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Abstract 29 
The mutualistic association established between arbuscular mycorrhizal (AM) fungi and the majority of land plants has 30 
been extensively studied and is considered a natural instrument to improve plant health and productivity, since 31 
mycorrhizal plants often show higher tolerance to abiotic and biotic stresses. However, the impact of the AM symbiosis 32 
on the infection by viral pathogens is still largely uncertain and little explored. In our study tomato plants were grown 33 
under controlled conditions and inoculated with the AM fungus Funneliformis mosseae. Once the colonization had 34 
developed, plants were inoculated with Tomato yellow leaf curl Sardinia virus (TYLCSV), a geminivirus causing one of 35 
the most serious viral diseases of tomatoes in Mediterranean areas. Four biological conditions were set up: control 36 
plants (C), TYLCSV-infected plants (V), mycorrhizal plants (M) and TYLCSV-infected mycorrhizal plants (MV). At 37 
the time of analysis, the mycorrhization level, as well as the expression profiles of mycorrhiza-responsive selected 38 
genes, were not significantly modified by virus infection, thus indicating that the AM colonization was unaffected by 39 
the presence and spread of the virus. On the contrary, in MV plants viral symptoms were milder than in V plants and the 40 
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concentration of viral DNA was lower in both shoots and roots. Overall F. mosseae colonization appears to exert a 41 
beneficial effect on tomato plants attenuating the disease caused by TYLCSV. 42 
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 46 

INTRODUCTION 47 

The arbuscular mycorrhizal symbiosis (AM), one of the most widespread mutualistic symbiosis, is formed between 48 
fungi belonging to the Glomeromycota phylum and the roots of the majority of land plants, including crops and 49 
horticultural species (Bonfante and Genre 2010). AM fungi colonize the root cortex where they form intracellular highly 50 
branched structures called arbuscules. The arbusculated cells are considered key structures of the symbiosis and the 51 
main site for reciprocal nutrient exchanges: the fungus provides mineral nutrients (phosphorus, nitrogen, sulphur) to the 52 
plant and receives carbon compounds derived from photosynthesis (Bonfante and Genre 2010; Lanfranco and Young 53 
2012). Beside an improved mineral nutrition, mycorrhizal plants often show a higher tolerance to biotic and abiotic 54 
stresses leading, in the end, to an improved plant fitness (Gernns et al. 2001; Van der Heijden and Sanders 2002; 55 
Hildebrandt et al. 2007; Pozo and Azcòn-Aguilar 2007; Aroca et al. 2008; Pozo et al. 2010). This symbiotic association 56 
is therefore considered a natural instrument that improves the health and productivity of host plants.  57 

The AM symbiosis can influence the outcome of plant-pathogen interactions (Pozo and Azòn-Aguilar 2007; Pozo et al. 58 
2010). A well established symbiosis prior the challenge with the attacker seems a requirement for mycorrhizal 59 
protection against pathogens (Rosendahl 1985; Cordier et al. 1998; Slezack et al. 2000; Khaosaad et al. 2007). Although 60 
the effect may also depend by the specific plant-fungus combination and by environmental factors, mainly beneficial 61 
effects have been observed in the case of soil-borne pathogens: alleviation of damage was shown for diseases caused by 62 
fungi such as Rhizoctonia, Fusarium and Verticillum spp., by oomycetes including Phytophtora, Pythium and 63 
Alphanomices spp. (Pozo et  al. 2010; Whipps 2004) and parasitic nematodes such as Pratylenchus and Meloidogyne 64 
spp. (de la Pena et al. 2006, Li et al. 2006; Vos et al. 2013). The bioprotective role may rely on different mechanisms but 65 
is surely not exclusively dependent on an improved mineral nutrition. To control root pathogens competition for 66 
colonization sites or photosynthates, changes in the root apparatus and/or in the microbial rhizosphere communities and 67 
also activation of plant defence have been proposed (Whipps 2004; Pozo et al. 2002; Pozo et al. 2010; Ismail and Hijri 68 
2012; Vos et al. 2013). 69 

Information on the effects of the AM symbiosis on pathogens attacking the epigean parts of plants, i.e. the parts that 70 
grow above the ground surface (hereafter called shoot pathogens) are scarce and more controversial. The effects on 71 
shoot-targeting organisms seem to greatly depend on the attacker life style (Pozo and Azòn-Aguilar 2007). Enhanced 72 
susceptibility to biotrophic pathogens such as powdery mildew and rust fungi was observed (Whipps et al. 2004; 73 
Gernns et al. 2009). However, colonization by AM fungi has been reported to reduce symptoms caused by phytoplasma 74 
(Lingua et al. 2002; Garcia-Chapa et al. 2004; D'Amelio et al. 2007) the necrotrophs Alternaria solani (Fritz et al. 2006) 75 
and Botrytis cinerea (Pozo et al. 2010; Fiorilli et al. 2011), as well as the bacterial pathogen Xanthomonas campestris 76 
(Liu et al. 2007).  77 

Very little information is available about the interaction with viral infections. Mycorrhizal colonization was shown to 78 
increase the multiplication of some viruses (Daft and Okusanya 1973; Dehne 1982; Miozzi et al. 2011). Shaul et al. 79 
(1999) focused on disease symptoms and demonstrated that mycorrhizal tobacco plants infected by Tobacco mosaic 80 
virus (TMV) showed an enhanced disease severity compared to non-mycorrhizal plants. More recently, Miozzi et al. 81 
(2011) analysed the interactions between Funneliformis mosseae and Tomato spotted wilt virus (TSWV) in tomato and 82 
observed that regulation of plant genes responding to virus infection was attenuated by mycorrhization, causing, in the 83 
long term, a higher virus titer in mycorrhizal than non mycorrhizal plants. 84 
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With the aim to extend our knowledge on the impact of the AM colonization on viral infection we focused our attention 85 
on a virus family, the Geminiviridae, not yet explored, with characteristics different from those examined so far. They 86 
are important pathogens on many crops in tropical and sub-tropical regions, and their economic relevance is constantly 87 
growing (Varma and Malathi 2003; Mansoor et al. 2006; Jeske 2009). Several of them infect tomato (Solanum 88 
lycopersicum), one of the most important vegetable crops worldwide and currently used as a model plant for basic 89 
research with an increasing number of genomics and functional genomics tools available (The Tomato Genome 90 
Consortium 2012). 91 

Among the members of the genus Begomovirus, Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato yellow 92 
leaf curl virus (TYLCV) are the cause of one of the most serious diseases of tomato cultivation (Accotto et al. 2000). 93 
Like all geminiviruses, they have a single-stranded DNA genome and replicate in the cell nucleus. They colonize the 94 
phloem vessels (Morilla et al. 2004) and the typical disease symptoms they induce consist in leaf curling and yellowing 95 
of leaf edges, plant growth reduction, flower abortion and drastic loss of fruit production (Czosnek 2007). 96 

It this work we have examined the impact of colonization by the AM fungus Funneliformis mosseae on infection by 97 
TYLCSV in tomato plants and showed that the AM symbiosis exerts a positive systemic effect leading to an attenuation 98 
of the disease. 99 

 100 

MATERIALS AND METHODS 101 

Biological material 102 

Solanum lycopersicum cv. Moneymaker seeds were surface-sterilized by washing in 70% ethanol with a few drops of 103 
Tween 20 for 3 min and in sodium hypochlorite 5% for 13 min, and rinsed three times in distilled water for 10 min each 104 
time. The seeds were placed in Petri dishes containing H2O:agar (0.6%), incubated for one week in the dark (25 °C) and 105 
then exposed to light for another week with a photoperiod of 14/10 light/dark. Seedlings were then transferred to pots 106 
containing sterile quartz sand. Altogether, the experiment aiming to study the impact of colonization by the AM fungus 107 
F. mosseae on infection by TYLCSV in tomato consisted in four groups of plants: control plants (C), TYLCSV-infected 108 
plants (V), mycorrhizal plants (M), TYLCSV-infected mycorrhizal plants (MV). Inoculation of Funneliformis mosseae 109 
(Syn. Glomus mosseae; Krüger et al. 2012) Gerd. & Trappe BEG12 (Mycagrolab, France) was performed by mixing the 110 
inoculum with sterile quartz sand (30% v⁄v). The plants were maintained in a growth chamber under 14 h light (2,500 111 
lux) / 10 h dark at 23°C and watered twice a week: once with a modified Long-Ashton nutrient solution (Hewitt, 1966) 112 
containing 320 µM phosphate and once with water. Phosphate content in the nutrient solution was optimized so that non 113 
mycorrhizal plants were not suffering from phosphate starvation and did not show growth defects compared to 114 
mycorrhizal ones. To guarantee the establishment of a good mycorrhization level, virus inoculation was performed 4 115 
weeks after AM fungus inoculation. Two groups of plants (V and MV) were inoculated with TYLCSV using the 116 
agroinoculation method with 20 µL of a suspension of Agrobacterium tumefaciens strain LBA4404 cells carrying 117 
infectious viral clone (Kheyr-Pour et al. 1991). The remaining plants (C and M) were mock-inoculated with 20 µL of a 118 
suspension of A. tumefaciens cells strain LBA4404 cells containing the binary plasmid without viral insert.  119 

To detect the virus presence a tissue print was performed 21 days post-infection (dpi). The petiole of a young leaf from 120 
each plant was printed on positively charged nylon membrane (Roche, Mannheim, Germany). Membranes were then 121 
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hybridized with a digoxigenin-labeled TYLCSV-specific probe (Accotto et al. 2000). Infected plants were retained for 122 
further analysis (data not shown). 123 

Plants were harvested 28 dpi for analysis. First, shoot (the aboveground portion) and root (the underground portion) 124 
components were separately weighted for biomass evaluation. Roots from mycorrhizal plants were checked for the 125 
presence of extraradical mycelium under a stereomicroscope. A portion of the root system was then used to assess the 126 
mycorrhization level while the remaining portion of the roots, the apex and the second yongest leaf (leaf -2) of each 127 
plant were frozen in liquid nitrogen and stored at -80 C. Following the preliminary screening for virus infection and F. 128 
mosseae colonization, 15 plants per condition were considered for further analyses. 129 

 130 

Mycorrhizal evaluation 131 

Mycorrhizal roots were stained with 0.1 % (w/v) cotton blue overnight and then washed with lactic acid. Randomly 132 
selected roots segments were cut in 1 cm pieces and observed under a light microscope. According to Trouvelot et al. 133 
(1986), four parameters were considered: frequency of mycorrhization (F%): percentage of fragments showing 134 
intraradical mycelium; intensity of mycorrhization (M%): mean volume of individual root segments colonized by 135 
mycelium; percentage of arbuscules within infected areas (a%): arbuscules in the colonized portions of the root system; 136 
percentage of arbuscules in the root system (A%): presence of arbuscules in the whole roots system. 137 

 138 

Estimation of viral infection and quantification of viral genomes 139 

At 28 dpi the symptom severity was estimated by visual inspection using a Disease Severity Index (DSI) ranging from 1 140 
(very mild symptoms) to 4 (severe symptoms), according to Lapidot and Friedman (2002).  141 

To estimate the amount of viral genomes in infected plants qPCR assays were performed on shoot and root total DNA. 142 
About 100 mg of tissue were ground in liquid nitrogen, 800 µl of TLES (5% SDS, 150 mM LiCl, 50 mM Tris-HCl pH 143 
9.0, 5 mM EDTA) were added, followed by 0.5 vol of phenol and 0.5 vol of chloroform. Following mixing and 144 
centrifugation, the aqueous phase was recovered and the DNA was precipitated with 2.5 vol of cold ethanol and 1/20 145 
vol of 4 M Na-acetate. The DNA was finally resuspended in 200 µl of TE solution. TYLCSV DNA was amplified with 146 
primers TY2222(+) (5’- TTTTACTTGTATATTCGAAGTGTGCCA-3’) and TY2371(-) (5’- 147 
ACAACTGCAAAATTAGAATCTAGTTGGTA-3’). PCR reactions were run in parallel with primers QTOMAPX-148 
2818(+) (5’- TTTTACTTGTATATTCGAAGTGTGCCA-3’) and QTOMAPX-2910(-) (5’- 149 
ACAACTGCAAAATTAGAATCTAGTTGGTA -3’) for the reference plant gene APX encoding an ascorbate 150 
peroxidase. Quantitative PCR assay were carried out using EvaGreen Mix (Bio-Rad) in a StepOnePlusTM apparatus 151 
(Applied Biosystems). The reactions were conducted in a total volume of 10 µl, containing 40 ng DNA, 5 µl Eva Green, 152 
1 µl of each primer 3µM, 0.3 µl of ROX. The PCR cycling program was: 95 °C for 5 min, and 40 cycles each consisting 153 
of 95 °C for 15 s and 60 °C for 1 min. A melting curve was recorded at the end of each run to assess amplification 154 
production specificity. All reactions were performed with three technical replicates and three biological replicates. PCR 155 
efficiency was determined from standard curves constructed with serial dilutions of genomic DNA from TYLCSV-156 
infected tomato. For each sample we calculated the relative viral amount using the ΔCt method where ΔCt is |Ctvirus - 157 
Ctapx|. The fold change in viral amount between non mycorrhizal (V) and mycorrhizal (MV) samples was calculated as 158 
2-ΔΔCt where ΔΔCt = ΔCtMVplants - ΔCtVplants. 159 
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 160 

RNA extraction and RT-qPCR assays 161 

About 100 mg of shoot and root samples were ground in liquid nitrogen and used for total RNA extraction. RNA 162 
extractions were performed using the SIGMA RNA plant kit. DNA contaminations were removed using the Turbo DNA 163 
free kit (Bio-Rad) following manufacturer’s instructions. RNA quantification was carried out using a Picodrop 1000 164 
spectrophotometer. The quality of RNAs was checked using the Experion automated electrophoresis station (BioRad) 165 
following the manufacturer’s instructions. Total RNA (500 ng) from each pool was transcribed into cDNA with the 166 
High-Capacity cDNA reverse Transcription Kit (Applied Biosystems). All RT-qPCR assays were carried out using 167 
EvaGreen Mix (Bio-Rad) in a StepOnePlusTM apparatus (Applied Biosystems) as described above. The comparative 168 
threshold cycle method (Rasmussen 2001) was used to calculate relative expression level using the tomato UBC 169 
(ubiquitin conjugating enzyme, SGN-U582847) as reference gene. The list of analyzed genes and corresponding 170 
primers are shown in Table 1. For each condition three biological replicates, each consisting of RNA extractions from 171 
four plants, were analysed. 172 

 173 

RESULTS 174 

To study the impact of colonization by the AM fungus Funneliformis mosseae on TYLCSV infected tomatoes, four 175 
biological conditions were considered: control plants (C), TYLCSV-infected plants (V), mycorrhizal plants (M), 176 
TYLCSV-infected mycorrhizal plants (MV). At the time of sampling (28 dpi), shoot and root fresh weight was 177 
measured. 178 

No difference was observed in shoot and root biomass between C and M plants, confirming that the phosphate content 179 
in the nutrient solution was optimized to avoid phosphate starvation in C plants. The only statistically significant 180 
difference was a slight reduction of shoot and root biomass in MV plants (Fig. 1).  181 

AM colonization level was also evaluated: of the four parameters considered, only the mycorrhization frequency was 182 
moderately but significantly increased in TYLCSV-infected mycorrhizal plants compared to mycorrrhizal plants (Fig. 183 
2). In their whole these data indicate that the viral infection has no major impact on the intraradical growth of the AM 184 
fungus. 185 

Viral symptoms on leaves were estimated according to the DSI (Fig. 3). Overall, the infected mycorrhizal plants  (MV) 186 
showed less severe symptoms than the infected non mycorrhizal plants (V): the majority (53%) of TYLCSV-infected 187 
plants presented the most severe symptoms (DSI=4) while most (53%) of TYLCSV-infected mycorrhizal plants 188 
presented the mildest symptoms (DSI=1). To gain a more accurate description of viral infection, the relative amount of 189 
viral genomes in shoot and root tissues was estimated by qPCR assays with primers specific for a viral DNA sequence. 190 
Investigations were performed on genomic DNA from both shoots and roots. Viral DNA was detected also in roots 191 
confirming that the virus causes a systemic infection. The amount of viral DNA was higher in V plants compared to MV 192 
plants, both in shoots (2.6 times) and in roots (1.9 times) (Fig. 4). Such differences were statistically significant (p<0.05, 193 
ANOVA) . Interestingly, this result is in agreement with the observed symptoms, that were more severe in V plants. In 194 
addition, the amount of viral DNA was higher (p<0.05,  ANOVA) in shoots than in roots, irrespectively from the 195 
presence of the AM fungus. In both V and MV plants, the difference in viral concentration between shoots and roots 196 
remained similar, indicating that mycorrhization does not influence virus movement towards the roots. 197 
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 198 

Expression profiles of genes considered markers of a functional AM symbiosis 199 

A molecular analysis was performed to analyse whether a functional AM symbiosis was active in mycorrhizal plants 200 
infected by the virus. We first considered LePT4, a phosphate transporter encoding gene specifically induced in 201 
arbusculated cells (Balestrini et al. 2007) and recognized as a molecular marker of a key function of the AM symbiosis. 202 
The transcript was highly induced in mycorrhizal plants and, remarkably, LePT4 induction was not affected by the 203 
presence of the virus (Fig. 5). In addition, the expression profiles of a selection of genes (a kinesin-like protein, a β-204 
xylosidase β-l-arabinosidase, a cytochrome P450 CYP707A3 and a UDP-glucoronosyl transferase), previously 205 
identified as up-regulated in tomato roots colonized by the AM fungus F. mosseae (Fiorilli et al. 2009), were also 206 
investigated. All the genes showed an up-regulation in mycorrhizal roots compared to control roots. A similar level of 207 
gene expression was found in TYLCSV-infected mycorrhizal plants.  208 

 209 

DISCUSSION 210 

Tomato plants are subjected to a number of viral diseases (Hanssen 2010). Since viruses cannot be eradicated by 211 
chemical treatments alternative protection strategies need to be developed. Among beneficial microorganisms such as 212 
PGPR (plant growth promoting rhizobacteria), tomato plants interact with AM fungi (Conrath et al. 2006; Beckers and 213 
Conrath 2007) which, with their multifunctional roles, have also been proposed as sustainable alternative to chemicals 214 
in pest management. The degree of protection seems highly dependent on the AM fungus involved (Kobra et al. 2009) 215 
with F. mosseae in natural and agricultural systems, showing a stronger bioprotective role compared to other AM fungi 216 
(Pozo et al. 2002; Utkhede 2006; Ozgonen and Erkilic 2007; Veresoglou and Rillig 2012). 217 

In this work we have analysed in tomato plants the impact of F. mosseae colonization on infection by TYLCSV, a 218 
devastating viral pathogen responsible of the tomato yellow leaf curl disease in the Mediterranean region. Since a well 219 
established symbiosis prior the challenge with the pathogen is considered a requirement for bioprotection (Rosendahl 220 
1985; Cordier et al. 1998; Slezack et al. 2000; Khaosaad et al. 2007), plants were first inoculated with the AM fungus, 221 
then 28 days later with TYLCSV. Four weeks were then allowed before sampling and analyzing plants, to let systemic 222 
viral infection with the typical symptoms. Considering plant biomass, a month of viral infection was probably not 223 
sufficient to affect plant growth, a typical systemic symptom of TYLCSV, although a slight reduction of shoot and root 224 
biomass was observed in MV plants (Fig. 1), probably due to the simultaneous presence of the two microorganisms. 225 

Morphological observation of roots (for fungal colonization) and young leaves (for yellow leaf curling) showed that the 226 
colonization by F. mosseae attenuates TYLCSV symptoms. In line with this, the amount of viral DNA in both shoots 227 
and roots was reduced in TYLCSV-infected mycorrhizal (MV) vs TYLCSV-infected non-mycorrhizal (V) plants. These 228 
results indicate that, at least under our experimental conditions, the AM symbiosis appears to confer some protection 229 
against TYLCSV in tomato. 230 

Interestingly, the viral infection does not affect mycorrhization: analysis of AM colonization levels showed no major 231 
difference between M and MV plants, indicating that the onset and spread of TYLCSV in the whole plant (including the 232 
roots colonized by F. mosseae) does not interfere with the fungal intraradical development. Beside these morphological 233 
observations, we detected the up-regulation of a selected group of genes previously described as mycorrhiza-responsive 234 
and found as preferentially expressed in arbuscule-containing cells of tomato-F. mosseae mycorrhizal roots (Fiorilli et 235 
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al. 2009). With the exception of the well known AM-marker LePT4 (Nagy et al. 2005; Balestrini et al. 2007; Xu et al. 236 
2007; Gomez-Ariza et al. 2009), these genes have not been characterized yet. Based on sequence similarity their 237 
functions might be related to reorganization of cell components (kinesin-like protein and β-xylosidase β-l-238 
arabinosidase), abscisic acid catabolism (cytochrome P450 CYP707A3) and control of carbon flux (UDP-glucoronosyl 239 
transferase protein). Remarkably, their expression profiles in mycorrhizal plants were not modified by TYLCSV 240 
infection (compare M vs MV in Fig. 5). These genes can be proposed for the role of novel markers of functional AM 241 
symbiosis in tomato.  242 

Although the mycorrhization develops only in roots, it clearly has long-distance effects on the non colonized 243 
aboveground parts of the plants. Molecular evidences of this systemic effect have been shown in gene expression 244 
studies, where up- or down-regulation of several genes has been detected not only in leaves (Taylor and Harrier 2003; 245 
Liu et al. 2007; Fiorilli et al. 2009) but also in fruits (Salvioli et al. 2012). Transcript profiles of the shoots of 246 
mycorrhizal plants indicated the systemic induction of many genes predicted to be involved in stress or defense 247 
responses in Medicago truncatula (Liu et al. 2007) colonized by G. intraradices or G. versiforme, while down-248 
regulation of many defence-related genes was detected in shoots of tomato colonized by F. mosseae (Fiorilli et al. 249 
2009). In spite of these apparently contradictory reports, it is clear that a systemic effect exists, and probably different 250 
plants and/or different AM fungi-plant combinations may lead to distinctive reactions. Specific efforts will be necessary 251 
to better elucidate the phenomenon and understand the mechanisms and signals involved. 252 

The reduction in virus amount and disease symptomatology in mycorrhizal plants is a novel and interesting result. In the 253 
limited literature, where the influence of mycorrhization on virus infection was studied, the AM fungal colonization in 254 
roots did not reduce virus infection, but rather increased it (Daft and Okusanya 1973; Dehne 1982; Shaul et al. 1999). 255 
This increase in virus amount was observed with several mycorrhizal plant/virus combinations, including tomato 256 
infected by TMV and Potato virus X. In our previous work (Miozzi et al. 2011) with the same tomato cultivar, AM 257 
fungus, growth condition (with the exception of Pi nutritional levels), we found that a different RNA virus, TSWV, 258 
multiplied better in mycorrhizal plants. All these data suggest that the reason of the different reaction that we observed 259 
with TYLCSV is likely due to the particular nature of this virus. In fact, this and other geminiviruses are phloem-limited 260 
and colonize the nucleus of cells (Morilla et al. 2004), and encode proteins capable to interact with plant hormone 261 
pathways. 262 

 263 

Jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are plant signaling molecules involved, among 264 
others, in plant defense (Penninckx et al. 1998; Schenk et al. 2000; Heil and Ton 2008). JA is involved in the process of 265 
mycorrhiza formation, as demonstrated in several host-fungus interactions (Hause et al. 2007; López-Ráez et al. 2010) 266 
as well as specifically in tomato (Herrera-Medina et al. 2007), and it has been implicated in priming plant defenses 267 
(Jung et al. 2012). In a previous work we demonstrated that mycorrhization induces in tomato roots a significant 268 
increase of the JA level (Miozzi et al. 2011). Therefore, it is possible that a higher JA level renders the mycorrhizal 269 
plants a less favourable environment for TYLCSV, limiting its replication and reducing the severity of symptoms. In 270 
favour of this hypothesis there are some lines of evidence. First, in the case of another geminivirus, Beet curly top virus, 271 
it was recently demonstrated in Arabidopsis that application of exogenous MeJA results in milder symptoms and lower 272 
viral DNA accumulation, indicating a disruption of the geminivirus infection by this compound (Lozano-Duran et al. 273 
2011). Second, using another geminivirus, Cabbage leaf curl virus, repression of jasmonate responsive genes was 274 
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reported (Ascencio-Ibañez et al. 2008). Third, geminiviruses have evolved proteins able to interfere with JA metabolism 275 
and response, repressing the JA pathway (Ascencio-Ibañez et al. 2008; Yang et al. 2008). 276 

We are aware that the mycorrhizosphere is a complex environment where other microbes associates to mycorrhizal 277 
fungi and roots and may influence plant growth and health (Bonfante and Anca, 2009). However, to our knowledge, this 278 
is the first time that an amelioration of a viral disease severity in plants colonized by an AM fungus has been observed, 279 
at least under experimental conditions. If this will be confirmed in other plant/virus/fungus combinations, and in field 280 
conditions, the use of mycorrhizal inocula might help to limit the damage caused by Geminiviridae, a family of viruses 281 
which counts hundreds of species causing severe crop losses worldwide. 282 
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Table 1: Primers designed on selected genes used in RT-qPCR  502 

Gene name 
and annotation Primer sequence Amplicon size (bp) 

SGN-U223227 
Cytochrome p450 C450F:   GGAATCAACTTAGCCAAACTGG 241 

 C450R:   ACAGCACCATGGTTATTTTTCC  

SGN-U222911  
Putative kinesin-like protein 911F:   CAAGAAATCAGAAGGGGACAAC 187 

 911R:   GAACCATCTCTTTCCGCTCTTA  

SGN-U214669  
UDP-gluconorosyl transferase family 
protein 

UDPF:  GTTCAATGTTGTTGTTACGCCTTCA 228 

 UDPR:   TAGCTAATCCCCAAGCAGTCTC  

SGN-U236747 
Beta-xylosidase α-l-arabinosidase βxylF:   GATGGTAATCCAAAAAGCCGTA 152 

 βxylR:   ATGGCAGTCGGAGTTAAAGGTA  

LePT4 
phosphate transporter LePT4F: GAAGGGGAGCCATTTAATGTGG 182 

 LePT4R: ATCGCGGCTTGTTTAGCATTTCC  

 503 
 504 
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 506 

FIGURE LEGENDS 507 

Fig. 1  508 

Biomass of the aboveground (a, shoot) and underground (b, root) portion of plants in the four conditions tested (C, M, V 509 
and MV), measured 28 days after virus inoculation. Vertical lines on each bar represent standard error. Different letters 510 
indicate statistically significant differences (p<0.05, Kruskal-Wallis test). 511 

Fig. 2  512 

Mycorrhization levels of mycorrhizal (M) and TYLCSV-infected mycorrhizal (MV) plants. F%, frequency of 513 
mycorrhization; M%, intensity of mycorrhization; a%, percentage of arbuscules within infected areas; A%, percentage 514 
of arbuscules in the root system. Vertical lines on each bar represent standard error. Different letters indicate statistically 515 
significant differences (p<0.05, Kruskal-Wallis test). 516 

 Fig. 3  517 

Evaluation of symptoms caused by TYLCSV in mycorrhizal (MV) and non-mycorrhizal (V) tomato plants. Disease 518 
severity index (DSI) ranging between 1 (mild symptoms) and 4 (severe symptoms). a) graphic representation 519 
(percentage of plants scored 1 to 4 DSI in the two sets of plants; b) example of a plant with DSI=2 on the left and one 520 
with DSI=4 on the right.  521 

Fig. 4  522 

Virus concentration in shoots and roots. ΔCt values on the vertical axis represent the difference between Ct (threshold 523 
cycle) of TYLCSV  and Ct of reference gene, and measure viral concentration in the four conditions. Vertical lines on 524 
each bar represent standard error. Different letters indicate statistically significant differences within the same organ 525 
(p>0.05, ANOVA). 526 

Fig. 5  527 

Expression of selected AM symbiosis-responsive genes (Kin: kinesin-like protein, β-xyl: β-xylosidase β-l-528 
arabinosidase; Cyt P450: cytochrome P450 CYP707A3; UDP-gluc: UDP-glucoronosyl UDP-glucosyl transferase; PT4: 529 
phosphate transporter.  Expression values (bars ± standard error) for each gene are given as log2 of fold change (FC) 530 
relative to C. Different letters indicate statistically significant differences (p<0.05, ANOVA).  531 
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