
09 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

An Efficient Unbounded Lock-Free Queue for Multi-core Systems

Publisher:

Published version:

DOI:10.1007/978-3-642-32820-6_65

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer-Verlag

This is the author's manuscript

This version is available http://hdl.handle.net/2318/121343 since 2016-11-20T11:42:49Z



An Efficient Synchronisation Mechanism for
Multi-Core Systems

Marco Aldinucci1, Marco Danelutto2, Peter Kilpatrick3,
Massimiliano Meneghin4, and Massimo Torquati2

1 Computer Science Department, University of Torino, Italy
aldinuc@di.unito.it

2 Computer Science Department, University of Pisa, Italy
{marcod,torquati}@di.unipi.it

3 Computer Science Department, Queen’s University Belfast, UK
p.kilpatrick@qub.ac.uk

4 IBM Dublin Research Lab, Ireland
massimiliano meneghin@ie.ibm.com

Abstract. The use of efficient synchronization mechanisms is crucial
for implementing fine grained parallel programs on modern shared cache
multi-core architectures. In this paper we study this problem by consid-
ering Single-Producer/Single-Consumer (SPSC) coordination using un-
bounded queues. A novel unbounded SPSC algorithm capable of reducing
the row synchronization latency and speeding up Producer-Consumer
coordination is presented. The algorithm has been proven correctand
extensively tested on a shared-cache multi-core platform. The queues
proposed have been used as basic building blocks to implement the Fast-
Flow parallel framework, which has been demonstrated to offer very good
performance for fine-grain parallel applications.

Keywords: Lock-free and wait-free algorithms, bounded and unbounded
SPSC queues, shared cache multi-cores.

1 Introduction

In modern shared cache multi-core architectures the efficiency of synchroniza-
tion mechanisms is the cornerstone of performance and speedup of fine-grained
parallel applications. For example, concurrent data structures in multi-threaded
applications require synchronization mechanisms which enforce the correctness
of concurrent updates. They typically involve various sources of overhead which
have an increasingly significant effect on performance with increasing parallelism
degree and decreasing synchronization granularity.

In this respect, mutual exclusion using lock/unlock, is widely considered ex-
cessively demanding for high-frequency synchronisations [1]. Among other meth-
ods, lock-free algorithms for concurrent data structures are the most frequently
targeted. These algorithms have been devised by way of a hardware-implemented
class of atomic operations — so-called CAS, because of its paradigmatic mem-
ber Compare-and-Swap — in order to avoid an explicit consensus that would



increase the overhead for data accesses [2,3,4,5,6]. Unfortunately, CAS opera-
tions are not inexpensive since they might fail to swap operands when executed
and may be re-executed many times, thus introducing other sources of poten-
tial overhead, especially under high contention [1]. Furthermore, without explicit
consensus among parallel entities, the problem of correct memory management
arises for dynamic concurrent data structures because of the complexity in track-
ing which chunk of memory is really in use at a given time. In general, lock-free
dynamic concurrent data structures that use CAS operations should be sup-
ported by safe memory reclamation techniques in programming environments
without automatic garbage collection [7].

In this work we study the synchronization problem for the simplest concur-
rent data structure: the Single-Producer/Single-Consumer (SPSC) queue. SPSC
queues are widely used in many application scenarios; their efficiency affects per-
formance both in terms of latency and scalability to a non-negligible degree. In
particular, SPSC-based synchronisations are used both in the implementation
of high-level and completely general models of computation based on streams of
tasks [8], and in many parallel frameworks as basic building blocks [9,10,11].

SPSC queues can be classified in two main families: bounded and unbounded.
Bounded SPSC queues, typically implemented on top of a circular buffer, are
used to limit memory usage and avoid the overhead of dynamic memory alloca-
tion. Unbounded queues are mostly preferred to avoid deadlock issues without
introducing heavy communication protocols in the case of complex streaming
networks, i.e. graph with multiple nested cycles. Bounded SPSC queues have
been studied extensively since the emergence of the first wait-free algorithm
presented by Lamport in the late ’70s [12]. More recently, some research work
[13,14] revisited the Lamport queue, introducing several cache optimizations. On
the other hand, unbounded SPSC queues, which are not any less relevant, have
attracted less attention, resulting in quite a gap between the two SPSC families.

With the aim of filling this gap, we introduce and analyze here a novel al-
gorithm for unbounded lock-free SPSC FIFO queues which minimizes the use
of dynamic memory allocation. Furthermore, we provide a new implementation
for the widely used dynamic list-based SPSC queue, along with proof sketches
of correctness for both algorithms. Their performance is evaluated on synthetic
benchmarks and on a simple yet relevant microkernel. The performance and the
benefits deriving from the use of our SPSC queue when programming complete
and complex application have already been assessed in [15,16].

The paper is organized as follows: Section. 2 provides the relevant background
and related work discussing the reference implementations of the SPSC queue
for shared-cache multi-cores. Section 3 introduces the list-based unbounded al-
gorithm (dSPSC), while in Sec. 4 a novel algorithm for the unbounded queue
(uSPSC) is presented, together with a proof sketch of its correctness. Perfor-
mance results are discussed in Sec. 5. Section 6 summarizes the contribution.



2 Producer-Consumer coordination using SPSC queues:
background and related work

Producer-Consumer coordination is typically implemented by means of a FIFO
queue, often realized with a circular buffer; Lamport proved that, under the
Sequential Consistency (SC) memory model [12], a SPSC buffer can be imple-
mented using only read and write operations [17]. Lamport’s circular buffer is
a wait-free algorithm, i.e. it is guaranteed to complete after a finite number of
steps, regardless of the timing behavior of other operations. Another important
class of algorithms are the lock-free algorithms, which enforce a weaker property
with respect to wait-free: they guarantee that at any time at least one process
will make progress, although fairness cannot be assumed.

Lamport’s circular buffer algorithm is no longer correct if the SC requirement
is relaxed. This happens, for example, in all architectures where write-to-write
memory ordering (W →W using the same notation used in [18]) is relaxed, i.e.
two distinct writes at different memory locations may be executed out of program
order (as in the Weak Ordering memory model [18]). A few modifications to the
basic Lamport algorithm allow correct execution even under weakly ordered
memory consistency models; they have been presented first and proved formally
correct by Higham and Kavalsh [19]. The idea behind the Higham and Kavalsh
queue basically consists in tightly coupling control and data information into a
single buffer operation by extending the data domain with a new value called
BOTTOM, which cannot be inserted into the queue. The BOTTOM value can
be used to denote an empty cell, and then used to check if the queue is empty
or full without directly comparing the indexes of the queue’s head and tail.

Ten years later Giacomoni et al. [13] followed a similar line by proposing
the same basic algorithm and studying its behavior in cache-coherent multi-
processor systems. As a matter of fact, Lamport’s queue results in heavy cache
invalidation/update traffic because both producer and consumer share both head
and tail indexes5. This can be avoided, as already noted in [19], by using a
BOTTOM value that makes it possible for the producer to write and read only
the tail and for the consumer to write and read only the head indexes. Since this
technique applies nicely to data pointers where NULL is the BOTTOM value,
Giacomoni et al. proved that on weakly ordered memory model, a Write Memory
Barrier (WMB) is actually required to enforce completion of the data write
by the producer before the data pointer is passed to the consumer6. Figure 1
presents an implementation of the SPSC algorithm proposed in [13] which may
be regarded as the reference algorithm for bounded SPSC queues.

Avoiding cache-line thrashing due to false-sharing is a critical aspect in
shared-cache multiprocessors and so much research has been focused on trying to
minimize this effect. In [13] the authors present a cache slipping technique suit-
able for avoiding false sharing on true dependencies (i.e. pointers stored within

5 The producer updates the tail index, the consumer updates the head index, and
both the producer and the consumer read both head and tail indexes.

6 WMB is also referred to as store-fence



1 bool push(void∗ data) {
2 if (buf[pwrite]==NULL) {
3 WMB(); // write−memory−barrier
4 buf[pwrite] = data;
5 pwrite+=(pwrite+1>=size)?(1−size):1;
6 return true;
7 }
8 return false;
9 }

10 bool pop(void∗∗ data) {
11 if (buf[pread]==NULL)
12 return false;
13 ∗data = buf[pread];
14 buf[pread]=NULL;
15 pread+=(pread+1>=size)?(1−size):1;
16 return true;
17 }

Fig. 1: SPSC circular buffer implementation as proposed in [13], where buf is an
array of size size initialized to NULL values.

queue cells) and for enforcing partial filling of the queues in such a way that
producer and consumer operate on different cache lines. A different approach
for optimizing cache usage, named cache line protection, has been proposed in
MCRingBuffer [14]. The producer and consumer thread update private copies of
the head and tail indexes for several iterations before updating a shared copy.
Furthermore, MCRingBuffer performs batch update of control variables, thus
reducing the frequency of writing the shared control variables to main memory.
A variation of the MCRingBuffer approach is used in the Liberty Queue [20].
The Liberty Queue shifts most of the overhead to the consumer end of the queue.
Such customization is useful in situations where the producer is expected to be
slower than the consumer.

Unbounded SPSC queues have not benefited from a similar optimization
effort and, to the best of our knowledge, have been approached only through
the more general and more demanding CAS-based Multiple-Producer/Multiple-
Consumer (MPMC) queues.

3 Basic Unbounded List-Based Wait-Free SPSC Queue

A way to design a SPSC queue is to use as a starting point the well-known two-
lock Multi-Producer/Multi-Consumer (MPMC) queue described by Michael and
Scott (MS) [6]. The MS queue is based on a dynamically linked list of Node(s)
data structures, using an head and a tail pointers which (both) initially point to
a dummy Node (i.e. containing NULL values). The Node structure contains the
actual user value and a next pointer. Concurrency between multiple producers
is managed by a lock for enqueue operations and symmetrically consumers use
a different lock for dequeue operations.

Inspired by the MS queue, we propose a new unbounded SPSC queue whose
algorithm is sketched in Fig. 2 (where lines §2. and §2. can be safely ignored
here at the moment as they introduce a further optimization that is described
later on in this section)7. The push method allocates a new Node data structure,
fills it and then adjusts the tail pointer to point to the current Node. The pop

method gets the current head Node, places the data values into the application
buffer, adjusts the head pointer and, before exiting, deallocates the head Node.

7 We use the §M.n notation to reference line n from the pseudo-code in Fig. M.



1 struct Node {
2 void∗ data;
3 struct Node∗ next;
4 };
5 Node∗ head,∗ tail;
6 SPSC cache;

8 bool push(void∗ data) {
9 Node∗ n;

10 if (!cache.pop(&n))
11 n = (Node∗)malloc(sizeof(Node));
12 n−>data = data; n−>next = NULL;
13 WMB(); // write−memory−barrier

14 tail−>next = n; tail = n;
15 return true;
16 }

18 bool pop(void∗∗ data) {
19 if (!head−>next) return false;
20 Node∗ n = head;
21 ∗data = (head−>next)−>data;
22 head = head−>next;
23 if (!cache.push(n)) free(n);
24 return true;
25 }

Fig. 2: Unbounded list-based dSPSC queue implementation with Node(s)
caching. The list is initialized with a dummy Node.

In general, one of the main problems with the list-based implementation of
queues is the overhead associated with dynamic memory allocation/deallocation
of Node structures. To mitigate the overhead, it is common to use a data struc-
ture as cache, where elements are kept for future fast reuse, instead of being
deallocated [21].

For a more tailored optimization, the specific allocation pattern can be taken
into account: the producer only allocates while the consumer only frees nodes. To
take advantage from this pattern, we add a bounded wait-free SPSC queue im-
plementing a Node cache, which is used to sustain a “return” path from consumer
to producer of Node structures that can be reused. The introduced optimization
clearly moves allocation overhead outside the critical path at the steady state.
The resulting algorithm, called dSPSC, is shown in Fig. 2; line §2. and line
§2. introduces the proposed cache optimization.

Along with some standard definitions we now provide, for the presented
dSPSC, a sketch proof of FIFO queue correctness and lock-freedom property.

Definition 1 (Correctness). Assuming that simple memory read and write
operations are atomic, a SPSC queue is defined as correct if it always exhibits
FIFO behavior for any interleaving of push and pop operations.

Note that the condition that simple memory reads and writes are atomic is
typically satisfied in any modern general-purpose processor for aligned memory
word loads and stores.

Theorem 1 (dSPSC). Under a weak consistency memory model, the dSPSC
queue defines a correct lock-free SPSC FIFO queue if a lock-free allocator is used.

Proof (Sketch). In a sequentially consistent model, correctness of the dSPSC
derives trivially from correctness of the two-lock MS queue (where the two locks
have been removed as there is no concurrency between producers or between
consumers) and of the bounded SPSC queue used for the Node cache [13].

Moving to a weak memory model, the bounded SPSC queue is still correct
([13]) while the memory barrier at line §2. ensures the correctness regarding



the dynamic linked list management. Indeed, all changes to Node n structure as
well as to the memory pointed by data have to be committed to memory before
the node itself can be visible to the consumer (i.e before the tail is set to point at
the new node). It is trivial to see that, similar to what happens with the SPSC
queue in [13], no other store fence is required inside the push and pop methods
under weakly ordered memory model.

Concerning the lock-free property, the strategy that is used by dSPSC for the
memory management is lock-free because the allocator is lock-free by hypothesis
and the SPSC used as a cache is lock-free by construction. As the rest of the
dSPSC algorithm does not present any statement where producer or consumer
can block, the progress is guaranteed.

ut

4 Fast Unbounded Lock-Free SPSC Queue

The SPSC algorithm [19,13], described in Sec. 2, is extremely fast (see Sec. 5)
but implements a bounded queue. The dSPSC algorithm, presented in Sec 3, is
lock-free and realizes an unbounded queue, but pays for the flexibility achieved
via a list-based implementation with decreased spatial locality in cache behav-
ior. However, the two approaches can be combined in a new lock-free algorithm
for the unbounded SPSC (called uSPSC ) inheriting the best features of both.
The new algorithm is sketched in Fig. 3. The basic idea underpinning uSPSC is
the nesting of the two queues. A pool of SPSC bounded queues (called buffers
from now on) is linked together into a list as a dSPSC queue. The implemen-
tation of the pool of buffers aims to minimize the impact of dynamic memory
allocation/deallocation by using a fixed-size SPSC queue as a freelist as in the
list-based dSPSC queue.

The unbounded queue uses two pointers: buf w which points to the writer’s
buffer (i.e. the “tail” pointer), and a buf r which points to the reader’s buffer
(i.e. the “head” pointer). Initially both buf w and buf r point to the same buffer.

The push method works as follows: the producer first checks whether the
current buffer is not full (line §3.), and then pushes the data. If the current
buffer is full, it asks the pool for a new buffer (line §3.), adjusts the buf w

pointer and pushes the data into the new buffer.
The pop method, called by the consumer, first checks whether the current

buffer is not empty and if so pops data from the queue. If the current buffer
is empty, there are two possibilities: a) there are no items to consume, i.e. the
unbounded queue is really empty; b) the current buffer is empty (i.e. the one
pointed by buf r), but there may be some items in the next buffer.

If the buffer is empty for the consumer, it switches to a new buffer releasing
the current one to be recycled by the buffer pool (lines §3.–§3.). From the
consumer viewpoint, the queue is really empty when the current buffer is empty
and both the read and write pointers (buf r and buf w, respectively) point to
the same buffer. If the read and writer queue pointers differ, the consumer has
to re-check the current queue emptiness because in the meantime (i.e. between



1 int size = N; //SPSC size

3 bool push(void∗ data) {
4 if (buf w−>full())
5 buf w = pool.next w();
6 buf w−>push(data);
7 return true;
8 }

10 bool pop(void∗∗ data) {
11 if (buf r−>empty()) {
12 if (buf r == buf w) return false;
13 if (buf r−>empty()) {
14 SPSC∗ tmp = pool.next r();
15 pool. release (buf r) ;
16 buf r = tmp;
17 }
18 }
19 return buf r−>pop(data);
20 }

22 struct Pool {
23 dSPSC inuse;
24 SPSC cache;

26 SPSC∗ next w() {
27 SPSC∗ buf;
28 if (!cache.pop(&buf))
29 buf = allocateSPSC(size);
30 inuse.push(buf);
31 return buf;
32 }
33 SPSC∗ next r() {
34 SPSC∗ buf;
35 return (inuse.pop(&buf)? buf : NULL);
36 }
37 void release(SPSC∗ buf) {
38 buf−>reset(); // reset pread and pwrite
39 if (!cache.push(buf)) deallocateSPSC(buf);
40 }
41 }

Fig. 3: Unbounded lock-free uSPSC queue implementation.

the execution of instructions §3. and §3.) the producer could have written
some new elements into the current buffer before switching to a new one. This
is the most subtle condition whose occurrence must be proven to be impossible
since, if the consumer switches to the next buffer while the previous one is not
really empty, a data loss will occur. In the next section we prove that the if

condition at line §3. is sufficient to ensure correct execution.

Theorem 2 (uSPSC). The uSPSC unbound queue given in Fig. 3 is correct
(according to Def. 1) on architectures with Weak Ordering consistency model
(and therefore with any stricter ordering).

Proof (Sketch). The SPSC and the dSPSC queues used as building blocks have
been proven to be correct under Weak Ordering (WO) consistency and stricter
models (e.g. Total Store Ordering) in [19,13] and Theorem 1, respectively.

We distinguish four cases with respect to the values of buf r and buf w used
by producer and consumer (respectively): buf r and buf w are 1) equal or 2)
different throughout execution of a push/pop pair; 3) they are different and
become equal; or 4) they are equal and become different. In case 1) uSPSC is
correct because of the correctness of the underlying SPSC. In case 2) uSPSC is
correct because the producer and consumer work on different SPSC buffers and
correctness follows from the correctness of the underlying dSPSC. In case 3 the
consumer catches up with the producer, and correctness trivially follows from
the correctness of the SPSC and the dSPSC queues.

Case 4 is more subtle: here the two buffers are equal and become different
when the producer observes that buf w is full and prompts move to a new write
buffer. The concern is that, because of WO, in the case where the SPSC buffer
size = 1 the consumer may see the buffer as empty and release it before a write
to it has been committed, thus causing data loss. We prove that this cannot
happen and the FIFO ordering is preserved.



Under WO model the consumer may be aware that the producer has changed
the write buffer only after a synchronization point that enforces program order
between two store operations is traversed. In our algorithm the synchronization
point is the WMB. In fact, the new value of buf w (line §3.) and the value
that is written to the buffer might appear in memory in any order or not at all.
Thus it might be thought possible that the reading buffer buf r could still be
perceived as empty while a new writing buffer has already been started (thus
buf r 6= buf w); the condition at line §3. could therefore evaluate to true even
if the previous buffer is not actually empty. This condition could lead to data
loss because the consumer might overtake and abandon a buffer still holding a
valid value. In the uSPSC this subtle case can never arise however, because, in
order to change the write buffer, a push operation in the dSPSC queue is called
(§3.) thus enforcing a WMB, which commits all previous writes to memory,
and so the if condition at line §3. is evaluated to true only if the consumer
buffer is really empty. FIFO ordering is trivially enforced by the FIFO ordering
of both nested queues dSPSC and SPSC queues. ut

It is worth noticing that, regardless of the implementation of the pool used
in the uSPSC queue, if size > 1 (line §3.) the two conditions buf r incorrectly
perceived empty and buf r 6= buf w, cannot hold together as at least two push
and one WMB must occur to make an empty queue become a full queue.

Corollary 1 (lock-free). The uSPSC queue is lock-free provided a lock-free
allocator is used.

Proof (Sketch). The SPSC queue, and the dSPSC queue coupled with a lock-free
allocator, are lock-free. Suppose we use a lock-free allocator in the allocateSPSC
and in deallocateSPSC. As the push and pop methods contain no cycle nor can
they block on any non lock-free functions, progress is assured. ut

Enhancing the queues to wait-freedom property. It can be demonstrated
that the SPSC queue proposed in [13] as well as the dSPSC when a wait-free
allocator is used, are both wait-free. The uSPSC is wait-free if a wait-free dSPSC
queue is used and if a wait-free allocator is used in the pool, in fact both the
push and pop methods complete in a bounded number of steps.

5 Experiments

All experiments reported in this section have been conducted on an Intel work-
station with 4 eight-core double context Xeon E7-4820 @2.0GHz with 18MB
L3 shared cache, 256K L2, and 24 GBytes of main memory with Linux x86 64.
Some of the tests presented have been executed also on an different architecture
and results can be found in [22]. Similar results of those presented in this paper
have been obtained on the AMD Opteron platform.

The first test is a two-stage pipeline in which the first stage (P) pushes 1M
tasks (a task is just a memory pointer) into a FIFO queue and the second stage



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 1024 8192

n
a

n
o

s
e

c
o

n
d

s

buffer size

mapping 1
mapping 2
mapping 3

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

64 1024 8192

n
a

n
o

s
e

c
o

n
d

s

buffer size

mapping 1
mapping 2
mapping 3

Fig. 4: Bounded SPSC (left) and unbounded dSPSC (right) average latency time
in nanoseconds varying the internal buffer size and cache size respectively.

(C) pops tasks from the queue and checks for correct values. Neither additional
memory operations nor additional computation is executed. With this simple
test we are able to measure the raw performance of a single push/pop operation
by computing the average value of 100 runs, varying the buffer size for the
bounded SPSC queue and the cache size for the dSPSC queue. We tested three
distinct cases that differ in terms of the physical mapping of the two threads
corresponding to the two stages of the pipeline. The first and the second stage of
the pipeline are pinned: i) on the same physical core but on different HW contexts
(mapping1); on the same CPU but on different physical cores (mapping2); on
two cores of two distinct CPUs (mapping3).

Figure 4 reports the values obtained by running the first benchmark for the
SPSC queue and the dynamic list-based dSPSC queue, varying the buffer size
and the internal cache size, respectively. Fig. 5 (left) reports the values obtained
by running the same benchmark using the unbounded uSPSC queue.

The bounded SPSC queue is almost insensitive to buffer size in all cases. It
takes on average 8–12 ns corresponding to almost 16–24 cycles per push/pop
operation with standard deviations less than 1.5 ns when the producer and the
consumer are on the same CPU, and takes on average 16–36 ns if the producer
and the consumer are on separate CPUs. The dSPSC queue is instead quite
sensitive to the internal cache size on the tested architecture. The best values for
the dSPSC queue range from 14 to 36 ns with a standard deviation that ranges
from 0.5 to 11 ns. Such values are obtained with big enough cache size (8192
slots). As expected, the bigger the internal cache, the better the performance
obtained. As a reference, the MS queue implementation is one order of magnitude
slower, going from 110–190 ns on sibling cores to 430–490 ns on non sibling cores.
The uSPSC queue (Fig. 5 left) is more sensitive to the internal buffer size in the
case where the producer and the consumer are pinned to separate CPUs and
when the internal buffer is small. The values obtained for the uSPSC are very
good if compared with those obtained for the dSPSC queue, and are almost the
same (or better) if compared with the bounded SPSC queue when using large



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 1024 8192

n
a

n
o

s
e

c
o

n
d

s

buffer size

mapping 1
mapping 2
mapping 3

50K

100K

150K

200K

1 8 16 24 32 40 48 56 64

T
h
ro

u
g
h
p
u
t 
(m

s
g
/s

)

n. threads

uSPSC
dSPSC

dSPSC no cache

Fig. 5: Unbounded uSPSC average latency time in nanoseconds (left) varying the
buffer size of the internal SPSC queues (pool cache size set to 32). Throughput
in msgs/s (right) running the ring microkernel when using the dSPSC queue
without any cache, the dSPSC with a cache size of 2048 and the uSPSC queue
with an internal buffer size of 2048 elements (pool cache size set to 32).

enough buffer size. It takes on average 9.7–14 ns per push/pop operation with
standard deviation less than 1.5 ns when the internal buffer size is greater than
or equal to 1024. The dSPSC queue is slower than the uSPSC version in all
cases. If the producer and the consumer for the dSPSC queue are not pinned on
the same core the dSPSC queue is more than 10 times slower than the uSPSC
queue. Instead, when the producer and the consumer are pinned on the same core
the performance is much better for the dSPSC queue (although always worse
than the uSPSC one) because they work in lock step as they share the same
ALUs and so dynamic memory management is reduced. It is worth noting that
caching strategies for the dSPSC queue implementation significantly improve
performance but are not sufficient to obtain optimal figures like those obtained
in the uSPSC implementations.

To test scalability of the queues we used a simple synthetic microkernel. We
consider N threads linked into a ring using an unbounded queue (dSPSC and
uSPSC). The first thread emits a number of messages which flow around the
ring. The message is just a pointer obtained from dynamic allocation of a small
segment of memory. The other threads accept messages, perform basic integrity
verification, copy the input message into a new dynamically allocated buffer,
free the input message and pass the new pointer to the next thread. When
all messages return to the first thread, the program terminates. Each thread
is statically pinned to a core whose id is the same as the thread id. For the
architectures considered, the core ids are linear so core 0 and 32 as well as core 0
and 1 are on the same physical core and on the same CPU, respectively, whereas
core 0 and 8 are on different CPUs. In Fig. 5 (right), we present the performance
in messages per second (msgs/s) obtained while varying the number of threads
of the ring. Three queue implementations were tested: the dSPSC queue without
using any internal cache (the basic algorithm); the dSPSC queue with a cache



size of 32K elements (i.e. with a SPSC queue of size 32K); and the uSPSC queue
using a 32K internal SPSC queue and a cache size of 32 elements.

The uSPSC queue implementation obtains the best performance reaching a
maximum throughput of ∼250K msgs/s, whereas the dSPSC reaches a maxi-
mum throughput of ∼128K msgs/s when using an internal cache of Node(s),
and ∼37K msgs/s when no cache is used. For this test, the MS queue implemen-
tations (not shown in the graph) obtain almost the same speedup as the dSPSC
queue without internal cache. The uSPSC queue scales almost linearly up to
32 cores, then the performance drops due to the fact that on core 0 we have 2
threads on separate context (the first and the last one of the ring) producing a
bottleneck. Adding more threads in the ring, the bottleneck is slowly absorbed
by the increasing throughput thus reaching an optimal final 32X improvement.

In this section we have shown only synthetic benchmarks in order to present
evidence of the distinctive performance of the uSPSC implementations. The
simple tests shown here prove the effectiveness of the uSPSC queue with respect
to the dSPSC implementation, and prove also how a fast implementation of a
cache of references inside the dSPSC queue leads to much higher throughput.
Since the uSPSC queue is used in the FastFlow framework, more performance
figures on real-world applications can be found in [15,16].

6 Conclusions

In this paper we studied several possible implementations of fast lock-free Single-
Producer/Single-Consumer (SPSC) queues for shared cache multi-core plat-
forms, starting from the well-known Lamport circular buffer algorithm. A new
implementation, called dSPSC, of the widely used dynamic list-based algorithm
has been proposed. Moreover, a novel unbounded lock-free SPSC queue algo-
rithm called uSPSC has been introduced together with a sketch proof of its
correctness and several performance assessments.

The uSPSC queue algorithm and implementation are able to minimize dy-
namic memory allocation/deallocation and increase cache locality thus obtaining
very good performance figures on modern shared cache multi-core platforms. The
uSPSC queue is currently used as a basic building block of the FastFlow parallel
programming framework [9] which has been used for the effective parallelization
of a number of real-world applications.

References

1. Orozco, D.A., Garcia, E., Khan, R., Livingston, K., Gao, G.R.: Toward high-
throughput algorithms on many-core architectures. TACO 8(4) (2012) 49

2. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement
scalable and lock-free FIFO queues. In: Proc. of the 7th ACM Symposium on
Parallelism in Algorithms and Architectures. (2005) 253–262

3. Ladan-Mozes, E., Shavit, N.: An optimistic approach to lock-free FIFO queues.
Distributed Computing 20(5) (2008) 323–341



4. Prakash, S., Lee, Y.H., Johnson, T.: A nonblocking algorithm for shared queues
using compare-and-swap. IEEE Trans. Comput. 43(5) (1994) 548–559

5. Tsigas, P., Zhang, Y.: A simple, fast and scalable non-blocking concurrent fifo
queue for shared memory multiprocessor systems. In: Proc. of the 13th ACM
symposium on Parallel algorithms and architectures (SPAA). (2001) 134–143

6. Michael, M.M., Scott, M.L.: Nonblocking algorithms and preemption-safe locking
on multiprogrammed shared memory multiprocessors. Journal of Parallel and
Distributed Computing 51(1) (1998) 1–26

7. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6) (2004) 491–504

8. Kahn, G.: The semantics of simple language for parallel programming. In: IFIP
Congress. (1974) 471–475

9. FastFlow framework: website. (2009) http://mc-fastflow.sourceforge.net/.
10. Thies, W., Karczmarek, M., Amarasinghe, S.P.: StreamIt: A language for streaming

applications. In: Proc. of the 11th Intl. Conference on Compiler Construction (CC),
Springer (2002) 179–196

11. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core
Processor Parallelism. O’Reilly (2007)

12. Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Comput. 28(9) (1979) 690–691

13. Giacomoni, J., Moseley, T., Vachharajani, M.: Fastforward for efficient pipeline
parallelism: a cache-optimized concurrent lock-free queue. In: Proc. of the 13th
ACM SIGPLAN Symposium on Principles and practice of parallel programming
(PPoPP). (2008) 43–52

14. Lee, P.P.C., Bu, T., Chandranmenon, G.P.: A lock-free, cache-efficient multi-core
synchronization mechanism for line-rate network traffic monitoring. In: Proc. of
the 24th Intl. Parallel and Distributed Processing Symposium (IPDPS). (2010)

15. Aldinucci, M., Ruggieri, S., Torquati, M.: Porting decision tree algorithms to
multicore using FastFlow. In: Proc. of European Conference in Machine Learning
and Knowledge Discovery in Databases (ECML PKDD). Volume 6321 of LNCS.,
Springer (2010) 7–23

16. Aldinucci, M., Danelutto, M., Meneghin, M., Kilpatrick, P., Torquati, M.: Effi-
cient streaming applications on multi-core with FastFlow: the biosequence align-
ment test-bed. In: Parallel Computing: From Multicores and GPU’s to Petascale.
Volume 19 of Advances in Parallel Computing., IOS press (2009) 273–280

17. Lamport, L.: Concurrent reading and writing. CACM 20(11) (1977) 806–811
18. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.

IEEE Computer 29 (1995) 66–76
19. Higham, L., Kawash, J.: Critical sections and producer/consumer queues in weak

memory systems. In: Proc of the Intl. Symposium on Parallel Architectures, Al-
gorithms and Networks (ISPAN), IEEE (1997) 56–63

20. Jablin, T.B., Zhang, Y., Jablin, J.A., Huang, J., Kim, H., , August, D.I.: Liberty
queues for epic architectures. In: Proc. of the 8th Workshop on Explicitly Parallel
Instruction Computer Architectures and Compiler Technology (EPIC). (2010)

21. Hendler, D., Shavit, N.: Work dealing. In: Proc. of the 4th ACM Symposium on
Parallel Algorithms and Architectures (SPAA). (2002) 164–172

22. Torquati, M.: Single-producer/single-consumer queues on shared cache multi-core
systems. Technical Report TR-10-20, Computer Science Dept., University of Pisa,
Italy (2010) http://compass2.di.unipi.it/TR/Files/TR-10-20.pdf.gz.

http://mc-fastflow.sourceforge.net/
http://compass2.di.unipi.it/TR/Files/TR-10-20.pdf.gz

	An Efficient Synchronisation Mechanism for Multi-Core Systems

