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Abstract The correctness in decrypting a ciphertext after some operations
in the DGVH scheme depends heavily on the dimension of the secret key. In
this paper we compute two bounds on the size of the secret key for the DGHV
scheme to decrypt correctly a ciphertext after a fixed number of additions and
a fixed number of multiplication. Moreover we improve the original bound on
the dimension of the secret key for a general circuit.

Keywords Public-key cryptography · Fully Homomorphic Encryption ·
Somewhat Homomorphic Encryption · DGVH scheme

1 Introduction

Fully Homomorphic Encryption (FHE) allows to perform computation of ar-
bitrary functions on encrypted data without being able to decrypt. The first
construction of an FHE scheme was described by Gentry in his PhD thesis [7]
in 2009. The first Gentry’s FHE scheme [7,8] proceeds in three steps. First,
one constructs a Somewhat Homomorphic Encryption (SHE) scheme, namely
which is able to decrypt correctly only a limited number of operations. The
second step is to express the encryption function by a low-degree polynomial
(squash). Then, one applies the bootstrapping to reduce the noise and to com-
pact the ciphertext.
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Nowadays three main families of FHE schemes are:

1. Gentry’s scheme [7,8], based on hard problems on ideal lattices, and im-
plemented in [13,9].

2. van Dijk, Gentry, Halevi and Vaikuntanathan’s (DGHV) scheme over the
integers [6], based on the approximate GCD problem, and implemented in
[5]. A batch version of this scheme has been proposed in [4].

3. Brakerski and Vaikuntanathan’s (BV) scheme based on the Learning with
Errors (LWE) problem [2] or Ring Learning with Errors (RLWE) problem
[3]. Other implementations are in [11,1,10].

For a survey articles see [12,14].

In this paper we focus on the SHE of the DGHV scheme [6], whose de-
scription we recall in Section 2. As already said, in SHE schemes if the size of
noise remains below a certain threshold, then one can decrypt correctly the
ciphertext. This threshold is dependent on the dimension of the secret key. In
Section 3, first we compute two bounds on the size of the secret key which per-
mit, respectively, to decrypt correctly a ciphertext after performing a certain
number of homomorphic either additions or multiplications (Lemma 2). Then,
in Lemma 3 we improve slightly the bound on the secret key for a general cir-
cuit, claimed in Lemma 3 in [6]. Finally, in Subsection 3.3 we show explicitly
that in Evaluate algorithm we cannot reduce the ciphertext modulo the public
key element x0 as observed in [6].

2 Preliminary

2.1 Homomorphic Encryption

Let λ be the security parameter. An homomorphic public key encryption scheme
E = (KeyGen,Encrypt,Decrypt,Evaluate) is a quadruple of probabilistic polynomial-
time (PPT) algorithms as follows.

– KeyGen(λ) = (sk, pk),
it takes as input a security parameter λ and outputs a pair of keys (sk, pk),
where sk is called the secret key and pk is called the public key.

– Encrypt(pk,m) = c, where m ∈ F2,
it takes as inputs pk and a message m, that is a bit, and outputs a cipher-
text c.

– Decrypt(sk, c) = m ∗,
it takes as input sk and a ciphertext c and outputs a bit m ∗.

– Evaluate(pk, C, (c1, . . . , ct)) = cf ,
it takes as input a public key pk, a circuit C and a t-upla of ciphertexts
c = (c1, . . . , ct), where ci = Encrypt(pk,mi) and outputs a ciphertext cf .

A fully homomorphic scheme is a scheme E = (KeyGen,Encrypt,Decrypt,
Evaluate) having the following property: if Decrypt(sk, ci) = mi, then

Decrypt(sk, c1 + c2) = m1 +m2 and Decrypt(sk, c1 · c2) = m1 ·m2
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More generally, whenever we have finitely many additions and multiplications,
that is, a t-input circuit C, then

Decrypt(sk,Evaluate(pk, C, c1, . . . , ct)) = C(m1, . . . ,mt)

Another requirement of FHE, called ciphertext compactness, is that the size
of ciphertexts is bounded and independent of the circuit C. To define formally
FHE, we need the following definitions given in [6].

Definition 1 The scheme E is correct for a given t-input circuit C if, for any
key-pair (sk, pk) output by KeyGen(λ), any t plaintexts m1, . . . ,mt ∈ F2, and
any t ciphertexts ci = Encrypt(pk,mi) for i = 1, . . . , t, it is the case that:

Decrypt(sk,Evaluate(pk, C, (c1, . . . , ct)) = C(m1, . . . ,mt).

Definition 2 The scheme E is homomorphic for a class C of circuits if it is
correct for all circuits C ∈ C, whereas E is fully homomorphic if it is correct
for all boolean circuits.

In this paper, we deal with Somewhat Homomorphic Encryption. Infor-
mally, we say that E is a SHE scheme if it has only some homomorphic prop-
erties but it is not fully since

– it can perform a limited number of operations,
– the ciphertexts compactness requirement might be violated.

In the next subsection we see in details the DGHV scheme defined in [6].

2.2 The Somewhat Homomorphic DGHV Scheme

Throughout the paper we denote a random choice of an element x in a set X

by x
$←−−− X. Let λ be the security parameter. The DGHV public-key scheme

is the homomorphic encryption scheme

E = (KeyGen,Encrypt,Decrypt,Evaluate),

which uses the five parameters (all depending from λ):

η : the bit-length of the secret key sk,
γ : the bit-length of the integers in the public key pk,
ρ : the bit-length of the noise in KeyGen,
ρ′ : the bit-length of the noise in Encrypt,
τ : the number of integers in the public key.

In [6] the authors proved that these parameters must be set as follows:

– ρ = ω(log λ), to protect against brute-force attacks on the noise;
– η ≥ ρ · Θ(λ log2 λ) to support homomorphism for deep enough circuits to

evaluate the “squashed decryption circuit” (see Sections 3.2 and 6.2 in [6]);
– γ = ω(η2 log λ) to thwart various lattice-based attacks on the underlying

approximate-gcd problem (see Section 5 in [6]);
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– τ ≥ γ + ω(log λ) (see Lemma 4.3 in [6]);
– ρ′ = ρ+ ω(log λ), used as secondary noise parameter.

Hence, In [6] the authors claimed that a convenient set of parameters is ρ = λ,
ρ′ = 2λ, η = O(λ2), γ = O(λ5) and τ = γ + λ.

For a specific odd η-bit positive integer p, we use the following distribution
over γ-bit integers:

Dγ,ρ(p) = {x = pq + r : q
$←−−− Z ∩ [0, 2γ/p), r

$←−−− Z ∩ (−2ρ, 2ρ)}.

The algorithms of E are defined as follows:

KeyGen(λ) = (pk, sk).
The secret key sk is a random odd η-bit positive integer

sk := p ∈ (2Z + 1) ∩ [2η−1, 2η).

The public key needs to be generated as follows
(a) for each i = 0, ..., τ , choose randomly xi ∈ Dγ,ρ(p),
(b) relabel xi so that x0 = pq0 + r0 is the largest,
(c) if x0 is odd and r0 is even, then the public key is the set of numbers

chosen in (a):

pk = {x0, x1, ..., xτ}.

Otherwise restart from (a).
Encrypt(pk,m) = c.

It chooses:
– a random subset S ⊆ {1, ..., τ},
– a random r′ in Z ∩ (−2ρ

′
, 2ρ

′
)

and computes a ciphertext

c = (m+ 2r′ + 2
∑
i∈S

xi) mod x0.

Decrypt(sk, c) = m∗.
The output m∗ is computes in this way:

m∗ = (c mod p) mod 2.

Evaluate(pk, C, c1, ..., ct) = cf .
Given the (binary) circuit C with t inputs, and t ciphertexts ci, we apply
the (integer) addition and multiplication gates of C to the ciphertexts,
performing all the operations over the integers, and return the resulting
integer. Finally the output of Evaluate is a ciphertext cf , which is an integer.



Some security bounds for the key sizes of DGHV scheme 5

3 Bound on the decryption

For every x ∈ R, let bxc = max{k ∈ Z : k ≤ x} be the floor of x and let
dxe = min{k ∈ Z : k ≥ x} be the ceiling of x. We denote the nearest integer
of x by bxe, in other words

bxe =

{
bxc if x− bxc < 1

2
dxe if x− bxc ≥ 1

2 .

Throughout the section for every y and m ∈ Z we consider the reduction of y
modulo m in (−m2 ,

m
2 ].

3.1 Bound on the decryption of fresh ciphertexts

Lemma 1 Let (pk, sk) be the output by KeyGen(λ) and let c be the output by
Encrypt(pk,m). If η > log2(2ρ

′
+ τ2ρ+1) + 2, then Decrypt(sk, c) = m, that is,

it is able to decrypt correctly c.

Proof By definition c = (m + 2r′ + 2
∑
i∈S xi) mod x0 is a fresh ciphertext.

In particular we have that:

c =
(
m+ 2r′ + 2

∑
i∈S

xi

)
mod x0

= m+ 2r′ + 2
∑
i∈S

xi − kx0 (for some k ∈ Z)

= m+ 2r′ + 2
∑
i∈S

(pqi + ri)− k(pq0 + r0)

c = p
(

2
∑
i∈S

qi − kq0
)

+m+ 2r′ + 2
∑
i∈S

ri − kr0.

When we decrypt the fresh ciphertext c, we compute:

(c mod p) mod 2 =
((
m+ 2r′ + 2

∑
i∈S

ri − kr0
)

mod p
)

mod 2.

Since r0 is even, if m+ 2r′ + 2
∑
i∈S ri − kr0 is in [−p2 ,

p
2 ) then

((
m + 2r′ + 2

∑
i∈S

ri − kr0
)

mod p
)

mod 2 =
(
m + 2r′ + 2

∑
i∈S

ri − kr0
)

mod 2 = m.

So we want that

−p
2
≤ m+ 2r′ + 2

∑
i∈S

ri − kr0 <
p

2
. (1)
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Now m + 2r′ + 2
∑
i∈S xi ≡ c mod x0, i.e. m + 2r′ + 2

∑
i∈S xi = c + kx0.

Since we consider the reduction modulo x0 in [−x0

2 ,
x0

2 ), then

k =
m+ 2r′ + 2

∑
i∈S xi

x0
− c

x0
=

⌊
m+ 2r′ + 2

∑
i∈S xi

x0

⌉
. (2)

Since m + 2r′ � x0, then we can consider m+2r′

x0
< 1

2 . In the worst case of
(2), we have that

∑
i∈S xi = τx0, so we obtain

k =

⌊
m+ 2r′ + 2

∑
i∈S xi

x0

⌉
=

⌊
m+ 2r′

x0
+ 2τ

⌉
= 2τ

Whereas, in the worst case of (1), replacing k with 2τ , we have

p

2
> m+ 2r′ + 2

∑
i∈S

ri − 2τr0.

Considering the number of bits of p, ri and r′, since r0 ∈ (−2ρ, 2ρ), for the
worst case we obtain

2η−1 > 2 · 2ρ
′
+ 2τ · 2ρ + 2τ · 2ρ = 2 · 2ρ

′
+ 4τ · 2ρ = 2(2ρ

′
+ τ2ρ+1),

that is, 2η > 4(2ρ
′
+ τ2ρ+1). Then we obtain the bound

η > log2(2ρ
′
+ τ2ρ+1) + 2. (3)

3.2 Bound on the decryption of ciphertexts after operations

In this section we present two different bounds on the bit-length of sk such
that DGHV-scheme is homomorphic with respect to either a circuit with only
v addictions or a circuit with only s multiplications.

Lemma 2 Let (pk, sk) be the output of KeyGen(λ) and let ca be the out-
put of Evaluate(pk, C, c1, ..., cv) in the addition case, where for i = 1, . . . , v,
Encrypt(pk,mi) = ci. Let cm be the output of Evaluate(pk, C, c1, ..., cs) in the
multiplication case, where Encrypt(pk,mi) = ci, for i = 1, . . . , s .

1. If η > log2(2ρ
′
+ τ2ρ+1) + log2 v+ 2, then Decrypt(sk, ca) is able to decrypt

correctly ca, that is, Decrypt(sk, ca) = C(m1, . . . ,mv) = m1 + · · ·+mv.

2. If η > s
[
log2(2ρ

′
+ τ2ρ+1) + 1

]
+ 1, then Decrypt(sk, cm) is able to decrypt

correctly cm, that is, Decrypt(sk, cm) = C(m1, . . . ,ms) = m1 · · · · ·ms.

Proof We consider two distinct cases: the sum of v ciphertexts and the product
of s ciphertexts. For both we examine the worst case, that is, the sum (or the
product) of ciphertext having the same error.
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1. We suppose that Evaluate takes as input v times the same ciphertext c. So,
we have

c+ ...+ c︸ ︷︷ ︸
v times

= vc = v
(
m+ 2r′ + 2

∑
i∈S xi − kx0

)
,

where k is such as in (2).
As in the proof of Lemma 1, we want that

−p
2
≤ v(m+ 2r′ + 2

∑
i∈S

ri − kr0) <
p

2
.

So we obtain 2η > 4v(2ρ
′
+ τ2ρ+1), that is,

η > log2(2ρ
′
+ τ2ρ+1) + log2 v + 2 = log2(v(2ρ

′
+ τ2ρ+1)) + 2.

Note that the inequality below is η > B + log2 v, where B is the value on
the right side of bound (3).

2. We suppose that Evaluate takes as input s times the same ciphertext c.

c · ... · c︸ ︷︷ ︸
s times

= c s =
(
m+ 2r′ + 2

∑
i∈S xi − kx0

)s
.

where k is such as in (2).
As before, we want that −p2 ≤

(
m+ 2r′ + 2

∑
i∈S xi − kr0

)s
< p

2 . Thus,
we obtain

2η > 2s+1(2ρ
′
+ τ2ρ+1)s,

that is,

η > s log2(2ρ
′
+ τ2ρ+1) + s+ 1 = s

[
log2(2ρ

′
+ τ2ρ+1) + 1

]
+ 1. (4)

Note that the inequality below is η > s · (B − 1) + 1, where B is the value
on the right side of bound (3).

In general we have the following lemma:

Lemma 3 Let C be a binary circuit with t inputs, and let C ′ be the associ-
ated integer circuit (where the gates are replaced with integer operations). Let
f(x1, . . . , xt) be the multivariate polynomial computed by C ′ and let d be its
degree. If

η ≥ d
[
log2(2ρ

′
+ τ2ρ+1) + 1

]
+ 1 + log |f |,

where |f | is the sum of absolute values of the coefficients of f , then
Decrypt(sk,Evaluate(pk, C, c1, ..., ct)) = C(m1, . . . ,mt).
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Proof Suppose that Evaluate takes as input s times the same ciphertext c, that
is, f(c) = a0 + a1c+ . . .+ adc

d. As before, we want that |f(c)| ≤ p/2. Since

|a0 + a1c+ . . .+ adc
d| ≤ |a0 + a1 + . . .+ ad| · |cd| = |f | · |cd|,

so, if the scheme is correct for |f(c)| < p/2, then it is correct also for |f ||cd| < p/2.
By 2. of Lemma 2, we obtain:

η ≥ d log2(2ρ
′
+ τ2ρ+1) + d+ 1 + log |f |.

Note that for large λ, we have log2(2ρ
′

+ τ2ρ+1) ≈ log2(2ρ
′
) and so we

obtain
η ≥ d(ρ′ + 1) + 1 + log |f |.

If we consider |f(c)| < p/8, we obtain η ≥ d(ρ′ + 1) + 4 + log |f |, slightly
improving of Lemma 3 in [6] which claims η ≥ d(ρ′ + 2) + 4 + log |f |. In
particular, if d is large then the improvement is significant.

3.3 Encrypt vs Evaluate

As we saw before, a key property of FHE is the compactness of the ciphertext
[7,8,14,6]. We recall that a ciphertext cf is compact if its size, after homo-
morphic evaluation, does not depend on the number of inputs t and it is also
independent of the circuit C. This means that we want that the ciphertext cf
has the same size of the output c of Encrypt. Note that it does not happen
in DGHV scheme because in the Encrypt algorithm the ciphertext is reduced
modulo x0, whereas in the Evaluate algorithm this reduction is not performed
and so the ciphertext grows. After just one multiplication the ciphertext be-
comes much larger than x0 and this implies that η > γ. We recall that γ has
to be equal to ω(η2 log λ), and so bigger than η.

Although the reduction modulo x0 would help in the Evaluate algorithm,
in [6] the authors claim that this reduction is not possible. Since their claim is
not obvious to us, we provide an explicit formal proof. We consider cf equals
to c2 modulo x0:

cf = c2 mod x0 =
(
m+ 2r′ + 2

∑
i∈S

xi − kx0
)2

mod x0

=
(
m+ 2r′ + 2

∑
i∈S

xi

)2
mod x0

=
(
m+ 2r′ + 2

∑
i∈S

xi

)2
− k′x0, for some k′ ∈ Z. (5)

So we have

k′ =

⌊(
m+ 2r′ + 2

∑
i∈S xi

)2
x0

− c2

x0

⌉
=

⌊(
m+ 2r′ + 2

∑
i∈S xi

)2
x0

⌉
,
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that is, in the worst case,

k′ =

⌊
(m+ 2r′ + 2τx0)2

x0

⌉
=

⌊
(m+ 2r′)2

x0
+

4τ2x20
x0

+
4τx0(m+ 2r′)

x0

⌉
.

Hence, since we can consider m+2r′

x0
< 1

2 , we obtain

k′ = 4τ2x0 + 4τ(m+ 2r′). (6)

By (5)

cf mod p =
((
m+ 2r′ + 2p

∑
i∈S

qi + 2
∑
i∈S

ri
)2 − k′pq0 − k′r0) mod p

=
((
m+ 2r′ + 2

∑
i∈S

ri
)2 − k′r0) mod p

Therefore, as done in the proof of Lemma 1 and replacing k′ with 4τ2x0 +
4τ(m+ 2r′), to decrypt correctly cf we want that

−p
2
≤
(
m+ 2r′ + 2

∑
i∈S

ri

)2
− (4τ2x0 + 4τ(m+ 2r′))r0 <

p

2
(7)

Considering the number of bits of p, ri and r′, since (7) holds f or every
r0 ∈ (−2ρ, 2ρ), in the worst case we can observe that

2η−1 >
(
2 · 2ρ

′
+ 2τ · 2ρ

)2
+ 2ρ

(
22τ2 · 2γ + 23τ · 2ρ

′)
> 4
(
τ2 · 2ρ(2γ + 2ρ) + 4τ · 2ρ+ρ

′
+ 22ρ

′)
.

Hence

η > 3 + log2

(
τ2 · 2ρ(2γ + 2ρ) + 4τ · 2ρ+ρ

′
+ 22ρ

′)
> 3 + log2

(
τ2 · 2ρ+γ

)
= 3 + 2 log2 τ + ρ+ γ > γ.
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