬁ + 28771,8772,890
(4.42)
foro, v € H 2(BRE) (the reason for not adding the similar terms in the first row is to
keep the linearization of (1.33a) about 7 , in the beginning).

Proposition 4.4. The following a-priori estimates hold: Suppose that
. V€ HA(Bg,) = {v € H*Bg) : v-Vu=0 on BBRE},

where v denotes the outer unit normal vector to d Bg,, satisfy

L) = Medg.p) and /

(e%<p2 + 1//2) dx =1, (4.43)
Bg,

or

L(p. V) = A 0. ¥)  and /B (eo?+v?)ar =1, @a4)

then
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Proof. We use the following estimates:

2 .
clr — Riel+ce3, if|r — Ry | <,

3t —are > (4.45)
c, otherwise,
and
S Ce3 +Clr — Ryel, if|r — Ryo| <3,
Me = (4.46)
C, otherwise,

which are inherited from (4.12), (4.14) and (4.15). In particular, observe that
3ﬁ%,a —dale = Cﬁ%,g, x € R%. (4.47)

Note also that
28273 , > ¢ on Bg,. (4.48)

Suppose that (4.43) holds. Testing by (¢, 1), in the usual sense of L2 (Bg,) % L? (Bgr,),
and integrating by parts the resulting identity, we obtain that

2
g .
/ [ezwwz + 2|V * + (gl -~ —) (it — a1.0)¢”
Bg, 82
g 2
+2 —ﬁl, ) +4/g2ﬁ2, I/f) dx = . (4.49)
(«/gz ‘ ‘
In turn, using (4.45) and (4.47), we find that
/ [82|V(p|2 + 2V +ced? + cf/%’s(p{l dx < A. (4.50)
Bg,

On the other side, the second equation of the system in (4.43) can be written as

—&2 AV + 282015 W = AU — 281,616

Then, testing the above relation by v, integrating by parts, using (4.48) and Young’s
inequality, we obtain

/BR& (2vulPeey?)ax < /BRS (o2 ax +Ci ) dx

(4.43),(4.50)
=< CA

4.51)

Finally, by adding (4.50) and (4.51), recalling the integral constraint in (4.43), we deduce
that A > ¢, as desired. The case where (4.44) holds can be treated analogously. O

A direct consequence of Proposition 4.4, and of (4.49), is the following
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Corollary 4.5. If ¢ is sufficiently small, there exists ¢ > 0 such that

(L. V). (0. )
sc [ (VP4 RIVUP+elg 4 i 6 4 yP) dr Vi u € DO
Bg,
(4.52)

where (-, -) denotes the usual inner product in L>(R?) x L*(R?).

Energy estimates in RZ\BRS. Since 171 = 0 in R2\BRE, the operator £ in RZ\BRE
has the simple “decoupled” form

—&e2Ag + [8(773,8 —ae) — glal,s] @

Llp, V) = . ’
~e2AY + g2 (3R, — e — Eare) v

for ¢, € H*(R?\ Bpg,). Note that
2 2 8 g’
g, —aze) — gra1: =g (772,5 —ae — _al,a) + (— - gl) are > c,
82 82

in R2 \ Bg,,becausea; o < —cand ﬁ%a —aze— éal’g > —Cé‘% therein, which follows
from (3.13), (4.15), (4.17) and (4.23).

In analogy to (4.52), for small & > 0, using that 375 , —a2 ¢ — Fare > c(e3 +173 ),
which follows analogously to (4.45) and (4.47), one can show rather straightforwardly
that

o @nze [ (VP eRTUP R +edy i 07) an
: ,

\BRg,
(4.53)
for every (¢, ) € D(L).
Energy estimates in R2. It follows at once from (4.52) and (4.53) that, for small ¢ > 0,
we have

€@ ze [ (VP vup) dxve [ (3674 7 40 dx
R2 B

Re

s / ((p2 +eiyla ﬁgg;/ﬂ) dx, (4.54)
R2\Bg,
for every (¢, ) € D(L).

4.4.2. Invertibility properties of L. We are now in position to obtain estimates for the
solution of the inhomogeneous problem L(¢, V) = (f1, f>) in R?, with suitable right-
hand side.

Proposition 4.6. Let f; € L>(R?), i = 1, 2. The equation

L(p, V) = (f1, fr) inR?, (4.55)
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has a unique solution (¢, V) € H2(R?) x H2(R?), provided that ¢ > 0 is sufficiently
small, independently of f;. Moreover, that solution satisfies

. W2 < c/ (73124 12) dx +c/

Bg, Rz\BRg

( f2yes ff) dx,  (4.56)

with C > 0 independent of ¢ and f;, where the norm |||(-, -)||| in HY(R?) x HY(R?) is
defined by

2
e W2 = & (V013 oy + IVH 0 ) ) + 510025, + IV D2
2
el 22 m ) * €IV 17282 g, - 4.57)

If ¢ > 0 is sufficiently small, there exist ¢, C > 0 such that, for any f € L*(R?), the
solution of

L(p, V) = (16 f,0) inR?, (4.58)
satisfies
_2
(e, Y)II? §C/ fdx +Ce™* 3/ f2dx. (4.59)
Bg, R2

If & > 0 is sufficiently small, there exists C > 0 such that, for any f € L*(R?), the
solution of
L@, ¥) = 0,1 f) inR?, (4.60)
satisfies
@, ¥l < ClLf Il 2 w2)- (4.61)

Proof. As we have already discussed, the linear operator £ is self-adjoint in L?(R?) x
L?(R?) with domain D(L). Relation (4.54) certainly implies that the kernel of L is
empty for small ¢ > 0. Hence, the existence and uniqueness of a solution (¢, ¥) €
H?(R?) x H*(R?) to (4.55) are clear. We now turn our attention to establishing estimate
(4.56). Testing (4.55) by (¢, V), and using part of (4.54), we find that

82/Rz (|V¢|2+|Vl/f|2) dx+/B (s%¢2+¢2) dx+/Rz\BRS (¢2+g%1/,2) dx

SC/ (ILfiel + 129D dX+C/ (I fiel + | f2¥]) dx.
R R2\Bg,

£

Re

Using Young’s inequality, we can bound the first integral in the right-hand side by

2

3 1
/ (8—<p2 +Ce iR sy + szz) dx.
5o, \ 2 2

and analogously we can bound the second integral. By absorbing into the left-hand side
the terms that involve ¢ or i, we get (4.56).

Suppose now that (4.58) holds. As before, but this time making more use of (4.54),
we find that

e [ (1voP 4 vuP) dxs [ (397t 0+ v?) dx
R? Bgg ’
2 v v
+/ (<p2+83w2) dx < C/ m,slfwldX+C/ M.elfoldx.
R2\Bg, B R?

Re \Bg,



Thomas-Fermi Approximation 539

The desired estimate (4.59) follows readily as before, using Young’s inequality to absorb
a term of the form % f Br. rv;% 5(,02 dx into the left-hand side, and recalling the exponential

decay (4.13) of 1y  forr > Ry ;.
Finally, suppose that (4.60) holds. As before, making use of (4.54) once more, we

arrive at
82/ (|V¢|2+|V1p|2) dx+/ (e%¢2+¢2) dx
R2 B

Re
+/ (<p2+8-%1/f2+ﬁ%81//2) dx
R?\Bg, '

SC/ ﬁ2,8|f¢|dx+C/ Mm.elfldx.
R R2\Bg,

£

The desired estlmate (4.61) follows readlly as before, using Young’s inequality to absorb
terms of the form 3 fR2\ Br, n2  ¥?dx and 5/, Br. wz dx into the left-hand side. O

4.5. Existence and properties of a positive solution of the system (1.29). We seek a true
solution of (1.29) in the form

(771,37 772,8) = (ﬁl,sa 772,5) + ((pa 1//‘)5 (462)

with ¢, ¥ € H? ,(R?).
In terms of (¢, ¥), system (1.29) becomes

—L(p,¥) = N(p. ¥) + E e, T2.6), (4.63)

where L is the linear operator in (4.41), the nonlinear operator N is

Ni(p, ¥) 10> + 38171007 + g ¥ + 28V + g¥2e

Np,y) = = ,
Na(p, ¥) QU3 +320M. Y% + gin.e@® + 2801 oV + g0* Y

(4.64)

and the remainder (7 ¢, 72.¢) is as in (4.25).
In view of Proposmon 4.6, for small ¢ > 0, we can define a nonlinear operator
T:H? (R x H? (R — H? (R*) x H?, (R?) via the relation

T(p.¥) = (9. V),
where (¢, V) € H? ,(R*) x H? ,(R?) is uniquely determined from the equation

—L(@, V) = N(p, ¥) + EGii e, T2,). (4.65)

Note that Sobolev’s inequality implies that functions in H2(R?) are bounded, in partic-
ular NV (¢, ¥) € L>(R?) x L*(R?) for every (¢, ) € H>(R?) x H*(R?).
Fore >0, M > 1, let

Bew = {“" V) € H, (R%) x HZ,(R%) : [li(g, )l sMa%}.

The following proposition contains the main properties of the operator 7 .
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Proposition 4.7. If M > 1 is sufficiently large, the operator T maps Be y into itself,
and its restriction to B y is a contraction with respect to the |||(-, -) || norm, provided
that ¢ > 0 is sufficiently small.

Proof. Let (¢, V) € By, and (@, ¥) = T (¢, ¥). In view of (4.64) and (4.65), we
have

4
(@, V) = D _(@i, ), (4.66)
i=1

where (@i, ¥i) € H2,,(R?) x H2

a

JRY i =1,..., 4, satisfy

Q10> +28M .V + ¥l

—L(@1, V1) = :
QU3 +2801..0Y + g0 Yr
o e (38197 +gv?) o 0
—L(@2, Y2) = . L3, ¥3) = 5 ,
0 ih.e (38202 +g9?)

and

—L(@a, Y1) = Ees M2,

Using Proposition 4.6, and the Gagliardo—Nirenberg interpolation inequality in order to
estimate the L2-norms of the nonlinear terms, it follows readily that

@1, 0| < CM3e3 + CM2es and |G 00| < CM2e2, i =2,3,  (4.67)

where C > 0 is independent of both ¢ and M, provided that ¢ > 0 is sufficiently small.
In order to illustrate the procedure, let us present in detail the proof of the second bound
(i = 2): Estimate (4.59) implies that

2
3

|||<¢2,1/?2)|||zsc/3 (@' + v dx+ Cem /Rz(tp4+w4)dx,

with constants ¢, C > 0 independent of ¢, M, provided that ¢ > 0 is sufficiently small.
Since (¢, ¥) € B, u, it follows that

4
3

2 3 2
||§0||L2(BRS)SM€ s lellgrrey < Me3; ||¢||L2(BR£)SM€3, 1Yl g1 ey < Me3.

(4.68)
Now, the desired bound follows via the Gagliardo-Nirenberg inequality
1-2 2
for Q C R? regular, which implies that
1 1
||¢||L4(BR€) S C”(p“Iz‘Il(BRF) ||€0||l242(BRF) S CME, (470)

with constant C > 0 independent of e, M, provided that ¢ > 0 is sufficiently small,
and analogous estimates can be derived for ||y ||L4(BR£), l@ll4r2y and ¥ [ 4R2)- The
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remaining bounds in (4.67) can be proven analogously. On the other side, by (4.25),
(4.26), and Proposition 4.6, we obtain that

@4, 90| < €3, @.71)

for small ¢ > O (here C is clearly independent of M as well). Hence, by (4.66), (4.67)
and (4.71), we deduce that

@ vl < Ce’ (M38% + M%e5 + 1) ,

with C > O independentof ¢, M, provided that e > 0 is sufficiently small. Consequently,
if we choose M = 2C, and fix it from now on, decreasing ¢ > 0 further if necessary so

that M38% + M28% < 1, it follows that

1@, 9| = 1T (@, w)lIl < Me3.

We conclude that, if ¢ > 0 is sufficiently small, the operator 7 maps B,y into itself, as
asserted.

It remains to show that the restriction of 7 to 3,y is a contraction with respect to
the ||| (-, -)|I| norm, provided that ¢ > 0 is sufficiently small. To this end, let

(@is ¥i) € Beyr, i = 1,2, and (@i, ¥y) = T (@i, ¥i), i = 1,2. (4.72)
Then, set ~ _
(W, 2) = (91 — @2, Y1 — ¥2). (4.73)
As before, it is convenient to write
5
(0,2) = D (W, %), (4.74)
i=1
where (@, 7;) € H2 ;(R*) x H? ,(R?),i =1,--- 5, satisfy
8107 + @192+ 93) (91 — ¢2)
QWi+ 1Y+ YW1 — )
ﬁZ,a
—L(w2,22) = 2¢ Y21 —p2) + 1 (Y1 —¥)1 | ,
N,e
Y3 (p1 — @2) + o1 (Y1 + ¥2) (Y1 — ¥2)
P31 — ¥) + Y1 (@1 + 92) (@1 — 92)
M.e [3g1(@1 +92) (@1 — @2) + g1 + ¥2) (Y1 — ¥2)]
0
and
0
—L(ws, z5) =

2,6 382001 + V) (Y1 — ¥2) + g1 + 02) (91 — 2)]
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As before, using Proposition 4.6, the Gagliardo—Nirenberg inequality (4.69), and the
inequalities

_1 -

Il z2cpe) <€ 3@ WL @l 2@\ 5, <@, WL @l < e i, ¥,
_1 _

1l 208,) N2 WL ¥ 1228,y <8 M, WL IV 1 ey <€~ i, I

4.75)
forevery ¢, ¥ € H 1 (Rz), we can show that
lGion, 201 < Ce¥llltpr — g2, Y1 — v,
Gz, 221 < Cesllipr — g2, w1 — )l
(i3, 21l < Cedllitpr — @2, Y1 — ¥,
G, 201 < C3 (@1 — @2, ¥ —¥)l, i =4, 5, (4.76)

provided that ¢ > 0 is sufficiently small. In order to illustrate the procedure, let us
present in detail the proof of the bound for ||| (w2, Z2)|l|: From Proposition 4.6, we obtain
that

o 1 _1
12, 22) Il = Ce™31V2(@1 — @)l L2y, + C 3 11 — V)l 2By,
_1 1
+Ce 3 [Y2(@1 — @)l L2 w2\Bg, ) + C& 3 o1 (Y1 — ¥2)llL2R2\ Bg, ) -

The second term in the right-hand side of the above relation can be estimated as follows:
by the Cauchy—Schwarz inequality, we have

_1 _1
e 31 (Y1 — ¥2)llL2(Bg,) = e 3ol pap) Y1 — V2llLacag,)

(4.70) 2
= Ce3lyn —Yallpaay,)

(4.69),(475) 1
=< Ceelll(or — @2, ¥1 — vl

The remaining terms can be estimated in a similar fashion, giving the desired bound
for |||(w2, z2)|ll. The other bounds in (4.76) can be verified analogously. Consequently,
combining relations (4.72), (4.73), (4.74), and (4.76), we infer that

T 1. ¥0)— T2, Y2l < Ceslli(pr. 1) — @2, Y ¥ (95, Y1) € Beyg. i = 1,2.

We therefore conclude that, for sufficiently small ¢ > 0, the restriction of 7 to B s is
a contraction with respect to the [||(-, -)||| norm, as asserted. O

The above proposition implies the main result of this section:

Proposition 4.8. There exists a constant M > 0, such that the system (1.29) has a unique
solution (n1.¢, 1n2.¢) such that

e = nes mae — o) < Me3, 4.77)

if € > 0 is sufficiently small, where the above norm is as in (4.57).
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Proof. In view of Proposition 4.7, for small ¢ > 0, we can define iteratively a sequence
(@n, ¥n) € Be,y such that

(@n+1s Yne1) =T (@n, Y), 1 =0, (o, Yo) = (0,0). (4.78)

Moreover, the same proposition implies that (¢, ¥,,) is a Cauchy sequence in H rl ad (R?)x
Hrla d (R2). Hence, we infer that

(On> Yn) = (Yoo, Yoo) in HY y(R?) x H' ,(R?), asn — oo,

for some (Yoo, Yoo) € Hlad (R?%) x Hrlad(Rz) such that

r

5
I (¢oo> Vo)l < Me3.

In turn, letting n — oo in the weak form of (4.78) [recall (4.65)] yields that (@00, V¥oo)
is a weak solution of (4.63). Then, by standard elliptic regularity theory, we deduce
that (9os, Vo) € H2,;(R?) x H? ,(R?) (i.e. (9o, Yoo) € Be m) and is smooth (i.e. a
classical solution). The point being that By is not closed in the [||(-, -) || norm. In fact,
Eq. (4.63) has a unique solution in B; s, as the restriction of 7 to 3. j is a contraction
with respect to the ||| (-, -)||| norm, provided that e > 0 is sufficiently small. Consequently,
recalling the equivalence of (1.29) to (4.63) via (4.62), we conclude that the assertions

of the proposition hold. O

A direct consequence of (4.77) is the following

Corollary 4.9. If ¢ > 0 is sufficiently small, the solutions n1 . and 12 of the system
(1.29) that are provided by Proposition 4.8 satisfy

17i.e = NielLoqxizs) < Ce, and nic(x) = Oas |x| - o0, i =1,2. (4.79)
Proof. Consider the fluctuations

@=1n1—1N1,e and ¥ =m, — M.
It follows from (4.57) and (4.77) that

2 4 2 4
Vel 2wz < Ce3, llelizmrey < Ces and [V 2wy < Ce3, Y22y < Ce3,
(4.80)

[note that we did not make full use of (4.77)]. In order to transform the above into
uniform estimates, we need the following inequality which can be traced back to [32]:
There exists a constant C > 0 such that
1

1 1
[x]2 lv(x)| = ClIVull

@) , foraex e R?, (4.81)

1
2
117 e

andallv € H! ,(R*) = {v e H'(R?) : v isradial}. The desired asymptotic behavior
in (4.79) follows at once. Making use of this inequality for |x| > &, we obtain that

lellLoexizs) < Ce and [[¥||Loxi=s) < Cé,
which are exactly the desired uniform estimates in (4.79). O

We now turn our attention to establishing uniform estimates on Bs. The following
lemma will come in handy in the proof of Corollary 4.11 below.
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Lemma 4.10. There exists a constant C > 0 such that the solutions that are provided
by Proposition 4.8 satisfy
ImiellLooss) = C. i=1,2,

if ¢ > 0 is sufficiently small.

Proof. Suppose that the assertion is false. We use a blow-up argument to arrive at a
contradiction (see also [22]). Without loss of generality, we may assume that there exist
&, — 0and x,, € Bs such that

N6, Xn) = N1, L0 (Bs) = Mn — 00.
We may further assume that x,, — xoo € Bs. Now, we re-scale 7;. ¢, Dy setting

v (y) = Mnnl,s,,(xn +&pibpy) With p, = Mn_l — 0.

The function v,, satisfies

—Avy +810) — g1paLe, (Xn + EnflnY) U + g lir (n%,g,l (Xn + Enfhny)
—az.e,(Xn + Enfiny)) Vo = 0.

By using elliptic L? estimates and standard imbeddings, exploiting the bound

2.1
||n%’8 —aellLrs) < Cp83+5, p > 2, (readily derivable from Proposition 4.8),

we deduce that a subsequence of v,, converges uniformly on compact sets to a bounded
nontrivial solution v of the problem

Av=gvd, v0)=1, (4.82)

in the entire space R? or in an open half-space H containing the origin, with zero
boundary conditions on d H. Actually, in the latter scenario, one has to perform a rotation
and stretching of coordinates in the resulting limiting equation to get (4.82), see [22]. In
any case, by reflecting v, oddly across d H if necessary, we have been led to a nontrivial
solution of (4.82) in the whole space IR2. On the other hand, this contradicts a well known
Liouville type theorem of Brezis [14]. O

The following corollary provides additional information to Corollary 4.9, but will be
considerably improved in Proposition 4.14.

Corollary 4.11. If ¢ > 0 is sufficiently small, the solutions provided by Proposition 4.8
satisfy

1 .
IMi,e — /aiellLosy) < Ce3, i=1,2. (4.83)
Proof. Let
¢ =n1e— /a1, XE Bzg. (4.84)

Observe that estimates (4.12) and (4.77) imply that

4
&Nl L2p,5) < Ce3. (4.85)
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From the first equation in (1.29), by rearranging terms, in Bs we obtain that

—&? AP = —gin1e (Me+Vare) ¢+ e?AJar; — gm,g(n%,E —aze) =: f.

By interior elliptic regularity theory, we deduce that

_ _2
19120 = € (6720 Ni2qay) + 191128y ) < Ce~ (4.86)

where we also used Lemma 4.10 and (4.85). Now, by the two-dimensional Agmon
inequality [7, Lem. 13.2], we infer that

! 1 (4.85),(4.86) 1
||¢||LDC(B(3) S C||¢||H2(Bg)”¢”L2(B§) S C83~

The desired bound for 1y . — ,/ai ¢ follows at once from (4.84) and the above relation.
The corresponding bound for 1y . — ,/az can be shown analogously. O

We are now in position to show that the solutions in Proposition 4.8 are in fact positive.
Proposition 4.12. If ¢ > 0 is sufficiently small, the solutions in Proposition 4.8 satisfy
nie>0 inR%, i=1,2.

Proof. By virtue of (4.12), (4.15), (4.79), and Corollary 4.11, given D > 1, we deduce
that
Me > cped > 0 if [x| < Ry, + De3, 4.87)

provided that ¢ > 0 is sufficiently small; where throughout this proof, unless specified
otherwise, the generic constants ¢, C > 0 are also independent of D > 1. From (1.29a),
we observe that 1y . satisfies a linear equation of the form

—&?An1e + Q)1 =0, (4.88)
where
Q) =gi(nf, —aie) +8(n5, —aze).
If R+ DE% < |x| < Ra, recalling (4.13) and (4.79), we find that

2 v2 V2 2 V2 V2
Ox) =81 —Me+Me— A1) +8My, — Mo+ —a2¢)

> —g81a1,e + g(ﬁg,g - a2,£) —Ce

2
8 . 8

(— - gl) ajetg (n%,g — e — —al,e) —Ce.
82 82

2 . - . C
In particular, if Ry . + De3 < |x| < R, where 12 . = 72.¢, via (4.21), which implies
that the second term in the right-hand side is —g> 8 ! ﬁ% .» and the exponential decay of
the ground state 7j; . for r = |x| > Rj ., we obtain that

IV

2

o) = (i— - gl) aie — CePe3
2

(1.3),(1.30),(1.34),(3.13) 2 X 2
> c(r—R1,8)2+cD8§ — CeDg3,

2
> c(r — Ry¢)? +cDe3,
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increasing the value of D if needed, provided that ¢ > 0 is sufficiently small. Clearly, in
view of (4.23), the same lower bound holds if R, < |x| < R.+§. On the other side, if R+

2 p2 oy o . )
3 <|x| < Ry, whereay o = —c(r” — Rl,g)a M2.e = M2.e and }772,8 —a2e — g%al,s =

Cs.%, we deduce that Q(r) > c(r — ngs)z. The latter lower bound also holds if |x| >
R3 . So far, we have shown that

O(x) = c(r — R1.0)* +cDe?, |x| = Ry + Del, (4.89)

provided that ¢ > 0 is sufficiently small. By (4.79), (4.87), (4.88), (4.89), and the
maximum principle, we deduce that

2
Nie > 0 if |x| > Ry + Des.

The desired strict positivity of 11 ¢ follows immediately from (4.87), (4.88), the above
relation, and the strong maximum principle. The corresponding property for 72 . can be
proven analogously. O

The following lemma is motivated from Lemma 2.2, and will be used in the next
section.

Lemma 4.13. Given D > 1 sufficiently large, we have

D3

3 2

Nie(s) < ;e (r) exp [——2(s2 - r2>] for s >r > Rio+De3, i=1,2,
£3

provided that ¢ > 0 is sufficiently small.

Proof. Throughout this proof, the generic constants ¢, C > 0 are independent of both
small ¢ > 0 and large D > 1. Abusing notation slightly, let

D3
ulx) =u(s) = exp{——zszl , xeR? s= |x].
£3

It is easy to see that

2 2 2 229 2 2
—&“Au +c[(s —Rie) + D83] u > [—4D383S +c(s —Rig) +cDe3| u>0,
(4.90)
2
if s = |x| > Ry ¢+ De3, for sufficiently large D > 1, provided that ¢ > 0 is sufficiently

small. Here ¢ > O is as in (4.89). For such D, ¢, and any r > R o + De%, it follows that
the function

v(s) =nre(r)expy——5 6" —r)e, s=lx[=r
&3

is an upper solution of the linear elliptic equation that is defined by the left-hand side

of (4.90). On the other side, by virtue of (4.88) and (4.89), the function n; .(s) is a

lower solution of the same equation for |x| > r, which clearly coincides with the upper

solution v on 9 B,. Hence, by the maximum principle, and (4.79), we deduce that

2
N,e(s) Sv(s), Vs=|x|>r > Rje+De3,

forany large D > 1, provided that & > 0 is sufficiently small. The validity of the asserted
estimate for 11 . now follows immediately, while that for 1, . follows analogously. O
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4.6. Improved uniform estimates away from R ¢ and R; .. In this subsection we show
that the uniform estimates in (4.79), for the difference n; . —17; -, can be improved outside

of an O(s%)-neighborhood of Rjc,i =1,2.

The results of this subsection, as well as those of the following one, are not essential
for the proof of Theorem 1.5, and, depending on the reader’s preference, can be skipped
on a first reading.

Proposition 4.14. If ¢ > 0 is sufficiently small, there exist C,5 > 0, with § <
min {%, w}, such that
0ie(r) = 7ie(r)| < Ce® if Ir — Riel =8 and |r — Ryl 28, i=1,2.

Proof. We prove the assertion in the case where r € [0, Ry . — 8], which reduces to
show that

i) = Vai )| = Ce i re 0, Rie =8l i=1.2 (49D

[recall the construction of 7; . and also see (4.12)]. In the remaining intervals the proof
carries over analogously.
We first require a rough uniform bound for the radial derivatives of the functions

U=Mn1e—+/ale and v =1, — /A2, (4.92)

say over the interval [8, Ry — %]. It follows from (4.63), (4.68), and (4.79) (with a
smaller constant § > 0), that

2
A =|A -7 < Ce 3.
Il (p”Lz(%,Rl.s—%So) A1, 771,5)”[‘2(%’1?1.5_ 5 ) <Ces

T00

In turn, by interior elliptic regularity theory and (4.77), we deduce that
_2
191 42(5.5,,-) = €577

Hence, from (4.80), via (4.81) with ¢’ in place of v, we get that

1)
! <C, re|§,Rio——|.
lp"(r)| = r [ le 50}

Thanks to (3.13) and (4.12), we infer that

IIM’IILOO((Sle ) =€ (4.93)

Similarly we have
/
lv ||L°0<8,R1_g—5‘3—0) <C. (4.94)

Observe that u, v satisfy
—&2Au+gini(m + Jaro)u+gni(n + Jaz¢)v e?A Jar;

M(u, v) = = )

—&2Av+ gom(m + Jaz v + gna(n + Jare)u e?A Jar;
(4.95)
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)
Rl.s_ﬁ

there exists a unique solution (g, vg) to the linear algebraic system
2g1a1cu+2g.Jal ¢ Jaz v = eZA /al e,
28 /a1 e /a2 su +282a2 .V = SZA,/az‘g,

x€eB (R s ) It follows readily that

X €B ( ), having dropped some ¢ subscripts for convenience. By virtue of (1.3),

Le™30
luoll ¢ <Ce® and ol /- <ce, (4.96)
C-| B Cc-{B
(s 4)) (e 4)
(keep in mind that a; . > c in B( 1 _i)’ i = 1,2). We can write
750
(u, v) = (up, vo) + (&, V), 4.97)

where i, v satisfy

2
-~ [ Aug
M, 9) = (EZAU())
+ (81(2611,8—77? - \/51,5771)“0"‘8(2«/(11,5«/”2,8_771772—«/512,8771)110)
82(2612,5—77%—x/az,gﬂz)vo+g(2«/611,8«/612,8—771772—«/611,6?72)140 ’
(4.98)
xeB .
(#1:=%)
Consider any p € (0, Ry — 5‘3—0] By testing the above equation by (i, v) in the
Lz(Bp) X LZ(BP) sense, making use of (2.4), Proposition 4.8, (4.96), and Young’s
inequality, it follows readily that

/ (82|Vﬁ|2+£2|V5|2 +i? +172) dx < Ce3 + C&2|ii (p)ii(p)| + C&2|7 (p)(p)|,
BP

(4.99)
provided that ¢ > 0 is sufficiently small. Setting in this relation p = Ry — 5’3—0, using
(4.79), (4.93), (4.94), and (4.96), we obtain that

. P S 20
/ (82|Vu|2+82|Vv|2+u2+v2) dx < Ce3 +Cé>.
B 5
(R1e=3)
Thus, there exists rj € (R, — %, Ry — 5‘3—0) such that

i(r)| +[5(r) < Ce +Ce? and [@(ry)| + ()| < Ce2.

Doing the same procedure with p = rq, using the above estimates instead of (4.79) when
estimating the boundary terms in (4.99), yields that

~ ~ - - 20
/ (82|Vu|2+82|Vv|2+u2+v2) dx < Cs% +Cs™.
Brl
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Thus, there exists 1, € (R — %, r1) such that

- - 10 - -
|i(r2)| +[5(r2)| < Ce3 +Ce? and @' (r)| + |3/ (r2)] < Ce.
Iterating this scheme a finite number of times provides us with an r, € (Rlyg — %,

Rie — %) such that

(@2 + %) dx < Ce3. (4.100)
By,

Now, via (4.96), (4.98), and interior elliptic regularity theory, we find that

< Ce. 4.101)

2 ~
<Ce” and |v| <
H? (B(R1,5—5>)

i
I ||H2(B(R1_€_5))

By the two-dimensional Agmon inequality [7, Lem. 13.2], we infer that

il clal’? )2 GOS0 o
u < u u < e,
£ (Bry ) H2 (B, o) L2 (Beky o)

Analogously, we have

~ 3
v < Ce".
190 ey =

The desired estimate (4.91) follows at once from (4.92), (4.96), (4.97), and the above
two relations. O

In the following proposition, we prove estimates in the intermediate zones, bridging
the estimates (4.79) and those provided by Proposition 4.14, on the left side of R; .,
i=1,2.

Proposition 4.15. The following estimates hold:
v _3 v _
[11,6(r) = 16 (r)| < Ce?lr — Rigl™2, |n2e(r) — e (r)| < Celr — Ryl 7",
re[Rie—8. Ry, — De3l,
and
“ _3 . 2
[M2,6(r) — 12,6(r)| < Celr — Rye|™2 if r € [Ry,e — 8, Rpe — De5],

for some constants C,5, D > 0 (§ as in Proposition 4.14), provided that ¢ > 0 is
sufficiently small.

Proof. We only prove the assertions of the proposition that are related to Rj ., since
those related to R . follow analogously and are in fact considerably simpler to verify
because 71 ¢ is small beyond all orders for r > Rj o + 6.

From (4.57) and (4.77), there exists C > 0 and a sequence D; — oo such that

“ 2 4
(M2,6 = M2,6)(R1,¢ — Dj<93) < Ce3, (4.102)

for sufficiently small ¢ > 0, j > 1.
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2 .
Forr € [R1e — 6, R1,. — Dj&3], we can write

O=N1e—Me=MNe—Nle ¥=020e—102e=10e—N2e, (4.103)

where @, ¥ satisfy (4.63).
Let ¢g, o be determined from the problems

2 N 2 ~
—e2Ag0+ [ (81 - £) G, — a0 253 9o = En,
re(Rie—08 Ric—Djed),
2 2
90(R1,e —8) = @(R1e —8), @o(R1e— Dje3) = @(Ri— Dje3),

and

~ 2
—e2 Ao + 282713 Yo = Na(p. ¥) + Ea, r € (Rie — 8, Ry . — Dje?),
2 2
Yo(R1,e —8) = ¥ (Rie —3), Yo(Rie— Dje3) =Y (R — Dje3),

where E;, N;(-,-),i = 1,2, areasin (4.25) and (4.64) respectively. By virtue of (4.27),
(4.28), (4.30), (4.33), (4.34), (4.45), (4.48), (4.79), Proposition 4.14, and (4.102), via a
standard barrier argument, we deduce that

2 r —Rl 8+Dj8%
|<P0(")| <Ce +C86Xp C’—2 , (4104)
£3
2
2 4 _4 4 r—Rye+Djes
[Yo(r)] < Ce*+Ce*|r — Ry ¢| " +Celexpyc—-—L— 1, (4.105)
3
itr €[Ris—8 Ri.— Djell.
We can write
o =@o+@, =10+,
where @, V¥ satisfy
~ il El 2
L@ )= |, reRie—38 Ri:—Djed),
E>
- - . ) _ )
PR —8) =y (R1—8) =0, o(R1c —Dje3) =Y (R — Dje3) =0,
(4.106)

with £ as in (4.42), for some functions Ei, i = 1, 2, satisfying the following pointwise

estimates:
|E1| < ClijneWol + N1 (g, ¥)|via (4.46), (4.64), (4.79), (4.105)

< Ce?+Celr — Ry .72 (4.107)

2

— R+ Djes3

+C/8% exp [Cu} s

’ &

- . (4.46).(4.104) s
|E2| < Cli.egol <  Ce"+Cjeiexpyc

2
r—Ric+Dje5 }

WIS

€
(4.108)

forr € [Rye — 8, R.c — Dje3].
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Our plan is to solve the second equation in (4.106) for 1} and substitute into the
first, thus reducing the system to one scalar equation for ¢. Then, we derive estimates
for ¢ in some carefully chosen weighted norms that we define afterwards. Let I =

(Ri.—8. R — Dje3) and
p(r)=Rie—r, rel,
for ¢ € C2(I), we define

1 _1 3
IBlls = 2102 P lloory + 210 2l ey + 102l Lo (1) (4.109)

(for related weighted norms we refer the interested reader to the monograph [31] and
the references therein). In particular, we rely on the following a-priori estimate: there
exist &g, jo, K > O suchthatif » € C(/) and ¢ € C,2 (|x| € 1) satisfy
g2
—?Ap + (g1 - —) Bt , —aje)p=h inl; ¢ =0 ondl, (4.110)
82 ’

with 0 < ¢ < €9, j > jo, then

1
&l < KllpzhllLer. 4.111)

We stress that the above constant K is also independent of § [i.e. &g = &9(8)]. In
the remainder of this proof, we denote by k/K a small/large generic constant that is
independent of large j and small §, €. The proof of this estimate proceeds in two steps.
Firstly, similarly to [27, Prop. 3.5], using the following consequence of (4.17)

klr — Riol <30, —aie < KIr —Ryel, rel (4.112)
and the maximum principle (in the equation for pgd)), one obtains the partial estimate

3 1
lo2@liLeay < Kllp2hliLeer). (4.113)

Then, the full a-priori estimate follows by going back to the equation for ¢ and using
the upper bound in (4.112). The details are given in Appendix B. From now on, we fix
such a large j and drop the subscript from D;.

In view of the second row in (4.42) and (4.106), we can write

J=—8Mes wis rel, (4.114)
82 M2
where
2 oo 8 e
—&"Aw +2g15 ;W = —&"— ——¢ | inl; w=0 on dl, 4.115)
’ 82 n2,e

and ~

—e?Az+2gii3 2= E> inl; z=0 on 3. (4.116)

Using the pointwise estimates

N 1 N _1 ~ _3
0<n1,e <Kp2, Vi1l < Kp™2, [Af1¢l < Kp™ 2,
k<ie<K, |Vine <K, |Af: <K+Ke2p™,
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for r € I, which follow readily from (1.33a), (4.17) (having increased j if needed),
(4.21), (4.30), (4.33), (4.34), and (4.46), we can bound pointwise the right-hand side of
(4.115) as

Ne ~ 2( Loa~ Y R _3, -
A (B2g)| < Ke? (021861 +p~31VG] + 07316
2 Lo I 3 .
< K (20181 + 2072 + 03151)
= Kol
Hence, by the maximum principle, we deduce that

lwllizeey = KlI@ 1l 4.117)

On the other side, from (4.108), (4.116) and a standard comparison argument, it follows
that

2

2
— Ry ¢+ De3
12(r)| < Ce? + Ce3 exp[cL] Crel (4.118)
£3

Substituting (4.114) into the first equation of (4.106), recalling (4.42), we arrive at

2

~ 8 ~ ~ ~ A~ . ~
—&2AG + (81 - g—z) Gt , —aie)p = Ey — 2gi1 i (w+2) inl; ¢=00ndl.

Making use of the a-priori estimate (4.111), bound (4.117), and the easy estimates
102 Exllzqy < Ce? [recall (4.107)],
l A~
o201 ezllLoory < Ce? [recall (4.46), (4.118)],
we obtain that

I@ll« < Ce? + 8K |13 ]+,

where we also exploited that 0 < 7, < K p% < K$ 2in 1. Consequently, choosing a
sufficiently small 8, and fixing it from now on, we infer that

Iglls < Ce™.
In particular, for small &, we have that
3 2
1¢(r)| < Ce?|lr — Ris|™2, r € [Ris — 8, Ry — De31.

In turn, from the second equation in (4.106), recalling (4.46) and (4.108), via a standard
barrier argument, we find that

0| = €l = Riel ™', 7 € [Rye =8, Rie = Ded

The desired assertion of the proposition now follows at once from (4.103), (4.104),
(4.105), and the above two relations. O
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Lemma 4.16. Given D > 0, we have that
v 4 2
2,6 (r) = Ti2,6(r)| < Ce3, |r — Ry ¢| < De?,
provided that ¢ > 0 is sufficiently small.
Proof. As in the beginning of the proof of Proposition 4.15, given D > 0, if ¢ >
0 is sufficiently small, there exist r— € (RLS —(D+ 1)8%, Rie— Ds%) and ry €

(Rl,s + D8%, Ric+(D+ 1)8%) such that

[ (re)| < Ce3,

where ¥ = 12, — 12,.. Keeping in mind the proof of Proposition 4.3, (4.42), (4.46) and
(4.79)), it follows readily from the second equation of (4.63) that v satisfies

—ezAl// + ZgQﬁ%,gl/f = 0(8%), uniformly on [r_, r;], ase — 0.

The assertion of the lemma follows directly from the above two relations and the maxi-
mum principle, since 72 . > c in this region. O

Lemma 4.17. If ¢ > 0 is sufficiently small, we have

v Rl,e -r
[n,e(r) —i1e(r)| < Ceexple—"5—1, Rie<r <Rj.+3,
3

&

Ri¢c—r
2
3

4
|772,£(r) - ﬁZ,s(r)’ =< C82+C8§ exXp [C ] , Rie <r=<Ri; +4,

&

and

& T

. Rye—r
|772,5(r) - 772,8(r)| < Ceexp [C—z} v Rye <r <Ry +4.
£3

Proof. We only prove the estimates that concern R; . because those concerning Rj .
follow analogously. As in the proof of Proposition 4.15, let ¢ = . — 01, and ¢ =
n2.e — N2.e. In view of (4.42), (4.63), (4.64), the relations

4 Rie—r 2
E1 =0, |[Ez] <Ce3expyc———1 +Cs7,
e3
r € [Ry¢, Ry ¢ +368] [from (4.27), (4.28), (4.30)],

(4.79), and Proposition 4.15, we infer that

—e2Ag + p(Ng = O(i1,:9),
—e2AY +q(Y = O(?) + O(e3) exp [c—ngr ] , (4.119)

g3

uniformly on [Ry ¢, Ry ¢ +38], as ¢ — 0, for some smooth functions p, g satisfying

p>ce? and ¢ > c [recall (4.45) and (4.48)]. (4.120)
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Note that, from (4.79) and Lemma 4.16, we have

P(R1e) = O(e), @(R1:+28) = 0O(e),
) 4.121)
Y (R1e) = O(e3), Y(Rye +358) = O(s),

as ¢ — 0. A standard barrier argument yields that

Ri. —
()] < Cs3 exp [cle—zr] +Ce? + Ceexp [c
3

r—R1,5—38]
8 b

&
r € [R1e, R1 ¢ +36],

which implies that

4 Rie—r 2
[W(r)] < Ce3expyc——5— 1 +Ce”, 1 €[R1e, Ry +25],
£3
provided that ¢ > 0 is sufficiently small, as asserted. Now, via (4.119) and (4.13), we

arrive at

Ri. —
—6’Ag + p(r)g = O(s3) exp [c‘—r] :
£3
uniformly on [R] ¢, R +28],ase — 0.Keeping in mind (4.120) and (4.121), a standard
barrier argument yields that
— Ry —26
! 1’28 ] , T €[Rie Ry +24],
e3

Ric—r
lp(r)| < Ceexp jc——5—
3

] + Ceexp Ic
E 3

which implies that

&

R1 —r
lp(r)| <2Ceexp{c———

} , T €[R1g, Rig+3],
&

Wit

as asserted. O

4.7. Improved estimate for the Lagrange multipliers. In the sequel, building on Propo-
sition 3.3, via the results of the previous subsection, we are able to considerably improve
the estimate for A; . — A; o of the aforementioned proposition.

Proposition 4.18. If ¢ > 0 is sufficiently small, we have
|hie —Aio| < Cllogele?, i=1,2.

Proof. Motivated by the proof of the corresponding estimate for the scalar equation, as
given in [27, Thm. 1.1], we first show that

/Rz(nfs —a},)dx = O(|logele?), (4.122)

.
/ (13, — az.¢) dx +/ [n%,g —~ (a2,s + ial,s) ] dx = O(|loge|e?),
By, R2\BR1_S 82
(4.123)
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as ¢ — 0, and then exploit that

/R2 Ny e dx =/Rz apdx =1, i=12. (4.124)

It suffices to establish only the validity of estimate (4.123) because that of (4.122)
follows verbatim. By (4.21), (4.23), Proposition 4.15 and Lemma 4.16, we obtain that

T)%,g — a2 = ﬁ%s —az .+ 0 (Szlr - Rl,s|_1)
A2 —_
= g%(al,s _771,5)+O(82|V_R1,5| l)s

uniformly on [R ¢ — &, R1 ¢ — D5%], as ¢ — 0. Analogously, making use of Lemma
4.16, we see that

8 N 4
M, — o = o (ane - W) +0(Ed),

uniformly on [R . — Da%, Ry + DS%], as ¢ — 0. Hence, via Proposition 4.14, we
find that

8 n
/ (3, —are)dx = = (a1 — A1) dx + O(|loge|e?)
BR],s g2 BRLS

@12) g

2 / (@10 — 72 ,)dx + O(| logele?),
82 R1e—38<|x|<Rie

(4.125)

as ¢ — 0. Similarly, keeping in mind (4.13), we have

2 8 8 ) 2
/ ('72,8 —axe — —al,g) dx=—— Niedx +O(&%),
Rie<|x|<Rp¢S 82 82 JRy o <|x|<R| +8

(4.126)

as ¢ — 0, where we use Lemmas 4.16—4.17 instead of Proposition 4.15. On the other
side, thanks to (4.12) and Proposition 4.15, forr € [Ra — 8, Ry o — DE%], we find that

2 g 2 g - A ~ 2
Me— (02,8 + g_zal,s) =M~ (a2,8 + g_zal,s) + 2772,8(772,8 —M2,¢) +(M2,e — N2,¢)

2 2 ~1
=%, — (@ + £are) +O (Pl = Roel ™),

uniformly, as ¢ — 0. Analogously, making use of (4.12) and (4.79), we see that
. 4
77%5 - (02,5 + £al,s) = n%,g - (02,8 + éal,s) + O(g3),
82 82

uniformly on [R2 . — DS%, Ry + De%], as ¢ — 0. Thus, we get that

2 8
/ (772,5 —az.e — _al,s) dx
Ry e—d8<|x|<Rae 82

:/ (ﬁ% e — a2 — ial,s) dx +O(] ]0g8|82), 4.127)
Rye—d<|x|<Rpe \ 82
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as ¢ — 0. Similarly, using Lemma 4.17 instead of Proposition 4.15, keeping in mind
(4.13), we obtain that

/ 3, dx = / 73, dx +O(?) ase — 0. (4.128)
Ix|>Rye Rye<|x|<Rye+s

Now, estimate (4.123) follows readily by adding relations (4.125), (4.126), (4.127),
(4.128), and using the estimates

/|| . s(ﬁfg—atg)dx=0(|1oge|82),
X|—K1e|<

+
/ [ﬁ%s - (aZ,s + i“l,s) ] dx = O(Hog 8|82)1
[Ix|—Rp.¢| <8 82

as ¢ — 0, which follow from the proof of Theorem 1.1 in [27]. The proof of relation
(4.123) is complete.

By virtue of (3.14), increasing the value of D, if needed, we may assume that |R;  —
Rio|l < D| logs|%£, i = 1,2, for small ¢ > 0. It follows from (4.122), (4.123) and
(4.124), recalling (1.30) and (3.13), that

2
/ | (@1e — a0 dx = O(logele?),
|x|<Ri,0—Dlloge|2e
/ , (a2 —azp)dx
|x|<Rj,0—Dlloge|2e

8
+/ | ] |:(a2,a —a0)+—(a1e —aio) | dx
Rio0+D|loge|2e<|x|<Ra0—D|loge|2¢ 82

= O(|loge|e?),

as ¢ — 0. In view of (1.30), (1.31), and (3.13), this leads to the following system:

8
(Are —A10) — 5()\2,8 —22,0) = O(|loge|e?),

1 g g

= | (A2,e = 22,0) = —(A1e —A1,0) [ [ Ale — —A2e

I g1 53
+(Mae — Me)(hae — 22,0) = O(| logele?),

as ¢ — 0. Now, recalling that g < g», the assertion of the proposition follows straight-
forwardly. O

4.8. Proof of Theorem 4.1.

Proof. Let (171, n2) be the unique positive minimizer of E? in H provided by Theorem
1.3 (2). We saw in Proposition 3.3 that the associated Lagrange multipliers A; . satisfy
|Aie —Aiol < ellogel'/?,i = 1,2.In view of (4.79) and Proposition 4.12, the solution
(n1.¢, m2,¢) that is provided by Proposition 4.8 also fashions a positive radial solution of
the system (1.5), with the same Lagrange multipliers A; .. Therefore, by Theorem 1.3
(1), it coincides with (11, n2).
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Estimate (4.1) is proven in Proposition 4.18. Estimates (4.2)-(4.3) follow from Propo-
sition 4.14, the definition of 7); ., and the second estimate in (4.12). Estimates (4.4)-(4.5)
follow readily from Proposition 4.15, the definition of 7; . [especially recall (4.21) for
the second estimate in (4.4)], and (4.17). Estimate (4.6) follows readily from Lemma
4.13, (4.12) and (4.79); estimate (4.7) follows from (4.13), (4.21) and Lemma 4.17.
Finally, relations (4.8), (4.9) and (4.10) are consequences of (4.15), (4.21), (4.79) and
Lemma 4.17. O

4.9. Proof of Theorem 1.4. The desired minimizer (1] ¢, n2,¢) is that of Theorem 4.1.
Clearly, estimate (1.19) is the same as (4.1). Estimate (1.20) follows readily by combining
(1.30), (4.4), (4.5), (4.6), (4.7), (4.9), and (4.10). Estimate (1.21) follows readily from
4.2), (4.3), (4.4) and (4.5). In view of (1.12), (4.2) and (4.3), we infer that (1.22) holds.
Finally, the decay estimate (1.23) follows immediately from (4.6).

5. Estimates for the Annulus Case

In this section, we explain how to extend the previous section to prove Theorem 1.6.

5.1. Construction of an approximate solution.

5.1.1. Outer approximations As before, we work with the equivalent problem (1.29),
where aj ¢, az ¢ are the same as in (1.30), and A ¢, A2 ¢ are provided by Theorem 1.3
in the case of (1.9). This time, the problem with both diffusion terms neglected has a
unique continuous, nonnegative solution given by

1

2 _
n = (al,s + ﬁaz,s) , m =0, O0<r=R,,,
1 1
2 2 —
N =aj g 2 =4a;,, Ry, =r =Ry,
1
2 +
n =0, m = (az,a + éal,e) , Rie=r=R;,,
+
n =0, m =0, r=R;,,
where

1 g
—\2 2
(Ry )" = T ()»2,3 — 5)\1,5) . (R3 )" =2,

and

1 g
R = —(re—200).
1,e F2 ( l,e P 2,5)

In view of (3.13), and Remark 3.4, we have that

1
|R1e — Riol+ Ry, — Ryl < Clloge|ze. (5.1)

5.1.2. Inner approximations. Here, we define approximate solutions of the problem in
overlapping intervals around each point R, , < Ry 0 < Rj .
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On [0, Ry o — 4], where ,/aj is away from zero and has bounded gradient, we neglect
only the term £ Ay . from (1.29), and get the following problem:

gim (0} —are(M) +gm (0 — az,e(r)) =
—e2Am +gom (03 — az,e (1)) +gm2 (n? — a1,(r)) =0

From the first equation, we find that
2 8 2
N =die+ g—l(az,s —n3). (5.2)

Then, from the second equation, we obtain that

2
g
—&2 A + (gz - 5) m(n3 —axe) = 0.

The function ay . is negative in [0, Ry ) and positive in (Ry ., 00). We consider a
function A;  which coincides with a3 ¢ on [0, Ry 0 + 4], changes sign once in (R o +
8, 00), and diverges to —oo as r — o0o. We then take as an approximation for 7, on
[0, R1,0 — &] the restriction of the unique positive solution ﬁz_ . of the problem

2
82An = (g2 — ‘z—]) n (r;2 — Az,g(r)) in R?, n— 0asr — oo.

The properties of 7, , which we require are contained in Appendix A. Accordingly, we
take as an approximation for n; on [0, R1 o — 4] the one given by (5.2) with ﬁz_ in
place of 1. The approximations for n; . and 72 on [R ¢ + 6, R+0 — §] are the same
ones as in the case of two disks, namely those given by (1.33a) and (4.21) respectively.
Analogously, if r > Rj o + 8, we take as an approximation for 7 the trivial solution,
while for 1, the unique positive solution of the problem (1.33b) which we now call ﬁ; e

5.1.3. Gluing approximate solutions. Let

Ry +Rie R =R1,€+R§Y8
2 T 2 ’

re =

Analogously to Sect. 4.2, we can define a smooth global approximate solution
(11.¢> M2.¢) such that

1
g VA Y
(al,s +ord2e ~ g (1) ) , 0<r<re,

T 1 53
e aﬁg + 002(82), re <r <rg+9, -3)

7)1,8, r€+8§ra
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[ 1) . 0<r=<re,
1
a22)£+(9cz(82), re <r <rg+9,
1
v _ D 2
2,6 = (az,g + g%al,g - g%nl’g) ., re+8<r <R, (5.4)

1
2
(azgg + éam) + Ocz(ez), R, <r < R +§,

ﬁ;’g, R.+38 <r.

5.2. Estimates for the error on the approximate solution. The remainder £(11 ¢, M2.¢)
that is left when substituting the approximate solution (771 ¢, 772,¢) to the system (1.29)
is as in (4.25).

For convenience, we set

Ac={x eR? : r, < |x| < R} (5.5)
Analogously to Proposition 4.3 for the case of two disks, we have
Proposition 5.1. The following estimates hold for small ¢ > 0:
5
IEilz2a,) =< Ce?, IE20 204,y = CE3,
and

5
3 2
IE1ll 22\ a,) < Ce3, |E2ll2@a\a,) < Ce™

5.3. Linear analysis. In the sequel, we consider the linearization of (1.29) about the
approximate solution (7 ¢, 772, ), namely the linear operator that is given by (4.41) for
this choice of (71, M2.¢)-

As in the case of two disks, using that

2 . —
CmaX{Sj, 7]%,8}» |r - R2,8| = 8a

303, —aze >
772,5 2,8—{07 re[ovRZS_S]U[R£8+5’r8]’

2 o 3
377%5 —dle = IcmaX{SS, 771’6}’ [r — Riel <9,
. c, r €[re, Rie —81U[R1¢ + 6, Rel,

and
2
, cmax{e3, n3,}, |r— R}, <3,
37)2 e A2 — —dAl e =
&2 c, r €[Re, RE, —8]U[R:, +8, 00),

we can establish an analog of Proposition 4.6.

Proposition 5.2. The assertions of Proposition 4.6 are valid, provided that in (4.56) and
in the definition of the |||-|||-norm in (4.57), B, is replaced by A, defined in (5.5).
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5.4. Existence and properties of a positive solution to the system (1.29). Asin Sect. 4.5,
using the properties of the linearized operator that we discussed above, we construct a
positive, radial solution (91 ¢, 72.¢) to (1.29), near the approximate one (71 ¢, 772.¢ ), for
small ¢ > 0. As before, the first part of the uniqueness Theorem 1.3 guarantees that this
solution is the desired minimizer.

Using the |||-|||-norm, as redefined in Proposition 5.2, we can show that Propositions
4.7, 4.8 and Corollary 4.9 remain unchanged. We still denote the corresponding solution
by (11.¢, n2.¢). The assertion of the Lemma 4.10 also remains the same. The only differ-
ence in the proof is that, say in the equation for v,, we rearrange the terms differently,
namely write

—Av, + g1, — [g1a1,6, Cn + Entny) + 82,6, (n + Enptny) ] 1 Vn
+ 823 . (Xn + Enthny)Vn =0,
with

2,4
ln2.ellLrBs) < Cpe3™3r, p=2.

Then, the analog of Corollary 4.11 is

8 1
m,e — jare+ ;az,slle(B,;) +m2ellLoeps) < Ce3.

The positivity of the constructed solution, namely the analog of Proposition 4.12, requires
some additional considerations, since ;. is also small in the disk |x| < R, ,:

Proposition 5.3. If ¢ > 0 is sufficiently small, the constructed solutions satisfy
nie>0inR% i=1,2.

Proof. The main difference with the previous case is in the domain |x| < R, ,, which
we describe below.

We know that
A —r? 2 _ 2
Ne =, ———+0(3), rel0,R;, — De3], (5.6)
81 ’

where O (e 3 ) in dependent of D > 1 [this follows directly from the analog of Proposition
4.14 or from the analogs of (4.22) and Corollary 4.9], and

2 1
Mm.e(Ry . — De3) > ce3 > 0.
The function 71, . satisfies the elliptic equation

—&?Amye + (r* + gam3 . + 807, — A2.e)Me = 0.

In view of the above, the desired positivity of 1, . follows directly from the maximum
principle once we show that

_ 2
2 +g2n%,8 +gn%’8 — A >0, rell, RZ’S — Deg3].
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Note that, thanks to (5.6), the left-hand side equals

8 2
Flrz + g_l)‘*l,é‘ - )"2,8 + 8277%,5 + 0(83)7

where (9(8%) in dependent of D > 1. In view of (5.1), it suffices to show that
2 8 2 _ 2
[yro+ =Ai10—A20>cDe3, rel0, R20—D83], 5.7
81 ’

for some constant ¢ > 0 that is independent of D, ¢, provided that D is sufficiently large
and ¢ sufficiently small. Observe that, since r < RZ 0~ DE%, we have

r? < (Ry)*+D%3 —2DR; ye% < (R;.)* — DRy 465,
provided that ¢ < g(D). Now, recalling that
I' <o,
we can bound the left-hand side of (5.7) from below by

2
Ty (Ry ) +cDes + 20,0 — A0, (5.8)
’ 81

We use (1.26) to find that the quantity (5.8) equals CDE% withc = —T'; Ry > 0. O

5.5. Proof of Theorem 1.6. The proof for the case where (1.9) holds, instead of (1.8),
proceeds along the same lines as the proof of Theorem 1.4. This time, we have to
decompose [0, 00) into four intervals with boundary points R, , < Ri0 < R;,o- We

point out that the reduced problem near R,  is a scalar equation of the form (A.1) where

a(r) < Oforr € [0, RZO), a(R, ) = 0, and a(rp) = 0 for some r, > R, ), which is
covered in Theorem A.1.

6. The Auxiliary Functions Fy ¢, F> ¢

Assume that (1.3), (1.8) and (1.18) hold. In this section, we consider the auxiliary
functions
. o0
Fi,é‘(r) = é;é‘iriﬂ Wlth Si,&(r) =/ snj?:g(s)dsa r 2 Oy l = 19 2’ (6'1)
r

ie

which will play an important role when analyzing the energy with rotation. In particular,
we will link them to the limiting functions

W 07 < Rig,

o0
Fio(r) = with §00) = [ sards. 62)
0, otherwise, r

where a; is as in (1.12). Note that F; ¢ is bounded in R2 since a; > 0 for r < R; 0, as
observed in (3.6), (3.7), and F; o(R; 0) = 0. Note also that F; ¢ is merely continuous at
Ri o, as Fi/,() has a finite jump discontinuity across that point.

This section is devoted to proving the following.
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Proposition 6.1. Assume that (1.3) and (1.8) hold. Let F; . be given by (6.1) and F; ¢
by (6.2). Then

C(Rig—r)+Cei, if 0<r <R,

Fi,s(r) =< 2
Ces, if r > R,

and || Fi e — Fiollpo®2) < Cs%, i = 1,2, provided that ¢ > 0 is sufficiently small.

This proposition follows from Corollary 6.4 and Lemma 6.5. The proof is made under
the additional assumption (1.18). If g1 = g2, a simpler proof holds since F| . = F>
and the property is that for a single equation [3]. The scalar counterparts

o0
fielr) = / S ()ds, r>0, i=1.2. (6.3)
r

07, (r)

and their convergence to the corresponding limiting functions

+
7 saf o(s)ds 5 (02,0 + g,%al,o) (s)ds
fro(r) = (f—’(r) and f20(r) = = . (6.4)
1,0 (az,o + g,%al,o) (r)
have been studied in [3, Lem. 2.2]. We have
Fi10= fio, and Fo o= fo0 onlyonr > Ry . (6.5)

Actually, the ground states in the latter lemma had unit LZ-norm but its proof carries
over to the above case, yielding the following lemma.

Lemma 6.2. Suppose that u, is as in Proposition 4.2 with |,y — Ag| < C|loge]| %8. The
auxiliary functions

&:(r)

-
2 9 p—
uz(r)

§e(r) = /00 su(s)ds and f.(r) =

satisfy

Cro—r)+Cei, if0<r <r,
fs(”) <

2
CS?’ l..fr 2 ro,
1
and || fe — fO||L00(R2) < Ce3, where

Aol(r) frro sAo(s)ds, ifr <o,
Jo(r) =
0, ifr = ro,
provided that ¢ > 0 is sufficiently small.

The main task in this section is to show the following proposition.
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Proposition 6.3. If ¢ > 0 is sufficiently small, then

|FLe(r) — fie(r)| < Ce3, r >0, (6.6)

and 2
|Foe(r) — fae(r)| < Ce3, r > Ry,. (6.7)

Proof. From now on, let us fix a large D > 1 such that Lemma 4.13 is valid. The latter
lemma, similarly to [3, Lem. 2.2], implies that

0 < Flo(r) < Ce3, r> Ry +De3. (6.8)

Since the above estimate also holds for f] ¢, by virtue of Lemma 6.2, we infer that (6.6)
is valid forr > Ry . + Ds%.
Ifr <Rie+ Ds%, via (4.12), (4.15), and Corollaries 4.9, 4.11, we have

2 2
N7 o(Ri,e + De3)
e T <

()
Therefore, we can write
1 R1,5+Ds% 5 U%S(RI,S+D8%) 2
Fie) = — / s ()ds + e T Ry 4 Ded
771,5(”) r nlyg(r)
2
6 1 Ry ¢+De3
oD prar / S L (9)ds + O(e%), (6.9)
1,e r

uniformly in r > 0, as ¢ — 0. After rearranging terms, we find that
2
3

1 Ry ¢+De ) >
Fire(r) — f1e(r) = m/r S[nl,e(s)—ﬁl,s(s)]ds

n2 —n2 Ry +Ds%
7 .0r) =i (r) [Rie

A2 2
= 517 ¢ (s)ds + O(g3),
(Nt () ‘

. . 2 . ..
uniformly in r < Ry + De3,as ¢ — 0. Since on this interval we can set
@© =MNl,e —Nl,e = Nl,e — Nl,e>»
we obtain that
2
3

1 Ry ¢+De 5
Fl,s(r) - fl,s(r) = 27/ s(p +2ﬁ1,£§0)ds
771,8(”) r

2
3

— : Ry .+D¢
@=(r) 2¢(r) / le > ,
ds+O(e3),
[n%*g(r)ﬁ%,e(r) n%,s(r)ﬁl,e(r)i| r Snl’g(s) § (e3)

(6.10)
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uniformly in r < Ry + Ds%, as ¢ — 0. The above terms can be estimated by first
decomposing the interval [0, Ry . + D&‘%] as [0,R1 s —8]U[R1e — 8, R1 ¢ — 8%] U

[Ry, — 8%, Ry + Dé‘%] (with § > O fixed small), then making use of the uniform
estimates in (4.79) and Proposition 4.14 for ¢, and those in (4.15) and (4.17) for 7 ¢.
To illustrate the procedure, let us estimate in detail the term

2
3

1 Ry ¢+De
—— / 5716 ()9 (5)ds.
771’8(") r

IfR|, —e5 <r <s < Ry, +De3, since (4.15) and (4.79) imply that 1 () > ce’
and 7] ¢ (s) < Ceé, using (4.79) to bound ¢, we deduce that

1 R'~8+D6% 2 2 1
2—/ sN1.6(8)p(s)ds| < Ce 3 (Ry ¢+ De3 —r)ete
T)LS(}’) r

2 1 1 2
-3 3t

g3g6e =Ce .

A=

< Ce

1 . .. .. . 1
IfR—8 <r <s < Ry, — &3, arguing similarly, this time noting that ; ¢(r) > ce®,
we find that

2
3

1
()

2
3

Ry ¢+De .
/ shi1e(9)p(s)ds| < Ce™3e = Ce3.,

Lastly, if 0 <r <s < Ry — 8, where 11 ¢ > ¢, via Proposition 4.14, we get that

2
3

1 Ry ¢+De )
RN / sN1.e($)p(s)ds| < Ce3.
711,5(1’) r

The remaining terms in (6.10) can be estimated analogously to complete the proof of
(6.6). We point out that a rather delicate term is

2

3

g0(},) R ¢+De

A2
—_— sNy o(s)ds
Nt o (Nie(r) Jr ¢

whenr € [Ry ¢ —0, R — s.%], which can be estimated as follows: Since in this interval
we have 71 ¢ (r) > ¢(Ry ¢ — )2 > Cel/0 [from (4.17) and (1.34)], and the same holds
for n1 . via (4.79), it follows that
2
3

Ry ¢+De
sﬁ%’g(s)ds <C

1
ge o6

ni ,(r)

@(r)
n%,e(r)ﬁl,s(r) r

2 5
(|r — Ril +s§) < Cst.

The validity of estimate (6.7) can be verified analogously, using (4.21) to show that
~ 2.
|772,s - 772,s| <Ce3in [Rl,é‘v RZ,e —4]. O
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The assertion of the following corollary is analogous to the first assertion of Lemma
6.2 for the scalar case.

Corollary 6.4. If ¢ > 0 is sufficiently small, we have
C(Rio—r) if0<r=Rig—el,

0< Fie(r) < (6.11)
Ce

WIS

. 2
ifr > Rio—e3,

i = 1,2, where § > 0 is independent of € such that Ry o — R1,0 > 46 and Ry o > 46.

Proof. The desired estimate (6.11) follows readily from the fact that it holds with f; .
in place of F; . (see Lemma 6.2), via Theorem 4.1 and Proposition 6.3. O

The next lemma is a natural extension of the second assertion of Lemma 6.2.

Lemma 6.5. If ¢ > 0 is sufficiently small, we have
o,
| Fie — i,0||L00(R2) <Ce3, i=1,2,
where Fj o are as in (6.2).

Proof. The proof is based on the fact that

I fie = fiollpoom2)y < Cs%, i=1,2, (see Lemma 6.2),

where f; o are as in (6.4). In view of Proposition 6.3 and (6.5), we infer that the assertion
of the lemma is valid for i = 1 and that there exists some C > 0 such that

|Foc(r) — Fag(r)| < Ce3, r> Ry, +e3, (6.12)

[recall also (3.14)]. So, for the proof to be completed, it remains to show that there exists
some C > 0 such that

|Fac(r) — Fao(r)| < Ce3, 0<r <R, +e3. (6.13)
To thisend, for0 <r < Rj +8%, we write

(Ric+e7)

1 Ry ¢+e3 nz )
2 2, 2
F2,£(r)= B / Sﬂz,g(s)ds+ FZ,E(R1,£+83)3
’72,8(”) r

0 (r)
and
2
3

2
1 Rie+e 77%0(R1,8 +¢£3)
Fro(r) = 2—/ SU%,O(S)dS + =
772,()(”) r

2
F0(R1,e +€3).
m3.0(r)

Now, estimate (6.13) follows readily from (6.12) and the property that
|m.er) = m.o(r)| < Ce3, 0<r < Ryg+el.
The latter estimate is a consequence of (4.20)-(4.21), the fact that || ﬁf e a1 llpom2) <
Ce3 (see Proposition 4.2), Corollary 4.9 and Proposition 4.14. O
Finally, we have another estimate which will be used later.
Lemma 6.6. There exists C > 0 such that |V§; ¢ || o2y < C, i =1,2.

Proof. We have
E () = —rn} (r) (6.14)
so that the result follows from Lemma 2.2. O
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7. The Energy Minimizer with Rotation

In this section, we study the behavior of the minimizers of the energy functional EeQ
in the space H, defined in (1.1) and (1.2) respectively, as ¢ — 0. In the following we
assume

Q < Clloge|, (7.1)

for some constant C independent of . Any minimizer (u1, u2) = (U1, u2,¢) of EgQ in
'H solves the following system

—&2Au +u1(|x|2 +g1|141|2 +g|u2|2) +262iQxt . Vu, = KleU1 In RZ,
—&2Aus + ug(|x|2 + gg|u2|2 + gluy |2) +26%iQxL - Vuy = U2.elp in R2,

for some Lagrange multipliers jt1 ¢, t2,¢. The existence of a minimizer when €2 satisfies
(7.1) is a consequence of Lemma 7.1 below and of the compactness induced by the fact
that the harmonic potential lx|2 diverges as |x| — oo.

7.1. Energy estimates. The following proof uses some ideas from [24, Lem. 3.1].

Lemma 7.1. We have
2

Q)

j=1

2Q%gT -
+i/ a1_0|u1|2dx+2§22g2/ (az,o+ ial,o) luz|? dx.
I R2\D; R2\D, 82

Proof. We have
Vu;|?
5/ VUil 212 2) dix.
R2 4

We need to estimate the second term in the right hand side. Let us start with i = 1.
Notice that

2 2
V .
/ xt - Guj, Vuj)dx gz / | '2" dx +2Q* (R o+ R3 )
RZ j:l Rz

‘Q/ Xt (iuj, Vui)dx
R2

2g1F 2g1F _
x> < — my @10t = “p—apy()  for fx| = V2R 0.
This implies
/ |x|2|u1|2dx=/ |x|2|u1|2dx+/ x| || dx
R? {1x|<v2R1,0} (Ix|>+/2R1.,0}

29T
< 2R12’0+ 81 / a1_0|141|2d)€.
Iy Jravp,

Similarly, for i = 2, we have

x> < 2¢ (az,o + ial,o) (x) for |x| > V2R,

so that

. _
/ lx[*uzl* dx < 2R3 5+ 28> / (a2,0+—611,0) luz|? dx,
R2 R2\D, 82

which concludes the proof of the lemma. O



Thomas-Fermi Approximation 567

In analogy to Proposition 3.2, we have the following lemma.

Lemma 7.2. Let (u1, uz) be a minimizer of ESQ in H. There exists C > 0 independent
of € such that, fori =1, 2, we have

/ |Vu;|>dx < C|logel|?,
RZ
2
[ (it =) dx < ce?logeP,
R2

_ g B
/ lui [*ay o dx +/ (ur|? + lu2?) (az,o + —al,o) dx < Ce*|logel’.
R2\D, ' R2\D, 82

Proof. On the one hand, by the definition of minimizers, by Lemma 3.1 and Proposition
3.2, we have

ES(uy,u2) < ES(n1, m) = E2(n1, m) < Clloge| + K, (7.2)

with K as in Lemma 3.1. On the other hand, we have
2
ES(uy, u2) = EQ(uy, up) + K — QZ/ xt - Guj, Vuj)dx.
j=17®

The right hand side can be bounded from below by means of (2.4) and of Lemma 7.1
as follows:

2 2
Q [Vu;| 14 2 2
El(ur, uz) > 21 /R2 H ) +—482(|”i| —a;) ] dx

.\ r( 1 292)/ i
g1 —s — a ui X
282 Fz R2\D, 1,0
g g N
+o—= / lup |? (az,o + —al,o) dx
2¢e R2\D2 82

1 2 8 B 2
+82 53 — 28 a0+ —aio luz|“ dx
2¢ R2\D, &

—2Q*(Riy+R3 ) +K.

The result follows by combining the last inequality with (7.2) and by using (7.1). O
In analogy to Lemma 2.1, we have the following

Lemma 7.3. Let (11, uz) be a minimizer of E f in 'H. For ¢ sufficiently small, we have

C«/Mi,s(llvi,s +Uje+ H+C
&

2
luil” < mie/gis  IVuillpomey <

forsome C > 0,i =1,2, j #1i.
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Proof. For ¢ sufficiently small, the following holds
2y VR 2 Au) > 2l Ples 2 — L
A(|1"]| )_2|Vuj| +2(MJ,AMJ)28—2|L{]| (g]|uj| _|M],8|)’

where we use —2Qx - (iu;, Vu;) > —Q2|x|*{u;|? — |Vu,|* and condition (7.1). We
can proceed very similarly to Lemma 2.1: let

2

w12 —

;= giluil - Mice| we have  Aw! > 2(w))?

so that we conclude again with the non-existence result by Brezis [14]. Note that by
testing the equation of u; by u; itself, and working as above, yields that p; > 0.

To prove the second part, fix x € R2, L > 0 and for y € Bor(x), let z;(y) =
u;(e(y — x)). Then

—Azi = —zi(&y — xI* + gilzilP + glzj 1P — i) — 267y — )t - Vzi = hi ().
We have, by Lemma 7.2 and by (7.1),
QI — )" Vzill 2y, (o) = €QIXT - Vil 2,0y < C

for a constant C independent of x. Therefore, using also the L°°-bound above, we

have [|hi el 28, (x)) < C/Bive(ie + 1je +1) + C. We deduce that [z || g2, () =<
C . /Mie(pie +mje+1)+C and we conclude by a bootstrap argument. O

Lemma 7.4. Let (11, uz) be a minimizer of Ey in 'H and denote by ;. the associated
Lagrange multipliers. There exists C > 0 independent of € such that, fori = 1,2,

|Mi,£| <C.

Proof. We test the equation for u; by u; itself and integrate by parts, which is possible
since u; € H'(R?, C). The term containing  can be bounded by means of Lemma
7.1, whereas the other terms can be rewritten as in Proposition 3.3. Finally, the desired
bound follows from the energy estimates of Lemma 7.2. O

7.2. Non-existence of vortices. The proof presented here is an adaptation of the proof
of the main theorem in [3]. Let us start with the following splitting of the energy, which
is introduced in [5].

Lemma 7.5. Let (uy1, uz) be any minimizer of E? in 'H and let (n1, n2) be the unique
positive minimizer of Eg in 'H provided by Theorem 1.3. Let

Ui .
v =—, fori=1,2.

ni
Then
E&(ur,u2) = EX(n1, m2) + FE(v1, v2),  where
2 2 ¢
F&(v,vp) = Z/Rz {?’Nmz + ﬁn?(lvjlz —1)? —njQxt - (iv;, ij)] dx
j=1

8 2.2 2 2
+@/Rz niny (1 — [vi|9) (1 — |v2]*) dx.



Thomas-Fermi Approximation 569

We skip the proof since it is similar to the one of Proposition 2.9. An integration by
parts and assumption (1.3) yield

Lemma 7.6. Let F; ¢ be the auxiliary functions introduced in (6.1) and let y be as in
(2.4). Then we have

2 2
P ;i N DI 2
FS&(vy, =§/ ’(V~2—4QF'J-)+ Yuil? = D*} dx <0,
e (v1, v2) ~ RZ[ > V| i,eJ Ui 482771 (Jvi] ) X =

where Jvj = (idy, v}, dy,v;) stands for the Jacobian of v;.

Proof. First we prove that we can rewrite F, 89 in terms of F; ¢ as follows

4g2

2 2
n; gi
F2(uy, vp) = E /IRZ {71 (|Vv,~|2 - 4QF,~,SJU,~) + 2ot - 1)2] dx
i=l1

g
o2 /R2 nins (1= v (1 — v ) dx. (7.3)

Indeed, by (6.14), the following holds
V= (—0ngi &) = —nix
and Stokes theorem yields

/ g,-(iu,-,w,-)i-vdaz/ {—&;V x (ivj, Vvj) +n5x" - (iv), Vv))}dx,
dBpr Bpg

where V x (ivj, Vv;) = 0y, (v}, 0y, Vj) — 0y, (iv}, 0y, vj) = 2Jv;. The boundary term
vanishes because, by Corollary 6.4, for R large, we have

£j(iv;, V)t -vdo
dBr

/ Fje(iuj, Vuj)do
JdBR
< C82/3/ (IVu;[* +uj|?) do
JBR
which vanishes along a sequence Ry — oo. Hence we have obtained
/ 17?)6L -(ivj, Vvj)dx = 2/ n?Fj,ngj dx,
R2 R2

and (7.3) is proved. Then, reasoning as in (2.3), we deduce that FSQ (vi, v2) > ﬁsg(vl, ).
On the other hand, since (1, u») is a minimizer and (11, 12) is real valued, we have
E$(ui, u2) < EE(q,m) = EL(m, ),

which, by Lemma 7.5, implies that Fsg(vl, ) <0. O

The rest of the section is devoted to proving that v; = 1.
Let 0 < x; < 1 be regular cut-off functions with the property that
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-3/2 -3/2

xi(r)y=1forr < R;o—2|loge| and x;(r) =0forr > R; o — |loge|

and moreover ||V x|l o2y < 2 10g8|3/2. We estimate 1:"89(1)1, vp) according to the
following splitting

ﬁsg(vl,vz) =A1+B —Ci+Ay+ By — (Cy,

where
a= ) vt Lotaur - 12} a
S S P P *
n; v
Bi= [0 = x| % (190l ~ 4@Fcsn) + Lot o = 12} ds
R2 2 4de

Ci = ZQ/ X,EiJv,- dx.
R2
Lemma 7.6 immediately provides
Al+B1+Ay+ By <Ci + (. (7.4)

Proposition 7.7. With the notation above, for ¢ small, we have B; > 0 fori = 1,2 so
that A1 + Ay < Cy + C,.

Proof. Due to the definition of B;, we can restrict our attention to the set
supp(1 — xi) = {x & |x] > Rio —2|loge| ).
Corollary 6.4 implies that in such a set we have F; ; < C|log £|~3/2. Hence assumption

(7.1) implies that QF; . < 1/4, for ¢ sufficiently small. Recalling that | Jv;| < [Vv; |2/2,
we deduce that

Vi 2 — 4QF . Ju; > ~|Vui
V| ie Uz_2| vil”,

and as a consequence,

2
)7.
Bz [ = {10+ LontuP = 17 dx. 1.5)
R2 4 de

The second part of the statement is obtained by combining with (7.4). O

Lemma 7.8. Let

—1
& = sy_l/z inf n; .
{suppxi}

There exists C > 0 such that & < Ce|loge|3/4.
Proof. Clearly a; > c|loge|™3/% in {suppy;}. Hence property (1.20) implies that
ni = \Jai — Ce'? > clloge|™/* in {suppx;), (7.6)

which provides the statement. O
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Lemma 7.9. There exists C independent of ¢ such that, for small ¢,

2 2
Yo, 1 (
Z/ Vol +_~2(|Ui|2—1)2 dx < C|loge]**(C1 + Ca).
{suppxi} 4E;

2

Proof. Recalling that 512 > e2/(y 77[.2) in {suppy;} and relation (7.6), we deduce

Vo2 1
/ Vol L w2 = 02} ax
{suppy;} 2 4]

2
n; 14
<CliogeP” [ 1 Eivul s Lfuf - 12} dx
{suppx;} €

On the other side, estimate (7.5) implies that

/]RZ[ |Vv,|+ r;l(|v,| 1)2]dx§A,-+2Bi.

The result follows by summing the above for i = 1, 2 and combining with (7.4). O

Proposition 7.10. Suppose that

22 max (|| Fioll @) < [loge| — (@ + 1) log logel, (7.7)

Sor a suitable o« > 0, where F; o are as in (6.2). There exists C > 0 independent of ¢
such that

A; + B; +|Ci| < Clloge|™"", fori=1,2.

Proof. We use aresult by Jerrard [25], as it is stated in [3]. Following the last mentioned
paper, we let

1300, k=1+qolloeel g k-1 (7.8)
o= , =l+o0———, = —. .
| log €| 100
Notice that
ef = |loge| /10 = |loge| ™13, (7.9)

As in [3], we can write [25, Lemma 8] as

2

Z|C1|<2§2k2/ wsi [Vl L e el aeeceba s S 1o,
2 |log &l 2 432

i=1

where &; is defined in Lemma 7.8. This formulation only makes use of the estimates in
Lemmas 6.6 and 7.9, so that it holds also in our case. Now, recalling that §& = F; 81712

and that 512 > 2/ (y 77i2) in {suppy;}, we deduce

| Fiell oo m2
Z|C1| <2§2kz ’lfogsz — Q) 4+ Ce ﬂ(1+2|c,|)
i=1 i=1
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so that

(1—Csﬁ)ZIC|<2QkZ" ]i(')'gL:’(RZ)A ce’.
l

We estimated F;  in Lemma 6.5, which provides
I Fiell oy < (14 Ce' )| Fioll ooy < (1+ CeP) | Fiollpoma),

where the last inequality holds for ¢ sufficiently small by virtue of (7.9). Also, Lemma
7.8 implies that, for every K > 0, we have

|log&| > (|loge| — log|loge|)(1 + K&#)

for ¢ sufficiently small with respect to K. By combining these facts with assumption
(7.7) and with our choice of k in (7.8) we obtain

log | log €|

IC11+1Ca < (1 —« k(A1 + Ay) + CeP
|loge| —log |loge|

| — o2 log? | log €|
|loge|?

<

)(A1 +A) + CeP. (7.10)

Recalling Proposition 7.7 we deduce

210g2|log8|
g2 el

A+ Ay < |Ci+ |G = 1 — 5
|loge]

)(A1 +Ar) + CeP,

so that

CeP |logel?

A+ A _—
' 2= ra log? |loge| ~

C|10g8|_

where in the last step we replaced relation (7.9). Being A; non-negative quantities, the
last estimate holds for both terms. In turn we deduce from (7.10) that |C;| < C|log ¢| -1
and from (7.4) that

B +B, <A +B+A+By <Ci+(Cy < C|10g£|_“.
Being B; non-negative by Proposition 7.7, the estimate holds for both terms. O

We can now derive a “clearing-out” property (see also [10]).

Proposition 7.11. Suppose that (7.7) holds. For ¢ sufficiently small, we have

[vil = = in {suppy;}.

| =
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Proof. We shall prove that
lvil > 1 —[loge|™" in {suppy;}. (7.11)
for i = 1, 2, which implies the statement. By combining Lemma 7.9 with Proposition
7.10 we obtain
2

A
E/ Vol +— (il = D} dx < Clloge*[logs| ™.
i=1 {suppx;} 2 481‘

Then Lemma 7.8 provides

1
= (Jvi]> = 1)?dx < C|loge|™® (7.12)
€7 J{suppyi}

fori = 1, 2. Next we observe that

|log e[’/

”Vvi”Lo"({suppx,-}) <C (7.13)

This comes from the fact that || Vu; || o g2y < C/e, as canbe seen by combining Lemmas

7.3 and 7.4, and that Vv; = Vu; /n; — uin;i/nl.z, together with estimate (7.6). Suppose
by contradiction that (7.11) does not hold, i.e. there exists xog € {suppy;} such that

lvi(xo)| < 1—|loge|™! ase — 0.
Then (7.13) implies
lv;(x)] <1 —C|loge|™" in By (x0) withrg=e[loge| ™2,

so that

1
— (vil> = 1)*dx = Clloge| 7,
€ By (xo)N{Suppx;}

which contradicts (7.12) for ¢ sufficiently small. Therefore (7.11) is proved. O

7.3. Proof of Theorem 1.5. We are now in position to give the proof of Theorem 1.5.
Proof of Theorem 1.5. We take Q2 < wy|loge| — w1 log|loge| with wp, w; such that
(7.7) holds (recall that Fj o is bounded in R?). Thanks to the previous proposition the

quantity w; = v;/|v;| is well defined in {suppx; } and satisfies Jw; = 0 (see [3]). Hence,
we find that

Cj=2Q/ xi&i(Jvj —Jw;)dx
{suppx; }

ZZQ/ VJ‘(XJ-S./)[(ivj,VvJ-)—(iwj,VwJ-)]dx.
{suppx;}
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Writing v; = pjei¢-f in {suppy;} we see that (iv;, Vv;) = pJZ.V¢j and (iwj, Vw;) =
V¢, so that Proposition 7.11 implies

. . Pj
v, Vo)) = (i), Vw;)| = ———
Pj

2
1]
lpj Vil <2lp7 — 1llp; V|

52‘|vj|2—1‘|wj|.

We insert it in the previous estimate to obtain

Cj < ZQIIV(XjEj)IILOO({suprj})/
{suppx;

2‘|vj|2—1‘.|w,-|dx
)
51‘ 2 1 2 2
= 4V2RUV(ED e, v e o (o2 = 1) | dx
{suppx;} €j

V|2 1 2
Vo)l +T(|v/~|2—1) dx.
2 4s§

where we used Lemma 7.8 and the estimate ||V (xi&)llz~®r2) < C|log 3/2. We sum
fori = 1, 2 and then we use the assumption (7.1), and Lemma 7.9, to obtain C1 + C <
Ce|loge|'*(Cy + C2), so that C; + Cy < (Cy + C2)/2 for ¢ sufficiently small. Since
C1 + C, is non-negative by Proposition 7.7, we conclude that C; + C, = 0. In turn,
relation (7.4) and Proposition 7.7 imply also A; = B; = 0 fori = 1, 2, that is

< CQe| log8|9/4/
{suppx;;}

A= | x '7—"2|VU-|2+L Y2 =12t ax =0
i = R2 Xi B i 4e2 1; Ui =
and [see (7.5)]
2
i 2, Y 42 2
/Rz(l — Xi) [ZI|VUi| + g2 (vil” = 1y ] dx =0.
Therefore, we infer that v; are both constants of modulus 1 as we wanted to prove. O
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Appendix A. The Scalar Ground State

Throughout Sects. 4.2—4.3, we have referred to the following

Theorem A.1. Assume that a € C! [0, 00) satisfies a’(0) = 0, there exist positive num-
bersry <ry < --- <rysuchthata(r;) =0, a(r) #0ifr # ri, and (=Did'(r;) > 0,
i=1,...,n and a(r) - —oo asr — 00. Assume also that ;1o € R satisfy us — 0
as e — 0.

Let Ag = a + . For sufficiently small ¢ > 0, by the implicit function theorem, there
exist0 <rig <rye <--- <rpesuchthatr; o — ri ase — 0, satisfying A¢(r; ) =0,
Ac(r) #0ifr #rie, and (=)' AL(rie) > 0,i=1,...,n.
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If ¢ > 0 is sufficiently small, there exists a positive radially symmetric solution
ne € C2(R?) 1o the problem

82An =7 (n2 — As(x)) , X € RZ, nx) — Oas |x| — oo, (A.1)
such that ]
Ine — V/AFll o2y < Cé3, (A2)
and )
clr —rigl+ce3, iflr —riegl <94,
3 — Ae > (A.3)

c, otherwise,
for some § € (O, 4—11 min;=1 ... p—1{ri+1 — r,-}). More precisely, we have
1 i r —Tie
ne(r) = &3 (_1)l+lﬂi,ev (ﬂi,s —2)
£3

O(e+lr=riel?) 0= DG —r) =8,

. (A4)

O(e) exp [—cg] if =8 <(=1)(r—rie) <0,
g3
where

181'3,8 = _a/(”i,a), i=1,...,n,

and V is the Hastings—McLeod solution, as described in (4.11). Estimate (A.4) can be
differentiated once to give

r—rieg

/ -1 i+l 22 1,/ 1 1 .
n(r)y=e 3(=1)" BV (ﬂi,s—)+0(83+|r—f”i,s|2) iflr —rigl <96,

g3
(A.5)
uniformly, as ¢ — 0. On the other side, we have

1e(r) — VA = 20(r —ri |73 if Ce3 < (D'(r—rie) <8, (A6)

uniformly, as ¢ — 0. Furthermore,

Ne — Af

and

< Ce? in Is =[0,7r1 ¢ —=68]U[r16+8, 72, —6]U- - -U[r, +8,00), (A.7)

ne(r) < Ce3 exp [—cg—§ _min | - r,~,8|} if AT(r)=0. (A.8)
=

-

Moreover, if a(x) = a(|x]) € C*(R?),

/
m— (VA:) =&20(r = riel 75, (A9)
and
Ane = & (VA) = 20(r =rio ), if €5 < (=1 —rip) <8, (A10)

uniformly, as ¢ — 0, and

Ine = V/Afllc2ry) < Ce2. (A.11)



576 A. Aftalion, B. Noris, C. Sourdis

Proof. All the assertions up to (A.8) are essentially contained in [27, Thm. 1.1], where
in fact no radial symmetry is imposed on a(-). Actually, relation (A.5) can be proven by
combining the proof of Corollary 4.1 in [27] with relation (3.40) therein. In passing, we
note that V/(s) < 0, s € R.

Let us further assume that a(x) = a(|x]|) € C*(R?). In order to establish relations
(A.9)-(A.10), we need a refinement of (A.6). Motivated from the identity

A (778 - \/A>€) —MNe (776 + J?s) (776 - J?s) =—&’A (\/A>e)
if CE% < (=Di(r — rie) < 8 (see also [24, Prop. 2.1]), we let

A (VA .
Ne — v Ag = 82% +¢ if CS% < (=D'(r —rig) <36, (A.12)
&

for some fluctuation function ¢. Pushing further the analysis in [17, Thm. 2.1] or [29,
Thm. 1.1], it can be shown that

lp(r)] < Ce* if§ < (=1 (r —rie) < 2. (A.13)
Making use of (A.6), and recalling that

Al(rig) =d'(rig) > —ci <0 as ¢ > 0, (A.14)
it follows readily that
2

e8¢ = (ne+v/Ac) =0 (Ir = rie7F) if CoF = (=10 = ri) <5,

uniformly, as ¢ — 0. Since
ne (ne+VA) Z clr = ril i Ce¥ < (=1 = ri) <5,

[from (A.6) and (A.14)], a standard comparison argument yields that

2
3

6| < Ce¥lr —riel ™2, Ce < (—=1)'(r —rie) <6,

where we have also used that
‘q& (r,-,g + (—1)"5)‘ < Ce* and ‘¢> (rl-,g + (—l)iCe%)‘ < Ce?,

which follow from (A.13) and (A.6) respectively; one plainly uses barriers of the form

:I:M£4|r — r,-,g|_171 with M chosen sufficiently large, see also [21, Lem. 2.1] or [26,
Lem. 3.10] for related arguments when the problem is independent of ¢ (for the present

argument to work it is crucial that |r — r; ¢| > 8%). Consequently, recalling (A.12), we
have shown the following refinement of (A.6):

A (VA,
ne — A = 82(2788) +e'0 (Ir - ri,s|_%) ,
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uniformly if Cs% < (-Di(r— rie) < 8,ase — 0, which complements (A.13). In turn,
via (A.1) and some straightforward calculations, this can be shown to imply (A.10).
Equivalently, we have that

(re = VAY) =20 (ir = riel %),

if Ce% < (=Di(r — rie) < ¢. Integrating the above identity from r; o + (=118 to

Fig+ (=1)iCe3, and using that (n, — \/A_s)/ (rie + (=1)'8) = O(?) as & — 0 (from
[24, Prop. 2.1]), we arrive at (A.9). Finally, relation (A.11) is shown in [24, Prop. 2.1]
to hold in the C'-topology but their proof carries over to yield the same estimate in
C™, m > 2, via a standard bootstrap argument (as in [9, Thm. 1]), provided that the
coefficients in the equation are sufficiently smooth. O

Appendix B. Proof of the Technical Estimate (4.111) in Proposition 4.15
Here we present the

Proof of (4.111). Suppose that ¢ satisfies (4.110) for some & € C(I).
Firstly, we establish (4.113). Let

O =p2g.

It is easy to see that ® satisfies

1
—&?®,, — ¢’ (3,0_1 + —) O, +Q(N®=ph, rel; ®=00ndl, (B.I)
r

where
2
8 2 15, 5 35~
o) = (g1 - 5) Gt —are) = etp™t = elpl.
Observe that, thanks to the lower bound in (4.112), we have
15, 3 2 -2 -3
0z p (k=2 —Ke’p? ) 2z pk = KD;*) zkp,  (B2)

provided that D; is sufficiently large. We may assume, without loss of generality, that
®, h > 0 (by writing h = h* — h™ if necessary). If ® attains its maximum value at a
point 7o € I, then ®,,(rp) < 0 and ®,(rp) = 0. So, letting po = Ry — 1o, via (B.1)
and (B.2), we obtain that

3
kpo®(ro) < pg h(ro),

ie., ®(rg) < K||,o%h||Loo(1) which clearly implies the validity of (4.113).
By (4.110), the upper bound in (4.112), and (4.113), we find that

1 1
e21p2 AdllLey < Kl p2hllLem). (B.3)
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From this, we derive a pointwise estimate for ¢, by making use of the identity

r

ro(r) — rog,(ro) :/ sApds, Yro,rel. (B.4)
ro
We can choose rg € (R ¢ — ZDjS%, Ri¢ — Djs-%) such that
2 2
$(R1e — Dje3) —p(Ry . —2Dje3)
Dj(;‘%

¢r(ro) =

It follows from (4.113) that

_3 1
l¢r(ro)l = Ke 3 Ip2hllLoor).
In turn, via (B.3) and (B.4), we get that

EI 1 1
r (] < Ke 3 lp2 Rl + 1102 Al | [ (Rie — 5) ZdS‘

51 PP L
< Ke 3|p2hllpeoy + Ke2pzhllie |og — P2

’

. 2 2 2 .
r € I.Hence, since p > Dje3 and Dje3 < pg <2Dje3, we infer that

_1 _ 1
P72 1) < Ke 2p2hlipeq, €l

Now, the desired estimate (4.111) follows by combining (4.113), (B.3) and the above
relation. O
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