
23 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Characterization of Late Prehistoric Plasters and Mortars from Erimi - Laonin tou Porakou
(Limassol, Cyprus)

Published version:

DOI:10.1111/arcm.12168

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1525268 since 2018-07-11T11:04:01Z



 1 

 
 

 

 

This is an author version of the contribution published on: 

Questa è la versione dell’autore dell’opera: 

 

CHARACTERIZATION OF LATE PREHISTORIC PLASTERS AND MORTARS FROM ERIMI 

– LAONIN TOU PORAKOU (LIMASSOL, CYPRUS) 

Archaeometry, 58 (2) 2016, pp. 284-296, DOI: DOI: 10.1111/arcm.12168 

  

The definitive version is available at: 
La versione definitiva è disponibile alla URL: 

 

http://onlinelibrary.wiley.com/enhanced/doi/10.1111/arcm.12168 



 2 

CHARACTERIZATION OF LATE PREHISTORIC PLASTERS AND MORTARS FROM ERIMI 

– LAONIN TOU PORAKOU (LIMASSOL, CYPRUS) 

F. TURCO
*,1

, P. DAVIT
1,2

, F. CHELAZZI
3,4

,
  
A. BORGHI

5
,
 
L. BOMBARDIERI

3,6
, L. OPERTI

1,2
  

1 
Department of Chemistry, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy. 

 
2 

NIS Centre of Excellence, Via Pietro Giuria 7, 10125, Torino, Italy. 

3 
Missione Archeologica Italiana a Erimi – Laonin tou Porakou, Limassol District, Cyprus.. 

4 
Department of Archaeology, University of Glasgow, Gregory Building, Lilybank Gardens, G12 

8QQ, Glasgow, UK. 

5
 Department of Earth Science, University of Torino, Via Valperga Caluso 35, 10125, Torino, Italy 

6 Department of Humanities, University of Torino, Via Sant'Ottavio 20, 10124, Torino, Italy. 

*
Corresponding author. Tel.: +39 011 6707583; fax: +39 011 2367583; E-mail address: 

francesca.turco@unito.it. 

 

 

ABSTRACT: 

 

Several plasters and mortars from the Middle Bronze Age site of Erimi-Laonin tou Porakou 

(Cyprus) were analyzed in order to perform a technological characterization. Morphological (SEM), 

elemental (EDX), mineralogical (XRPD), petrographic (polarized OM, SEM-EDX), thermal (TGA) 

and spectroscopic (FTIR) techniques were applied. Plasters and mortars were identified as 

pyrotechnological lime products, obtained using local raw materials and containing a moderate 

amount of spathic calcite fragments. Use of organic fibres was ascertained and a seminal use of a 

crumbled ceramic as additive was evidenced.  

 

Keywords: Cyprus, Bronze Age, Lime Plasters and Mortars, Multitechnique characterization, 

Technology of production. 

 

 

INTRODUCTION 

 

In very recent years the archaeometric investigation of ancient plasters and mortars in Cyprus has 

mailto:francesca.turco@unito.it
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become more and more fertile (Philokyprou, 2012a, 2012b; Theodoridou et al., 2013). These studies 

have gone beyond the previous work, highlighting the inaccuracies in defining and characterizing 

plasters and mortars based on their evaluation using only a macroscopic visual exam, as denounced 

by Wright (1992) who complained the confusion between gypsum- and lime-based materials. 

Moreover, as far as lime-based materials are concerned, this confusion extended also to the 

identification of real burnt lime and/or simply crushed limestone, both known in Bronze Age 

Cyprus and still used today in modern constructions. The pyrotechnology of limestone to obtain 

lime plasters/mortars is based on the lime cycle, consisting of three stages: calcination, hydration or 

slaking and carbonation. Calcination is the thermal stage that transforms calcium carbonate into 

calcium oxide (quicklime) and carbon dioxide at temperatures in the range of 750-850°C, according 

to the reaction: 

CaCO3(s)  CaO(s) + CO2(g) 

The hydration step consists in the highly exothermic reaction between calcium oxide and water to 

obtain calcium hydroxide (slaked lime): 

CaO(s) + H2O(l)  Ca(OH)2(s) 

Through drying and ageing processes, calcium hydroxide undergoes carbonation by absorbing 

atmospheric carbon dioxide and thus reforms calcium carbonate, which is chemically 

indistinguishable from the original limestone and represents the plaster/mortar binder: 

Ca(OH)2(s) + CO2(g)  CaCO3(s) + H2O(l) 

The carbonation process consists of many steps and mainly depends on the CO2 diffusion rate into 

the material pores and on the CO2 dissolution rate, which is primarily controlled by the water 

content.  

As to the use and diffusion of this pyrotechnological material during recent Prehistory, 

already in 1975 Gourdin and Kingery argued that “true [burnt] lime plasters were utilized in the 

aceramic Neolithic” in a wide area covering Syria and Israel (Gourdin and Kingery, 1975). Kingery 

et al. (1988) argue that the invention of the limestone burning process to obtain lime 
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plasters/mortars can be traced back to the Epipaleolithic in the Levant since the Kebaran period, and 

the use of lime-based materials in architecture has been present since the Natufian period. Recent 

studies on Cypriot plasters/mortars have highlighted the use of both limestone and gypsum plasters 

during the Neolithic (Kalavassos Tenta and Khirokitia) and the Chalcolithic (Kissonerga 

Mosphilia), with some decline during the Early and Middle Bronze Ages (henceforth, respectively, 

EC and MC), when mud mortars were mainly employed for floors and walls (Philokyprou, 2012a). 

However, structures made of or floors covered by lime plaster were found in all the major EC-MC 

sites such as Sotira Kaminoudhia (Swiny et al., 2003), Marki Alonia (Frankel and Webb, 1996, 

2006) and Alambra Mouttes (Philokyprou, 2012a). Despite this archaeological evidence, 

archaeometric data from EC and MC contexts in Cyprus are rather scarce when compared to Late 

Bronze Age (henceforth LC) contexts (Philokyprou, 2012a, 2012b).  

As far as the technology of production is concerned, the possible hydraulic character of lime 

mortars requires a special focus. Hydraulicity consists in the capability of hardening in the presence 

of water or moisture; hydraulic mortars display waterproof properties, strengthen earlier and show 

greater resistance than aerial materials. Volcanic pozzolanes, which are the typical natural hydraulic 

additive, are not available in Cyprus, where the addition of artificial pozzolanes (i.e. baked clay or 

ceramics) is known since the Late Bronze Age (Philokyprou, 2012a; Theodoridou et al., 2013). All 

the above mentioned researches guided the present study towards a multi-technique archaeometric 

investigation to provide an overall morphological, compositional and technological characterization 

of the Middle Bronze Age plasters/mortars from the site of Erimi-Laonin tou Porakou, with the aim 

of contributing to the study of Cypriot Bronze Age architectural use of plasters and binders 

(Bombardieri et al., forthcoming-b).  

The archaeological site of Erimi-Laonin tou Porakou is located in the Limassol district 

(Cyprus), on a wide plateau on the left bank of the middle valley of the Kouris River. The valley is 

located within an extended sedimentary geological formation (the Pakhna formation), which 

characterizes a large area on the southwest side of the Troodos complex. The formation is marked 
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by a gentle hilly landscape that mainly consists of marlstone and gypsum, with siltstone and argillite 

interlayers (especially in the river valleys); moreover many of the plateaux display a thick layer of 

harvara, sometimes accompanied by terra-rossa deposits. Harvara is a typical Cypriot term that is 

usually translated as “limestone” but more often represents surface layers of secondary calcite. The 

archaeological site revealed two occupational periods: the first is dated to the Bronze Age and has 

two phases of occupation [Phase A: MC III – LC I A (1750-1450 B.C. ca.), Phase B: EC III – MC II 

(2100-1750 B.C. ca.)], while the second, known only from surface materials, dates to the Late 

Roman period (300-750 A.D.). The top of the hill is extensively occupied by a workshop complex 

(Area A) with several basins and flowing channels used for in loco manufacturing and working 

activities, while Area B is presumably inhabited by living/residential units. A large necropolis (Area 

E) occupies the natural south-sloping lower terraces. The local architectural style includes the 

construction of rooms by directly carving the bedrock, and the use of plasters/mortars for coating 

basins, daubing walls and for the construction of different functional elements (bins, pits, 

emplacements, hearts, kilns, etc.) (Bombardieri, 2013).  

 

Figure 1. A map of the island of Cyprus, showing the location of the site of Erimi – Laonin tou 

Porakou, and a GIS overlay of the excavated trenches/areas on the Ikonos II satellite image. 
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During Phase B, limestone plasters/mortars were used extensively throughout the site, both in 

production contexts (Area A) and in the supposed living/residential units (Area B). Functional 

areas, mainly outdoor working areas as well as roofed rooms were constructed, in part, by carving 

into the limestone outcropping. This served as a possible attempt to protect against infiltration, both 

from humidity and also small rodents (Amadio and Chelazzi, 2013). In the subsequent Phase A the 

use and function of the workshop complex is likely the same as the former Phase B, however the 

architectural pattern seems to partially change. In this phase, large limestone slabs replaced the 

massive use of binders for the construction of bins, kilns and thresholds, and the use of 

plasters/mortars remained limited to supporting new features, coating basins and bins and levelling 

floors (Amadio and Chelazzi, 2013; Bombardieri et al., forthcoming-a). 

 

 

SAMPLING AND ANALYTICAL TECHNIQUES 

 

During the 2011 and 2012 excavation campaigns at Erimi-Laonin tou Porakou, 22 representative 

samples of plaster/mortar-based materials from different functional contexts and architectural 

features (Table 1) were collected and subjected to a multitechnique characterization.  

Table 1. Description of the analyzed samples of plasters/mortars. Area: production contexts 

(Area A) or living/residential units (Area B); Phase: occupational phase [A: MC III – LC I A 

(1750-1450 B.C. ca.), B: EC III – MC II (2100-1750 B.C. ca.)]; M/P: mortar or plaster. The 

assignment is done according to the functional location; Fibers/Rhapides/Spicules/Pottery: X 

indicates occurrence.  

 
Sample Area Phase Object M/P Fibers Raphides Spicules Pottery 

24 A A/B Vessel emplacement  M X X  X 

25a A A Floor P     

25b A B Vessel emplacement M X X  X 

43 A A Floor P   X  

44 A A Floor P X    

45 A A Coat of a basin P X    

46 A B Floor P   X  

47 A B Floor P     

48 A B Vessel emplacement M    X 

49 A B Hearth M X X   

50 A B Coat of a basin P X X X  

51 A B Layer directly covering the bedrock M (?)     

52 A B Layer  directly covering the bedrock M (?)  X X  
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53 A A Floor P     

54 A B Bench (?) M X    

55 A B Coat of a basin P   X  

56 A B Coat of a basin P X X   

57 A B Coat of a basin P X X X  

58 A B Coat of a basin P X  X  

59 A B Coat of a basin P X X X  

60 B A Architectural support M X X   

61 A A Coat of a bin P X  X  

 

Morphological examinations (Scanning Electron Microscopy, SEM) and elemental composition 

(Energy Dispersive X-ray, EDX) analyses were carried out with a SEM-VP EVO50 (Carl Zeiss AG, 

Deutschland) microscope coupled with INCA x-sight model 7636 (Oxford Instruments, Concorde, 

MA, USA) microprobe at the following operating conditions: working distance = 8-12 mm, probe 

current = 200 pA, accelerating potential = 20 kV, counting time = 120 s. Petrographic analyses were 

carried out by a Cambridge S360 Scanning Electron Microscope connected to an Oxford 

Instruments Inca Energy 200 EDS equipped with an Oxford SATW Pentafet Si(Li) detector. The 

analyses were conducted in the following conditions: working distance = 25 mm, probe current = 

200 pA, accelerating potential = 20 kV, counting time = 60 s. Natural oxides and silicates (Astimex 

Scientific Limited; Ontario, Canada) were acquired as standards. A cobalt standard was used for 

instrumental calibration and the relative abundance of the elements was calculated by the 

instrument software, using the ZAF correction. 

The morphological examination was carried out in the secondary electrons (SE) mode on 

fresh fracture samples. The polished sections for the chemical analyses were obtained by 

encompassing the appropriate amount of samples in an epoxidic resin. The obtained sections were 

subjected to an abrasive treatment on silicon carbide papers with a 500 and 1000 grit size and 

polished with a 1 μm granulometry diamond paste on special clothes. The fresh fractures and the 

polished sections were then mounted on aluminium stubs using carbon tape and were covered with 

a coating of Au–Pd and graphite, respectively. The Au-Pd layer of approximately 20 nm thick was 

deposited using a coating unit SCD 050 Sputter Coater (Bal-Tec, Scotia, NY, USA) and the 

graphitization was performed by carbon rod evaporator under high vacuum (10
-4

 torr) conditions 

using a coating unit IMETEC K 950 equipped with a turbo-molecular pump (Balzer inc, Minnesota, 
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USA). The thickness of the C layer was about 300 nm. 

EDX analyses were carried out in the backscattered electrons (BS) mode on polished 

sections at 200X magnification, by scanning rectangular areas or by spot analyses on smaller 

aggregates.  

X-Ray Powder Diffraction (XRPD) patterns were collected using an Analytical X’Pert Pro 

(PANalytical B.V., Almelo, The Netherlands) equipped with an X’Celerator detector powder 

diffractometer using Cu Kα radiation generated at 40 kV and 40 mA. The 2θ range was from 5 to 

90°. For the measurement, the appropriate amount of sample ground in an agate mortar was placed 

in a quartz sample holder and compressed with a glass slide. The X’Pert HighScore software was 

used for the evaluation of the diffraction patterns and the identification of the mineralogical phases. 

Petrographic examinations were carried out using an Olympus BX-41 optical microscope, equipped 

with a digital Jenoptic camera. 30 µm-thick sections were prepared and observed under polarized 

transmitted light, and images were acquired with a ProGres capture pro 2.6.  

A Leica MZ16 stereomicroscope was employed for the Optical Microscopy (OM) 

observation of the samples.  

Fourier Transform Infra-Red (FTIR) spectra were acquired by means of a Jasco 6700 

spectrophotometer using the sample preparation procedure and the spectrophotometric method 

conditions described by Chu et al (2008). 

Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) were 

simultaneously conducted by a SDTQ600 Thermal Analyzer (TA Instruments, New Castle, DE, 

USA) using a standard of aluminium oxide, following the procedure reported by Moropoulou et al. 

(1995). 

 

RESULTS AND DISCUSSION 

 

Chemical and mineralogical composition 

The macroscopic evaluation of the samples produced several differences in terms of colour (which 
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ranged from white to light pink to grey with variation), presence/absence and type of aggregates, 

hardness and friability. Nevertheless, EDX scan analyses carried out in the BS mode on the matrix 

of all 22 samples showed good uniformity in elemental composition, with Ca as the major detected 

element, Si as the second element in terms of relative abundance, and lower quantities of Na, Mg, 

Al, K, Ti and Fe (Figure 2, area 4). S was completely absent in the EDX spectrum, highlighting the 

fact that the analyzed samples consist of lime plasters/mortars and not gypsum. 

 

Figure 2. A SEM–BS image and EDX analyses (polished section) on sample P48. Spot 1, 

ceramic inclusion; Spot 2 and Area 3, calcite aggregates; Area 4, binder (marly carbonate). 

 

X-Ray Powder Diffraction (XRPD) evaluation obviously confirmed this observation, as the two 

detected mineralogical phases were calcite (CaCO3) and quartz (SiO2). 

No other signals were observed in the XRPD patterns, presumably due to their very low 

amounts (below the detection limit of the instrument) or the lack of crystallinity of other eventually 

present minerals.  

These results lead to the conclusion that limestone was the raw material used in the 

mortar/plaster manufacture at the site of Erimi-Laonin tou Porakou during MC. Moreover, as we 

have already demonstrated in a previous paper on ceramic assemblage from the Kouris Valley 

(Davit et al., in press), the local craftsmen possessed good pyrotechnological skills, such as those 
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required to produce burnt lime plasters/mortars. Thus, it is not surprising that with this skillset, in 

addition to the better mechanical properties of lime with respect to gypsum mortars/plasters 

(Gourdin and Kingery, 1975, Kingery et al., 1988), lime was the selected material. Moreover, it is 

not unexpected that lime was the only material of choice for mortar/plaster production and that 

gypsum based materials were not found at the site, since it has been demonstrated that, at other 

Cypriot archaeological sites, only one type of plaster/mortar was preferred, either gypsum or lime 

(Philokyprou, 2012a).  

The petrographic SEM-EDX examination of the samples revealed the slightly marly 

limestone nature of the binder (see Figure 2, area 4, showing about 4% of Si) and allowed for the 

identification and evaluation of aggregates/inclusions. The amount of aggregates was generally 

quite limited, leading to an estimation of a maximum binder/aggregates ratio around 1:1 (on the 

basis of visual examination of SEM-BS images). The most abundant aggregate was spathic (in 

regard to having good cleavage) calcite, followed by quartz, albite-rich plagioclase, biotite, spinel 

(chromite), iron and titanium oxides (ilmenite, magnetite) and other minerals of ophiolitic origin 

(rutile and pyroxen, as a chromium-bearing diopside and chlorite).  

Three samples (P24, P25b and P48) displayed the presence of about 10% v/v relative 

abundance of ceramic fragments (Table 1). This relatively high content of crushed bricks or pottery 

leads to the hypothesis that this is a deliberate addition and not an accidental contamination.  

A sample of a local calcareous soil was also analyzed to verify the hypothesis that local 

limestone was used as a raw material for the production of lime for plasters/mortars on the site. The 

SEM-EDX petrographic examination of this sample showed the qualitative and semi-quantitative 

correspondence of the aggregates in the limestone and in the plaster/mortar binders leading to the 

conclusion that the local limestone was the only material of choice for lime production at Erimi-

Laonin tou Porakou and that the inclusions identified in the matrix (with the eventual exception of 

the limestone aggregates and the exception of ceramic) were already present in the raw material and 

not added during the manufacturing process.  
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Given the probable abundance of waste materials such as limestone flakes and blocks produced by 

carving bedrock for building at the site, it is reasonable to posit that functional features were 

manufactured through the use of lime plasters/mortars.  Floors, emplacements and hearths were all 

made with lime-based materials, and pits, bins and basins display the frequent use of internal lime 

plaster coatings (Amadio and Chelazzi, 2013; Bombardieri, 2013). 

The employment of local raw materials seems to fit well into the type of community that 

was living at Erimi-Laonin tou Porakou. The archaeological evidence indicates a small community 

with a focus on manufacturing, specifically oriented toward the manufacture of textiles, and 

supported by the wide extent and central location of the workshop area (Bombardieri, 2013). 

 

Technology of production 

Aggregates and inclusions  

The presence of calcareous fragments dispersed in the plaster/mortar binder might be due to an 

intentional addition of limestone aggregates or can be ascribed (Bruni et al., 1997; Miriello et al., 

2011; Stefanidou et al., 2012) to the slaking and maturing of the lime during and after the 

production process. In particular it has been reported (Miriello et al., 2011) that an insufficient 

seasoning of the quicklime, together with a low water content during the mixing phase, can lead to 

the formation of fairly large nodules of slaked lime that become lime lumps (Bakolas et al., 1995) 

due to the carbonation process.  

As for the present study, calcareous fragments recognized in the matrix showed dimensions ranging 

from a few m to a few tens of mm, and their composition is richer in Ca and poorer in Si and other 

minor elements when compared to the binder (Figure 2). The composition of the fragments and of 

the binder can be considered similar, as reported in the literature on the subject (Stefanidou et al., 

2012).  This observation might indicate a common origin of the binder and of the  lime fragments. 

The SEM morphological examination of many of the largest calcite fragments revealed the presence 
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of unaltered fossils and bioclasts (Figure 3a), indicating that the material composing these biggest 

fragments  had not been subjected to a heating or firing process that would have decomposed the 

shells. The microscopic evaluation of the binder, however, showed the presence of thermally 

decomposed fossils and bioclasts (Figure 3b). Different hypotheses can be formulated to explain 

these results. The first is that the temperature during calcination was too low or that the calcination 

time was too short. It is reported (Gourdin and Kingery, 1975) that when calcination has not been 

completed, the original rock remains incompletely decomposed, leaving an unreacted limestone 

core surrounded by fine recarbonated lime. A second hypothesis points to the possibility that the 

larger fragments could have been added as aggregates while the smaller lime fragments could be 

lumps. However, this hypothesis seems unlikely due to the total absence of a reaction rim also 

around the smaller lime fragments. In fact the hydrated lime of the incipient lumps can react with Si 

and Al in the binder, forming a reaction rim that is clearly visible in microscopic observation and 

that is particularly rich in Ca, Si and Al (Stefanidou et al., 2012). The third hypothesis is that all the 

lime fragments were added as aggregates, presumably obtained by grinding local calcareous 

sedimentary stones (Theodoridou et al., 2013), to the calcined limestone.  

 

Figure 3. Unaltered (a) and altered (b) fossils and bioclasts (polarized OM), fibres embedded in 

the binder (c, SEM), sponge spicules (d, SEM and e, polarized OM), and raphides/calcite 

crystals (f, SEM). 

Another type of inclusion found in almost all the layers coating bins and basins, two of the 

emplacements, one floor, one sample (P60) used for the connection of two architectural/structural 
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elements and a few other samples is vegetable fibres (Table 1). The amount of fibres, the diameter 

of which are 1 to 5 m, is usually more than 50% v/v (on the basis of visual examination of SEM-

SE images), and they are intimately in contact with the binder (Figure 3c). The use of these 

vegetable fibres seems to be directly connected to the destination of use of the material and is often 

related to the need to reduce cracking and increase the stability and the resistance of the final 

outcome (Stefanidou et al., 2012).  

Finally, two peculiar findings should be mentioned. Around a third of the samples showed the 

sporadic presence of monaxon sponge spicules (diameter up to 70 m, length up to 5 mm; Table 1, 

Figures 3d and 3e), skeletal siliceous structures. Spicules are colourless, hardly visible to the naked 

eye and they were already observed in the calcareous deposits constituting the Pakhna formation 

(Francesco Dela Pierre, personal communication). Besides, their presence is very scarce and not 

related to specific features (Table 1), therefore we concluded that their occurrence is unintentional. 

Moreover, SEM-EDX evaluation revealed the presence of isolated aggregates of needle-shaped 

CaxCyOz crystals (Figure 3f, diameter around 1 m, length up 70-80 m) that could be identified as 

calcium oxalate raphides,or carbonate crystals (Crowther, 2009) in nine out of the 22 samples 

(Table 1). The possible sources of these crystalline microfossils could be both from sponges and 

plants. Almost all the samples containing raphides/carbonate crystals showed the associated 

presence of vegetable fibres, while the correspondence with the sponge spicules was not so marked. 

The main hypothesis is that the presence of the raphides/carbonate crystals is directly connected to 

the addition of the fibres during manufacturing.  

The recorded association between organic fibres and raphides/carbonate crystals finds corroboration 

in the productive and palaeo-environmental setting of the site. Palaeo-botanical studies have been 

carried out on the filling soils sampled from several different basins and storage vessels (pithoi) in 

the workshop complex and have shown the widespread presence of Boraginacae (Elena Vassio, 

personal communication), invasive plants very common in the area and used for dyeing and for 

their medicinal properties (Sinclair, 1992). The plants of the Boraginacae family, in fact, produce 
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and accumulate phytoliths and cystoliths (including raphides) in their tissues (Watson and Dallwitz, 

1992). Given the recorded presence of mineralized Boraginacae seeds in the excavated contexts at 

Erimi-Laonin tou Porakou, the hypothesis of the finding of raphides in many of the analyzed 

samples is particularly consistent. 

Pyrotechnology 

As reported by Wright (1992), both the use of burnt lime and/or crushed limestone is known in 

ancient Cyprus and is still used in modern buildings. As for the site of Erimi-Laonin tou Porakou, 

the direct use of unburnt limestone could be hypothesized in the case of floors. 

As Weiner (2010) highlighted, calcite is a widespread mineral in archaeological sites and its origin 

can mainly be geological or anthropogenic. Anthropogenic calcite is the product of pyrotechnology, 

but from a chemical point of view, geological and anthropogenic calcite are indistinguishable.  

Weiner (2010), Chu et al. (2008) and Regev et al. (2010) showed that FTIR can be used as a 

technique to evaluate the degree of crystallinity of calcite in plasters/mortars and to distinguish 

between raw limestone objects and pyrotechnological products. Calcite has three characteristic IR 

absorption peaks in the range between 400 and 4000 cm
-1

: 3 at 1420 cm
-1

 (asymmetric stretch) 2 

at 874 cm
-1

 (out-of-plane bending) and 4 at 713 cm
-1

 (in-plane bending). It has been shown that the 

ratio of the 2/4 peak heights reflects the extent of atomic disorder in the calcite crystal. In 

particular, Chu et al. (2008) fired two different limestone samples at different temperatures between 

700 and 900°C and obtained 2/4 ratios ranging from a minimum value of 3.3 to a maximum of 7.7 

(using spectra for 2/4 calculations that had 3 peaks with full width at half maximum FWHM 

values between 110 and 130 cm
-1

 to evaluate the grinding effect).  

FTIR experiments in the present studies showed that the 2/4 ratio ranged between 3.7 and 4.4, 

while the value obtained for the sample of local calcareous soil was 3, the typical value for 

geological calcite. The results showed that all the samples are pyrotechnological products and that 

natural limestone was not used at the site, not even for floors. Nonetheless, the relatively low values 
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of the 2/4 ratio lead to several considerations. First, the temperatures reached during the 

calcination step were probably not so high and/or were not maintained for a very long time. On the 

other hand, these quite low values can be explained by taking into account the presence of the 

unburnt limestone fragments, which lower the resulting 2/4 ratio.  

Moreover the SEM examination of the samples revealed a structure composed of microscopic 

rounded particles with a homogeneous and fine granulometry (particle dimensions around 1-5 m; 

Figure 4) and these morphological observations complied with the hypothesis that the samples were 

not simply crushed limestone but anthropogenic objects (Kingery et al., 1988; Philokyprou, 2012a). 

Finally, the presence of thermally decomposed fossils and foraminifera shells in the binder of the 

plaster/mortars (Figure 3b), already observed and commented on, confirms a firing step occurred 

during the manufacturing process.  

 

Figure 4. An SEM–SE image (5000×) of sample P50 (fresh fracture). 

Hydraulicity 

The observation under a stereoscopic microscope of three samples, namely P24, P25b and P48, 

showed the presence of orange inclusions whose dimensions ranged from a few tens of m to 1-2 

mm (Figure 5a). Spot EDX analysis performed on these inclusions showed higher amounts of Si, 

Al, K and Fe and a lower quantity of Ca (Figure 2, Spot 1) when compared to the binder (Figure 2, 
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Area 4) and suggests the use of crushed ceramics during the preparation of mortars used for the 

supports of big vessels for foodstuff storage. The presence of this artificial pozzolanic additive is 

usually commented as an indication of the intentional aim to produce a hydraulic material 

(Moropoulou et al., 2005; Moropoulou et al., 1995; Theodoridou et al., 2013). 

 

Figure 5. Stereomicroscopic images (a, b), TGA–DSC analyses (c) of sample P48 and a table 

illustrating the TGA wt% losses of samples P24, P25b and P48. 

 

Thermal analysis (TGA-DSC) is a very useful tool in the characterization of historic 

plasters/mortars since it allows the identification of various components in the material as a whole 

(binder plus aggregates and/or additives) and to monitor the reactions that occur in the sample when 

heated in an appropriate and controlled temperature interval. To evaluate the thermal characteristics 

of the two samples, the methodology suggested by Moropoulou (2005; Moropoulou et al., 1995) 

was applied. The table in Figure 5 illustrates the results obtained from TGA-DSC analysis (Figure 

5c). When our data was compared with those reported by Moropoulou (2005), it was observed that 

the percentage of physically bound water (wt% loss between 30 and 120°C) is below 1% (the limit 

value between lime and hydraulic lime mortars) for samples P24 and P25b, while it is slightly 

higher for sample P48. The amount of structurally bound water (wt% loss between 200 and 600°C) 

falls in the typical range for lime mortars (equal or below 3%), while the weight loss over 600°C, 
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which represents the carbon dioxide content, is anomalous (for a lime plaster) only in the case of 

sample P24 (below 32%), leading to CO2/H2O ratio values higher than the upper limit for hydraulic 

lime mortars. Considering the overall results the two samples can be classified as lime mortars and 

not as hydraulic lime mortars, on the basis of Moropoulou’s (2005) categorization. 

On the other hand the calculation of the hydraulicity index (HI; Böke et al., 2008; Kurugöl and 

Güleç, 2012), which allows for a subtler distinction of the hydraulicity level, produced values in the 

range 0.1-0.2, indicating that the two samples can be classified as weakly hydraulic. 

On the basis of these observations, it seems more plausible that the addition of crushed ceramics in 

mortars P24, P25b and P48 had the purpose of improving overall mechanical properties, with 

special respect to increase the mortars stiffness (Baronio et al., 1997; Tesárek et al., 2014), rather 

that to confer waterproof properties. 

 

CONCLUSIONS 

 

The present study highlights that the technology of manufacture of plasters and mortars at Erimi-

Laonin tou Porakou from EC III to LC IA was based on the use of local limestone as raw material 

for the production of the binder. Moreover, samples from both Phases A and B from all architectural 

contexts (floors, coatings of basins and bins, emplacements, hearths, etc.) turned out to be 

pyrotechnological products. A very limited amount of aggregates was detected, leading to a 

maximum aggregates/binder ratio of 1:1. The most abundant inclusions were lime fragments of the 

same local origin as of the matrix, and their occurrence can be ascribed to an intentional addition 

after firing, to an incomplete calcination during the firing step or to the formation of lumps pending 

the drying and ageing processes. All other detected inclusions (with the exception of the ceramic 

fragments), are typical of the local limestone and are not an intentional addition.  

The main point of note is the continuity in the pattern of lime plaster production through time. 

Although the transition between Phases A and B was marked by a distinctive change in the 
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architectural configuration, the mechanism of lime plaster production seems to have remained 

rather unchanged. In Phase B, lime plaster was the prevalent building material, while in Phase A the 

architectural scheme was enriched by the introduction of several features made of dressed stone 

(particularly for the building of bins and kilns). During this change, the production of lime plasters 

remained the same. In other words, the diachronic observation of the lime plaster-based features at 

Erimi-Laonin tou Porakou, shows a difference in the manufacturing process only according to their 

function and not in change over time.  

From this point of view, the observation of the addition of aggregates such as artificial 

pozzolanes and/or organic fibres seems to suggest that the plaster formula was dictated by the 

function that it had in the final architectural element. 

The addition of artificial pozzolanes can be recorded in cases where a greater resistance was 

requested, such as for the emplacements of big vessels, where the totality of the samples exhibits 

the addition of crumbled ceramic fractions (a feature that has not been recorded in any of the other 

samples). In this case, the addition of ceramic fragments does not seem to be related to a 

waterproofing function, but rather to confer low elasticity. The results of these firsts experiments 

with artificial pozzolanes was not the manufacture of a real hydraulic plaster, however this first 

attested use is rather remarkable and probably calls for a more diachronic approach when studying 

certain architectural components. 

Secondly, the addition of organic fibres, mainly recorded in cases of emplacements and 

coatings of basins, is clearly due to a need for mechanical strength of the architectural elements 

themselves.  

The simultaneous occurrence of raphides and organic fibres and their possible correlation with the 

exploitation of plants of the Boraginacae family might suggest a multi-functional use of raw 

materials (primarily for dyeing activities, and then for architectural purposes) and, at least, an 

homogeneous palaeoenvironmental background.  
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