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Abstract  

Drought signalling among grapevine organs has a dual component: a hydraulic signal controlled by xylem 

physiology coexists with chemical signals (involving hormones, especially abscisic acid, ABA), 

transported via xylem, phloem and parenchyma pathways. Under water deficits, with high levels of 

tension developing, gas-filled xylem vessels may become disrupted by breakage of water columns, 

producing the so-called cavitation (or embolism) that drastically reduces hydraulic conductance. In 

grapevine, petioles and roots have been shown to be more vulnerable to xylem cavitation than shoots. 

When grapevines are re-watered following a drought period, either root or shoot and petioles recover 35–

40% of hydraulic conductivity within 24 h, suggesting that a common and coordinated mechanism of 

recovery among plant organs occurs. To reintegrate vessel functionality, plants have developed different 

repair mechanisms, which involve active and energy-consuming processes in shoot conductive tissues, 

possibly involving the contribution of aquaporins. The role of ABA in xylem embolism repair during 

diurnal cycles is also apparent and discussed. 

 

Introduction  

 

Water moves throughout the plants via the xylem conduits, pulled by the suction generated at leaf level, 

when transpiring. This transport is therefore the effect of negative (sub-atmospheric) pressures, which can 

get values lower than water vapour pressure (Tyree and Sperry, 1989). In similar conditions, the water 

column inside the vessels is under tension in a thermodynamically metastable state, which can produce a 

rapid phase change of liquid water to vapour, with formation of microscopic gas bubbles, according to a 

process called cavitation. The increasing number and size of these bubbles can interrupt completely the 

xylem conduit arresting its function: this phase is called embolism formation (Sperry, 1995).  

In grapevine this phenomenon starts at moderate drought stress conditions (Lovisolo and Tramontini, 

2010), when stem water potential (Ψstem) is between –0.8 and –1.2 MPa, and in young plants it originates 

from the new small diameter vessels, expanding then radially to older, larger vessels (Brodersen et al., 

2013b).  

Periodical cycles of embolism formation and repair are known to occur in vascular plants without 

affecting substantially the overall conductance of the xylem, compensated by a redundancy of flow paths 

such as the high number of single interconnected conduits (Tötzke et al., 2013). In the vineyard, Choat et 

al. (2010) observed that, although Ψstem varies significantly along the season (- 0.3 – -1.8 MPa), stem 

percentage loss of hydraulic conductivity (PLC) never exceed the 30%. Besides the seasonal fluctuations, 

grapevine plants present diurnal cycles of embolisms formation and repair that in water stressed plants 
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produce picks of 70–90% of PLC in the afternoon and significantly lower values in irrigated plants 

(Zufferey et al., 2011).  

Unfavourable environmental conditions (i.e. drought, freezing, and salinity) worsen the consequences of 

cavitation events by influencing, in the short period, leaf gas exchange and general plant water status, and 

potentially causing productivity losses, branches dieback or even the death of the entire plant, on a longer 

perspective. The majority of the studies conducted on causes and effects of embolism in grapevine are 

related to drought, owing to the typical growing conditions to which this crop is submitted and positive 

effect of a controlled water stress in the production of high quality wines. Moreover the physiological and 

mechanical processes generating cavitations strongly differ according to the type of stress, e.g. drought 

produces cavitations via the exogenous nucleation of gas bubbles while freezing for endogenous 

nucleation (Lo Gullo and Salleo, 1993). For all these reasons, the current chapter only considers the 

embolism related to water stress.  

 

Organs affected 

In vascular plants, according to the segmentation hypothesis proposed by Zimmermann (1983), the 

susceptibility to embolisms is reduced in proximity to the trunk, in order to protect as much as possible 

the vital parts of the plant. In grapevine this theory is confirmed, being the effects of cavitation more 

evident in leaves and roots than in stem (Schultz et al., 2003; Lovisolo et al., 2008a; Zufferey et al., 

2011). However, roots are submitted to positive root pressures (Tyree and Sperry, 1989) which favour a 

generally faster recovery from the embolisms and allow the organ to operate at xylem tensions closer to 

cavitation limits than shoots (Tyree and Sperry, 1988). In the shoot, the embolism resistance increases 

acropetally (McElrone et al., 2004; Choat et al., 2005). Furthermore, at given Ψstem, xylem vessels with 

larger lumen and longer elements are more vulnerable to embolism than smaller ones, in spite of the 

higher conductive capacity (Lovisolo and Schubert, 1998; Choat et al., 2005). Mimicking a moderate 

water stress, also grapevine stem downward orientation reduces stem hydraulic conductivity and enhances 

embolism resistance, by inducing accumulation of auxin in the apex which in turn affects the density and 

the size of the xylem vessels (Schubert et al., 1999; Lovisolo and Schubert, 2000; Lovisolo et al., 2002b; 

Favero et al., 2010). The expected damage is in fact proportionate to the larger pit area and heavier 

conductivity losses (Cochard and Tyree, 1990; Lo Gullo and Salleo, 1993; Choat et al., 2008), but also 

positively related more to pore diameter of the pit-membrane than to vessel diameter (Tyree and 

Zimmermann, 2002). Also wood density provides mechanical resistance to the walls preventing 

microfractures in the xylem walls (Lens et al., 2013). 

The current-year growth portions are more prone to cavitation than older parts of the plant because 

primary xylem conduits, with thinner and weaker primary cell walls and a greater surface of exposed pit 

membrane than secondary conduits, tolerate lower air-seeding thresholds (Choat et al., 2005). In addition, 
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“cavitation fatigue” has been observed on vessels which already embolized once, which oppose therefore 

a lower resistance to new cavitation events (Stiller and Sperry, 2002). Therefore, the accumulation of 

repeated stress and structural integrity of pit membranes in the primary xylem vessels increase the 

likelihood of water flow disruption (Brodersen et al., 2013b).  

In leaves the situation is complicated by the fact that the xylem dysfunction due to stress is a combination 

of tension-induced wall collapse and xylem cavitation, being the first more readily recoverable than the 

second, and probably more distributed in the minor veins, while cavitation affects mainly the leaf midrib 

(Blackman et al., 2010). In grapevine petioles a conductivity loss of 50% was observed at Ψstem of -0.95 

MPa and of more than 90% at -1.5MPa (Zufferey et al., 2011). In this organ, the level of damage is 

influenced by the stomata reactivity, in terms of speed and intensity, and by its control on transpiration 

(Domec and Johnson, 2012). Because of this role of barriers to embolism propagation, leaves can be 

assimilated to sort of hydraulic fuses (Zufferey et al., 2011). In this regard, abscisic acid (ABA) action is 

also relevant for avoiding cavitation, as it is the hormone devoted to induce stomatal closure in response 

to drought conditions (reviewed in grapevine by Lovisolo et al., 2010). Under either soil or atmospheric 

water stress, ABA is synthesized remotely in the roots or locally in the near tissues of the same leaf 

(Lovisolo et al., 2002a; Rogiers et al., 2012). Pantin et al. (2013) propose that this hormone triggers 

stomatal closure with a dual mechanism: biochemical and hydraulic. The former is widely acknowledged 

for its message targeted to the guard cells, while the latter is proposed by the same authors as an indirect 

effect of long-distance ABA signals. The suggested mechanism would involve the propagation of 

impairing water potential from the parenchyma around the xylem vessels, across the mesophyll to the 

stomata, as the consequence of a drop in water permeability at the level of the bundle sheath cells (Shatil-

Cohen et al., 2011; Speirs et al., 2013), with a synergistic effect on both leaf water potential and 

transpiration rate (Dodd, 2013).	A combination of hydraulic and hormonal signal in grapevine is thus the 

main mechanism to maintain adequate leaf water status and stomatal control of water loss (Rogiers et al., 

2012; Domec and Johnson, 2012, Tramontini et al., 2013a; Figure 9.1.). 

 

Spread and recovery 

The embolism spread from gas-filled to adjacent water-filled vessels is limited by the small pore size of 

the pit membranes, which connect adjacent conduits (Choat et al., 2008; Brodersen et al., 2010). 

However, when the differential pressure reaches a critical point, the embolisms start spreading, most 

likely by air seeding (Brodersen et al., 2013b). According to the air-seeding hypothesis, the maximum 

(rather than the average) diameter of the pit membrane influences the occurrence of embolism spread 

(Choat et al., 2008). Narrow diameter elements called “vessel relays”, which develop contemporarily to 
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the main xylem conduits as a product of the normal cambial activity, play a major role connecting large-

diameter, adjacent vessels (Brodersen et al., 2013a).  

The spread potential of embolisms is favoured by the extent of intervessels connectivity (Tyree and 

Zimmermann, 2002), the proximity of main xylem conduits (Brodersen et al., 2011) and the amount and 

orientation of vessel relays (Brodersen et al., 2013b). On the other hand, the ray parenchyma, by 

constituting separate modular units, allows neighbour xylem sectors to work independently, avoiding 

systemic embolisms spread (Brodersen et al., 2013b). The same living ray and paratracheal parenchyma is 

also involved in the xylem reversible gel occlusion and water refilling phase (Sun et al., 2008; Brodersen 

et al., 2010). 

While part of the water flow is interrupted by embolism, the plant is still able to compensate the reduction 

in hydraulic conductance through an ion-mediated up-regulation of the remaining conduits (Trifilò et al., 

2008). However, the same xylem anatomical redundancy, which in grapevine composes a complex 

interconnected network of tracheids and vessels, can represent a complication of the recovery phase, such 

as the water refilling of affected conduits (Brodersen et al., 2010), reinforcing the importance of the 

spatial organization of xylem vessels in the embolism spread and repair (Brodersen et al., 2013b). The 

simultaneous effect produced by vessels connections is one of the reasons for which characterization and 

quantification of the recovery time on a single isolated vessel results especially hard (Nardini et al., 

2011a).  

According to the in vivo observations performed on grapevine by Brodersen et al. (2010), the refilling 

phase occurs at Ψstem of -0.6 – -0.8 MPa with an overall average refilling time of about 2.3 h for a 20 µm 

diameter vessel and 17.3 h for a 150 µm diameter vessel. Due to the longer time required repairing 

embolisms in larger diameter vessels, these are expected to be the most likely subjected to refilling delays 

(Brodersen et al., 2010). Furthermore, the anatomic conformation of the vessel walls influences their 

surface wettability, bubbles removal and gas dissolution during the recovery phase (Kohonen and 

Helland, 2009; Zwieniecki and Holbrook, 2009; Brodersen et al., 2010). Also the geometric properties of 

pits and vessels, the developing contact angle and the gas concentration in the sap characterize the 

dynamics of gas bubbles elimination from the xylem conduits (Zwieniecki and Holbrook, 2000; Konrad 

and Roth-Nebelsick, 2003).  

At a smaller scale, embolism refilling is under metabolic control imposed at cell level through the ionic 

effect on osmotic forces displacing water molecules (Nardini et al., 2011b) and through the membrane 

intrinsic proteins, i.e. aquaporins (AQPs), expression and activation (Kaldenhoff et al., 2008). The main 

mechanism producing the displacement of water molecules from contact cells and functional vessels into 

the embolized unit is in fact the creation of an osmotic potential inside the embolized vessel. This is 

obtained by the parenchyma cells secreting solutes into the vessel and, by this, favouring the passive 

movement of water into the embolized vessel, accelerated by the contribution of the AQPs (Hacke and 
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Sperry, 2003; Brodersen et al., 2010).From this perspective, the role of living parenchyma cells 

surrounding xylem channels, from where AQPs act, becomes even more crucial than that of anatomical 

barrier (Salleo et al., 2004). 

The AQP-mediated water transport facilitates a rapid exchange of water across cell membranes (De Boer 

and Volkov, 2003) and its contribution to the plant recovery is quantitatively relevant. Lovisolo and 

Schubert (2006) observed that, on grapevine plants treated with mercurial reagents applied with the scope 

of excluding the plasmamembrane activity, the recovery of shoot conductivity after 24 h was of the 60% 

versus the 80% observed on untreated plants. The same treatment, imposed to roots of stressed plants, 

reduced by the 40% the root hydraulic conductivity with noticeable differences between rootstock 

genotypes (Lovisolo et al., 2008b; Tramontini et al., 2013b).  

More the embolism creation is frequent, lower is the capability of the plant to recover (Lo Gullo and 

Salleo, 1993). After a recovery phase, not all the vessels are refilled with water: they represent a source 

for future embolism formation during the next Ψstem drop, contributing to the cavitation fatigue of the 

system (Hacke et al., 2001).  

In leaves, where the xylem is largely composed by primary conduits, therefore scarcely resistant to 

cavitation, the ability to recovery from disruption is very high. Here Pou et al. (2012a) observed that the 

application of mercurial reagents produced a significant, although relatively small, inhibition of leaf 

conductivity of 30-40% only on well-watered vine plants, letting hypothesize a relative increase of the 

apoplastic contribution compared to symplastic path under stress conditions, as previously observed on 

herbaceous species. 

The process of xylem refilling occurs even when the bulk of still functioning xylem is under tension 

(Salleo et al., 2004) according to a finely regulated process discussed in detail by Nardini et al. (2011a). 

According to Nardini et al. (2011a), all the hypothetic mechanisms aimed at explaining water refilling 

imply the involvement of the vessel-associated cells (i.e., the living cells surrounding the xylem conduit). 

In this model, the native osmotic gradient driving the water movement along the vessel acts 

contemporarily to radial water flowing through membranes of the vessel-associated cells toward repairing 

xylem. The activation of several PIP1 and PIP2 AQP genes during embolism refilling has been reported 

from different organs of some woody species (Secchi and Zwieniecki, 2012), among which grapevine 

petioles (Perrone et al., 2012b). These water channels could favour the embolism removal by acting in 

two directions: axially, on the cell-to-cell water flow through the cortical parenchyma and/or radially on 

the water flow from parenchyma cells to xylem vessels (Perrone et al., 2012b). The regulation of AQPs 

activity during water stress seems to interact with ABA signals (Maurel et al., 2008), for which 

Kaldenhoff et al. (2008) suppose an indirect chemical control on the complementary AQP-mediated cell 

pathway during the recovery phase. This hypothesis has been recently reinforced by observations on 
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grapevine leaf tissues concerning the transcriptomic responses activated during recovery phase (Perrone 

et al., 2012b).  

Vitis sp. is also subject to seasonal type of embolism recovery process: the spring vessels filling after 

winter cavitation which is, however, driven by positive (over-atmospheric) root pressure (Sperry et al., 

1987). 

 

Genotype effect 

In ecological terms, the balance between conductive efficiency and embolism vulnerability observed on a 

plant is the result of the combined effect of genotype specificity and environmental conditions during 

growth. Some cultivars are less prone than others to cavitation due to the increasing elasticity of their 

cellular walls under water stress conditions (e.g Chardonnay in Alsina et al., 2007 and Robichaux et al., 

1986). Also the contribution provided by the AQPs activity in different genotype is a character 

influencing the water transport capacity of the plant, therefore the avoidance of cavitation and efficient 

water refilling of vessels (Lovisolo et al., 2008b; Tramontini et al., 2013b; Table 9.1.). Cavitation events 

in leaves can be interpreted either as a signal for stomatal closure or as the effect of limited stomatal 

control (Zufferey and Smart, 2012). Furthermore, the ecophysiological characterization of grapevine 

cultivars in terms of iso and anisohydric behaviour could be interpreted as a differential vulnerability to 

embolism resulting from the variation in hydraulic conductance (Schultz, 2003). This aspect is debated as 

confirmed by certain results (Chouzouri and Schultz, 2005; Lovisolo et al., 2008a; Zufferey et al., 2011; 

Pou et al., 2012b) but not supported by others (Alsina et al., 2007) probably due to the different 

experimental set up (Schultz and Stoll, 2010). However, also the differential regulation of AQPs 

expression (Vandeleur et al., 2009), ABA concentration (Soar et al., 2006; Perrone et al., 2012a) and 

differential sensitivity of AQPs to ABA (Pantin et al., 2013) in response to drought conditions, interact 

with iso and anisohydric behaviour in grapevines, straightening the relationship between cavitation and 

the stomatal behaviour. As mentioned above, ABA is an active mediator of drought avoidance (i.e. 

stomatal closure) and tolerance (i.e. embolism recovery) mechanisms and is involved in the grape berry 

ripening phase as well (Castellarin et al., 2007; Giribaldi et al., 2010 and 2011; Table 9.1.). The 

combination of these aspects with the acknowledged importance of a controlled water stress in enhancing 

grape quality, confirm the need for a better understanding of ABA signal differential actions generated by 

different grapevine genotypes. 

 

Conclusions 
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According to Tyree and Zimmermann (2002) the xylem organization of a plant is the result of the 

combination of safe and efficient water distribution. All the steps involved in the embolism formation and 

repair are dynamic and complex, including passive hydraulic mechanisms, active energy-expensive 

processes, hormonal (particularly ABA) and hydraulic (AQP) signalling (Figure 9.1.). Through them, the 

plant imposes a conspicuous control over the flow and distribution of water in the xylem system, 

responding actively to the changing environmental conditions (Brodersen and McElrone, 2013).  

 

 

Table 6. 1. Summary table on the main aspect involved in the embolism formation and repair. The authors 

propose a classification based on the separation between mechanisms devoted to avoid the embolism 

formation, therefore supporting plant resistance, and those involved in the recovery phase, therefore in 

plant tolerance. Symbols “+”, “-” and “±” indicate positive, negative or two-direction relationship 

between the parameter and its effect towards resistance or recovery of the embolism. 

 

 Embolism 

 Avoidance à Resistance Tolerance à Recovery 

Anatomy + woody density 

- cavitation fatigue  

+ number of vessels 

- size of vessels (lenght and diameter) 

- maximum pore diameter and pit area  

  

+ root pressure 

- gas concentration in the sap 

- number of vessels 

-vessels diameter 

geometric property of pits and vessels 

developing cavitation angle 

± intervessel connectivity 

ray parenchyma and vessel relays  

Hydraulic and 
metabolic 
control 

± stomatal conductance, involving AQP 
activity and ABA signal for stomatal 
closure 

osmotic forces, 

± stomatal conductance, involving AQP 
activity and ABA signal promoting AQP 
synthesis/activation 
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Figure 6.1. Scheme of the main mechanisms involved in the embolism formation and repair. The brown-

coloured area marks the processes located at the root level as the green-coloured area marks those 

happening in the leaves. All the processes in the middle, concerning embolizing, functional and refilling 

vessels, parenchyma and phloeam, can be indiscriminately located at any point of the xylematic system. 

 


