
23 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A Trait Based Re-engineering Technique for Java Hierarchies

Publisher:

Published version:

DOI:10.1145/1411732.1411753

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

ACM

This is the author's manuscript

This version is available http://hdl.handle.net/2318/34229 since 2016-03-11T17:47:16Z

A Trait Based Re-engineering Technique for Java
Hierarchies∗

Lorenzo Bettini1 Viviana Bono1 Marco Naddeo1

1Dipartimento di Informatica, Università di Torino

ABSTRACT
Traits are pure behavior components introduced in the Smalltalk
community in order to integrate the traditional class inheritance
with a composition mechanism: a class is composed by traits and
inherits from superclasses. This offers the advantage of promoting
code reuse. In this paper, we tackle the problem of re-engineering a
Java hierarchy into traits, by adapting to a Java setting a methodol-
ogy developed by Lienhard, Ducasse, and Arévalo for a Smalltalk
setting, based on Formal Concept Analysis. We illustrate the ap-
proach by applying it to the Java input stream library. We also
obtain two by-products: (i) we identify clearly some workarounds
that programmers must exploit in order to overcome some of the
limitations of Java single inheritance; (ii) we single out some fea-
tures a Java with traits might include, as none of the proposals in
the literature in this sense has taken the lead yet.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms
Design, Theory

Keywords
Code Reuse, Re-engineering, Java, Trait, Formal Concept Analysis

1. INTRODUCTION
It is well-known that single inheritance in object-oriented lan-

guages has some intrinsic limitations. Often the restriction of hav-
ing only one direct superclass forces programmers to some design
choices that are not optimal from the point of view of the domain
conceptual representation, of the understandability of the code, and
especially from the point of view of the code reuse, which is, in
principle, one of the main goals of the object-oriented paradigm.

∗This work has been partially supported by the MIUR project EOS
DUE.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2008, September 9–11, 2008, Modena, Italy.
Copyright 2008 ACM 978-1-60558-223-8/08/0009 ...$5.00.

In the literature, there are some proposals to overcome such limita-
tions. Notably, multiple inheritance is supported in different forms
by languages such as C++ [32] and Eiffel [22]; another interesting
alternative construct is the mixin based inheritance [8, 9, 10, 2, 16].
Nevertheless, none of them is completely satisfactory, in fact none
of them has ever taken the lead completely as a substitute of single
inheritance (for a full account on the subject we refer to [12]).

A new construct called trait was introduced in the Smalltalk
community, in order to complement single inheritance and to solve
some of the problems introduced by it. Traits [29, 12] are pure units
of reuse, constituted of methods only, that can be used as building
blocks to compose classes. The most important feature of traits is
that the composed class has a complete control on the composition
itself, which implies, in particular, that traits and their composition
are orthogonal to any inheritance hierarchy; moreover, it is the pro-
grammer that must solve explicitly any conflict that may arise when
composing the traits. Traits have been incorporated in Squeak [18,
3], then in other languages such as Scala [25] and Fortress [1], in a
typed context [14], and in the Java setting [31, 21, 7].

When traits are introduced in a language, either to comple-
ment traditional single inheritance or as the only construct to build
classes, it is of interest to tackle two (related) aspects: (i) providing
techniques and tools as aids for programming fruitfully with the
new construct from scratch (see, for instance, [26], in which a tool
for supporting Java traits in Eclipse is presented); (ii) supplying
special code refactoring procedures and tools, to transform legacy
code under the form of single-inheritance based hierarchies into
trait based hierarchies, in order to improve the reuse possibilities of
the legacy code itself.

In this paper, we present a semi-automatic technique for refac-
toring a traditional Java hierarchy into groups of traits We have
chosen not to select a specific “Java with traits” target language
among the proposals in the literature [31, 21, 7], for three reasons:
(i) there is still not a proposal which prevails on the others, neither
in the literature, nor in the “outside world”; (ii) our goal is to sug-
gest simply a possible set of traits (as groups of methods) that can
be used to compose classes that can be integrated within other, or-
thogonal, programming constructs; (iii) we also want to discuss on
which would be a good candidate to become the “Java with traits”,
that is, which would be the constructs useful to complement traits.
A by-product of our work is to single out some of the workarounds
programmers must apply in order to overcome some of the draw-
backs of single inheritance. Nevertheless, traits and trait compo-
sition alone are not enough. In particular, in order to preserve the
polymorphism present in a single-inheritance based hierarchy, we
need at least to have the interface programming construct (in the
sense of Java). For a discussion on other possible combinations of
traits with other Java constructs, see Section 5.

Our refactoring technique is based on the approach proposed
by Lienhard, Ducasse, and Arévalo [19] for Smalltalk that ex-
ploits Formal Concept Analysis [17], a solid mathematical theory
for gathering significative groupings of elements which have some
properties in common. The main novelty is that we apply this
technique to Java, which is a typed language (while Smalltalk is
untyped). We worked on the Java library defining input streams
(shown in Figure 1) as a case study. We also implemented a sub-
stantial part of a tool that performs the trait-based refactoring as an
Eclipse plug-in.

The paper is based on the content of the master thesis of Naddeo
[23] and it is organized in the following way: Section 2 illustrates,
via our case study, some of the design choices forced by single in-
heritance, Section 3 gives a short introduction on traits, Section 4
presents our refactoring approach from single-inheritance based hi-
erarchies to trait based ones in detail, and Section 5 draws some
conclusions on the work done.

2. SOME DRAWBACKS OF SINGLE IN-
HERITANCE AND SOME SOLUTIONS

Despite the fact that the single inheritance mechanism has been
introduced as one of the key factors in object-oriented program-
ming, especially for improving code reuse, this mechanism has its
limitations.

One of the most frequent mandatory design choices when us-
ing single inheritance is code duplication, often in alternative or
combined with the strategy of implementing some methods higher
in the hierarchy (where they might not be conceptually needed,
but this way it is possible to make them inherited by all sub-
classes without duplicating them), as in some situations better de-
sign choices are not possible. Let us consider as an example the
following situation: classes C1 and C2 both extend the class S, in-
heriting all its methods; class C1 extends S by introducing a new
method method1(), and C2 extends it by introducing a method
method2(). We then assume to have a class C3 that needs from
the conceptual point of view to inherit both method1() of C1 and
method2() of C2. Since single inheritance permits inheriting from
one class only, class C3 must extend only one of those classes (for
example, C2), therefore the method method1() of C1 must be du-
plicated (a similar hierarchy is depicted in Figure 3, where method
next is duplicated).

An alternative solution to code duplication is to move a method
higher up in the hierarchy until it is available for all the (sub)classes
that need it, but sometimes “higher” is “too high”. In the example,
we can move method1() from class C1 into its superclass S, in
such a way it is inherited by C1, C2, and also C3, avoiding code du-
plication. However, this has a price: the superclass S is “polluted”
with a method that conceptually does not belong to it and the same
holds for C2, that inherits a method that does not need.

A variant of the strategy of pushing higher up a method in a
hierarchy is to implement all common methods to a set of classes
into a common superclass, then to cancel them in the (sub)classes
that do not need them by redefining them: either (i) with an empty
body; or (ii) with a single instruction to throw an appropriate run-
time exception (later in this section we will give some concrete
examples of canceled methods present in our case study). However,
such a strategy is not always applicable: in our example, we cannot
cancel method1() in C2, otherwise C3 would inherit the canceled
version, making useless the moving of method1() from C1 to S.

We could also think of an abstract method as a special form of
canceled method, almost equivalent to a method with an empty
body, however, there is a subtle, but important, difference, as the

former does not have a body and cannot be invoked, while for the
latter (being a concrete method) is the opposite. We will use the
word “method” both for concrete and abstract methods, whenever
the difference is not important.

Now we are ready to show some concrete examples of the
workarounds adopted by the programmers we mentioned earlier,
duplicated methods and canceled methods. We consider the Java
library defining input streams (shown in Figure 1).

It is important to notice that in order to speak of duplicated meth-
ods we need two methods with identical signature and identical be-
havior implemented (not inherited) by two different classes of the
same hierarchy. As a duplicated method, we consider the example:
public int read(byte[] b, int off, int len).

This method is implemented firstly in the hierarchy root,
InputStream. Its direct subclasses (see Figure 1) redefine
the method with a new, specific, implementation. But class
LineNumberInputStream, needs the original root version, there-
fore the only possibility is to duplicate the implementation of
InputStream.

Note that it is not always possible to detect duplicated methods
by comparing syntactically the source code. The best methodology
is to compare the bytecode, as suggested in [19].

As already pointed out, a canceled method can be either a
method that “does nothing” or a method that does only one thing,
i.e., it throws an exception. In the first case, the body can be liter-
ally empty, if the return type is void, or it can contain only a single
return statement returning an appropriate constant value according
to the return type (for instance, null, in the case of an object type).
In the second case, the exception must be unconditioned, i.e., it
should not appear in the branch of a conditional statement. We
then say that a method is directly canceled if it has an empty body
or it throws an unconditioned exception. We say also that a method
is indirectly canceled if it contains a method call on super or on
this that reaches eventually, maybe via a chain of calls, a directly
canceled method. We will use the term canceled whenever it will
not be necessary to distinguish between directly canceled and in-
directly canceled. It is important to observe that our definition of
canceled method is a pure syntactical one, therefore any automated
analysis that detects canceled methods must be semi-automatic, in
the sense that its results must be approved by the user. This is what
our tool does.

As examples of directly canceled methods, we consider the
following ones: public void mark(int readlimit), public
void reset(), public boolean markSupported().

The method mark marks the current position in the input stream,
in such a way that the next call to reset will reposition the stream
to that position, in order to make available the same bytes. The
argument readlimit of mark represents the maximum number of
bytes that it is possible to read before the marked position becomes
invalid. Therefore, mark and reset are two methods to be used
together. The problem is that not all the types of input stream of
the hierarchy of Figure 1 support such operations; in other words,
the fact that mark and reset are supported is an invariant property
of any particular type of input stream. As a consequence, the goal
of markSupported is to flag whether a stream supports the method
pair mark and reset, by returning either true or false accord-
ingly. To understand better, we examine the contracts of mark and
reset in some detail:

• mark: if the method markSupported returns true, the stream
takes into account all the bytes read after a call to mark and it can
make them available again any time reset is called. However,
the stream does not take into account the readings when more
than readLimit bytes are read from the stream before a reset

A u d i o
I n p u t S t r e a m

B y t e A r r a y
I n p u t S t r e a m

F i l e
I n p u t S t r e a m

P i p e d
I n p u t S t r e a m

Fi l te r
I n p u t S t r e a m

S e q u e n c e
I n p u t S t r e a m

O b j e c t
I n p u t S t r e a m

S t r i n g B u f f e r
I n p u t S t r e a m

B u f f e r e d
I n p u t S t r e a m

C h e c k e d
I n p u t S t r e a m

D i g e s t
I n p u t S t r e a m

In f la te r
I n p u t S t r e a m

G Z I P
I n p u t S t r e a m

Z i p
I n p u t S t r e a m

J a r
I n p u t S t r e a m

L i n e N u m b e r
I n p u t S t r e a m

P r o g r e s s
M o n i t o r

I n p u t S t r e a m

I n p u t S t r e a m
P u s h b a c k

I n p u t S t r e a m
I n p u t S t r e a m

D a t a
I n p u t S t r e a m

I n p u t S t r e a m

Figure 1: The Java input stream hierarchy.

invocation.
• reset: its contract is:

– if markSupported returns true, then:
∗ if mark was never called since the stream was created,

or the number of bytes read by the input stream is big-
ger than the last readLimit, an IOException may
be thrown;
∗ if such an exception is not thrown, then the input

stream is reset to a state in which all the bytes read
starting from the most recent call to mark (or starting
from the beginning of the stream, if mark has not been
called) are made available again by calling read, fol-
lowed by all the bytes available before calling reset.

– if markSupported returns false, then:
∗ a call to reset may throw an IOException;
∗ if such an exception is not thrown, then the stream is

reset to a fixed state that depends on the type of input
stream and the way it was created. The returned bytes
by read depend on the type of input stream.

Summarizing, if markSupported returns true, then it is possi-
ble to use mark and reset in pair, otherwise a call to mark will not
have any effect, while a call to reset either will throw an exception
or it will reset the stream to a certain state depending on the type of
stream (for instance, reset of class StringBufferInputStream
repositions the stream at the start of the given string).

These methods are redefined as canceled in the classes that do
not support them: InputStream, InflaterInputStream, and
PushbackInputStream. In particular the last two must cancel
them again, since their superclass FilterInputStream overrides
the original canceled versions of InputStream. We note that while
mark is canceled with an empty body, reset is canceled with an
exception. This difference is a consequence of the fact that reset
may have an effect even in the case markSupported returns false
(that is, it may reset the stream to a given state), therefore there is
the necessity of throwing an exception when reset is really not
supported; if it were canceled by implementing it with an empty
body, we would not have a way to determine if a call to reset has
an effect or not in the case when markSupported returns false.

We finish this discussion on the canceled methods of the input
stream hierarchy by noting that:

• the canceled implementations of mark and reset defined in
InputStream are inherited by the classes FileInputStream,
ObjectInputStream, PipedInputStream, and Sequence-

InputStream;
• similarly, the implementations of the two methods defined in

the class InflaterInputStream are inherited by the classes
GZIPInputStream, ZipInputStream, and JarInputStream;

• class StringBufferInputStream inherits the canceled imple-
mentation of mark from InputStream, but it redefines reset
in such a way the stream is repositioned at the beginning.

3. AN INTRODUCTION TO TRAITS
The trait construct was proposed in the Smalltalk commu-

nity [29, 12], and implemented for the first time in Squeak [18,
3], a Smalltalk dialect; other proposals and variants appeared after-
ward in the literature, such as the ones in [15, 31, 27, 28, 6, 21], but
we will base our short introduction on the seminal work.

A trait is essentially a set of methods, completely independent
from any class hierarchy. They are building blocks to compose
classes or other, more complex, traits. They can be seen as units of
reuse, as the common behavior, that is, the common methods, of a
bunch of classes can be factored into a trait.

A trait can consist of provided methods, that implement their
behavior, and of required methods, that parametrize the behavior
itself. The original traits do not specify any state, therefore one of
the goals of the required methods is to tie the defined methods to
the state of a class that will use the traits (such a class will have to
implement the required methods, often called glue methods).

Trait composition is the main operation to build classes and com-
posite traits and the programmer has a complete control over pos-
sible conflicts that can arise when composing traits. In the original
proposal, trait composition is seen as complementary to single in-
heritance, therefore classes are still organized in a hierarchy, even
though they can exploit traits to specify their own behavior, with
respect to their superclass. This approach has the following conse-
quences: (i) roles are separated: classes are object generators and

Figure 2: The trait TReadStream, with its provided and required
methods, and the class ReadStream.

traits are units of reuse; (ii) since their semantics is simple, it is
easy to give a classical single-inheritance based semantics to a trait
based hierarchy via a so called flattening property [24, 12], that
states that a hierarchy with traits is always equivalent to a hierarchy
without traits, via a sound translation function; (iii) the problems
that arise with multiple inheritance do not arise with traits as they
are independent from any form of inheritance.

Since traits do not have a state (this is still true in most of the pro-
posals in the literature), the only kind of conflict that can arise dur-
ing composition is among methods, but this can be always avoided
by using some operators, such as overriding (that gives a method a
new implementation, hiding the old one) and exclusion (that hides
a method from the external traits). Another useful operator is alias-
ing, that gives an additional name to a provided method.

A class can be composed by one or more traits, can inherit (part
of) its state from a superclass and implements the glue methods. A
class is complete if all the required methods of the composing traits
are part of the glue methods, or are inherited, or are supplied by
other traits. A class formed via traits must specify the composing
traits via a composition clause. Note that also composite traits must
define a composition clause and can use all the above operators.

An example. We borrow the following example from the Squeak
community. We want to implement a library of streams that can be
readable, writable, readable/writable, or synchronizable. In the se-
quel of the example, we will use for traits names beginning with T,
italics to emphasize the required methods, and boldface to empha-
size the glue methods.

We build the library starting from some basic traits,
TReadStream, TWriteStream, TSynchronize. To present
them, we use an UML-like syntax, see Figure 2. The fig-
ure also shows how the class ReadStream is created by us-
ing the trait TReadStream, parametrized via its required meth-
ods: collection and position1. Class ReadStream uses trait
TReadStream, implements the required methods of TReadStream
(in addition to method initialize), it is a subclass of Object,
and it has two instance variables (position and collection).

Since traits TReadStream and TWriteStream have meth-
ods in common, we can factor them into a new trait,

1For simplicity, we only write method names, without their com-
plete signature.

Figure 3: Code duplication in the Smalltalk stream hierarchy.

Figure 4: The Smalltalk stream hierarchy re-factorized.

TPositionableStream, that offers the operations to manip-
ulate a position on a collection. Traits TReadStream and
TWriteStream can be then defined as composite traits that use
TPositionableStream.

Why traits are useful. Traits can improve code reuse, as they
can be exploited to factor duplicated methods into a trait: all classes
needing those methods declare the trait in their composition clause.
Moreover, the form of reuse based on traits is complementary to
any form of reuse introduced by any kind of inheritance. If we
give to the trait mechanism the burden of dealing with the low-
level reuse, inheritance can be fruitfully exploited to model the
conceptual relations among classes. This is noticeable, for ex-
ample, from Figures 3 and 4, that show a part of the Smalltalk
stream hierarchy, respectively in a single-inheritance based ver-
sion and in a trait based one. In the version without traits, it is
possible to see that the conceptual relation between classes is not
well modeled: class ReadWriteStream is connected conceptually
to class WriteStream, but not to ReadStream, moreover, since
ReadWriteStream should be subclass of both WriteStream and
ReadStream (forbidden in single inheritance), such a class must
duplicate the behavior (method next) instead of inheriting it from
ReadStream. All these drawbacks are avoided in the trait based
hierarchy, that maximizes code reuse and it is conceptually sound
at the same time. We refer to [29, 12] for a comparison between
traits and other constructs alternative to single inheritance.

4. THE FCA TECHNIQUE APPLIED TO
JAVA

In this section, we want to illustrate how to apply the Lienhard-
Ducasse-Arévalo approach [19], born in the Smalltalk setting, to a
Java setting. In particular, we apply the Formal Concept Analysis
(FCA) to refactor a Java hierarchy into a trait based one. Our case
study is the input stream hierarchy (see Figure 1). For “FCA in a
nutshell” see the appendix of [19], and for a full account on FCA
see [17].

Our plan is to offer a (semi-)automatic refactoring technique
possibly to complement a completely manual technique (that was
applied, for example, in [5] for some significant portions of the
Squeak library, or in [13] for the kernel of Squeak itself).

The main idea of the approach is to single out from a class-based
hierarchy those groupings of methods that are potentially good can-
didates to be factored into traits, which will be re-composed after-
wards into an equivalent hierarchy (for some considerations on the
semantical equivalence see Section 5). It is important to notice that
this approach is purely a “curative” one, in the sense that its goal is
to find the traits that are necessary to improve the reuse potential of
a hierarchy by eliminating the problems we described in Section 2,
that is, code duplication and methods implemented too high in the
hierarchy. This is already highlighted in [19], where the original
Smalltalk version of the technique is applied to the Squeak stream
and collections libraries: they were able to find a trait-based hi-
erarchy that solved the major problems of reusability, but such a
hierarchy has less granularity from the point of view of the num-
ber of traits than the manual solution presented in [4]. However,
this is not to be considered a flaw of the approach, as it is based on
an analysis of the structural relations between classes and methods,
not on the semantics of the methods themselves, and it can be an
effective complement to manual techniques.

4.1 Identifying traits using FCA
By using FCA, we can identify some significant (maximal)

groupings of elements (that is, classes) that enjoy certain prop-
erties (that is, methods that are “meaningful” for certain classes,
see below for a thorough explanation of what we intend). The
groupings are called concepts and they can be sorted into a concept
lattice following a partial order based on the relation subconcept-
superconcept. This relation is fundamental in our refactoring as
it gives indications on how to find traits as groupings of methods,
how they can be composed, and which classes must exploit them
in order to maximize reuse in a way completely orthogonal to the
single inheritance chain.

Our approach follows closely the original one [19] and is struc-
tured in two phases. The first phase restructures the hierarchy by
identifying the principal traits. The second phases decomposes and
refines further the hierarchy built in the first phase. In the first
phase, we identify the set of methods which are “meaningful” for
each class. This is the input to the FCA, that finds the groupings of
methods shared by a certain set of classes; therefore, starting from
these groupings, we can identify the traits and refactor the origi-
nal hierarchy. In the second phase, FCA is applied again to each
single class and each single trait to identify more refined signifi-
cant groupings of methods on the basis of an analysis on method
invocations.

The refactoring approach is organized in six steps shown in Fig-
ure 5. Steps 1 to 4 represent the first phase of the process, Step 5
and 6 are the second one. Step 1 generates the input for the FCA
by analyzing the classes of the hierarchy in question. Step 2 uses
FCA to produce the concept lattice. Step 3 elaborates the lattice to
eliminate the superfluous information. Step 4 deduces the classes

Figure 5: A glance to the approach (picture borrowed from the
original work.

to be implemented and the traits that compose them. Moreover,
it infers the interfaces that must be introduced in order to recover
the polymorphism of the original hierarchy, being in a typed set-
ting (in fact, in the original untyped setting there is no need to have
any form of inheritance along with trait composition). Step 5 ap-
plies FCA again to each single class and trait found in the previous
steps, and produces the corresponding concept lattices. Step 6 de-
composes the traits found in Step 5 in sub-traits. In this work, we
concentrated on the first four steps, described below in detail.

Step 1: finding out meaningful methods. This step is based
on the detection of those problematic methods (duplicated methods
and methods too high in the hierarchy) we illustrated in Section 2.
The idea is (i) to detect duplicated methods in order to factor them
into traits that will be part in the composition of more than one
class, and (ii) to find canceled methods (canceled methods are de-
fined in Section 2) in order to group, for each class, only the meth-
ods that are really “meaningful” for them.

We say that a method is not meaningful for a class if (i) the
method is abstract, or (ii) the method is canceled (following the
terminology of Section 2), while a method is meaningful in all the
other cases.2

For the purpose of detecting not meaningful methods, we do not
need to analyze the method bodies in details, it is only necessary to
track the method calls on this and on super. To do this, we apply
a static analysis of the code:

• We detect abstract methods and directly canceled methods.
• We detect methods that are indirectly canceled, that is, with their

body containing at least a method call on this or on super that
leads eventually to a directly canceled method (we do this by
following the hierarchy upwards, starting, respectively, from the
class in exam, or its superclass).

• We are not interested in calls on objects other than this because
what we want to detect are the canceled methods of the this

class, which is the class in exam. Moreover, we are not interested
in the possible dynamic bindings of this because what we are
detecting are the canceled methods of the class in exam, not the

2In the original paper [19] they use the term understood instead
of meaningful. We changed terminology in order not to get con-
fused with the more common use of “understood” in phrases such
as “message-not-understood”, already part of the object-oriented
jargon.

ones of its subclasses (these will be detected when each subclass
will be the actual class in exam).

We can now model our context, that is, the structure needed by
the FCA to produce its output: a context is a triple C = (E ,P,R),
in which E is the set of elements, P is the set of properties, and R
is a binary relation between E and P . In our case:

• The set of elements E is the set of (concrete) classes belonging
to the hierarchy.

Note that a Java hierarchy may contain also interfaces and ab-
stract classes. We do not include interfaces in our analysis, as
they obviously do not contain any meaningful method to be in-
serted in a trait. As for abstract classes, we decided to adopt
the following approach, along the lines of having traits and in-
terfaces only in the refactored hierarchy: we collect the concrete
methods of the abstract class, put them in all the subclasses of
the abstract class that do not redefine them (these methods will
be detected as duplicated by our re-engineering technique and
dealt with accordingly), and substitute the abstract class with a
correspondent interface. In our case study, the only abstract class
is the root InputStream (Figure 1).

• The set of properties P is the set of methods meaningful for at
least a class belonging to E .

Note that, in principle, the methods inherited from Object (and
any other superclass of the root of the hierarchy in exam) should
be included in the analysis as they may be meaningful for the hi-
erarchy. However, our objective is a local refactoring, therefore
we limit the analysis to the hierarchy itself (without consider-
ing any superclass of its root). We also do not consider in our
analysis private methods, as we assume they are implemented
only for the class defining them, therefore they will be part of
its implementation only also in the refactored hierarchy. As for
duplicated methods, we already mentioned the fact that their de-
tection should be based on a bytecode analysis, to overcome non
influent differences, such as variables names, that exist instead
in the source code. Duplicated methods will be considered as
one element in the property set. Obviously methods with the
same signature but different implementation must be considered
as distinct elements of the property set.

• The relation R is defined as follows: a class c ∈ E and a method
m ∈P satisfies R if and only if m is meaningful for c.

If we apply Step 1 to our case study, we obtain a context that can
be represented as an incidence table. A portion of the incidence
table is in Figure 6. We observe that:

• The set E contains the classes belonging to the Java input stream
hierarchy (Figure 1) except for InputStream, that is abstract
(see above for a description of our treatment of abstract classes).

• To determine the set P , we collected all the methods locally
implemented or inherited by each class in E . We then detected
all the canceled methods and mark them as removed from P
(see the “C”’s in Figure 6).

• Different implementations of the same signature are numbered,
as they are distinct properties.

• The duplicated methods were detected and considered as a single
property. Table 1 summarizes duplicated methods.

• Any “X” in the incidence table corresponds to a method which
is meaningful to a class. Any “C” corresponds to a class that
implements or inherits a canceled method (not to be considered
in Step 2).

Method Classes where the implementation is duplicated
available() ByteArrayInputStream and StringBufferInputStream

available() InflaterInputStream and ZipInputStream

close() AudioInputStream and FilterInputStream

read(byte[]) AudioInputStream and FilterInputStream

skip(long) ByteArrayInputStream and StringBufferInputStream

skip(long) InflaterInputStream and ZipInputStream

Table 1: The duplicated methods in the Java input stream hier-
archy.

• If there is more than an “X” for the same method, corresponding
to different classes, either that method is inherited from a com-
mon superclass, or that method is duplicated (the difference is
taken into account in Step 3).

• method markSupported (already treated at length in Section 2)
deserves a discussion on its own: since it was introduced in the
original hierarchy only to tell whether the pair of methods mark
and reset were supported in a certain class of the hierarchy
(i.e., if they were canceled or not), such a method was not in-
cluded in the set of properties and it does not appear in the con-
text.

Note that the current step cannot be automatized completely, be-
cause the technique (and any tool based on that) can detect canceled
methods and their related auxiliary methods only via some syntac-
tic criteria, but the last word on which methods are really canceled
or not must be left to the user.

Step 2: generating the concept lattice. Once the context
is calculated, we can apply an algorithm to generate the concept
lattice. Our implementation is based on an improved version of the
FCA [17], called Fast Concept Analysis [20]. Each of the individ-
uated concepts will have a set of classes as the extent (set of ele-
ments) and a set of methods as the intent (set of properties). Since
a concept represents a maximal set of elements with common prop-
erties, in our case, the concepts are maximal groupings of classes
that have some methods in common. In particular, all methods be-
longing to a concept are: (i) implemented locally or inherited by
all the classes in the extent; (ii) meaningful for all the classes in the
extent.

For our case study, we obtain, starting from the context, the
concept lattice of Figure 7. We observe that there are 19 concepts
with one class, while 13 different concepts present from 2 to 16
classes in their extent. Top and bottom concepts contain, respec-
tively, the complete set of classes and the empty set of classes as
extent. In the lower part of each concept there is the list of the
meaningful methods for all the classes listed in the upper part: for
example, the top concept says that there is no method that is shared
by all classes, while the bottom concept says that it does not exist a
class that needs all the methods.

This way we know:

• The exact set of methods that a class needs either to implement,
or to obtain from a trait by trait composition. In fact, the con-
cepts with only one class in the extent, show, via their intent, the
methods that such a class needs.

• The maximal sets of methods shared by different classes. In fact,
the concepts that have as extent two or more classes say which
are the shared methods, that is, the ones in the intent.

Step 3: elaborating the concept lattice. For each concept,
we eliminate from it any method that is at least in one of its su-
perconcepts. We obtain a structure called gamma lattice, whose

Figure 6: A part of the context.

concepts’ intents contain only additional methods with respect to
the ones of the superconcepts. We also eliminate the bottom con-
cept, that does not add any relevant information to our analysis (the
gamma lattice for our case study is not shown here for lack of space,
but it can be derived easily).

After this step of simplification, all concepts that do not have any
subconcept have necessarily one class only in their respective ex-
tent (otherwise it would mean that there is a method not belonging
to any class, or that there are two or more classes that define exactly
the same methods).

A simple way to interpret the gamma lattice is that of consider-
ing it a multiple-inheritance based hierarchy, in which each concept
represents a class that inherits from its superconcepts seen as super-
classes, that is, the behavior of a class is completely defined by the
methods in its concept plus the methods in its superconcepts in the
gamma lattice. However, we will use the gamma lattice not to build
a multiple-inheritance based hierarchy, but a trait based one.

Step 4: refactoring with traits. We analyze the gamma lat-
tice to identify traits and classes and restructure the hierarchy with
the aid of the trait composition, on the base of the following obser-
vations:

• All concepts with only one class in their extent supply, by their
respective intent, the set of the methods needed only by that
class: for any of such concepts, it is possible to define a class
implementing those methods.

• The concepts with two or more classes in their extent constitute
trait candidates; in fact, each of such concepts represent a max-
imal grouping of methods (in the intent) shared by some classes
(in the extent), methods that can be factorized in traits compos-
ing the classes themselves.

• Each concept without subconcepts represents a class. The set

of its superconcepts in the gamma lattice, direct and indirect,
indicates which methods the class needs from which traits, in
order to rebuilt its original behavior.

• The subconcept-superconcept gives us information on how to
compose traits to obtain composite traits.

• If in the gamma lattice there are concepts with an empty intent
(no methods), the only task of those concepts is to understand
how to create composite traits.

• As a last step, we need to introduce those interfaces to recover
the polymorphism induced by the original hierarchy (under the
hypothesis that we do not introduce any form of inheritance but
the interface-based one).

For our case study, we can then analyze the gamma lattice with
the goal of individuating the classes, the traits and the interfaces of
the refactored hierarchy:

• The 19 concepts that have only one class in their extent will
correspond to the concrete classes, implementing all and only
the methods in the respective intent; note that we will re-obtain
all the classes of the original hierarchy (with a different set of
methods).

• The 10 concepts with more than one class in their extent orig-
inate 10 traits, shown in Figure 8 (left). We named them
T1,. . . ,T10.

• By analyzing the subconcept-superconcept relations in the
gamma lattice, we single out the composite traits, shown in Fig-
ure 8 (center). Note that the intermediate step of building com-
posite traits is an optional one, that is, the trait-based hierarchy
can be build directly either starting from the atomic traits, or by
composing such atomic traits in other compositions. Our strat-
egy is based on the idea of composing two traits in a single trait
any time there is more than one composite class or trait that uses

Figure 7: The concept lattice for the Java input stream hierarchy.

Figure 8: Traits, composite traits and classes for the Java input stream hierarchy.

A u d i o
I n p u t S t r e a m

B y t e A r r a y
I n p u t S t r e a m

F i l e
I n p u t S t r e a m

P i p e d
I n p u t S t r e a m

IF i l te r
I n p u t S t r e a m

S e q u e n c e
I n p u t S t r e a m

O b j e c t
I n p u t S t r e a m

S t r i n g B u f f e r
I n p u t S t r e a m

B u f f e r e d
I n p u t S t r e a m

C h e c k e d
I n p u t S t r e a m

D i g e s t
I n p u t S t r e a m

In f la te r
I n p u t S t r e a m

G Z I P
I n p u t S t r e a m

Z i p
I n p u t S t r e a m

J a r
I n p u t S t r e a m

L i n e N u m b e r
I n p u t S t r e a m

P r o g r e s s
M o n i t o r

I n p u t S t r e a m

P u s h b a c k
I n p u t S t r e a m

D a t a
I n p u t S t r e a m

I I n p u t S t r e a m

Fi l te r
I n p u t S t r e a m

I In f la te r
I n p u t S t r e a m

IZ ip
I n p u t S t r e a m

Figure 9: Interfaces for the Java input stream hierarchy.

that particular pair of traits (see Figure 8: trait TC3 is composed
with the atomic traits T8 and the composite trait TC2, trait TC7
is composed with the composite traits TC5 and TC6).
• The 19 classes are composed by traits as shown in Figure 8

(right). A special case is class FileInputStream, that does
not use any trait, because all the methods it needs are not shared
by any other classes, therefore they can be implemented directly
in the class itself.
• Finally, for restoring the original polymorphism, we organize

the classes of Figure 8 (right) in an interface hierarchy, shown
in Figure 9. In particular, we introduced an interface for each
class that in the original hierarchy has some subclasses. Firstly,
we introduced an interface IInputStream that declares all the
methods declared/implemented in class InputStream; this in-
terface is extended appropriately by IFilterInputStream, im-
plemented by class FilterInputStream, together with all its
direct subclasses; and so on. Note that we obtain a refactoring
that restores the original polymorphism, but that re-introduces
some of the problems that we tried to eliminate. In fact, for ex-
ample, the methods mark and reset of InputStream must be

declared in IInputStream, therefore the subclasses that do not
support them must implement them as canceled.

5. CONCLUSIONS
In this paper, we proposed a refactoring technique to transform

a single-inheritance based hierarchy into a trait based hierarchy,
with the aim of improving code reuse. Our proposal is an adapta-
tion to Java of the FCA approach of [19], originally introduced for
Smalltalk, which is untyped, and here adapted for a typed setting.
The FCA approach was also exploited for identifying modules in
legacy code written in C++ in [30].

Our case study is the Java input stream library, but the same ap-
proach can be applied to all the main Java libraries, notably the
collection and the networking libraries. The obtained results show
that our case study may benefit from a trait based refactoring, as
most of the flaws of the original version of the library, described
in Section 2, were removed. In future work we will then measure
how good the refactored output is, from a more quantitative point
of view (for instance, the trait granularity), possibly by comparing
it with results from manual techniques, as it was done in [11] for

the Smalltalk stream library, that was redesigned from scratch.
We focused on the purpose of designing a trait extraction tech-

nique, without choosing any special “Java with traits” as target.
The output of our procedure is a lattice of traits that can be seen
as a possible refactorization of a classical Java hierarchy, equipped
with a hierarchy of interfaces, which is the minimum addition in
order not to lose the polymorphism of the original hierarchy. The
new trait based hierarchy can be then refined further, with the aid
of other techniques, and/or complemented with other programming
constructs. We also considered an alternative solution to the “trait
+ interface” one we adopted in the end, that is, a “trait + interface
+ abstract class” one, that implies having both trait composition
and single inheritance. By using abstract classes, some of the traits
individuated in Section 4 (see Figure 8) may be implemented as ab-
stract classes (and possibly refactored in traits in the second phase
of the approach); for instance, the root of the hierarchy, the abstract
class InputStream, would be preserved. Similar considerations to
the ones we made about whether to include the methods mark and
reset in the interface IInputStream must be taken in account
also for the corresponding abstract class. The main advantage of
having traits and interfaces only is that we gain in simplicity, while
having a form of single inheritance that complements composition
might be appealing to programmers used to work with implemen-
tation hierarchies.

In the original proposal [19], trait composition is complemen-
tary to single inheritance. Note that the main difference between
the untyped Smalltalk setting and the typed Java setting is that, for
the latter, it is necessary to introduce a form of inheritance among
classes along with trait composition in order to maintain the poly-
morphism. Nevertheless, it is not mandatory to reintroduce class
inheritance, but it is enough to introduce an appropriate interface
hierarchy. However, from the point of view of having backward
compatibility of the refactored library towards old client code, for
both settings it would be necessary to re-introduce all subclass-
superclass relations that were present originally. This is an impor-
tant issue and it will be developed in future work.

At the moment, we do not have a clear opinion yet on which
would be the best “Java with traits”, but we hope that this work
would help to give some ideas to reflect upon.

A complementary work is to show formally that the proposed
technique produces a hierarchy which is conservative with respect
to the semantics of the original one. This will be also the subject
of future work, but we believe that it is a straightforward (even still
interesting) adaptation of the flattening property of [12, 24].

As mentioned earlier, we implemented a tool that performs most
of the steps presented in Section 4, in particular all the ones of the
first phase, but the bytecode-based detection of duplicated meth-
ods.3 Step 1, that is, the detection of canceled methods, has been
semi-automatized, since it is the programmer that has the last word
on which among all the syntactically detected methods are actually
to be considered as canceled. The tool is an Eclipse plug-in and it
is freely available at http://fcajava.sf.net.

Acknowledgments. The authors wish to thank Gabriela Arévalo,
Damien Cassou, Stéphane Ducasse, and Adrian Kuhn for point-
ing out alternative, efficient algorithms to perform FCA, and Sara
Capecchi, Stéphane Ducasse, and the anonymous referees for use-
ful advice on how to improve the paper.

6. REFERENCES
3The tool does not create in output the graphical form of the in-
cidence table and of the lattices, but it generates all the necessary
information to build them.

[1] The Fortress language specification.
http://research.sun.com/projects/plrg/fortress.pdf.

[2] D. Ancona, G. Lagorio, and E. Zucca. Jam - A Smooth Extension of Java with
Mixins. In ECOOP 2000, number 1850 in LNCS, pages 145–178, 2000.

[3] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and M. Denker.
Squeak by Example. Square Bracket Associates, 2007.

[4] A. P. Black and N. Schärli. Traits: Tools and methodology. In Proceedings
ICSE 2004, pages 676–686, 2004.

[5] A. P. Black, N. Schärli, and S. Ducasse. Applying traits to the Smalltalk
collection classes. ACM SIGPLAN Notices, 38(11):47–64, 2003.

[6] V. Bono, F. Damiani, and E. Giachino. Separating Type, Behavior, and State to
Achieve Very Fine-grained Reuse. In Electronic proceedings of FTfJP’07
(http://www.cs.ru.nl/ftfjp/), 2007.

[7] V. Bono, F. Damiani, and E. Giachino. On traits and types in a Java-like setting.
In IFIP TCS 2008 (Track B). Springer, 2008. Availble at the url
http://www.di.unito.it/˜damiani/papers/tcs08B.pdf.

[8] G. Bracha. The programming language JIGSAW: mixins, modularity and
multiple inheritance. PhD thesis, Department of Comp. Sci., Salt Lake City,
UT, USA, 1992.

[9] G. Bracha and W. Cook. Mixin-Based Inheritance. ACM SIGPLAN Notices,
25(10):303–311, Oct. 1990. OOPSLA ECOOP ’90 Proceedings, N. Meyrowitz
(editor).

[10] G. Bracha and D. Griswold. Extending Smalltalk with mixins. In OOPSLA96
Workshop on Extending the Smalltalk Language, 1996.
http://www.javasoft.com/people/gbracha/mwp.html.

[11] D. Cassou, S. Ducasse, and R. Wuyts. Redesigning with traits: the Nile stream
trait-based library. In ICDL, pages 50–75, 2007.

[12] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits: A
mechanism for fine-grained reuse. ACM TOPLAS, 28(2):331–388, 2006.

[13] S. Ducasse, N. Schärli, and R. Wuyts. Uniform and safe metaclass composition.
Computer Languages, Systems and Structures, 31(3–4):143–164, 2005.

[14] K. Fisher and J. Reppy. Statically typed traits. Technical Report TR-2003-13,
University of Chicago, Department of Computer Science, Dec. 2003.

[15] K. Fisher and J. Reppy. A typed calculus of traits. In Electronic proceedings of
FOOL 2004, 2004.

[16] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proc.
POPL ’98, pages 171–183, 1998.

[17] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, 1999.

[18] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to the future:
The story of Squeak, A practical Smalltalk written in itself. In Conference
Proceedings of OOPSLA ’97, Atlanta, volume 32(10) of ACM SIGPLAN
Notices, pages 318–326. ACM, 1997.

[19] A. Lienhard, S. Ducasse, and G. Arévalo. Identifying traits with formal concept
analysis. In Proc. 20th Conference on Automated Software Engineering
(ASE’05), pages 66–75. IEEE Computer Society, 2005.

[20] C. Lindig. Fast Concept Analysis. PhD thesis, Harvard University, Division of
Engineering and Applied Sciences, Cambridge, Massachusetts, 2002.

[21] L. Liquori and A. Spiwack. Feathertrait: A modest extension of Featherweight
Java. ACM TOPLAS, 2008.

[22] B. Meyer. Eiffel: The Language. Prentice-Hall, 1991.
[23] M. Naddeo. Un possibile approccio alla soluzione di alcuni problemi legati

all’ereditarietà singola nei linguaggi object-oriented. Laurea triennale in
informatica, Università degli Studi di Torino, 2008.

[24] O. Nierstrasz, S. Ducasse, and N. Schärli. Flattening traits. JOT (www.jot.fm),
5(4):129–148, 2006.

[25] M. Odersky. The Scala Language Specification, version 2.4. Technical report,
Programming Methods Laboratory, EPFL, Switzerland, 2007.

[26] P. J. Quitslund, R. Murphy-Hill, and A. P. Black. Supporting Java traits in
Eclipse. In OOPSLA workshop on Eclipse Technology eXchange - ETX 2004,
pages 37–41. ACM, 2004.

[27] J. Reppy and A. Turon. A foundation for trait-based metaprogramming. In
Electronic proceedings of FOOL/WOOD 2006, 2006.

[28] J. Reppy and A. Turon. Metaprogramming with traits. In ECOOP 2007, volume
4609 of LNCS, pages 373–398. Springer, 2007.

[29] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units
of behavior. In ECOOP 2003, volume 2743 of LNCS, pages 248–274. Springer,
2003.

[30] M. Siff and T. Reps. Identifying modules via concept analysis. IEEE Trans.
Softw. Eng., 25(6):749–768, 1999.

[31] C. Smith and S. Drossopoulou. Chai: Traits for Java-like languages. In
ECOOP’05, LNCS 3586, pages 453–478. Springer, 2005.

[32] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edition,
1997.

